
RESEARCH ARTICLE

Genome-wide association study of drought

tolerance and biomass allocation in wheat

Isack MathewID
1*, Hussein Shimelis1, Admire Isaac Tichafa Shayanowako1, Mark Laing1,

Vincent Chaplot2,3

1 African Centre for Crop Improvement, University of KwaZulu-Natal, School of Agricultural, Earth and

Environmental Sciences, Pietermaritzburg, South Africa, 2 University of KwaZulu-Natal, School of

Agricultural, Earth and Environmental Sciences, Pietermaritzburg, South Africa, 3 Sorbonne Universities,
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Abstract

Genome wide association studies (GWAS) are important in discerning the genetic architec-

ture of complex traits such as biomass allocation for improving drought tolerance and car-

bon sequestration potential of wheat. The objectives of this study were to deduce the

population structure and marker-trait association for biomass traits in wheat under drought-

stressed and non-stressed conditions. A 100-wheat (Triticum aestivum L.) genotype panel

was phenotyped for days to heading (DTH), days to maturity (DTM), shoot biomass (SB),

root biomass (RB), root to shoot ratio (RS) and grain yield (GY). The panel was sequenced

using 15,600 single nucleotide polymorphism (SNPs) markers and subjected to genetic

analysis using the compressed mixed linear model (CMLM) at false discovery rate (FDR <
0.05). Population structure analysis revealed six sub-clusters with high membership ances-

try coefficient of�0.65 to their assigned sub-clusters. A total of 75 significant marker-trait

associations (MTAs) were identified with a linkage disequilibrium threshold of 0.38 at 5cM.

Thirty-seven of the MTAs were detected under drought-stressed condition and 48% were

on the B genome, where most quantitative trait loci (QTLs) for RB, SB and GY were previ-

ously identified. There were seven pleiotropic markers for RB and SB that may facilitate

simultaneous selection. Thirty-seven putative candidate genes were mined by gene annota-

tion on the IWGSC RefSeq 1.1. The significant MTAs observed in this study will be useful in

devising strategies for marker-assisted breeding for simultaneous improvement of drought

tolerance and to enhance C sequestration capacity of wheat.

Introduction

Bread wheat (Triticum aestivum L., 2n = 6x = 42, AABBDD) is a commodity crop with a global

harvested area of over 210 million hectares [1]. It is a source of food for over 2.5 billion people

worldwide [2]. Wheat production and productivity is challenged by numerous biotic and abi-

otic stresses. Among the major abiotic constraints is recurrent drought driven by climate

change. In addition, the inherently low-fertile soils, notably in sub-Sahara Africa, exacerbate
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the impact of drought stress resulting in higher wheat yield losses compared to other regions

[3].

One mechanism by which plants respond to environmental stresses is to adjust their biomass

allocation [4]. Therefore, exploiting the phenotypic plasticity present in biomass allocation

encompassing the root system of modern wheat cultivars has been proposed as a method to

improve drought resilience and yield potential [5]. Enhancing biomass allocation to roots will

improve drought tolerance by increasing the moisture extraction capability, while promoting soil

C input via root exudation and turnover [6]. However, simultaneous improvement for drought

tolerance and C sequestration has not been pursued in crop breeding programs [7], particularly

in cereals such as wheat where breeding for high grain yield is the primary objective. In addition,

there has been few studies on genetic analysis of root traits because they are difficult to phenotype

and require routine destructive sampling [8]. Most importantly, progress in breeding for drought

tolerance is slow because of its low heritability and polygenic nature. Identifying the underlying

genetic loci for root, shoot and grain biomass under contrasting environments will enable

marker-assisted selection to improve selection efficiency [9] and to accelerate development of cul-

tivars with optimal biomass allocation for drought tolerance and C sequestration.

The advent of next generation sequencing (NGS) and genotyping by sequencing (GBS)

technologies has provided a means for examining genetic diversity and discovering novel

markers [10]. Marker systems such as simple sequence repeats (SSR) and SNPs have been used

successfully to elucidate the genetic attributes of complex traits in wheat [11; 12; 13]. Micro-

array-based diversity array technology sequencing (DArTseq)-derived single nucleotide poly-

morphisms (SNPs) have become increasingly important in genome-wide association studies

(GWAS) [14]. The DArTseq-derived SNPs have been used extensively on genetic studies of

wheat [15; 16; 17]. These markers are reproducible and provide a powerful means to identify

genetic variation and genetic makeup at large number of analogous genomic loci such as pres-

ent in hexaploid wheat. This enables breeders to deduce genetic diversity and genomic loci

controlling economic traits through association mapping [18] and to identify QTLs responsi-

ble for traits such as drought tolerance and high C sequestration.

It is important to deduce associations between markers and traits to improve efficiency of

conventional breeding methods. Genetic markers for several agronomic traits have been identi-

fied [17] but genetic control of biomass allocation to yield, shoot and root components remains

less investigated despite its important implications for drought tolerance. The genomic loci

associated with improved drought tolerance due to high rooting capacity have been elucidated

in other crop species such as soya [19], rice [20] and chickpea [21]. The identification of geno-

mic loci for root traits in wheat is limited by the difficulties associated with root phenotyping

and the relatively large size and complexity of the wheat genome [22; 23]. However, the scarcity

of genetic markers and limited studies on marker-trait associations for biomass allocation and

related traits impede the use of marker-assisted selection (MAS) in developing breeding popula-

tions for drought tolerance and C sequestration in wheat. Hence, studies on biomass allocation

to roots, shoots and grains are required to identify reliable and stable markers. Therefore, the

objective of this study was to deduce marker-trait associations for biomass allocation and yield-

related traits in a diverse population of wheat genotypes for future marker-assisted breeding to

improve drought tolerance and enhanced C sequestration capacity of wheat.

Material and methods

The germplasm

A panel of 100 wheat genotypes were evaluated. The bread wheat genotypes included 95

drought and heat tolerant genotypes initially acquired from the International Maize and

GWAS of drought tolerance and biomass allocation
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Wheat Improvement Center (CIMMYT). These genotypes were purposefully selected for their

genetic divergence and breeding history for drought tolerance. The remainder of the bread

wheat genotypes were two local checks and two commercial cultivars adapted to temperate cli-

mates. The temperate commercial cultivars were included in the study to widen the genetic

diversity for rooting ability. The commercial varieties adapted to temperate climates have

twice the rooting capacity of wheat grown in warmer winters [24]. The details of the germ-

plasm are presented in S1 Table.

