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S U M M A R Y
Gravitational instabilities exert a crucial role on the Earth dynamics and in particular on its
differentiation. The Earth’s crust can be considered as a multilayered fluid with different
densities and viscosities, which may become unstable in particular with variations in tempera-
ture. With the specific aim to quantify crustal scale polydiapiric instabilities, we test here two
codes, JADIM and OpenFOAM, which use a volume-of-fluid (VOF) method without interface
reconstruction, and compare them with the geodynamics community code ASPECT, which
uses a tracking algorithm based on compositional fields. The VOF method is well-known to
preserve strongly deforming interfaces. Both JADIM and OpenFOAM are first tested against
documented two and three-layer Rayleigh–Taylor instability configurations in 2-D and 3-D.
2-D and 3-D results show diapiric growth rates that fit the analytical theory and are found
to be slightly more accurate than those obtained with ASPECT. We subsequently compare
the results from VOF simulations with previously published Rayleigh–Bénard analogue and
numerical experiments. We show that the VOF method is a robust method adapted to the study
of diapirism and convection in the Earth’s crust, although it is not computationally as fast
as ASPECT. OpenFOAM is found to run faster than, and conserve mass as well as JADIM.
Finally, we provide a preliminary application to the polydiapiric dynamics of the orogenic crust
of Naxos Island (Greece) at about 16 Myr, and propose a two-stages scenario of convection
and diapirism. The timing and dimensions of the modelled gravitational instabilities not only
corroborate previous estimates of timing and dimensions associated to the dynamics of this
hot crustal domain, but also bring preliminary insight on its rheological and tectonic contexts.

Key words: Geomechanics; Numerical modelling; Crustal structure; Diapirism; Dynamics:
gravity and tectonics; Rheology: crust and lithosphere.

1 I N T RO D U C T I O N

Thermally and chemically driven gravitational instabilities are the
main processes involved in the differentiation of the Earth (Schu-
bert & Turcotte 1971; Christensen 1984; Christensen & Yuen 1985;
Korenaga 2018). In turn, the Earth’s crust itself is subject to dif-
ferentiation owing to magmatism, metamorphism and deformation
(Taylor & McLennan 1985; Rudnick & Fountain 1995). It has been
proposed that partial melting of orogenic roots modifies their rheol-
ogy and allows for the development of gravitational instabilities that
play a key role in controlling crustal differentiation (Ramberg 1980,
1981a; Perchuk et al. 1992; Burg & Vanderhaeghe 1993; Brown
1994; Sawyer 1994; Weinberg & Podladchikov 1994; Cruden et al.
1995; Jull & Kelemen 2001; Vigneresse 2006; Gerya et al. 2008;
Vanderhaeghe 2009; Gerbault et al. 2018).

Gneiss domes observed worldwide are interpreted as the re-
sult of gravitational instabilities developed within a hot partially
molten crust (Whitney et al. 2004). Active convection of partially
molten crust has also been proposed, involving several tens of cu-
bic kilometres of weak and light material during generally more
than 10 Myr (Riel et al. 2016; Vanderhaeghe et al. 2018). As an
example case, the area of Naxos island (Greece) presents typi-
cal domes and subdomes which have been interpreted as possi-
bly resulting from polydiapirism and convection (Vanderhaeghe
et al. 2018).

Whereas several studies have simulated gravitational instabili-
ties of two or more crustal layers such as Poliakov et al. (1993) or
Wilcock & Whitehead (1991), very few have, to our knowledge,
precisely compared their results with theory. Ramberg (1972) com-
pared his theory with geophysical data, while Berner et al. (1972)
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compared numerical and experimental models with Ramberg’s the-
ory Ramberg (1981a), explaining their misfit by an insufficient
number of elements and an ‘oversized’ time step. Some studies have
predicted semi-analytically the growth rate and wavelength for two
layer systems: in an infinite half-space as Whitehead (1988), Kaus
(2004), Burg et al. (2004), Schmalholz & Podladchikov (1999) or in
a finite space (Selig 1965; Turcotte & Schubert 1982). However as a
matter of fact, polydiapiric crustal structures do not appear to have
been much studied independently from a context of tensile or com-
pressional tectonic drive, since the analytical and experimental mod-
els of Rayleigh–Taylor instabilities carried out by Ramberg (1981a)
and the numerical models by Weinberg & Schmeling (1992). Field
observations of polydiapirism leave open the question of whether
relatively small dome structures first form independently at depth
and then merge or coalesce to form a single larger structure (dome)
close to the surface, or whether this large dome already develops at
depth and then progressively develops additional instabilities upon
rising (progressive segregation and subdomes). Finding out the cor-
rect process would allow to identify from which depth and which
environment do specific elements and compositions appear, sepa-
rate or co-exist, constraining the evolution of distinct elementary
compositions, some of which lead to the concentration of mineral
resources (Toé et al. 2013; Eglinger et al. 2016; Menant et al. 2018).

On the other hand, convection in the Earth’s mantle has been ex-
tensively studied both numerically and experimentally [Bercovici
& Schubert (2009) and references there in]. In this well developed
field, numerical codes can encounter issues with mass conservation
and numerical diffusion at layers interfaces (Deubelbeiss & Kaus
2008; Schmeling et al. 2008; Hillebrand et al. 2014; Heister et al.
2017; Pusok et al. 2017). This is an even more critical issue when
dealing with crustal scale instabilities, since crustal differentiation
involves the recurrent separation, coalescence and segregation of
layers of highly contrasted compositions that evolve during melt-
ing and deformation. These segregation and coalescence processes
occur at different scales, and require a robust numerical tool in
terms of tracking the evolution of chemical interfaces at the in-
termediate scale of a few hundred metres. This motivates the use
of a volume-of-fluid (VOF) method, dedicated to the conservation
of chemical interfaces. Recently, Puckett et al. (2018) compared a
VOF method (using interface reconstruction) against other standard
methods in models of mantle convection. They qualitatively studied
two-layer Rayleigh–Taylor and Rayleigh–Bénard systems in 2-D,
and concluded that their VOF method may be the most appropriate
method for modelling interfaces separating chemical compositions.
In the present contribution, we present two existing codes namely
JADIM and OpenFOAM built on VOF methods without interface
reconstruction, and which were initially developed for other pur-
poses (bubbles, drops, free-surface flows). JADIM is an in-house
Fortran code developed at IMFT, and was proved to accurately
describe two- and three-layer flows involving strongly deforming
interfaces (Bonometti & Magnaudet 2006; Bonhomme et al. 2012).
OpenFOAM in turn, is an open-source C++ code that offers a
VOF solver for fluid mechanics (Jasak et al. 2007). OpenFOAM
has been used in the Geosciences community in the last years (Or-
gogozo et al. 2014; Dietterich et al. 2017) but with other solvers
adapted to the modelling of water and lava flows. We here test both
codes for the development of crustal scale convective instabilities
in 2-D and 3-D.

We aim at checking the accuracy and performance of both
JADIM and OpenFOAM codes when modelling Rayleigh–Taylor
and Rayleigh–Bénard instabilities in two and three dimensions. We
therefore compare the computed solutions with available analytical

solutions as well as with those obtained with the open source mantle
convection code ASPECT version 2.1.0 (Kronbichler et al. 2012;
Heister et al. 2017; Bangerth et al. 2019). We first check whether
the VOF method without interface reconstruction is able to repro-
duce complex 2-D and 3-D Rayleigh–Taylor and Rayleigh–Bénard
crustal scale systems. Based on the accuracy and performance of
the results, one code is chosen to model gravitational instabilities in
the specific context of Naxos Island (Greece). As such the present
contribution stands as a preliminary study, that first validates the
VOF method when used to model crustal flows, and second paves
the way to a second contribution aiming at further exploring the
influence of subscale crustal properties, then fully benefiting from
the robustness of the VOF method.

This study is structured as follows. We first introduce the nu-
merical methods (Section 2). The results for standard iso-thermal
two- and three-layer systems (Rayleigh–Taylor instability) are then
presented in Section 3, compared with reference models (Weinberg
& Schmeling 1992; van Keken et al. 1997) and linear stability the-
ory. 3-D simulations are then compared with the 2-D three-layer
systems. In Section 4, Rayleigh–Bénard instabilities in one- and
two-layer systems are simulated and compared with experimental
results (Le Bars & Davaille 2004; Vatteville et al. 2009). In Sec-
tion 5, we discuss the codes performances and their suitability to
model polydiapirism. Section 6 presents a preliminary application
to Naxos, in which we illustrate the macroscopic thermomechanical
setting with which the Naxos crust would have been able to develop
its characteristic domes and sub-domes (Vanderhaeghe et al. 2018).

2 N U M E R I C A L M E T H O D S

2.1 The VOF method

The VOF method is a fixed-grid approach based on the one-fluid
model and considers that the various immiscible fluids (or ‘phases’)
can be described as a single fluid whose local physical properties,
namely density and viscosity, vary in space and time depending
on the volume fraction Ci of each phase i (Hirt & Nichols 1981;
Youngs 1982). The volume fraction of each fluid intrinsically obeys

n∑
i=1

Ci = 1 where n is the number of phases. In this study, we consider

one-, two- and three-phase systems and 1 ≤ n ≤ 3. Typically, Ci

= 1 in grid cells filled only with fluid i, and 0 < Ci < 1 in grid
cells cross-cut by an interface. At this point need is to mention the
two main classes of VOF methods: methods that try to reconstruct
exactly the interface between fluids (e.g. Puckett et al. 2018), which
requires significant computational time, and methods that do not,
such as in the present approaches with JADIM and OpenFOAM.
With no interface reconstruction, the thickness of the interfacial
region is defined by 0 < Ci < 1, and typically occupies two to three
grid cells. Dimensionless equations are presented in Appendix B.
Without any thermal effect, the local density ρ and viscosity μ of
the fluids follow the relations:

ρ =
n∑

i=1

Ciρi ; μ =
(

n∑
i=1

Ci

μi

)−1

. (1)

Note that the first equation in (1) is exact while the second equa-
tion is an ad hoc approximation [details given further below for the
choice of μ’s interpolation, and see Schmeling et al. (2008)]. When
thermal effects are taken into account (Section 4), the properties of
the fluid are expressed as a function of both the volume fraction Ci

and the temperature T, as specified below (eqs 6 and 7).
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The general set of solved governing equations are the transport
of the volume fractions, mass, momentum and energy equations,
expressed as:

∂Ci

∂t
+ U · ∇Ci = −∇ · (Ur Cr ), (2)

∇ · U = 0, (3)

ρ
∂U

∂t
+ ρU · ∇U = −∇ P + ρ̃g + ∇ · [

μ(∇U + (∇U)T )
]
, (4)

∂T

∂t
+ U · ∇T = ∇ · (κ∇T ), (5)

where U, P, T are the velocity, pressure and temperature of the flow
respectively, and g is the gravitational acceleration. It is worth not-
ing that when used, the temperature-dependency of density is only
applied to the gravitational term ρ̃g (Boussinesq approximation). In
particular, we set

ρ̃ =
n∑

i=1

CiρiFi (T ); μ̃ =
(

n∑
i=1

Ci

μiGi (T )

)−1

, (6)

Fi (T ) = 1 − αi (T − T ref
i ), (7)

where T ref
i and αi are the reference temperature and the thermal

expansion coefficient of fluid i, respectively, and Gi (T ) is function
of temperature. Since Gi (T ) is model-specific, it will be defined
below in each case.

In theory the r.h.s. of (2) should be zero, which is the case for
JADIM and ASPECT. However, for OpenFOAM the term −∇ ·
(UrCr) is artificially added to (2) to reduce the effects of numerical
smearing of the interface, where Cr = C1 · (1 − C1), and Ur,
designated by Berberović et al. (2009) as a ‘compression velocity’,
is evaluated at cell faces as a volume flux based on the maximum
velocity magnitude in the interface region. This velocity is obtained
from a face interpolation using the normalized variable diagram of
Jasak et al. (1999, NVD approach), who proposed a high resolution
differentiation scheme with a limiter (based on the ratio between
volumetric flux gradients calculated at adjacent cell faces and cell
centres). We refer the interested reader to Berberović et al. (2009)
for further information.