Phenotyping

Test materials were phenotyped involving two experiments under drought-stressed and non-

stressed conditions. The two experiments corresponded to four test environments that

included two experiments each under drought-stressed and non-stressed conditions in the

greenhouse and field. The greenhouse experiments were conducted at controlled environment

facility of the University of KwaZulu-Natal (UKZN), while the field trial was conducted at

Ukulinga Farm of the UKZN (LAT: 29.667 LON: 30.406 and ALT: 811m) between 2016 and

2018. In the greenhouse experiment, 100 genotypes were sown in October in 2016, while the

second experiment was established in May 2017. Both trials were conducted using a 10×10

alpha lattice design with 2 replications. The greenhouse provided shelter against rainfall and

irrigation was provided via an automated drip irrigation system inserted directly into individ-

ual pots. Fertilizer was also applied through automated drip irrigation at a rate of 300 kg N ha-1

and 200 kg P2O5 ha-1. The different water regimes were initiated 6 weeks after planting to

ensure good establishment but also to ensure early exposure of all growth stages to drought. In

the non-stress condition, the plants were watered to field capacity (FC) whenever average soil

water content fell to 80% of FC, while in the drought stress conditions volumetric soil water

content was allowed to drop to 30% of FC before watering to FC. The soil water content was

monitored by a soil moisture probe and random weighing of the pots. The two watering treat-

ments were maintained until maturity (~120 days).

The field experiments was established in May 2017 following a similar design. The soil sur-

face was covered by a custom made plastic, which acted as a mulch to prevent rain water from

entering into the soil. Basal fertilizer composed of nitrogen (N), phosphorous (P) and potas-

sium (K) was applied at a rate of 120:30:30 kg ha-1 (N:P:K). Other agronomic practices were as

per normal wheat production practice in South Africa [25]. Irrigation was applied through a

drip irrigation system with the aim to maintain soil water content at FC in the well-watered

regime. Under the drought stress treatment, irrigation was withheld 5 weeks after crop emer-

gence until just before signs of permanent wilting were observed upon which irrigation was

reinstated. This differs from the 80 and 30% FC soil water regimes maintained in the green-

house because it is more difficult to determine field capacity and regulate soil water content

appropriately under field conditions compared to a controlled greenhouse environment. Dur-

ing the field experiment, irrigation was withheld before anthesis to induce drought stress in a

way that simulated in situ field wheat production. Amount of water applied and prevailing

temperatures were recorded for the period to determine the extent of drought stress [26]. The

following phenotypic traits were assessed: the number of days to 50% heading (DTH) and

number of days to 50% maturity (DTM) were counted from date of planting, plant height

(PH) expressed in centimeter and spike length (SL, cm) were measured with a calibrated ruler,

shoot biomass (SB, grams per m2), root biomass (RB, grams per m2), thousand kernel weight

(TKW, g 1000−1 seeds) and grain yield (GY grams per m2) were weighed on a laboratory preci-

sion digital scale at maturity while root to shoot ratio (RS) were derived from RB and SB

accordingly and the number of kernels per spike (KPS) were counted after shelling.

GWAS of drought tolerance and biomass allocation
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Phenotypic data were subjected to the Shapiro-Wilk test for normality before analysis of

variance in Genstat 18th edition [27]. Variance components were calculated in Genstat 18th

edition using the general linear model [27] where the environments and water regimes were

considered to have fixed effects while genotype effects were treated as random following [28].

General statistics including means, standard error, and coefficient of variation for the pheno-

typic data were computed in Genstat 18th [27]. The associations among the phenotypic traits

were tested using Pearson correlations. Broad sense heritability (H2) estimates were calculated

from phenotypic variance (σ2
p) and the genotypic variance (σ2

g) according to [29] as follows:

H ¼
d

2g
d

2p

Where δ2p = δ2g+ δ2ge/e + δ2e/re

Where δ2p = phenotypic variance, δ2g = genotypic variance,

δ2ge = genotype × environment interaction variance, δ2e = residual variance while r = number

of replications and e = number of environments. The inclusion of three environments allows

for an effective evaluation of quantitative traits and ensures precision in estimating heritability

values [30; 31].

Genotyping

The 100 genotypes were planted in the greenhouse in seedling trays. Genomic DNA was

extracted from leaves of 3-week old seedlings. The DNA was extracted using CTAB method

[32]. After extraction, the nucleic acid concentration and purity of the DNA was checked

using a NanoDrop 2000 spectrophotometer (ND- 2000 V3.5, NanoDrop Technologies, Inc.)

before being shipped to Diversity Arrays Technology (DArT) Pty Ltd, Australia for whole

genome sequencing on the DArTseq platform. Whole-genome genotyping for the 100 wheat

genotypes was carried out on the platform developed by [33] using 28,356 DArT markers. The

markers were integrated into a linkage map by inferring marker order and position from the

consensus DArT map. The mean polymorphic information of the markers was 0.16 and ran-

ged between 0.0 and 0.50 with a reproducibility index of 0.93.

DArTseq SNP filtering. All the individuals were genotyped using 28,356 silico DArT

markers assigned to 21 chromosomes. A total of 15,600 informative DArTseq-derived SNP

markers and 99 genotypes were used after data imputation where SNP loci and individuals

with>20% missing data and rare SNPs with<5% minor allele frequencies (MAF) were

pruned from the data before analysis as previously described by [16].

Population structure. The population structure of the 99 genotypes was assessed using

the Bayesian clustering method in STRUCTURE version 2.3.4 [34]. A 10,000 burn-in period

and 10,000 Markov Chain Monte Carlo (MCMC) iterations were used to derive the population

structure based on 15,600 DArTseq-derived SNP markers distributed across the wheat

genome. The K-value was set between 1 and 10 to generate the number of subpopulations in

the accessions. The best K-value for estimating a suitable population size for the dataset was

determined by the K-value with the highest likelihood to reduce the risk of false positive asso-

ciations [35]. The optimal number of clusters and sub-clusters in the population were deter-

mined by the Evanno method based on ΔK and the highest median values of Ln(Pr Data) in

CLUMPAK [36].