Eqs (2)–(5) are solved on a structured staggered grid (JADIM) or
on a complex mixture of collocated/staggered grid (OpenFOAM)
using a finite-volume technique and a projection method used to
enforce incompressibility. Domain decomposition and MPI paral-
lelization is performed to allow for high-resolution simulations with
a large number of grid cells.

2.2 Solvers characteristics

In JADIM, eq. (2) is solved using a modified version of the Flux
Corrected Transport technique of Zalesak (1979) while eqs (4)–
(5) are solved via a third order Runge–Kutta/Crank–Nicolson time-
advancement scheme, the spatial gradients being approximated by a
second-order central difference discretization. Pressure is computed
by solving a Poisson pseudo-equation using the PETSC library. The

linear system is solved by a Jacobi preconditioned conjugate gradi-
ent technique. The full numerical approach has been extensively de-
scribed by Bonometti & Magnaudet (2007) and is not repeated here.
JADIM is available only in the frame of a collaboration with IMFT.

In OpenFOAM (version 4.0 is used here), eq. (2) is solved us-
ing a Multidimensional Universal Limiter with Explicit Solution
(MULES, Deshpande et al. (2012)) while eqs (3)–(4) are solved
by a Pressure Implicit Splitting Operator (PISO) algorithm (Issa
1986), in which the momentum equation is solved first, consider-
ing the pressure at the previous time step. The solution gives an
approximation of the new velocity field, which is used to solve the
pressure equation to provide a first estimate of the new pressure
field. This loop is then repeated with this new pressure field in
order to correct the new velocity field, until a pre-determined tol-
erance is reached. Eq. (5) is solved by a first order Euler implicit
time stepping algorithm. The OpenFOAM solvers named Inter-
Foam, Multiphase-InterFoam (Rayleigh–Taylor instability) are used
for Section 3, and are directly available in OpenFOAM. To solve
the Rayleigh–Bénard cases of Section 4, we built our own solver
which combines InterFoam and BuoyantBoussinesq-PimpleFoam
[a two-fluid VOF solver of the energy eq. (5)], available here:
https://gitlab.com/AurelieLN/openfoam.git.

ASPECT (version 2.1.0 in optimized mode is used here, Kron-
bichler et al. 2012; Heister et al. 2017; Bangerth et al. 2019) is a
versatile state-of-the-art Finite Element code which is based on the
deal.II library (Arndt et al. 2019). It is currently one of the most
used open-source codes developed by the geodynamics commu-
nity studying mantle convection and/or lithospheric deformation.
Taylor-Hood elements are used for the Stokes equations (Donea &
Huerta 2003), while second order elements are used for the temper-
ature equation. The numerical methods implemented in ASPECT
relevant to this study are presented in Kronbichler et al. (2012) and
Heister et al. (2017). Material tracking is based on compositional
fields (one field per fluid) and their corresponding advection equa-
tions are solved with second-order elements too, stabilized with
the Entropy Viscosity method (Guermond et al. 2011). Although
ASPECT allows the user (i) to tune the parameters of the Entropy
Viscosity method, (ii) to use the SUPG method (Brooks & Hughes
1982) instead, (iii) to use a discontinuous Galerkin Finite Element
method (He et al. 2017) for the advection–diffusion equations and
(iv) to use the Particle-in-Cell method (Gassmöller et al. 2018,
2019), we felt that such explorations are outside the scope of this
work and therefore resorted to using only default parameters. While
a VOF method has been implemented in ASPECT (Robey & Puckett
2019), we do not use it here, first because it was published subse-
quently to the main development of our study, and second because
at the time of writing it is only available in 2-D. Table 1 summarizes
the main features of JADIM, OpenFOAM and ASPECT.

2.3 Inertia and Archimedes number

JADIM and OpenFOAM solve the Navier–Stokes equation on a
Cartesian grid, and their formulation gives the possibility to take

Table 1. Numerical characteristics of the codes used in this work.

JADIM OpenFOAM ASPECT

General method VOF VOF Compositional fields
Grid Eulerian Eulerian Eulerian
Time 3rd order Runge-Kutta/Crank-Nicolson 1st order Euler implicit BDF-2
Spatial gradient 2nd order central difference upwind Q2 + EV stabilization

https://gitlab.com/AurelieLN/openfoam.git
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into account inertial processes (without extra cost in computational
performance). In the considered Rayleigh–Taylor problems (Wein-
berg & Schmeling 1992; van Keken et al. 1997) inertia is negligible
in eq. (4), and its presence in the formulation does not affect the
results. Indeed, eqs (128) and (131) of Chandrasekhar (2013) and
Ramberg (1968) showed that for a two-layer Rayleigh–Taylor sys-
tem with a single kinematic viscosity ν, inertia can be neglected

when the wavelength λ � 2π

(
4ν2

At g

)1/3

, with At = ρ1 − ρ2

ρ1 + ρ2
, and

this is the case for the systems studied here.
Furthermore, since both JADIM and OpenFOAM are not fully

implicit in the viscosity term, our numerical time steps are con-
strained to remain small. To circumvent unrealistic computational
times, we decrease the viscosity artificially and show that this does
not modify the characteristics of the modelled instabilities. To show
this, we use the Archimedes number which compares buoyancy
forces to viscous forces:

Ar = ρ1(ρ1 − ρ2)gH 3

μ2
1

(8)

We show in Appendix C that a system with Ar <<1 and a system
with Ar = 1 display equivalent behaviours. This behaviour can be
assimilated to the independence of the corresponding drag coeffi-
cient on the Reynolds number in the Stokes flow regime (Duan et al.
2015).

3 M U LT I L AY E R R AY L E I G H – TAY L O R
I N S TA B I L I T I E S

We define a series of numerical experiments in 2-D and 3-D Carte-
sian geometries to test the accuracy and the efficiency of the VOF
method. In this section, the density and viscosity of each phase are
kept constant and independent of temperature. Thus only eqs (2)–
(4) are solved with F(T ) = G(T ) = 1. We first show the standard
van Keken et al. (1997) two-layer system and compare the results
produced by JADIM, OpenFOAM and ASPECT. Then, we study a
three-layer system using the setup defined by Weinberg & Schmel-
ing (1992) for crustal scale polydiapirism. The original results are
compared with those computed with JADIM, OpenFOAM and AS-
PECT. We display a comparison with linear stability theory in all
cases and show the evolution of the mass error. Below, we first
briefly describe the linear stability theory and then present results
for two-layer and three-layer systems in 2-D. The last subsection
deals with 3-D three-layer systems.

3.1 Linear stability theory (LST)

The linear stability theory of Ramberg (1981a) predicts the dis-
persion relation between the wavelength and the growth rate of
interfaces for a system with two or more horizontal layers of fluid
of arbitrary density and viscosity, in an unstable configuration. The
position yi of the interface that delimits each layer i takes the form:

yi (t) = Ai e
κi qi t , (9)

where Ai depends on the initial perturbation, σ i = κ iqi is the growth
rate and qi is defined as

qi = (ρi − ρi+1)ghi+1

2μi+1
. (10)

The parameter κ i is a cumbersome combination of the
dimensionless parameters γ = μi/μi+1, hi/H , ρi/ρi+1 and

(ρi − ρi+1)(ρi+1 − ρi+2), and its detailed formulation is found by
solving the linear system of Ramberg (1981a, see eq. A1). Note that
the theory presented in Ramberg (1981a) is valid when the interface
height does not move more than 10 per cent of the wavelength.

Time, length and velocity are scaled by T , L and U as follows,
using layer 2 as reference

T = q−1 = 2μ2

(ρ1 − ρ2)gh2
; L = h2; U = qh2. (11)

3.2 Two-layer Rayleigh–Taylor system

3.2.1 Numerical setup

We first start with the standard test case of a two-layer viscous
Rayleigh–Taylor instability proposed by van Keken et al. (1997). A
fluid of density ρ1 and viscosity μ1 is located above a less dense fluid
of density ρ2, viscosity μ2 and thickness h2 in a rectangular box of
length L and height H. The two fluids are separated by a sinusoidal
interface of low amplitude (Fig. 1). No-slip boundary conditions
are used along the horizontal walls, free-slip conditions are used
along the vertical walls, and a zero normal gradient is imposed for
the volume fraction. For our numerical models considering a two
layer system, we set Ar = 1, ρ1/ρ2 = 1.1, h2/H = 0.2, and vary γ

= μ1/μ2 = [1, 10, 102].
In van Keken et al. (1997) a comparison between various numer-

ical approaches was made (e.g. finite-element vs. finite-difference
methods using either tracers, markers or field functions for the in-
terface motion). We choose as reference results, those obtained with
the finite-element method and a marker chain named Pvk. The refer-
ence grid has a resolution of 91 × 100 elements along the horizontal
and vertical direction, respectively. The time evolution of several
quantities is monitored, in particular:

(i) The dimensionless rms velocity:

Vrms/U = 1

U

√
1

A

∫
A

‖U‖2d S, where A = L × H is the area

of the computational domain.
(ii) The dimensionless growth rate for each layer, cf. eq. (10):

κ = σ

q
(the slope of the Vrms curve at the beginning of the system

destabilization),

(iii) The relative velocity error: �Vrms = Vrms − V ref
rms

V re f
rms

, where

V ref
rms is a reference velocity defined later,
(iv) The relative mass error of a phase M with respect to its initial

mass M0: �M = M − M0

M0
. �M is the integral of one fluid within

its own area versus the area it occupied at t = 0.

Averaging of the viscosity over an interface is known to poten-
tially lead to different results (Schmeling et al. 2008; Bangerth
et al. 2019). Most common methods are the arithmetic averag-

ing (μ =
n∑

i=1
Ciμi ), the geometric averaging (μ = μ

C1
1 μ

C2
2 ), and the

harmonic averaging (μ =
(

n∑
i=1

Ci
μi

)−1

). In van Keken et al. (1997),

the method for viscosity averaging over interfaces is not specified.
However in a following publication (Tackley & King 2003), this
comparison is used and commented with an arithmetic averaging.
Moreover, if we compare our results obtained using the arithmetic
averaging (Figs D1 and D2) and those using the harmonic averaging
( Figs D2 and D3) , we observe that the arithmetic averaging gives
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Figure 1. (a) Initial geometry of the two-layer Rayleigh–Taylor system and boundary conditions used in the van Keken et al. (1997) test case: h2/H = 0.2 and
L/H = 0.9142. (b) Initial geometry of the three-layer Rayleigh–Taylor system and boundary conditions used by Weinberg & Schmeling (1992): γ = μ1/μ2

and μ2 = μ3, h2 = h3 (see text for the specific value of the height ratios and length to height ratios).

results closer to those of van Keken et al. (1997). In fact, for a light
viscous sphere rising in a more viscous fluid, the arithmetic aver-
aging is found to be more appropriate than the harmonic averaging
(Benkenida 1999). In the context of this benchmark the situation is
alike, with a less viscous blob rising within a more viscous fluid.

3.2.2 Comparison of geometric patterns

We display in Fig. 2 snapshots of the time evolution of the two-phase
system for three codes, JADIM, OpenFOAM and ASPECT for the
viscosity ratio γ = 100 which displays the most drastic differences
(other viscosity ratios are presented in appendix, Fig. D1). We su-
perpose two types of visualization: isocontours of phase fractions
of fluid 2 and colours. Black zones correspond to a phase fraction
of fluid 2 between 0.66 and 1, grey zones to a phase fraction be-
tween 0.33 and 0.66, and white zones to a phase fraction between 0
and 0.33. The grey zones (where the interface diffuses) are broader
for ASPECT than for the two VOF codes. It is only a visual and
qualitative comparison.

When the light fluid (fluid 2, black layer) reaches the top right
corner of the domain, a layer of heavy fluid remains attached to the
top wall (fluid 1, white layer), and continues to drip slowly. The
general location of this layer’s interface is similar in all three codes
to that of van Keken et al. (1997). However, looking in detail at this
layer, we see that all codes develop distinct interface shapes. For
instance with OpenFOAM and ASPECT, the secondary central drip
plunges faster already at t/τ = 50 than with JADIM or van Keken
et al. (1997).

For the test cases γ = 1 and γ = 10 in turn, the location of
interfaces remains more similar for all three codes (see Appendix,
Fig. D1). Note that the results obtained with OpenFOAM display
small instabilities at the bottom of the model domain (Fig. D1b),
similar to what Tackley & King (2003) had obtained with relatively
high resolution and a great number of tracers. This is not the case
for JADIM since the numerical thickness of the interface is slightly
larger (two-three grid cells) than in OpenFOAM. At time t/τ = 150,
a bubble is rising with OpenFOAM, is forming with JADIM, but
does not exist in van Keken et al. (1997).

In conclusion, it is delicate at this stage to determine which
method should produce the most correct results, and we can only
state that structures formed with ASPECT display more diffusion

than JADIM or OpenFOAM, which will be corroborated by the
following numerical sensitivity tests.

3.2.3 Numerical sensitivity of the results

We plot in Fig. 3a) the time evolution of the dimensionless root
mean square velocity (Vrms/U), for different viscosity ratios. For
γ = 1, the first velocity peak (inset A in Fig. 3a) is always well
described even at low resolution (22 × 25) for both JADIM and
OpenFOAM. van Keken et al. (1997) had observed that the arrival
of the second diapir somewhat depends on the numerical code, and
in fact the second diapir produced by OpenFOAM rises slightly
faster than that simulated by van Keken et al. (1997) and JADIM
(by about t/τ = 10), but it displays the same maximum value inset
B in (Fig. 3a).

The largest discrepancy occurs for γ = 100 where the results of
JADIM and OpenFOAM underestimate (by 18 and 14 per cent, re-
spectively) the ascent velocity predicted by van Keken et al. (1997)
(Fig. 3a). For a comparison, we also plot in Fig. 3(a) the linear sta-
bility solution (Ramberg 1981a, see Appendix A1 for more details).
For all viscosity ratios, simulations growth rates differ by at most 4
per cent from the linear stability theory.

Fig. 3(c) presents the relative error of all codes with respect
to their own reference value against Ny, the number of grid cell
along the y-axis. The reference value of each code is the mean
velocity Vrms obtained at t/τ = 0.0981 with the finest grid. First,
relative error decreases as the number of cells increases, showing
grid convergence. Secondly, for a given resolution, the relative error
is similar for codes JADIM and OpenFOAM (for example, for 1/Ny

= 0.02, �Vrms = 0.05 per cent) and generally lower for ASPECT
(for 1/Ny = 0.02, �Vrms = 0.004 per cent). Third, the slope of the
curve is roughly 2, indicating that these approaches are second-order
accurate in space.

The time evolution of the relative mass error �M (in per cent)
for JADIM, OpenFOAM and ASPECT is presented in Fig. G1.
For JADIM and OpenFOAM, �M oscillates but is always below
10−6 which is very small. �M for ASPECT is significantly larger
compared to the VOF codes, with �M ≈ 10−2.

These results show that the two VOF methods JADIM and Open-
FOAM reproduce well the van Keken et al. (1997) test case. Tack-
ley & King (2003) had previously explained differences in between
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Figure 2. Time evolution of the two-phase system for a viscosity ratio of γ = 100, arithmetic viscosity averaging, at t/T = 50, 100, 150 (columns).Van
Keken’s snapshots are modified from Fig. 6 of van Keken et al. (1997).The grid size is 91 × 100 for JADIM, OpenFOAM, and ASPECT. Iso-contours of the
volume fraction of fluid 2 (initial bottom layer) are C2 = 0.05, 0.5, 0.95 for JADIM, OpenFOAM and ASPECT. White zone: 0 < C2 < 0.33; grey zone: 0.33
< C2 < 0.66; black zone: 0.66 < C2 < 1.

models as resulting from the viscosity interpolation scheme with
time stepping and with mesh resolution. We show here in addition,
that VOF methods such as JADIM and OpenFOAM produce less
interface diffusion and less mass error than ASPECT’s composition
method.

3.3 Three-layer Rayleigh–Taylor systems

We now consider Rayleigh–Taylor instabilities in three-layer sys-
tems, which have been previously studied by Ramberg (1981a) and
Weinberg & Schmeling (1992). The problem setup is similar to
that of the previous section with the addition of a third fluid layer
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Figure 3. (a and b) Comparison of the time evolution of the mean velocity in the Rayleigh–Taylor two-layer system by van Keken et al. (1997), with JADIM
and OpenFOAM (arithmetic viscosity averaging and resolution 91 × 100). Velocity is scaled by U and time is scaled by T (eq. 11), for various viscosity
contrasts γ = μ1/μ2. A and B zoom on different scales at subsequent times. (b) Effect of the spatial resolution on velocity Vrms (scaled by U ) at t/τ = 0.0981
for JADIM, OpenFOAM and ASPECT (γ = 1). Ny is the number of cells along the y-axis. The general trend is a line of slope ≈2.

(see Fig. 1b). Weinberg & Schmeling (1992) studied various con-
figurations of density and viscosity varying within these layers,
assuming that each may represent a different composition or con-
tain variable proportions of molten crustal material. They used a
finite-difference method to solve the Stokes equations and tracked
the interfaces using markers. In what follows, we study three of
the configurations proposed by Weinberg & Schmeling (1992), and
compare the results produced by JADIM, OpenFOAM, and for one
case by ASPECT (case II), with the linear stability analysis of
Ramberg (1981a) (briefly recalled in Section 3.1 for multilayers).
We extrapolate these setups to 3-D in the following section.

3.3.1 RT numerical setups: three cases

Following Weinberg & Schmeling (1992), three configurations are
tested. In case I, only the bottom layer 3 is gravitationally unstable.
In cases II and III, both the intermediate and bottom layers 2 and
3 are gravitationally unstable. Since we showed in Section 2.3 and
Appendix C that the dynamics of a system remain similar when Ar
≤ 1, our simulations have Ar ∼ 1 while in Weinberg & Schmeling
(1992) Ar ∼ 10−33. More specifically, our physical parameters are
identical to those of Weinberg & Schmeling (1992) except for the
viscosities which are scaled smaller. The length of the computational
domain is set to L/H = 2.24 for case I and L/H = 2.4 for cases II
and III, so that it can include at least one dominant wavelength
(Weinberg & Schmeling 1992). Both interfaces are perturbed by a

random perturbation. In the present computations, our grid size is
224 × 100 for case I and 240 × 100 for cases II and III along the
horizontal and vertical direction, respectively.

The general three-layer problem is described by five parameters,
namely two Archimedes numbers based on properties of fluid 1 and
3, the viscosity ratio, the density ratio and the height ratio. We set
μ2 = μ3 and h2 = h3 and density ratios close to one (they vary
in each case), as in Weinberg & Schmeling (1992). Therefore, the
problem reduces to the dimensionless parameters defined in section
3.2, namely, Ar ≈ 1, γ = μ1/μ2 = μ1/μ3 = [100, 200] and h2/H =
h3/H = 0.125.

3.3.2 RT numerical results: comparison of geometrical patterns

Fig. 4 displays the time evolution of the three-layer Rayleigh–Taylor
instability for cases I, II and III. Note that time is scaled byT (eq. 11)
and in order to make a relevant comparison, the origin of time t = 0
has been arbitrarily set as the time when one of the interfaces rises
by a minimum height of 3 × 10−5H (temporal offset values are given
for each 2-D and 3-D simulations in the figure captions). Indeed,
we insert an initial perturbation at the interfaces (as in Weinberg
& Schmeling 1992) which may not be defined exactly in the same
manner for each numerical code depending on how the interface
is calculated. For JADIM and OpenFOAM, interfaces at heights
h2 and h3 are defined with a random perturbation of 0.24 per cent
the local volume fraction of the cell crossed by the interface [as
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Figure 4. Three-phase Rayleigh–Taylor system by Weinberg & Schmeling (1992). Weinberg and Schmeling’s snapshots are modified from Figs 3 and 5 of
Weinberg & Schmeling (1992). Time evolution of the layers for the different codes: (a) Case I, the middle layer is the densest and γ = 100, (b) Case II, the top
layer is the densest and γ = 100, and (c) Case III, the top layer is the densest and γ = 200. Time is scaled by T with origin t/T = 0 set at the time when one
of the interfaces raised by a distance of 3 × 10−5H, Time offsets are, for case I: Off1

J A = 26, Off1
O P = 24, case II: Off2

J A = 300, Off2
O P = 276 and case III:

Off3
J A = 564, Off3

O P = 552.
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in Weinberg & Schmeling (1992)]. For ASPECT, both interfaces
oscillate as z ≥ hi + (rand() − 0.5) × 2.4 10−10). Thus, the moment
of destabilization occurs at different times for each code.

(a) Case I: ρ2 > ρ1 > ρ3, γ = 100, Ar = 0.5
Here, ρ1 = 0.89ρ2 = 1.18ρ3. The interface separating fluid 2 and

fluid 3, from now on denoted as ‘interface 2-3’, deforms and forms
regularly spaced rising domes. These domes merge inside layer 2
to form bigger domes which then rise through layer 1. Weinberg
& Schmeling (1992)’s simulation displays 7 diapirs against 8.5 for
JADIM and 6.5 for OpenFOAM.

(b) Case II: ρ1 > ρ2 > ρ3, γ = 100, Ar = 0.981
Here, ρ1 = 1.11ρ2 = 1.12ρ3. A mushroom shaped diapir com-

posed of fluid 3 surrounded by fluid 2 (intricated domes structure)
rises through layer 1. Diapirs rising to the left for JADIM and
OpenFOAM are very similar to the diapir of Weinberg & Schmel-
ing (1992) although it rises at the centre of the modelled domain.
The diapirs rising to the right for JADIM and OpenFOAM present
smaller wavelengths of the interface 2–3 than the diapir of Weinberg
& Schmeling (1992). Nevertheless, the overall shape of the diapirs
simulated by JADIM and OpenFOAM is very similar.

As for ASPECT, only one diapir forms at the centre of the domain,
as in Weinberg & Schmeling (1992), however the interface 2–3
develops more diapirs (around five at t/τ = 441), which differs from
Weinberg & Schmeling (1992) but is rather similar to those obtained
with JADIM and OpenFOAM. In fact, the results of ASPECT are
very sensitive to the random perturbation inserted at the interfaces
and which depends directly on mesh resolution. ASPECT results
resemble more those of Weinberg & Schmeling (1992) when the
mesh is refined in the vertical direction (150 points with respect to
100, see Fig. E2c).

(c) Case III: ρ1 > ρ2 > ρ3, γ = 200, Ar = 0.9
Here, ρ1 = 1.1ρ2 = 1.12ρ3. The viscosity contrast between the

uppermost and the intermediate layers is larger in this case. As a
consequence the instability of interface 1–2 develops more slowly
than in the previous cases, and the intermediate fluid sinks down
rather than rise. Results obtained with JADIM and OpenFOAM
are similar but the agreement with the visual aspect of Weinberg &
Schmeling (1992) is not as good as for cases I and II. The intermedi-
ate fluid coalesces at the bottom of the rising diapir instead of being
carried upwards as in Weinberg & Schmeling (1992). However, the
wavelength of interface 1–2 is similar. Using a more refined grid or
an arithmetic interpolation for the viscosity at the interface did not
improve the results and cannot explain the observed discrepancy.
In fact, we obtain similar results when we use a viscosity ratio γ

= 100 and set random perturbation only on the lower interface.
Explanations for this discrepancy can be due either to i) erroneous
setup details provided in Weinberg & Schmeling (1992) or ii) insta-
bilities tending to develop faster in JADIM and OpenFOAM than
in Weinberg & Schmeling (1992).