Association mapping. A total of 15,600 DArTseq derived SNP markers and best linear

unbiased predictors (BLUPs) for the phenotypic traits measured under different environments

were used to determine marker-trait associations among the 99 accessions in the population.

This panel formed a core set of new wheat introductions for drought tolerance breeding in

GWAS of drought tolerance and biomass allocation
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South Africa. Usually large number of accessions are used but population sizes between 60 and

150 have been used successfully in previous studies [37; 38; 39; 40]. The information obtained

from this GWAS would provide useful baseline information since there are very few studies

elucidating genetic control of biomass allocation and its impact on drought tolerance. Prior to

conducting GWAS analysis, the phenotypic data collected from each of the experiments were

analyzed using the nlme package in R to generate best linear unbiased predictors (BLUPs).

Genotype was fitted as a fixed effect and environment were fitted as random effect. The BLUPs

for each genotype were used as input in GWAS analysis to handle the variations among the

environments. The BLUPs would allow to make unbiased adjustment for fixed effects thus

eliminating the need to consider marker trait associations (MTAs) for individual environ-

ments. The association mapping was conducted on biomass allocation traits (RB, SB, GY and

RS) using a compressed mixed linear model (CMLM) method that factors in both population

structure and kinship using the Q + K model where Q = population structure determined by

principal component analysis and K = kinship matrix generated in TASSEL 5. The marker-

trait association analysis was conducted in the GAPIT program of the R software [41]. The

population structure matrix (Q) was fitted as a fixed factor while the kinship matrix (K) was

treated as a random factor. The markers were considered as significant for each trait individu-

ally at a critical p-value of 1% and false discovery rate of 5%, which was deemed to be highly

stringent to reduce the risk of false marker-trait associations (MTAs) [35; 42].

Determination of Linkage disequilibrium. The GAPIT program in R software was used

to conduct linkage disequilibrium analysis following [41]. Linkage disequilibrium (LD) was

based on trait specific genome-wide markers whose positions were specific out of the 15,600

polymorphic markers. The squared allele frequency correlations (R2) at p-values <0.001 for

each pair of loci were considered to estimate significant linkage disequilibrium. The LD was

presented graphically as a heat map constructed using the LDHeatmap package [43] in R [44]

based on pairwise R2 of SNPs that were significantly associated with each of the traits by plot-

ting the R2 values against the genetic distance, in centiMorgans (cM).

Putative candidate gene analysis and expression data. Candidate genes overlapping the

significant markers were blasted on the IWGSC RefSeq v1.1 using BLASTn function [45].

Genes adjacent to the significant MTAs were identified by the RefSeq v1.0.Gene Ontology

(GO) annotation of the potential candidate genes was carried out using Blast2GO pro tool

v.3.1.3 [46] and the physical map was visualized on KnetMiner [47; 48]. Subsequently, their

molecular function and associated traits were mined from Ensembl plant for T. aestivum.

Results

Phenotyping variation across genotypes and water regimes

The 3-way interaction involving the levels of the following three factors: genotypes, water

regime and test environment was significant (p<0.05) for NPT, PH, DTM and RS as revealed

by the analysis of variance (ANOVA) (Table 1). The number of days to maturity (DTM) was

significantly (p<0.05) affected by the interaction between genotype and water regime. The

genotype × test environment interaction effects were significant (p<0.05) on all traits except

GY. Individually, the genotype, water regime and test environment effects significantly

(p<0.05) affected all traits except TKW. Only six traits, DTH, DTM, RB, SB, RS and GY were

considered for further analysis in accordance with the objective of elucidating genetic control

of biomass allocation. The DTH and DTM were considered as they affect the phenological

development of biomass accumulation and partitioning between vegetative and reproductive

organs.

GWAS of drought tolerance and biomass allocation
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Days to heading ranged between 40 and 138 with and a mean of 40 (Table 2). Under

drought stress, the genotypes matured earlier by an average of 10 days compared to non-stress

conditions. Root biomass ranged between 131.3 and 1622.3 g m-2 under non-stressed, while it

ranged from 64.6 to 735.8 g m-2 under drought-stressed conditions. A 32% reduction in mean

RB due to drought stress was observed. The lowest shoot biomass was 109 g m-2 obtained

under stressed condition, while the highest was 1,244 g m-2 with improved water availability.

The root to shoot ratios varied from a minimum of 0.14 in wheat genotype LM39 and a

Table 1. Mean squares after combined analysis of variance for phenotypic traits of 99 wheat genotypes and a triticale accession evaluated across three test environ-

ments under drought-stressed and non-stressed conditions.

SOV d.f. DTH DTM NPT PH RB RS SB TKW GY

Rep(Env) 2 41.79� 3.32 27.79� 206.82�� 12648 0.05�� 134719 98.6 148963

Block(Rep) 18 49.48�� 43.95�� 6.5 142�� 38785�� 0.01� 908450�� 60.7�� 332888��

Env 1 65929�� 121331�� 133�� 112698�� 2143211�� 68.3�� 724457871�� 9.14 216675286��

Entry 98 295.7�� 122.2�� 22.3�� 515.8�� 58678��� 0.03�� 392742�� 117��� 268738��

Trt 1 21.72 19983�� 4709�� 32981�� 3590802�� 0.0003 80699501�� 3115��� 42498831��

Env×Entry 96 97.3�� 83.7�� 10.008� 92.3�� 23672� 0.02�� 383728�� 38.8� 180678

Entry×Trt 97 16.28� 38.06�� 8.59 41.79� 21067 0.01� 243278 28.36 122044

Env×Trt 1 4168.9�� 302.9�� 463�� 22816�� 53842 0.013 39804625�� 1501��� 6417019��

Env×Entry×Trt 96 14.51 39.72�� 10.592� 44.9�� 19388 0.01� 236424 29.79 142093

Residual 368 11.9 15.61 7.669 31.5 16678 0.008 247618 28.6 163088

Total 778 150 226 17.1 316 31316 0.098 1355900 24.8 517915

LSD 4.83 5.4 2.8 5.52 127 0.09 390 5.27 297

CV (%) 4.8 3.29 22.17 7.1 26.19 22.34 32.42 12.1 24.97

se 3.45 3.95 2.76 5.61 79.1 0.09 97.6 2.35 103

SOV = source of variation, DF = degrees of freedom, Rep = replication, Env = Environment, Trt = water regime treatment, DTH = days to heading, DTM = days to

maturity, NPT = number of productive tillers, PH = plant height, RB = root biomass weight, SB = shoot biomass weight, RS = root to shoot ratio, TKW = 1000-kernel

weight, GY = grain yield, LSD = least significant different at 0.05, CV = coefficient of variation, se = standard error

�, �� and ��� = significance level at <0.001, <0.01 and <0.05, respectively.

https://doi.org/10.1371/journal.pone.0225383.t001

Table 2. Summary statistics of biomass and agronomic traits measured in 100 genotypes evaluated in three environments under drought-stressed and non-stressed

conditions.

Non-stressed Drought-stressed

DTH DTM NPT PH RB RS SB TKW GY DTH DTM GY NPT PH RB RS SB TKW GY

Mean 72 125 15 85.5 423.7 0.42 1849.3 45 1088.5 72 115 628.68 10 72.7 289.6 0.42 1218.6 43.9 628.68

Median 75 126 15 82 385.8 0.39 1591.8 45.1 724 72 113 330 10 75 279 0.41 916.5 43.8 330

Minimum 40 94 6 35 131.3 0.04 235.9 26.9 75.1 43 80 67.82 1 23 64.6 0.03 264 23.7 67.82

Maximum 138 148 31 121 1622.3 1.96 8658.3 56.9 4696 132 144 4487.5 19 101.7 735.8 1.09 3775 61.7 4487.5

Quartile 1 61 114 12 69 304.2 0.12 633 41.9 461 66 104 175.36 9 67 206.3 0.11 471.2 41.1 175.36

Quartile 3 84 137 17 104.7 483.9 0.67 2800.3 48.3 1605.5 78 128 1010.79 11 80.7 352.3 0.71 1830.2 47.2 1010.79

St. Dev 14 13 4 19.8 199.5 0.32 1367.1 5 787.5 10 15 556.33 3 12.6 117.4 0.31 801.3 4.9 556.33

SEM 0.7 0.67 0.2 0.99 9.96 0.02 68.36 0.36 39.93 0.53 0.77 28.35 0.13 0.63 5.89 0.02 40.22 0.36 28.35

Skewness 0.16 -0.28 0.52 -0.15 2.14 0.74 0.98 -0.4 1.2 -0.12 -0.18 1.63 0.54 -1.31 0.84 0.11 0.53 -0.14 1.63

Kurtosis 0.64 -1.16 0.85 -1.19 7.02 0.64 1.25 0.71 1.69 2.78 -0.77 5.75 1.01 2.77 1.08 -1.75 -0.82 1.46 5.75

DTH = days to heading, DTM = days to maturity, PH = plant height, RB = root biomass dry weight per m-2; SB = shoot biomass dry weight per m-2; RS = root to shoot

ratio; TKW = 1000-kernel weight, GY = grain weight gm-2; SEM = standard error of mean, Std. Dev. = standard deviation

https://doi.org/10.1371/journal.pone.0225383.t002
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maximum of 1.45 recorded in triticale. On average, grain yield declined by 48% under

drought-stressed condition.

Population structure analysis

The results of STRUCTURE based on markers with MAF>0.05 for the wheat genotypes

showed that ΔK was highest at K = 2, showing the presence of two main clusters in the popula-

tion while the highest median values of Ln (Pr Data) occurred at K = 6, showing that the main

clustered could further be divided into six sub-clusters (Fig 1A). The kinship matrix shows a

clear stratification of the genotypes into two main clusters and different sub-clusters (Fig 1B).

The highest median values of Ln(Pr Data) determined that the population could further be

sub-divided into six minor clusters shown by k = 6 (Fig 1C). The principal component analysis

(PCA) based on the first three principal components accounted for 47% of the total variation

(Fig 2A) and revealed two distinct clusters in the population (Fig 2B). The six minor clusters

Fig 1. Population structure of 97 wheat genotypes based on 15,600 SNP markers. A. The ΔK determined by the

Evanno method showing the stratification of the population into two main clusters. B. The kinship matrix shows the

relationship among genotypes. Fig 2. Principal component analysis of 97 wheat genotypes based on 15,600 high quality

SNPs with MAF> 0.05 using the first three principal components. A. The first three principal components accounted

for about 47% of variation as indicated on the scree plot. B. The genotypes were stratified into two distinct clusters.

The six sub-clusters as determined by the highest median values of Ln(Pr Data) based on STRUCTURE. The different

colored segment estimate proportion of membership of each genotype to the respective clusters.

https://doi.org/10.1371/journal.pone.0225383.g001
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deduced by the highest median values of Ln(Pr Data) were of different sizes and composition.

Membership of all genotypes to a particular sub-cluster was based on at least 65% ancestry.

Cluster 1 had the largest membership with 34% of the population, while the smallest was Clus-

ter 4 with only 6% (Table 3). Cluster 1 was comprised entirely of the genotypes from the heat

tolerant nursery with code BW, except 2 genotypes LM23 and LM47. Clusters 3 and 6 exhib-

ited the highest level of heterozygosity with an average of 0.23, while the rest of the clusters

averaged below 0.15. The mean fixation index (Fst) ranged between 0.45 and 0.85 among the

clusters. The genetic distance among the different populations showed that clusters 1 and 5

were the most divergent with a genetic distance of 0.40 while the shortest distance was between

clusters 3 and 6 (S2 Table).

Marker-trait associations under different water regimes

Phenological traits (DTH and DTM) and biomass allocation traits (RB, SB, RS and GY) were

subjected to GWAS using the 15,600 SNP markers. A total of seventy-six marker traits associa-

tions (MTAs) were identified at a stringent FDR-adjusted p value <0.001 revealing candidate

Fig 2. Principal component analysis of 97 wheat genotypes based on 15,600 high quality SNPs with MAF> 0.05

using the first three principal components. A. The first three principal components accounted for about 47% of

variation as indicated on the scree plot. B. The genotypes were stratified into two distinct clusters.

https://doi.org/10.1371/journal.pone.0225383.g002

Table 3. Genetic clusters and their member genotypes, proportion of membership, expected heterozygosity and the mean values of Fst observed from structure

analysis of 97 wheat genotypes and a triticale accession.