3.3.3 Comparison with RT linear stability theory

In the following, we focus on the initial development of the in-
stabilities at interfaces 2–3 and 1–2. Their growth rates σ23 =
log(V2−3/U)/t , σ12 = log(V1−2/U)/t and their wavelengths λ23 and
λ12 are compared with those given by the linear stability theory de-
veloped by Ramberg (1981a) (cf. section 3.1 and Appendix A1) for
three-layer systems. The dominant wavelengths λ23 and λ12 for each
interface 2–3 and 1–2 both correspond to the maximum growth rate.

In the numerical models, the wavelength is measured as the dis-
tance separating the axes of symmetry of the diapirs. In case I for

instance, one observes at time t/T ≈ 10 that the selected wave-
length for JADIM is λ/h2 ≈ 2.1, while for OpenFOAM, one finds
λ/h2 ≈ 2.7 (Fig. 4a). The growth rate is obtained from picking at
each time step the velocity of the maximum vertical location of each
interface 1–2 and 2–3. The evolution of interface 1–2 is displayed in
Figs 5(a), (c) (e) for cases I, II and III, respectively. The evolution of
interface 2–3 is similar to that of interface 1–2 and it is not shown.

The lin-log representation allows to straightforwardly observe
any exponential growth (curve with a constant slope) and measure
the growth rate. In case I for instance, one observes a first instability
at 5 � t/T � 20 (Fig. 5a). A second exponential growth is seen for
50 � t/T � 200. This is the signature of the double overturn: the
first slope describes when layer 2 grows through layer 3, the second
slope when layer 2 grows through layer 1.

For case II, JADIM and OpenFOAM present very similar growth
rates and wavelengths until t/τ = 100. Then, ASPECT (orange
curve) exhibits a higher growth rate than OpenFOAM (green curve)
and JADIM (blue curve). For comparison, we plot in the left column
of Fig. 5 the prediction of the linear stability theory (red and pink
lines for interfaces 1–2 and 2–3, respectively). The slopes of the
curves are important whereas the initial location at the origin is
not. If we plot parallel lines to the red curves, all codes are in
good agreement. However, we find that ASPECT presents some
oscillations at t/τ < 150, that is at the onset of the destabilization.
Therefore, for this code, we consider the slope of interface 2-3
between time 70 < t/τ < 200, and the slope of interface 1–2 at 150
< t/τ < 370, to evaluate the growth rate displayed in Fig. 5(d).

In order to provide a more quantitative comparison, Figs 5b, d,
f displays the dispersion relation (growth rate versus wavelength)
obtained from the linear stability theory of Ramberg (1981a) (red
curves). For cases II and III, one curve displays the two main wave-
lengths corresponding to each interface 1-2 and 2-3. For case I, two
curves are needed since only interface 2-3 deforms and the insta-
bilities occur at two different times (one time for layer 3 to cross
layer 2 and one time for layer 3 to cross layer 1). The growth rates
and wavelengths in our simulations are also plotted (symbols). It is
worth noting that measuring such growth rates from the simulation
is somewhat difficult as its specific value depends on the time span
chosen for computing the slope (see Fig. 5, left column) and we
have chosen to use the maximum growth rate of each interface. In
any case, this at least partly explains why the values obtained in the
simulations can be slightly larger (or smaller) than the maximum
growth rate predicted by the linear stability theory.

In summary, the agreement between the wavelength and growth
rate obtained in the simulations using our VOF codes and those
predicted by the linear stability analysis of Ramberg (1981a) is
rather good since it is always within 15 − 20 per cent. ASPECT
does not produce such a good fit (see the growth rate of interface
1-2 in Fig. 5d, triangle). The discrepancies can be mainly explained
by the difficulty to accurately measure the growth rate since it varies
over time. Once again, even if the visual aspect of case III is different
from that of Weinberg & Schmeling (1992) (Fig. 4c), the growth
rate and wavelength given by JADIM and OpenFOAM remain close
to the linear stability prediction.

For completeness, we compare our three-layer system results with
alternative theories mentioned in the introduction (Ramberg 1981a;
Burg et al. 2004), and therefore separate our system into a top layer
and a bottom layer. There are then two ways to proceed: either group
the two lower layers together (top layer = layer 1 and bottom layer
= layers 2 and 3) or, since the viscosity ratio between layers 1 and
2 is high, layer 1 is set to act as a wall, layer 2 is considered as the
top layer and layer 3 as the bottom layer. Hence we compare the
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Figure 5. Three-phase Rayleigh–Taylor system by Weinberg & Schmeling (1992). Left-hand column: time evolution of the velocity of the maximum height
of interface 1-2, simulated in Fig. 4 (harmonic viscosity averaging is used here). Right-hand column: maximum growth rate obtained in the simulations as
a function of the wavelength, for interfaces 1-2 and 2-3. (a-b) Case I, (c-d) Case II, (e-f) Case III. The red curves correspond to the linear stability theory
(Ramberg 1981a).

growth rate and the wavelength obtained with our codes (JADIM,
OpenFOAM, ASPECT) for case II, with:

(i) Burg et al. (2004)’s predictions for a two-layer system (eq. A2,
referred to as BKP),

(ii) Ramberg (1981a)’s theory for a two and a three-layer system
(eq. A1, referred to as R).

Results are presented in Table 2 a,b for interfaces 1-2 and 2-3,
respectively. Note that for interface 1-2, we consider layer 1 as the
top layer, and layers 2 and 3 as the bottom layer; for interface 2-3,
we consider layer 2 as the top layer and layer 3 as the bottom layer.
The wavelength of interface 2-3 for a three-layer system is correctly
predicted by the two-layer system theory of Ramberg (1981a), but

the growth rate and wavelength of interface 1-2 are very different.
BKP’s predictions of both the wavelength and growth rate are very
different from the numerical results and do not seem appropriate to
describe the present three-layer system. It turns out that the multi-
layer theory of Ramberg (1981a) is the one found able to predict both
the wavelength and the growth rate for a three-layer system. Indeed,
results given by our codes and those from Ramberg (1981a)’s theory
for a three-layer system are in good agreement for both interfaces.

3.3.4 Numerical sensitivity of the results - RT case II

Here we carry out various sensitivity tests for case II with JADIM,
OpenFOAM and ASPECT. We visually compare structures as well
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Table 2. Theoretical and modelled maximum growth rate κ12 and corresponding wavelength λ12 of interface 1-2 (a) and 2-3
(b) Rayleigh–Taylor instabilities case II; BKP: Burg et al. (2004); R: Ramberg (1981a).

(a) Interface 1–2

JADIM OpenFOAM ASPECT 2 layers theory 3 layers theory

2-D 3-D 2-D 3-D 2-D 3-D BKP R R

λ12/h2 13.2 > 9 14.4 > 9 11.32 > 9 7.2 42.0 15.2
κ12 0.017 0.0165 0.017 0.015 0.018 0.02 0.98 13.7 0.017

(b) Interface 2-3
JADIM OpenFOAM ASPECT 2 layers theory 3 layers theory

2-D 3-D 2-D 3-D 2-D 3-D BKP R R
λ23/h2 2.4 2.4 2.6 2.4 2.0 2.24 0.8 2.6 2.6
κ23 0.015 0.015 0.016 0.0158 0.0148 0.0164 0.1 0.153 0.0154

as the evolution of velocity over time. We plot the mass error,
and assess the influence of i) the mesh resolution, ii) the initial
perturbation of the interface and iii) the viscosity averaging at the
interface (harmonic or arithmetic).

(i) Mass Error - The time evolution of the relative mass error
�Mi = (Mi − Mi

0)/(Mi
0) with Mi the mass of phase i and Mi

0 the
initial mass of phase i, is presented in Fig. G1. Both JADIM and
OpenFOAM display values lower than 10−7.

(ii) Mesh resolution - Grid convergence is illustrated in Table E1
of Appendix E. Grid independent results are obtained with a rela-
tively coarse grid for JADIM and OpenFOAM (90 × 37).

(iii) Initial Perturbation of the interfaces - We plot and discuss
with figures in Appendix E the time evolution of the velocity of
the maximum vertical location of interfaces 1-2 and 2-3, with or
without perturbing the two interfaces with a random perturbation
in JADIM. In summary, simulations with an initial perturbation are
in better agreement with the theory (Figs 5 c–d). In contrast for
cases I (Fig. E1a) and III (Fig. E1c)) the shape and dynamics of
the interfaces is found to evolve rather independently from initial
perturbations at the interfaces.

(iv) Influence of the type of viscosity averaging - Fig. E3 of
Appendix E compares the time evolution of the velocity of the
maximum vertical location of interface 1-2 for an arithmetic and
a harmonic viscosity averaging at the interfaces. The evolution
of interface shapes are roughly similar, yet, harmonic averaging
favours a behaviour controlled by the lowest viscosity at an interface,
rendering it easier for layer 2 to invade layer 1 and the corresponding
diapir becoming bigger, in comparison with results produced with
a arithmetic viscosity averaging. However, we note that arithmetic
averaging provides results more similar to Weinberg & Schmeling
(1992) at t/τ = 497.

3.3.5 Comparison between 2-D and 3-D RT models

In this section, we perform 3-D simulations extending the 2-D setup
of Weinberg & Schmeling (1992) for cases I, II and III. The first
objective is to show the capability of our VOF methods to tackle
3-D Rayleigh–Taylor problems; the second objective is to assess the
sensitivity of the theoretical predictions to possible 3-D effects. The
initial and boundary conditions are similar to the 2-D cases. The
size of the domain however, has been shortened along the horizontal
directions and L = 1.12H and is discretized using a resolution of
112 × 112 × 100.

The temporal evolution of the 3-D system of cases I, II and III are
displayed for OpenFOAM in Fig. 6. Case II is displayed in Fig. 7
for JADIM and ASPECT. In all cases, layer 3 starts to destabilize

by forming small domes which later evolve as individual diapirs, as
previously shown by Biot (1966); Berner et al. (1972); Talbot et al.
(1991); Kaus (2004); Fernandez & Kaus (2015).

In case I (Fig. 6a), since layer 2 is denser than the other layers,
layer 1 acts as a boundary and the little diapirs merge below interface
1-2 before rising through layer 1. In case II (Figs 6 d and 7b, d), the
little diapirs grow without merging and layer 2 entrains the diapirs
on a side of the box (as in 2-D). Then, both layers 2 and 3 rise through
layer 1. In case III (Fig. 6e), the dynamics is roughly similar to that
of case II with a larger delay due to the larger viscosity ratio between
layers 1 and 2 (200). The little diapirs merge and rise through layer
1 at the same time.

For case II, JADIM, OpenFOAM and ASPECT present similar
patterns of deformation, and the general dynamics is quite simi-
lar in 2-D and 3-D. In addition, the wavelength of the patterns are
of the same order of magnitude, as indicated in Tables 2 and 2.
Biot (1966) extended to 3-D his 2-D linear stability solutions for
a multi-layer system. He showed that the distance between peaks
and crests in 3-D is almost that of the wavelength of the 2-D so-
lution (λ2-D) as observed here. The spacing of diapirs both in 2-
D and 3-D follows the predictions of the linear stability theory
(if they grow from an initial interface perturbed with a random
perturbation).

The time evolution of the interfaces velocities in 3-D are com-
pared with the 2-D results in the left column of Figs 7 and 6.
Interestingly, this figure shows that the first instability grows at a
similar rate in 2-D and in 3-D (slopes are similar). However, the
2-D and 3-D dynamics are not strictly identical: in 3-D the rising
velocity of the second instability may be different from the 2-D one
(when fluid 3 has already intruded fluid 2, cf. also second expo-
nential in cases I and III), as shown by the offset between curves.
The observed relative difference in velocity can be as large as 15
per cent. Moreover, if JADIM and OpenFOAM yield continuous
curves, this is not the case for ASPECT, where, at time 100 < t/τ
< 200, curves are shifted respect to their continuation.

Fig. 6 b displays the pattern of layer 3 inside layer 2 for case
I (note that we do not consider the pattern of layer 3 into layer
1 since the wavelength of the corresponding instability is of the
order of the box size): a polygonal pattern is observed. Biot (1966)
studied 3-D patterns of a two-layer Rayleigh–Taylor instability
and found that for triangular or hexagonal patterns, the theoretical
distance h separating two neighbouring peaks in one horizontal
direction relative to that in the orthogonal direction l follows the
relation h/ l = 1.155. Here, we measure the average distances
hm/h2 ≈ 2.48 and lm/h2 ≈ 2.16, thus giving hm/ lm ≈ 1.148
which is close to the value of Biot (1966). In addition, Biot
(1966) states that the characteristic distance d between peaks is



3-D modelling of crustal polydiapirs with VOF methods 485

Figure 6. 3-D Rayleigh–Taylor simulations of cases (a) I, (c) II and (e) III corresponding to the 2-D analogues presented in Fig. 5 (Weinberg (1992)) using
OpenFOAM with harmonic viscosity averaging. Here, the horizontal size of the domain is 1.12H and the grid size is 112 × 112 × 100. Temporal offsets are
chosen, in 3-D, for case I: Off1

O P = 0, case II: Off2
O P = 300, case III: Off3

O P = 216. The offsets in 2-D are, for case I: Off1
O P = 5, case II: Off2

O P = 276, case
III: Off3

O P = 300.

determined to be d = 1.155λ2-D. Here, by computing the mean
distance between peaks, we recover that value.

As found in the previous section, JADIM and OpenFOAM pro-
duce equivalent results compared to ASPECT. Here again, the mass
error (in per cent) for JADIM and OpenFOAM remains below 10−7

in 3-D whereas it is only below 10−3 for ASPECT (Fig. G1).

4 M U LT I L AY E R R AY L E I G H – B É NA R D
I N S TA B I L I T I E S

In this section, we consider two configurations involving Rayleigh–
Bénard instabilities: the case of a single layer of fluid heated at its
base with a punctual source, to be compared to the work of Vatteville
et al. (2009), and the case of an initially stable stratified two-layer

system heated from below, to be compared to the work of Le Bars
& Davaille (2004).

In order to solve such configurations with our VOFs methods, the
full set of eqs (2)–(5) is solved and both the density and viscosity
are now prescribed temperature-dependent. In particular, the density
follows a Boussinesq law ρ̃ = ρ0 · F(T ) with F(T ) = 1 − α(T −
Tref ) where Tref is a reference temperature and α is the thermal
expansion coefficient. The viscosity follows a law μ̃ = μ0 · G(T ),
which will be detailed for each configurations.

4.1 One-layer Rayleigh–Bénard system

We aim here at reproducing the well-controlled laboratory and nu-
merical experiments performed by Vatteville et al. (2009). Initially,
a fluid of density ρ1,viscosity μ1 and temperature Tin is placed in a
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Figure 7. 3-D Rayleigh–Taylor simulations of case II corresponding to the 2-D analogues presented in Fig. 5 (Weinberg (1992)) using JADIM (a-b) and
ASPECT (c-d) with harmonic viscosity averaging. Here, the horizontal size of the domain is 1.12H and the grid size is 112 × 112 × 100. Temporal offsets are
Off2

J A = 282 in 3-D and Off2
J A = 300 in 2-D.

cylindrical tank of radius L and height H (see Fig. 8a). A local heat
source is placed in a small region (rh) at the centre of the cylinder’s
base, with a temperature that increases with time from Tin to TH

following the law T(t)/TR = 1.0 + 0.09(1 − exp ( − t/26.3)) (T in
Kelvin). This problem is controlled by two dimensionless param-
eters, for example the Prandtl number, a function of ν = μ/ρ the
kinematic viscosity and Dth the heat diffusivity, and the Rayleigh
number, where �T = TH − Tin:

Pr = ν

Dth
, Ra = αg�T H 3

Dthν
. (12)

The problem is assumed to be axisymmetric around a central
vertical axis, therefore computations are performed using a 2-D
grid of size 170 × 322 along the radial and vertical directions,
respectively. Boundary conditions are given in Fig. 8(a). The
temperature-dependent viscosity μ̃ = μ0 · G(T ) is provided by
Vatteville et al. (2009), who evaluated an empirical law G(T ) =
1.9 exp(−7.11 + 1892.0/T ), T in Kelvin. With their choice of
temperature range [Tin, TH], the largest viscosity contrast reaches
μmax/μmin ≤ 2. Grid convergence is illustrated for JADIM in Fig. F1.

In the experiment, and after some time during which heat diffuses
in the thermal boundary layer around the heat source, a plume grows
until it reaches a diameter of the order of that of the heat source,
and rises. Fig. 8(b) displays the temporal evolution of the maximum
velocity along the axis of symmetry, denoted ’conduit’, in Vatteville
et al. (2009)’s experiments and in the JADIM and OpenFOAM tests.

Velocity isocontours are plotted over the whole model domain at a
specific time (Fig. 8c), and then along the axis of symmetry at three
different times (Fig. 8d).

The ‘shape’ of the plume (defined with the iso-values of velocity
in Fig. 8(c) obtained with both our codes compares well with that of
Vatteville et al. (2009)’s experiment. The maximum velocity along
the plume conduit as a function of time is presented in Fig. 8(b).
The figure shows, for JADIM and OpenFOAM, a maximum velocity
higher than in the lab experiments but lower than in the numerical
simulation of Vatteville et al. (2009). At later times, good agreement
is found for all numerical approaches. Their value however is larger
than the one measured in the experiment (by about 6 per cent). This
discrepancy was attributed by Vatteville et al. (2009) to the labo-
ratory measurements which made use of a local spatial averaging
procedure which tends to moderately underpredict the velocity.

4.2 Two-layer Rayleigh–Bénard system

We consider now the more complex problem of a two-layer
Rayleigh–Bénard configuration. In this section, we set up numer-
ical cases comparable to the laboratory experiments of Le Bars
& Davaille (2004). Although this work was oriented to model the
Earth’s mantle, it may very well constitute a good basis to explore
the conditions for crustal scale convection, as will be discussed later.
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Figure 8. Rayleigh–Bénard problem (Vatteville et al. 2009): comparisons of the velocity field between laboratory (Vatt-Exp) and numerical experiments
(Vatt-num), OpenFOAM and JADIM. Velocity is scaled with VStokes = αg�TH2/νmax, time is scaled with τ = νmax/(αg�TH), and distance is scaled with the
domain height H. The grid size in JADIM and OpenFOAM is 170 × 322.
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4.2.1 Case description

A square tank of horizontal width L and height H is filled with two
fluid layers, the uppermost layer of density ρ1, viscosity μ1 and
height h1 being less dense and less viscous than the bottom layer
of density ρ2, viscosity μ2 and height h2 (Fig. 9a). The system is
initially at a constant temperature Tin, and is simultaneously heated
from below at temperature TH and cooled from above at temperature
Tc. Note that here the system is initially stable. Assuming that the
thermal expansion coefficient α and the heat diffusivity Dth are
the same in both fluids, the present problem is controlled by five
dimensionless parameters, namely the Prandtl and the Rayleigh
numbers (eq. 12), the thickness and viscosity ratios:

a = h2/H, γ = μ1/μ2, (13)

and the buoyancy number:

B = ρ2 − ρ1

α�T (ρ1 + ρ2)/2
, (14)

where �T = TH − TC. The parameter B expresses the ratio of the
stabilizing density stratification to the destabilizing thermal density
anomaly. Here, time is scaled by τ T = μ2/(αg�TH) and the origin
of time t = 0 has been set as the time when the interface height y
reaches y/h2 = 1.08. Le Bars & Davaille (2004) performed various
experiments which enabled them to draw a phase-map of the various
dynamics which may occur, depending on a, B and, to a lesser extent
γ and Ra (Fig. 9b). In particular, one can see that B controls the
ability of the interface to deform: if B > 0.3, the interface remains
mostly flat, and convection occurs in both layers separately. If B ≤
0.3, the interface is fully destabilized and convection occurs in the
whole domain. Their parameters vary between: 0.08 < a < 0.95, 7
· 10−4 < γ < 1, 103 < Ra < 108, 0.1 < B < 4, Pr > 100. Below,
we model four cases with fixed a = 0.3, γ ≈ 10−3, Pr ≈ 106 and
Ra ≈ 105 and vary the buoyancy number in the range 0.2 ≤ B ≤ 2.

4.2.2 Qualitative results

3-D simulations are performed with the geometry, initial and bound-
ary conditions displayed in Fig. 9(a) and described above. The
computational domain is discretized using a 90 × 90 × 44 grid-
size. Following Le Bars & Davaille (2004) we use an exponential
temperature-dependent viscosity such that μ=μo · exp ( − 0.038T).

We set four simulations corresponding to different locations in
the (B, a) parameter space (see star symbols in Fig. 9b): B = 0.2,
0.3, 0.6 and 2. Snapshots of the typical modelled structures are
illustrated Fig. 9(c). Our simulations produce deformation modes
in agreement with those identified by Le Bars & Davaille (2004),
in particular:

(i) Case I, B = 0.2 (equivalent to ρ2 < ρ1, Fig. 10a): the density
of the fluid from below decreases enough to invade the fluid from
above as a diapir. At the end of the experiment, a whole single-layer
convection mode develops.

(ii) Case II, B = 0.3 (equivalent to ρ2 ∼ ρ1, Fig. 10c): the sys-
tem stands at the transition between the interface remaining flat or
deforming like a rising diapir. Here, the fluid from below intrudes
the fluid from above, in a diapiric manner.

(iii) Case III, B = 0.6 (equivalent to ρ2 > ρ1, Fig. 10b): both
layers remain stagnant but the interface progressively deforms as
convective structures develop in each layers.

(iv) Case IV, B = 2 (equivalent to ρ1 	 ρ2, Fig. 10d): convection
appears separately in each layer and the interface remains flat.

Fig. 10 displays the 3-D flow dynamics for each for the four tested
B cases. JADIM and OpenFOAM behave similarly: both cases I
(Fig. 10a) and II (Fig. 10b) with B ≤ 0.3, show deformation modes
with diapirism followed by whole-layer convection. While JADIM
diapirs rise directly to the top (Fig. 9c), OpenFOAM displays diapirs
that collapse on themselves before rising all the way to the top (see
Figs 10a and b, time step 8200).

ASPECT is also tested for case II (Fig. 10b). Thermal plumes
form and fall from the top, deforming the interface before diapirs
can grow from layer 2. Then, as with JADIM, diapirs grow and reach
directly the top of the box. A large random perturbation (2/3 of a cell
size) has to be inserted in order to obtain a similar development of
diapirs to JADIM or OpenFOAM. Otherwise (with a smaller random
perturbation), a single diapir grows from the centre of the box, later
surrounded by five emerging diapirs. This different behaviour of
ASPECT is also discussed in comparison with analytical predictions
in the next section.

Cases III and IV with B > 0.3 display an interface that only
slightly deforms over time as expected from Le Bars & Davaille
(2004, Figs 10c, d and 9c).