Sub-

cluster

�Genotypes %

Membership

Expected

Heterozygosity

Mean Fixation

Index

1 BW120, BW124, BW127, BW140, BW141, BW147, BW148, BW149, BW150, BW151, BW152,

BW157, BW159, BW162, BW48, BW71, BW80, LM48, BW142, LM47, BW28, BW58, BW129,

BW145, BW103, BW100, BW128, LM23, BW49, BW116, BW63, BW111

34.1 0.14 0.72

2 LM77, LM79, LM90, LM81, LM24, LM98, LM59, LM30, LM14, LM22, LM97, LM27, LM43,

LM76, LM16, LM40, LM01, LM44

18.6 0.12 0.73

3 LM33, LM36, LM37, LM32, LM38, LM28, LM31, LM49, LM85, LM39, LM41, LM75, LM26,

LM58, LM01, LM42

16.7 0.23 0.49

4 LM51, LM50, LM52, LM86, LM91, LM42 6.0 0.11 0.79

5 LM56, LM57, LM54, LM55, LM20, LM82, LM83, LM42 7.9 0.09 0.85

6 LM96, LM84, LM21, LM18, LM19, LM25, LM29, LM15, LM100, LM80, LM17, LM12, LM16,

LM70, LM58, LM83

16.7 0.24 0.45

�the description of genotypes is provided in supplementary table

https://doi.org/10.1371/journal.pone.0225383.t003
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loci for each trait across different water regimes (Tables 4 and 5). There were 38 MTAs identi-

fied under each water regime (Tables 4 and 5, Fig 3). Quantile-quantile (QQ) plots (S1 Fig and

S2 Fig) showed that the -log10 (p-values) for the different traits evaluated under each water

regime conformed to normal distribution and were constricted enough towards expected values

to account for population stratification. A total of eight, four and four significant (P<0.001)

MTAs were detected for DTH, DTM and RS, respectively, under non-stressed condition

(Table 4, Fig 3A, 3B and 3C), while there were nine and five MTAs detected for the respective

traits under stressed condition (Table 5, Fig 3D and 3E). There were four markers associated

with RS under drought-stress conditions (Fig 3F). A similar number of significant markers

were identified for RS under non-stress and drought-stressed conditions. There were two pleio-

tropic markers for RB and SB detected on chromosome 1B under non-stressed conditions

(Table 4, Fig 4A and 4B). A total of nine markers were observed to have significant association

with grain yield, with seven occurring under non-stress conditions. Only markers on chromo-

some 4D were identified to have significant association with GY under non-stressed conditions

(Fig 4C). Under drought-stressed conditions, three pleiotropic markers for RB and SB were

identified, two were on chromosome 2B and one on chromosome 3B (Table 5, Fig 4D and 4E).

There were only two markers identified for GY under drought stress (Fig 4F).

Putative candidate gene analysis and expression data

The physical genetic map shows that a number of the markers were co-localized, especially on

chromosomes 2B, 2D, 3B, 4A and 4D (Fig 5). Co-localization of genes was observed on chro-

mosome 2D and 3B at positions 591.6 and 785Mb, respectively. DTH had two genes

TraesCS2D02G462600 and TraesCS2D02G514100 in close proximity on the 2D chromosome

and TraesCS2D02G370400 overlapping the significant MTAs for RB. The two pleiotropic

markers for RB and SB detected on chromosome 1B flanked a region overlapping the

TraesCS1B02G340800 (Table 5). One of the identified marker on chromosome 2B covered a

region overlapping the gene TraesCS2B02G398200 while the markers on chromosome 3B

overlapped gene TraesCS3B02G154000 and TraesCS3B02G061700. On chromosome 3B, there

was co-localization of genes overlapping significant MTAs for DTH, RB and RS. Interestingly,

RB and SB shared common loci and pleiotropic markers showing that they are genetically

highly correlated. The common loci for RB and SB on chromosome 1B was associated with

gene FH6 (position 568.75Mb). The other pleiotropic loci on chromosomes 2B overlapping

genes PAL4 at positions 565.06Mb, and on chromosome 3B in the region coding for

TraesCS3B02G061700 (position 33.95Mb) and CYP73A5 (at 146.55Mb).

Linkage disequilibrium among the markers

The markers exhibited a linkage disequilibrium decay across the whole genome with an esti-

mated threshold value of R2 = 0.38 at about 50Mbp based on the 95th percentile of the distribu-

tion (Fig 6). The linkage disequilibrium (LD) analysis was conducted on SNP markers with

significant association with a particular trait under each water regime. The LD ranged from

very weak correlation (r<0.20, p<0.001) for SNP markers associated with DTM under non-

stress conditions (Fig 7A–7F) to strong correlations (r>0.80, p<0.001) for SB under well-

watered conditions (Fig 8A–8F). For RB, there were two markers M1576 and M6665, which

exhibited linkage disequilibrium (r>0.080, p<0.001) under non-stress conditions (Fig 8A).

Three markers M1576, M6660 and M9150 were in disequilibria for SB under non-stress and

they were within 47cM (Fig 8B). For GY, there were two markers in linkage disequilibria

(r>0.80, p<0.001) identified under non-stress conditions spanning a 33cM length (Fig 8C).

None of the significant MTAs showed high level of LD for RB under drought stress conditions
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(Fig 8D). There were suggestions of distinct haplotypes for SB under drought stress (Fig 8E).

For SB under drought stress, the markers exhibited low to high LD over 57cM (Fig 8E) while

the significant markers for GY had low LD (Fig 8F).

Table 4. SNPs significantly associated with agro-morphological traits and putative candidate genes identified in the study under non-stressed conditions.