4.2.3 Comparison with analytical predictions

In cases I and II, deformation of the fluid interface is significant,
as layer 2 progressively becomes less dense than layer 1. At this
point, the system becomes similar to a Rayleigh–Taylor system.
Thus, we may compare the modelled growth rate of the interface
to linear stability analytical solutions (LST, see Section 3.1), would
not there be the difficulty rising from temperature-dependent densi-
ties and viscosities. Since we haven’t found analytical solutions for
exponentially temperature-dependent viscosity (closest predictions
might be Popov et al. (2014) for exponentially depth-dependent
viscosity), we choose to first compare numerical growth rates in
between codes, and then to identify the associated range of temper-
ature with which the latter can be delimited by Ramberg (1981a)’s
analytical growth rate.

We thus proceed for case II (B=0.3), and display in Fig. 11 the
modelled and theoretical maximum heights of interface 1–2 with
time. The evolution of this interface can be divided in two stages,
before and after t/τ 
 2500 (see Figure caption for the choice
of time origin). Before that time, the system does not significantly
destabilize, and the interface 1–2 remains relatively flat with JADIM
an OpenFOAM. In contrast with ASPECT, this interface deforms
more, and thermal plumes are seen to drip from the top before any
instability actually manages to grow there. After that time, diapirs
rise, first in JADIM (from t/τ 
 2250), then in OpenFOAM(from t/τ

 2500), and finally in ASPECT (from t/τ 
 2800). From then on
the interface growth rates are close to each other by ∼10 per cent,
namely κJA = 0.10 for JADIM, κOP = 0.12 for OpenFOAM and κAS

= 0.16 for ASPECT.
With ASPECT, we tried to diminish the amplitudes related to the

initial destabilization stage (t/τ ≤ 2800), by reducing the amplitude
of the initial random perturbation: a single diapir is seen to form
at the centre of the model domain prior to others, and then the
transition to the main growth rate is shifted by t/τ = 1000 (compare
orange curves in Fig. 11). Since on the other hand, mass error in
ASPECT is found to be about 10−2 (Fig. G1c), we believe that
diffusion may be causing this less ’stable’ initial growth compared
to the two other VOF codes. Further tuning of specific numerical
settings in ASPECT might improve its behaviour, yet we did not
pursue this matter further as this was not the aim of our study.
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Figure 9. The two-layer Rayleigh–Bénard problem by Le Bars & Davaille (2004): (a) Initial setup, geometry and boundary conditions (L/H = 2. μ0 = 0.5
− 5 Pa.s and μ = μ0 · G(T ) with G(T ) = 2.2 · e−0.038T , T in Celsius). (b) Regime diagram of the convection regimes according to the lab experiments in the
parameter space (B; a), modified from Fig. 2 of Le Bars & Davaille (2004). The coloured stars indicate the location of the 3-D simulations performed in this
work. (c) Distribution of the instantaneous temperature field in a vertical plane at time t/T = 1800 computed with JADIM (γ = μ1/μ2 ≈ 10−2, Ra = 1.6 ×
105, Pr ≈ 3.5 × 106). The grid size in JADIM and OpenFOAM is 90 × 90 × 44.

Then we plot in Fig. 11 the LST growth rates that delimit the
slopes of our modelled growth rates. Since this LST growth rate
depends on ρ1, μ1, ρ2, μ2 (eq. 10 and Appendix C), which all
vary with temperature, we need to choose an equivalent tempera-
ture for layer 1 and an equivalent temperature TR for layer 2. For
layer 1, we take T1 = 34%(TH − TC ) (which is its average tem-
perature before destabilization) to deduce ρ1 and μ1. For layer
2, we seek the temperature TR (which determines ρ2, μ2) with
which we can trace the lower and upper bounding slopes of our
modelled growth rates: we find κTR = 0.09 and κTR = 0.18, asso-
ciated to reference temperatures TR = 93 per cent · (TH − T1) and
TR = 100 per cent · (TH − T1), respectively. This allows us to con-
clude that the numerical codes reproduce the development of RB
instabilities with a precision of 7 per cent of the ‘equivalent strati-
fied’ theoretical growth rate. We cannot state more precisely which
code best matches a true solution, but at least JADIM, OpenFOAM
and ASPECT present an overall consistent evolution of their inter-
face, providing confidence in their behaviour.

Concerning the dominant wavelength λ, the linear stability theory
of Ramberg (1981a) predicts that λ/h2 = 3 for a Rayleigh–Taylor
system. We obtain for OpenFOAM and ASPECT λ/h2 = 1.5, and for
JADIM λ/h2 = 1.2. However, theoretical values for Rayleigh–Taylor
instabilities do not correspond to those for a two-layer Rayleigh–
Bénard system, as shown by Le Bars (2003). In fact Le Bars (2003)
determined experimentally that λ/h2 = 9.1 × Ra−0.14 which in our
case leads to λ/h2 = 1.7. OpenFOAM and ASPECT provide a value
that differs by 12 per cent to this experimental law, while JADIM
differs by 30 per cent.

5 S Y N T H E S I S O F C O D E S
P E R F O R M A N C E S

We have produced numerical models with two VOF codes, JADIM
and OpenFOAM, for two- and three-layer systems with and without
thermal effects, and have shown a good agreement with the previous
studies of van Keken et al. (1997), Weinberg & Schmeling (1992),
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Figure 10. Rayleigh–Bénard two-phase system (Le Bars & Davaille (2004)): Iso-contour C = 0.5 for various B: 0.2(a), 0.3(b), 0.6(c) and 2.0(d). Time is
scaled by τ = ν2(TH)/(αg�TH).

Figure 11. Two-layer Rayleigh–Bénard system from Le Bars & Davaille (2004), B = 0.3, case II. Temporal evolution of the highest position of the layers’
interface for JADIM, OpenFOAM and ASPECT. �y/�ymax = (y(t) − y0)/(H − y0), y0 being the interface’s initial height and H the box’s total height. The
origin of time t/τ = 0 has been chosen so that the interface reaches y/h2 = 1.2 at the same time for all codes. Dotted lines are the tangents to the modelled
curves. Red lines referred as LST provide the theoretical growth rate slopes (Ramberg 1981b) for TR = 93%�T and TR = �T with �T = TH − T1. The two
orange curves for ASPECT correspond to a weak random perturbation ‘wwn’ (6 per cent of the cell size) and a strong random perturbation ‘swn’ (66 per cent
of the cell size), showing both high initial amplitudes prior to the onset of destabilization.

Ramberg (1981a), Vatteville et al. (2009) and Le Bars & Davaille
(2004). The two codes present some differences in their implemen-
tation, in particular the treatment of the transport equation of volume
fraction (eq. 2). For instance, in JADIM, the ‘numerical thickness’
of the interface is larger than that in OpenFOAM (2–3 grid cells
versus 1 grid cell) and this may explain the slight differences ob-
served in the numerical results between both codes (e.g. Figs 2 and

10). If we compare the results obtained with both VOF methods and
those obtained with a field method like ASPECT, the field method
tends to be more diffusive (>3 grid cells for the interface).

We report below the technical performances of JADIM, Open-
FOAM and ASPECT: their weak and strong scalabilities as well
as the computational time required for some of the experiments
described above.
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5.1 Scaling

5.1.1 Strong scaling

We assess the strong scalability of JADIM, OpenFOAM and AS-
PECT in the case of the simulation displayed in Fig. 10(b), case II
of the two-layer Rayleigh–Bénard problem of Le Bars & Davaille
(2004). More precisely, we fix the size of the computational domain
to 120 × 120 × 60 gridpoints (i.e. about 864 000 gridpoints in total),
and measure the computational time with respect to the number of
processors, denoted Np. Fig. H1 a displays the computational time
required to do ten iterations as a function of Np. A perfect scaling
would lead to a line log–log of slope 1/Np (Fig. H1a, dotted line).
The computational time is scaled by the time required using 4 pro-
cessors (two processors on two different nodes) since the available
memory on one node (≈192 Go) was not sufficient to support a run
with ASPECT.

For Np ≥ 8, the speedup decreases for JADIM, OpenFOAM and
ASPECT. This indicates that when the equivalent problem size per
processor is about 503 or less, the time devoted to communication
between processors is of the same order of magnitude or larger
than that devoted to solve the equations. Using a larger domain
size, involving 106 or 107 gridpoints, improves the performance
presented in Fig. H1(a). Furthermore, OpenFOAM and ASPECT
speed up twice faster than JADIM at large Np, and as Np ≥ 32 (i.e.
303 gridpoints per processor), with an advantage for OpenFOAM.

5.1.2 Weak scaling

We assess the weak scalability of JADIM, OpenFOAM and AS-
PECT using again the case displayed in Fig. 10(b) [case II of the
two-layer Rayleigh–Bénard problem of Le Bars & Davaille (2004)].
We fix the grid size of the computational domain per processor to 30
× 30 × 30, and vary the computational domain size with the num-
ber of processors. We measure the solution time with respect to the
number of grid cells. Fig. H1(b) displays the computational time re-
quired to achieve ten iterations (scaled with the computational time
on one processor). A perfect scaling would lead to a horizontal line.
For both codes, the parallel efficiency decreases as we increase the
number of processors due to communication between processors.
For 108 000 grid cells (i.e. four times more cells than in the case
of Section 4), 50 per cent of the time is used for communication in
JADIM, 20 per cent for OpenFOAM and 10 per cent for ASPECT.
For 32 processors, the speedup loss is about 40 per cent for ASPECT
and 90 per cent for JADIM.

5.2 Computational time in 3-D

We compared computational times between codes for different test
runs and found that OpenFOAM is in general faster than JADIM
(see e.g. Fig. H1) and ASPECT. For instance, the 3-D computations
of Weinberg & Schmeling (1992)’s configuration presented in Figs 7
and 6 took, for the same physical time and the same time step, on
Intel(R) IVYBRIDGE 2.8 GHz processors:

(i) 6 days on 8 cores with OpenFOAM versus 14 days on 27 cores
with JADIM (case I)

(ii) 8 days on 8 cores with OpenFOAM versus 24 days on 27
cores with JADIM versus 8 d on 18 cores with ASPECT (case II)

(iii) 8 days on 8 cores with OpenFOAM versus 18 days on 27
cores with JADIM (case III)

In this case, ASPECT needed 18 cores to achieve the same physi-
cal time as OpenFOAM. JADIM needed much more time and cores
than OpenFOAM and ASPECT. Note that even if JADIM and Open-
FOAM use the same numerical scheme to compute the viscous term,
that of JADIM is not parallel, in contrast to OpenFOAM. In addi-
tion, we find that JADIM’s pre-conditioner used to solve pressure
(conjugate gradient with block Jacobi method) implies that with
an increasing number of cores the number of iterations for conver-
gence increases. This is not the case for OpenFOAM which uses
a stabilized preconditioned biconjugate gradient with a Diagonal-
Incomplete Cholesky pre-conditioner. These two points may explain
the poor performances of JADIM.

Additionally, the 3-D computations of Le Bars & Davaille
(2004)’s case II (B=0.3, Fig. 10) took:

(i) 37 days on 4 cores with JADIM
(ii) 13 hours on 4 cores with OpenFOAM
(iii) 15 days on 32 cores with ASPECT

Computational times here are only informative since (i) all pro-
cessors were different and (ii) we realize that some numerical set-
tings might have been better optimized. For instance we note that the
time step of JADIM computations was set limited 10 times smaller
than that of OpenFOAM. Together with the result from Fig. G1
showing that JADIM is about two times less efficient than Open-
FOAM, the different computational times obtained here in 3-D are
justified.

Furthermore in 3-D here, OpenFOAM is found to run faster
than ASPECT, despite we obtained a better parallel efficiency for
ASPECT in the previous section. Together with the peculiar results
of this ASPECT case (large initial instabilities preceding diapir
rise, Section 4.2.3), we conclude that some memory allocation and
computational options of ASPECT aught to be further investigated.

5.3 Synthesis

In summary, ASPECT runs faster for 2-D simulations than JADIM
and OpenFOAM. But, JADIM and OpenFOAM better conserve
mass than ASPECT.