Trait Marker code Chr ChrPos P.value MAF R2 IWGSC gene ID

DTH M10834 5B 561671357 0,000 0,04 0,20 TRAESCS5B02G236600

M5627 2D 568465158 0,000 0,19 0,19 TraesCS2D02G462600

M6305 3A 56948590 0,000 0,09 0,18 TRAESCS3A02G088700

M40 1A 2236676 0,001 0,08 0,17 TraesCS1A02G003600

M1278 1B 379091249 0,001 0,17 0,17

M4469 2B 636117660 0,001 0,23 0,16

M9904 5A 417804694 0,001 0,21 0,16 TraesCS5A02G040700

M576 1A 45100852 0,001 0,08 0,16

DTM M788 1B 81660700 0,000 0,15 0,15 TraesCS1B02G340800

M8624 4A 114487333 0,000 0,32 0,13 TraesCS4A02G101800

M4951 2B 753792974 0,001 0,07 0,13 TraesCS2B02G560000

M1433 1B 554018133 0,001 0,05 0,12

RB M6472 3A 556260082 0,000 0,22 0,25

M6665 3A 702562913 0,000 0,21 0,23

M6529 3A 639700048 0,000 0,05 0,22 TraesCS3A02G392100

M5573 2D 474747710 0,000 0,03 0,21 TraesCS2D02G370400

M6500 3A 533037386 0,000 0,16 0,21

M3271 2A 766416023 0,000 0,38 0,21

M788 1B 81660700 0,001 0,15 0,19 TraesCS1B02G340800

M1576 1B 420600926 0,001 0,19 0,19 TraesCS1B02G340800

SB M1576 1B 420600926 0,000 0,19 0,15 TraesCS1B02G340800

M6687 3A 0,000 0,31 0,15

M788 1B 81660700 0,000 0,15 0,14 TraesCS1B02G340800

M6540 3A 662527377 0,000 0,14 0,13 TraesCS3A02G314700

M9150 4A 22270015 0,000 0,19 0,13

M6660 3A 699467553 0,001 0,30 0,13

M12030 5D 0,001 0,03 0,12

M6088 3A 7019713 0,001 0,12 0,12

M3933 2B 154602689 0,001 0,18 0,12

M6638 3A 695160174 0,001 0,47 0,12

M6697 3A 711289967 0,001 0,21 0,12

RS M1566 1B 592833254 0,001 0,31 0,17

M7197 3B 0,001 0,08 0,16

M7187 3B 825539318 0,001 0,24 0,16 TraesCS3B02G606400

M5066 2B 595286130 0,001 0,28 0,15

GY M9776 4D 442739513 0,000 0,35 0,19 TraesCS4D02G272500

M9769 4D 401082716 0,001 0,07 0,13 TraesCS4D02G238900

M9806 4D 250840711 0,001 0,20 0,12

M9759 4D 336833285 0,001 0,38 0,12 TraesCS4D02G193400

M9756 4D 220375714 0,001 0,05 0,11

M9813 4D 36740586 0,001 0,37 0,11

Chr = chromosome, ChrPos = chromosome position, MAF = minor allele frequency

https://doi.org/10.1371/journal.pone.0225383.t004
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Table 5. SNPs significantly associated with agro-morphological traits and putative candidate genes identified in the study under drought stress conditions.

Marker code Chr ChrPos P.value MAF R2 IWGSC gene ID

DTH M5902 2D 606129207 0,000 0,27 0,36 TraesCS2D02G514100

M1626 1B 400908048 0,000 0,07 0,36

M892 1B 12505139 0,000 0,16 0,36 TraesCS1B02G032700

M7199 3B 157603272 0,001 0,06 0,35 TraesCS3B02G061700

M8019 3B 765843802 0,001 0,06 0,35 TraesCS3B02G523300

M8011 3B 533130365 0,001 0,43 0,35 TraesCS3B02G337500

M7428 4A 733792535 0,001 0,16 0,35 TraesCS4A02G161100

M7089 3B 22917259 0,001 0,45 0,34 TraesCS3B02G045600

M7970 3B 95564668 0,001 0,23 0,34 TraesCS3B02G154000

DTM M3664 2B 59764104 0,000 0,03 0,34

M13563 6B 124069487 0,000 0,02 0,33

M3989 2B 126899677 0,000 0,18 0,31 TraesCS2B02G201000

M3717 2B 77176639 0,000 0,20 0,30 TraesCS2B02G114000

M9936 5A 37492810 0,000 0,20 0,30

RB M7970 3B 95564668 0,000 0,23 0,32 TraesCS3B02G154000

M4551 2B 565077064 0,000 0,37 0,26 TraesCS2B02G398200

M1378 1B 471174490 0,000 0,32 0,26 TraesCS1B02G268300

M4676 2B 595508003 0,000 0,24 0,25 TraesCS2B02G528800

M2116 1D 472550886 0,000 0,33 0,25 TraesCS1D02G276600

M8061 3B 785499330 0,000 0,43 0,24 TraesCS3B02G550700

M15552 7B 99953334 0,001 0,22 0,23 TraesCS7B02G377800

M9282 4A 688382396 0,001 0,19 0,23

M9734 4D 79280510 0,001 0,12 0,22

M7199 3B 157603272 0,001 0,06 0,35 TraesCS3B02G061700

SB M7970 3B 95564668 0,000 0,23 0,32 TraesCS3B02G154000

M7199 3B 157603272 0,001 0,06 0,35 TraesCS3B02G061700

M7089 3B 22917259 0,000 0,45 0,31 TraesCS3B02G045600

M3717 2B 77176639 0,000 0,20 0,30 TraesCS2B02G114000

M1785 1B 646178482 0,000 0,13 0,30

M1511 7D 68 0,000 0,37 0,29 TraesCS7D02G150700

M4368 2B 459249657 0,000 0,05 0,29 TraesCS2B02G321800

M7428 3B 303590858 0,000 0,42 0,28

M5706 2D 591603469 0,001 0,19 0,28 TraesCS2D02G494600

M4110 2B 384320443 0,001 0,04 0,28

M4551 2B 565077064 0,001 0,37 0,28 TraesCS2B02G398200

M5909 2D 615707186 0,001 0,20 0,27

M11177 5B 2141663 0,001 0,47 0,27

M1798 1B 646777010 0,001 0,01 0,27

M14627 7A 670757369 0,001 0,24 0,27 TraesCS7A02G167900

RS M12045 6A 663760681 0,000 0,30 0,15 TraesCS6A02G005500

M3562 2B 419250206 0,001 0,34 0,13

M9433 4A 743768873 0,001 0,37 0,13

M9434 4D 16502547 0,001 0,21 0,13

M3559 2B 1204170 0,001 0,32 0,13

GY M8680 4A 157557592 0,001 0,12 0,16 TraesCS4A02G124400

M2966 2A 705340913 0,001 0,04 0,16 TraesCS2A02G456400

Chr = chromosome, ChrPos = chromosome position, MAF = minor allele frequency

https://doi.org/10.1371/journal.pone.0225383.t005
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Discussion