OpenFOAM seems the best adapted code to study crustal poly-
diapirism since (i) it is faster than ASPECT and JADIM and AS-
PECT in 3-D and (ii) it conserves mass better than ASPECT. In
the following section, we thus use OpenFOAM to model Naxos’s
observations.

6 A P P L I C AT I O N T O T H E
D E V E L O P M E N T O F M E TA M O R P H I C
D O M E S I N NA XO S

Vanderhaeghe et al. (2018) interpreted the domes of Naxos Island,
Greece, as the exhumation of imbricated or adjacent polydiapirs
in a larger rising dome. According to Vanderhaeghe et al. (2018),
these domes would have formed after crustal thickening dated at
55 Myr, and comprised a first episode of crustal scale convection
from 24 to 16 Myr, followed by a second episode of polydiapirism
from 16 to 13 Myr, possibly associated with thinning of the oro-
genic crust. An estimate of the characteristic size and growth rate
of these diapiric instabilities was proposed by Vanderhaeghe et al.
(2018) using the critical Rayleigh number threshold; a ‘convectable’
crustal thickness H between 10 and 30 km requires a viscosity range
of 1016−1018 Pa.s and a density contrast of 50−200 kg m−3. Van-
derhaeghe et al. (2018) estimated that the large dome covers an
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Table 3. Test cases for RB convection in Naxos. Model thickness H, viscosities μbottom; top and densities ρ0
1 at

300 ◦C. The cycles, timing and dimensions are those produced at the end of the model run.

Cases and height Viscosities Densities T +
H Cycles period Cycles size

(km) (Pa.s) (kg m–3) (◦C) (Ma) ( x × z km)

1H50 μ1017;1021 2700 1000 1–2 7 × 15 to 15 × 37
2H35 μ1017;1021 2700 1000 0.7–2 3 × 6 to 12.5 × 20
3H35 μ1017;1021 2800 1000 0.8–2 10–24
4H50 μ1018;1021 2700 900 No convection

elliptic area of dimension LNa = 5 × 12 km, that the subdomes have
a size dNa = 2−3 km, and that the velocity of convection was vNa =
1−5 cm yr−1. A revolution period of about 2 Myr of convective cy-
cles was estimated based on zircon geochronology (Vanderhaeghe
et al. 2018). More precisely, two superimposed destabilization pro-
cesses may have been at play:

(i) A convection episode, analog to a destabilizing single layer
Rayleigh–Bénard system with thermally dependent density and vis-
cosity,

(ii) A polydiapirism episode, analog to a case-II three-layer sys-
tem defined by Weinberg & Schmeling (1992), Fig. 6(c).

The increase in temperature responsible for these gravitational in-
stabilities may have been caused by an increasing mantle heat flux
and/or the thickening of a radiogenic crust (Thompson & England
1984; England & Thompson 1986; Ueda et al. 2012). The models
proposed here present both mechanisms of convection and poly-
diapirism independently. Our aim is to better constrain the propo-
sitions of Vanderhaeghe et al. (2018) for the case of Naxos, with
the support of 3-D models using OpenFOAM. Although our results
already provide some insight on the dynamics of Naxos’s crust,
another study will be required in order to explore and demonstrate
how the transition or the combination of both these episodes would
have occurred.

6.1 Naxos Episode 1, Rayleigh–Bénard convection

For the convection episode, we build a single-layer Rayleigh–Bénard
system representing a pre-thickened orogenic crust. We assume that
the first 10 km of cold upper crust are not affected by deeper mech-
anisms of deformation, therefore the model domain starts 10 km
below the Earth’s surface. The modelled crustal thickness is either
35 or 50 km, with an initial linear geotherm spanning TC = 300 ◦C
at the upper boundary (–10 km depth), and TH = 600 ◦C at the bot-
tom boundary, down to depth –45 or –60 km. Kinematic boundary
conditions are prescribed: no slip at the lower boundary and free
slip at the lateral and upper sides.

The densities are defined according to the Boussinesq approxi-
mation (eq. 7), with a reference density ρ0

1 given at TC = 300 ◦C. The
viscosities are defined bounded by maximum and minimum values
related to minimum and maximum temperatures TC and TH, ac-

cording to an Arrhenius law μi = B · e
A
T , with A = ln(μmax/μmin)

1/TC − 1/TH

and B = μmin

eA/TH
. A and B are ajusted so that viscosities vary in the

range 1017 Pa.s (at 900 or 1000 ◦C)–1021 Pa.s (at 300 ◦C). Depth-
dependent profiles of the initial and final temperature, the density
and the viscosity are presented in Figs 13(a)–(c).

At time t+
0 , a temperature T +

H is applied all along the base of the
model: both the viscosity and density evolve and the system progres-
sively destabilizes. The choice of T +

H depends on the choice of geo-
dynamic setting that one may reasonably assume: two extreme cases
can be considered, either a moderately thickened orogenic crust (H

= 45 km) over a thin lithospheric mantle, thus T +
H = 1000 ◦C , or

an orogenic crust that has been overthickened for at least 20 Myr
and has thus partially ‘relaxed’ thermally, with H = 60 km and
T +

H = 900 ◦C (England & Thompson 1986). Since a more detailed
parametric study will be carried out in a forthcoming contribution,
we only present here a representative case together with a small se-
lection of complementary tests (Table 3). This representative case
has H = 60 km and T +

H = 1000 ◦C (case 1H50), and produces a rea-
sonably good fit with Naxos’s timing and size of convective cells.

With T +
H applied at the base of the model domain, we determine

a Rayleigh number based on the properties of the fluid at aver-
age temperature 600 ◦C. With T +

H = 1000 ◦C, Ra = 5 × 104. The
Prandtl number is then estimated based on the lowest viscosity of
the system, 1017 Pa.s: Pr = 3.7 × 104. This value is lower than
realistic geodynamic systems but Krishnamurti (1970) showed that
when Pr > 100, the dynamics of the system only depends on the
Rayleigh number. Within the Boussinesq approximation, densities
span the range 2645−2700 kg m−3 after 12.7 Myr.

Results are presented in Fig. 13: the vertical profiles of tempera-
ture, density and viscosity (Figs 13a–c), the temporal evolution of
some particles (Fig. 13d), and the flow pattern (Fig. 13e). Various
sizes of convection cycles appear depending on the initial position
of particles. Variations in density and viscosity follow variations in
particle temperature. The general flow regime displays 2-D rolls, as
predicted by Krishnamurti (1970), with cell sizes of the order of 10
× 20 km and cycle periods ranging from 1 to 2 Myr. These numbers
are in the range of those estimated by Vanderhaeghe et al. (2018).

Three other test cases (Table 3) show the following: for a greater
viscosity 1018 Pa.s at H = −60 km depth (case 4H50), the Rayleigh
number becomes too low for convection to develop. Decreasing
the minimum viscosity below 1017 Pa.s generates a more vigorous
convection, but the convective periods reduce and cell sizes increase,
not fitting Naxos’s data anymore. Decreasing the thickness of the
model domain decreases the sizes of the convective cells (case
2H35). Finally, increasing the reference density by 100 kg m–3 only
slightly increases cell sizes (case 3H35).

6.2 Naxos Episode 2, diapirism

For the diapirism episode, we consider that the middle and lower
crust behave as a three layers system like that of Weinberg (1992).
Temperature is not considered here, but from the episode 1 pre-
sented above, we choose the top of the model domain to lie 20 km
below the top surface, where it becomes significantly less viscous.
Underneath, the model domain extends down to –45 km depth, and
is made of three layers similar to Weinberg & Schmeling (1992)’s
case II: ρ1 = ρ2/0.9 = ρ3/0.89 and μ2 = μ3 = μ1/33, h2 = h3 =
h1/8, with an Archimedes number Ar = 0.3 (see setup in Fig. 12b,
with parameters given in the caption). The corresponding values
stand within the range of variations of Earth’s partially molten mid-
dle and lower continental crust (e.g. Rosenberg & Handy 2005;
Vanderhaeghe 2009); Hacker et al. 2015).
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Figure 12. Naxos setups: (a) convection and (b) diapirism episodes.

Figure 13. Naxos RB episode 1, OpenFOAM simulation on a 125 × 125 × 87 grid (see parameters in main text). (a,b,c) vertical profiles of laterally averaged
temperature, density and viscosity. (d) Temporal evolution of the depth of 4 passive markers also plotted in e). (e) 3-D view of the isotherms after 12.9 Myr.
Convection occurs over a height ∼30 km, producing 4–5 cycles within 7 Myr. The black markers are located along the vertical section z = 16 km, purple and
red markers along z = 20 km and blue markers along z = 26 km.

Figs 14(a), (c) and (e) show a vertical section of the system,
Figs 14(b), (d) and (f) show a 3-D view of the system, in which
‘domes-in-domes’ structures develop. One of the large grey diapirs
which develop within layer 2 is about 10 km wide while white
‘blobs’ inside it are about 2 km wide (see Fig. 14c). The wavelength
is about 12.5 km for the first destabilization event (4 diapirs) and
16 km for the second destabilization event (three diapirs). Both little
and large diapirs (grey and white layers 2 and 3) rise imbricated, by

about 15 km within 0.5 Myr, which corresponds to a velocity of the
order of 3 cm yr–1.

The modelled widest dome sizes are in agreement with LNa, the
size of the large domes estimated by Vanderhaeghe et al. (2018),
and the smallest sizes are similar to dNa, that of the estimated small
domes. The growth rates are also found equivalent to those estimated
for Naxos, allowing us to conclude that this model configuration is
compatible with the physical state of Naxos’ partially molten crust
at some point around 16 Myr.
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Figure 14. Naxos RT episode 2, simulation made with OpenFOAM on a 200 × 200 × 140 grid. Total thickness H = 35 km, horizontal widths L = 50 km,
reference viscosity μ1 = 3.3 × 1018 Pa.s, μ2 = μ3 = μ1/33, densities ρ1 = ρ2/0.9 = ρ3/0.89=2537 kg m–3 and heights h2 = h3 = h1/8. (a, c, e) display
the vertical section along y = 25 km, (b, d, f) display the 3-D interfaces, at three time steps. Diapirs develop within about 1 Myr and reach the upper model
boundary within another 
0.5 Myr.
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6.3 Naxos application, discussion for future work

Our preliminary models provide a quantitative description (con-
vection velocities and dome sizes) of the development of gravity
instabilities in the orogenic crust of Naxos around 16 Myr, in ac-
cordance with the estimates by Vanderhaeghe et al. (2018). These
models already yield some insight:

(i) The relatively low viscosities of the middle-to-lower crust that
lead to gravitational instabilities (1 − 5 × 1017 Pa.s below 20 km
depth), given our choices of initial geotherm, densities and basal
temperature, imply that this crustal domain behaved according to a
dominantly wet quartz composition. Such viscosities match those
obtained with rock experiments on hydrated-quartz at mid-crustal
conditions (Bürgmann & Dresen 2008). In fact in Naxos Island, the
migmatite dome is mantled by metapelites, micaschists and marble
layers that are made of quartz, micas and calcite displaying relatively
soft rheological behaviour comparable to wet quartz (Kruckenberg
et al. 2011).

(ii) The modelled dynamics occurs at a deformation rate of the
order of 10−13−10−14s−1 corresponding to several cm per year of
vertical mass transfer. This sets a perspective on the relative influ-
ence of far field tectonic boundary conditions, progressively switch-
ing from compressional to extensional over a time period of about 10
Myr throughout the Cyclades orogeny. Such a transition in tectonic
kinematics is also invoked in other orogenic contexts, and raises the
question of how heat from the mantle below can be maintained over
equivalent time periods (England & Thompson 1986; Ueda et al.
2012; Gerbault et al. 2018). This subject needs further work beyond
the scope of the present contribution.