Phenotypic variability of germplasm and environmental response

Understanding biomass allocation in wheat could provide an opportunity and an alternative

approach to developing drought tolerant cultivars that can also sequester relatively more C for

soil remediation. The wheat genotypes evaluated in this study exhibited wide genetic variation

for agronomic and biomass accumulation traits (roots, shoot and grain) (Tables 1 and 2). The

wide genetic variation was expected since the population included genotypes from CIMMYT,

local accessions and temperate adapted cultivars. Biomass accumulation in roots, shoot and

grains was significantly reduced by 32, 30 and 48%, respectively, under drought stress confirm-

ing that biomass accumulation has phenotypic plasticity. This plasticity could be exploited in

drought tolerance breeding of wheat to mitigate water scarcity [49]. The variance components,

heritability and genetic correlations of the traits were reported in [50]. The traits exhibited dif-

ferent levels of heritability, with RB (H = 78%) and SB (H = 64%) having higher heritability

estimates than RS (H = 28%) and GY (H = 17%). However, the lower heritability estimates

observed under stressed condition could reduce selection efficiency [49] and may impact nega-

tively on QTL detection [51].

Population structure and linkage disequilibrium

The population structure and principal component analyses revealed that the genotypes could

be divided into two distinct major clusters (Figs 1 and 2). Following the method of [52], the K

value with the highest ΔK-value confirms the number of appropriate clusters for that popula-

tion [16; 35; 53]. The two clusters identified separated the genotypes into one cluster composed

Fig 3. Manhattan plots showing SNP markers associated with different traits using CMLM at p-value<0.001. A.

DTH, B. DTM C. RS under non-stress conditions, and D. DTH, E. DTM and F. RS under drought-stress conditions.

The horizontal red line represents FDR adjusted p< 0.001.

https://doi.org/10.1371/journal.pone.0225383.g003

Fig 4. Manhattan plots showing SNP markers associated with different traits using CMLM at p-value<0.001. A.

RB, B. SB and C. GY under non-stress conditions, and D. RB, E. SB and F. GY under drought-stress conditions. The

horizontal red line represents FDR adjusted p< 0.001.

https://doi.org/10.1371/journal.pone.0225383.g004
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mainly of the genotypes from the CIMMYT heat tolerant nursery while the other clusters con-

sisted of drought tolerant and local checks. However, the structure analysis also identified the

presence of admixtures and the two clusters could be further delineated into six sub-clusters.

The genotypes form part of a training population that can be used to develop and optimize a

model for predicting genomic estimated breeding value (GEBV) since it has now been pheno-

typed and genotyped [54]. The mean fixation indices (Fst) associated with the six clusters ran-

ged between 0.45 and 0.85, indicating a potentially high level of differentiation among the

clusters although within cluster variation was low as shown by the heterozygosity values rang-

ing between 0.09 and 0.24. Based on the mean fixation indices and the genetic distances, the

genotypes form part of a training population that can be used to develop and optimize a model

for predicting genomic estimated breeding value since it has now been phenotyped and geno-

typed [54]. However, these Fst values should be used cautiously in analyzing diversity or differ-

entiation as these statistics are often misconstrued [55]. The resultant population structure and

genetic distances between pairs of clusters observed in this study also confirmed the existence

of admixtures and kinship. The admixtures and kinship patterns observed were attributed to

Fig 5. Physical map of the wheat genome showing the positions of the identified genes localized with the some of

the SNP markers. TRAESCS2B02G321800 = IDM1, TRAESCS2B02G114000 = CIPK3, TRAESCS2B02G398200 =

PAL4, TRAESCS3B02G154000 = CYP73A5, TRAESCS2D02G370400 = ABCG11, TRAESCS4D02G238900 =

WAKL21, TRAESCS5B02G236600 = AMY1, TRAESCS7B02G377800 = RPS15AE, TRAESCS1D02G276600 =

CYP94C1, TRAESCS7D02G150700 = NPY1, TRAESCS4D02G272500 = PSAT2, TRAESCS1B02G340800 = FH6,

TRAESCS3B02G045600 = RXF12, TRAESCS3B02G337500 = TIN1.

https://doi.org/10.1371/journal.pone.0225383.g005

Fig 6. Linkage disequilibrium (R2) plot of all the 15,600 SNP markers across genomes in 97 wheat genotypes used

in the mapping study.

https://doi.org/10.1371/journal.pone.0225383.g006
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sharing of common parentage among some of the genotypes. For instance, 17 out of the 32

genotypes including genotypes BW124, BW147, BW151 and BW159 in sub-cluster 1 shared a

common parent CGSS05B00258T-099TOPY. Parent CROC_1/AE.SQUARROSA was com-

mon for 4 genotypes LM79, LM81, LM81 and LM90 in sub-cluster 2 while WBLL1 and PAS-

TOR were common parents a considerable number of genotypes. The use of a small number

of elite varieties exhibiting desirable traits and routinely crossed to fix the desirable alleles is a

standard practice in developing modern wheat cultivars [56], which contributes to narrowing

of genetic diversity.

Marker-trait associations and putative genes

The population structure of the panel, the variance components, heritability and genetic corre-

lations for the phenotypic traits confirmed that the panel of genotypes was suitable for use in a

genome wide association study involving yield and biomass traits. The use of a diverse panel of

Fig 7. Summary of the local LD among markers with significant MTAs for different traits. A. DTH, B. DTM and

C. RS under non-stress conditions and D. DTH, E. DTM and F. RS under drought-stress conditions. The R2 color key

indicates the degree of significant association.

https://doi.org/10.1371/journal.pone.0225383.g007

Fig 8. Summary of the local LD among markers with significant MTAs for different traits. A. RB, B. SB and C. GY

under non-stress conditions and D. RB, E. SB and F. GY under drought-stress conditions. The R2 color key indicates

the degree of significant association.

https://doi.org/10.1371/journal.pone.0225383.g008
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genotypes can provide more valuable inference compared to bi-parental populations [57] by

taking advantage of maximum allelic diversity [58; 59].

The identified 77 significant markers associated with the phenological and biomass alloca-

tion traits included 36 that were detected on the B genome similar to other studies that previ-

ously detected significant markers for root and shoot biomass on this genome [57; 60]. [57]

found extremely rare haplotype variants that increased root growth on chromosome 5B, while

[60] reported significant SNPs on 1A, 2A, 3B, 5B, 6A, and 7B for root dry weight with the

major two QTLs being on 1A and 5B. The remaining significant SNPs detected in this study,

which have not been reported previously could be novel alleles important for influencing bio-

mass allocation patterns in wheat. The major QTLs reported by [60] were found using seedling

data unlike in this study, which used phenotypic data collected on mature plants. This is useful

since selection at early stages may not reflect trait performance at later growth stages, particu-

larly, for traits that are relevant for drought tolerance and C sequestration.

Significant pleiotropic loci were detected on the B genome for root and shoot biomass,

showing that root and shoot biomass have common and distinct genomic loci. Root and shoot

biomass shared an association region on chromosomes 1B, 2B and 3B which suggest that this

could be the basis for their high genetic correlation as reported by [50]. The common loci for

RB and SB on chromosome 1B was associated with gene FH6 (TraesCS1B02G340800 gene),

which is known for signaling pathways in root lateral meristem and shoot apex development

[61]. The identified marker on chromosome 2B covered a region overlapping the gene PAL4,

known for upregulating protein for stress response and stem elongation [62]. The identifica-

tion of a putative gene TraesCS3B02G061700 on chromosome 3B for RB and SB and its co-

localization with gene RXF12 for DTH is an indication of a strong physical linkage among

these traits. The putative gene TraesCS3B02G061700 is known to be actively involved in the

photosystem I [63], which could explain its influence on biomass accumulation. The RXF12

gene has been implicated in the defense mechanism against drought and heat stress in Arabi-
dopis [64] and their suggested strong linkage could assist in simultaneous selection for high

root and shoot biomass and drought tolerance in wheat. The detection of common SNPs for

root and shoot biomass on the B genome under drought stress suggests that it carries the criti-

cal loci controlling for root biomass and possibly drought tolerance mechanisms [58] and pro-

vides an opportunity for effective simultaneous improvement using the overlapping markers.

In reality, many complex traits exhibit linkage and selection of pleiotropic genes has potential

to cause major simultaneous changes in the traits [65; 66]. However, there is a concern that

increasing below ground biomass might negatively affect other economic traits due to undesir-

able linkage drag associated with unfavorable pleiotropy. [67] asserted that simultaneous

improvement of root and above ground traits will only be possible if they have common and

distinct genomic loci that can be manipulated independently or simultaneously. The marker

was found to be in LD with other markers associated with DTH, SB and RB indicating tight

linkage, which could provide opportunities for biomass allocation improvement in wheat. [57]

suggested that unfavorable linkage drag between negatively correlated traits can be overcome

by identifying rare recombinant genes.

The current association study identified two markers significant for GY under drought

stressed conditions, of which TRAESCS4A02G124400 was reported to prolonged seed dor-

mancy, caused male sterility, and dwarfism in rice [68]. Under non-stress conditions, two

putative genes were identified. The gene TRAESCS4D02G238900 possibly affected grain yield

accumulation through indirect effects on 100-seed weight, seed length and the regulation of

cytokins [69] while TRAESCS4D02G238900 regulated leaf senescence [70]. The indirect effects

on grain yield via up- or down-regulation of cytokins or control of leaf senescence has been

established in wheat [71]. The low number of observed MTAs for GY under drought-stressed
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condition was consistent with [16] and [72] who also found reduced number of MTAs for GY

under drought stress in wheat. Grain yield is highly influenced by genotype by environment

interaction, which could have negatively impacted the ability to detect the associated markers

under stressed conditions. The identified MTAs under non-stressed conditions are useful for

future marker-assisted selection. The genomic information obtained here would be useful to

improve accuracy in estimating the breeding value of related genotypes.

Overall, across all genomes and markers, an LD of 0.38 occurring at 5cM indicated that the

LD decay occurred at relatively shorter distances, which can be attributed to narrow genetic

variation due to repeated backcrossing to a limited number of elite breeding lines. A substan-

tial number of SNPs that were significantly associated with RB, SB and GY occurred on genetic

regions spanning between 9 and 60cM at an average LD of 0.40, showing the possibility of

tight to moderate linkage. Similarly, [73] found an average LD of 0.2 extending over 2-3cM

while there were some loci extending between 25 and 41cM with LD >0.7. [74] found moder-

ate (<20cM) and loose (>50cM) inter-chromosomal linkage in closely related durum (Triti-
cum durum Desf.) using microsatellite markers. The observed markers with non-significant

LD is not unique given that other studies reported them as a result of possible admixtures of

the genotypes [75; 76].

Conclusions

The use of a diverse population of wheat genotypes with different pedigrees allowed for detec-

tion of 77 MTAs for days to heading and maturity and, biomass allocation to roots, shoots and

grain yield. The identified markers such as M788, M1576 and M7199 for root biomass can be

used in marker-assisted selection to improve the root system of wheat. These markers are use-

ful in breeding for drought tolerance and C sequestration. The seven pleiotropic markers for

root and shoot biomass will enable simultaneous selection for above and below ground bio-

mass suggesting that drought tolerance and C sequestration are tightly linked. The identified

MTAs on chromosomes 1B, 2B, 3A, 4D and 7A that have not been previously reported could

provide novel genes for wheat breeding. This study provides a foundation for marker-assisted

breeding for biomass allocation drought tolerance and C sequestration in wheat. Validation of

the identified markers using a diverse and large size or bi-parental population, and using tissue

and stage specific gene expression data from RNASeq would be required before embarking on

a large scale breeding program.
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