(iii) The convection model (episode 1) shows that several cy-
cles of convection of distinct timing occur, depending on whether
the edges or the core of the rising crustal plumes are being sam-
pled. These sampled locations cover distinct ranges of temperature:
the large cycles cover a range of 670−920 ◦C (purple marker in
Figs 13d–g), whereas the small cycles remain at 810 ± 10 ◦C (or-
ange marker in Figs 13d–g). Since zircons typically crystallize and
dissolve as they progressively pass through the ∼[700−900] ◦C
range (Guergouz et al. (2018) and references therein), both small
and large cycles may then explain the pattern that the zircons of
Naxos appear to have gone through. Complementary data on sam-
pled zircons across the domes of Naxos will help to better constrain
their dynamics.

Further work is required to understand better how Naxos’s crustal
system would have progressively switched from convection to poly-
diapirism, or vice versa. Although this switch may have been linked
to a change in kinematic or thermal boundary conditions, more com-
plex rheologies accounting for melting or internal heating were also
likely at play. Some of these processes will be adressed in a forth-
coming paper. One may also add that sub-scale two-phase flow of
low viscosity and low density melt fluids should also be accounted
for. Nonetheless, the overall mass balance associated with the evo-
lution of this crustal domain would also require to make hypotheses
on (i) the amount of eroded material from the top surface and (ii) the
amount of material that has sunk down below Moho levels. These
issues are clearly out of the scope of this study, and we refer to other
studies that discuss them (Weinberg 1997; Jull & Kelemen 2001;
Burg & Vigneresse 2002; Gerya et al. 2008; Gerbault et al. 2018;
Riel et al. 2016; Cao et al. 2016; Piccolo et al. 2019; Schmeling
et al. 2019).

7 C O N C LU S I O N S

We have tested two VOF methods without interface reconstruction,
for four well documented Rayleigh–Taylor and Rayleigh–Bénard in-
stabilities systems, and the results are shown to be in good agreement
with analytical solutions and reference numerical and experimental
results. Both JADIM and OpenFOAM codes were shown to be able
to reproduce the various convection regimes that are predicted in a
temperature-dependent two-layer system heated from below, for a
reasonable range of parameters, both in two and three dimensions.
To our knowledge such detailed comparisons of VOF implementa-
tions have not been produced in the literature before. Using either a
harmonic or an arithmetic viscosity averaging at interfaces leads to
different structures in the deformed layers, even though the models
match theoretical predictions for upwelling velocities and growth
rates. The compositional fields tracking method used here via the
geosciences code ASPECT appears more sensitive to initial per-
turbations of interfaces than the two VOF codes. The VOF codes
exhibit less diffusion at interfaces and mass is better conserved in
comparison to ASPECT (by several orders of magnitude).

In terms of codes performances, OpenFOAM is about two times
faster than JADIM. In 2-D, the compositional field tracking method
available in ASPECT is about two times faster than OpenFOAM,
mainly because the viscous term is solved with an implicit method
while it is solved semi-implicitly in both VOF methods. Despite a
better parallel efficiency of ASPECT, OpenFOAM appears faster
than ASPECT in the specific 3-D Rayleigh–Bénard case that was
tested (given the default computational options that we used).

Here, the VOF method has been applied for the first time to 3-D
three-layer Rayleigh–Taylor systems of crustal geodynamics. While
some properties like the initial growth rates are similar between
3-D and 2-D models, differences such as the timing of destabi-
lization reach about 20 per cent. Therefore, we conclude that 3-D
simulations are necessary in order to study precisely the structural
evolution of gravitational instabilities of stratified crustal layers, in
comparison to field data.

A preliminary application to the gneiss dome and subdomes ex-
posed in Naxos is addressed by testing independently a convection
setup and a diapirism setup. Both mechanisms or episodes, mod-
elled with OpenFOAM, show good agreement with previous ana-
lytical estimates based on zircon geochronology and structural field
geology: both mechanisms are likely to have been at play in the
formation of the polydiapiric structures observed on Naxos Island.
This provides insight into the geodynamic setting and rheological
properties of this hot crustal domain over a period of about 15
Myr. However, several questions remain about the actual transition
or combination of both these episodes. A follow-up study aims
at investigating how both episodes could operate from a common
starting configuration, as well as testing other first order parameters
that would have controlled the evolution of this hot crustal domain.

To summarize, the present work shows that the VOF method
is a promising tool for studying crustal diapirism and convection,
aiming at a better understanding of the thermomechanical processes
responsible for the exhumation of partially molten orogenic crust.
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lation d’écoulements diphasiques sans reconstruction d’interfaces: appli-
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Toé, W., Vanderhaeghe, O., André-Mayer, A.-S., Feybesse, J.-L. & Milési, J.-
P., 2013. From migmatites to granites in the Pan-African Damara Orogenic
Belt, Namibia, J. Afr. Earth Sci., 85, 62–74.

Turcotte, D. & Schubert, G., 1982. Geodynamics Applications of Continuum
Physics to Geological Problems, John Wiley and Sons, Inc.

Ueda, K., Gerya, T.V. & Burg, J., 2012. Delamination in collisional
orogens: thermomechanical modeling, J. geophys. Res., 117(B8),
doi:10.1029/2012JB009144.

van Keken, P.E., King, S.D., Schmeling, H., Christensen, U.R., Neumeister,
D. & Doin, M.-P., 1997. A comparison of methods for the modeling of
thermochemical convection, J. geophys. Res., 102(B10), 22 477–22 495.

Vanderhaeghe, O., 2009. Migmatites, granites and orogeny: flow modes of
partially-molten rocks and magmas associated with melt/solid segregation
in orogenic belts, Tectonophysics, 477(3–4), 119–134.

Vanderhaeghe, O., Kruckenberg, S., Gerbault, M., Martin, L., Duchêne, S.
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A P P E N D I X A : WAV E L E N G T H A N D
G ROW T H R AT E P R E D I C T I O N S F O R
T W O - A N D T H R E E - L AY E R S Y S T E M S

A1 Ramberg (1981a) analytical predictions

The vertical position yi of a layer interface i is assumed to evolve
as yi (t) = Ai eκi qi t . Ramberg (1981a) derived the following linear
system for a two or three layers system to solve for vertical dis-
placements y1, y2:⎡

⎢⎢⎣
c11 d12 e13 f14

i21 j22 k23 l24

a31 b32 c33 d34

g41 h42 i43 j44

⎤
⎥⎥⎦

⎡
⎢⎢⎣

v1

u1

v2

u2

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0
q1 y1

0
q2 y2

⎤
⎥⎥⎦. (A1)

All coefficients c11 to j44 depend on φi, μi and boundary conditions.
vi and ui are the velocities of layer i in horizontal and vertical

directions, respectively. qi is defined as qi = (ρi − ρi+1)ghi+1

2μi+1
.

For example, for a two-layer system, the dimensionless growth
rate κ is:

κ = −d12

c11 j22 − d12i21
(A2)

with:

c11 = μ12φ2
1

μ2(cosh(2φ1 − 1 − 2φ2
1 )

− 2φ2
2

cosh(2φ2) − 1 − 2φ2
2

(A3)

d12 = μ1(sinh(2φ1) − 2φ1

μ2(cosh(2φ1) − 1 − 2φ2
1 )

+ sinh(2φ2) − 2φ2

cosh(2φ2) − 1 − 2φ2
2

(A4)

i21 = μ1φ2(sinh(2φ1) + 2φ2)

μ2(cosh(2φ1) − 1 − 2φ2
1 )

+ φ2(sinh(2φ2) + 2φ2)

cosh(2φ2) − 1 − 2φ2
2

(A5)

j22 = μ12φ2
1φ2

μ2(cosh(2φ1) − 1 − 2φ2
1 )

− 2φ3
2

cosh(2φ2) − 1 − 2φ2
2

(A6)

and

φi = 2πhi

λ
. (A7)

A2 Burg et al. (2004) analytical predictions

Burg et al. (2004) provided relations to find the dominant wave-
length λdom and growth rate κ for a semi-infinite two-layer system:

λdom

h2
= 0.79

(
μt

μb

)1/3

, (A8)

κ = σ

q
= 0.53 × 2 ×

(
μt

μb

)−2/3

, (A9)

where h2 is the depth of the bottom layer, and μb and μt are the
viscosity of the bottom and top layers, respectively.

A P P E N D I X B : D I M E N S I O N L E S S
S Y S T E M O F E Q UAT I O N S

All equations in the codes are solved in dimensional form, but they
are formulated here after in their dimensionless form and expressed
in terms of the Archimedes number (Appendix C):

∂Ci

∂t∗ + U∗ · ∇Ci = −∇ · (U∗
r Cr ), (B1)

∇ · U∗ = 0, (B2)

∂U∗

∂t∗ + U∗ · ∇U∗ = −∇ P∗ + g∗

+∇ ·
[

2

Ar
(∇U∗ + (∇U∗)T )

]
, (B3)

∂T ∗

∂t∗ + U∗ · ∇T ∗ = ∇ ·
(

2

Ra
∇T ∗

)
, (B4)

with: U∗ = U/qh; P∗ = P/ρ(qh)2; g∗ = g/(q2h).

A P P E N D I X C : I N F LU E N C E O F
A RC H I M E D E ’ S N U M B E R

Fig. C1 shows the dimensionless mean velocity of the two-layer
Rayleigh–Taylor system depicted in Fig. 1a) (with γ = 100 and h2/H
= 0.2) for Ar ≥ 1 (a) and Ar ≤ 1 (b) as a function of dimensionless
time τ . For Ar ≥ 1, the dimensionless mean velocity varies according
to Ar. For Ar ≤ 1, dimensionless mean velocities are equal and
follow the linear stability theory.

However, at small τ (<10), the velocity differs due to the ini-
tiation of destabilization. Thanks to these results, we expect that
the dynamics of a geological system (Ar typically around 10−20)
are equivalent to those of a system with Ar = 1. We can then use
a viscosity around 103 Pa.s instead of 1020 Pa.s, which accelerates
our calculations. This result was shown in a Rayleigh–Taylor case
but it is likely to be valid for any configuration as long as the lo-
cal instantaneous Ar ≤ 1. If Ar ≥ 1, inertial effects may become
significant and change the flow dynamics. Note that in the present
context, the Archimedes number is nothing but a Reynolds number
using a velocity scale which may be viewed as a Stokes velocity.
Therefore, it is reasonable to say that having Ar ≤ 1 locally leads to
negligible inertia effects.

https://academic.oup.com/gji/article-lookup/doi/10.1093/gji/ggaa141#supplementary-data
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Figure C1. Time evolution of the mean velocity in the two layer system for various Archimedes numbers. Velocity is scaled by U and time is scaled by T
(eq. 11). For comparison, the result of the linear stability theory of Ramberg (1981a) is also plotted (denoted by LST).

A P P E N D I X D : VA N K E K E N ’ S T E S T :
V I S C O S I T Y AV E R A G I N G

The main text displays van Keken’s bench for viscosity contrasts γ

= 100 (Fig. 1) and an arithmetic viscosity averaging. The secondary
instability on the top right is the most delicate to reproduce. Here
we present the results of JADIM, OpenFOAM at γ = 1 and 10 with
arithmetic viscosity averaging (Fig. D1). In addition, γ = 10, 100
with an harmonic law are displayed Fig. D2, with the addition of
ASPECT results.

Figure D1. Evolution of van Keken’s system for viscosity ratios (a) γ = 1 thus no averaging, (b) γ = 10 and arithmetic averaging, at t/T = 50, 100, 150.
Van Keken’s snapshots are modified from Figs. 2 and 4 of van Keken et al. (1997). Resolutions 91×100 for JADIM and OpenFOAM.
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Figure D2. Evolution of the two-phase RT system for a viscosity ratio γ = 100 at times t/T = 50, 100, 150. From top to bottom, results from van Keken
et al. (1997) (Figs. 4 and 6), JADIM and OpenFOAM with harmonic viscosity averaging at resolution 91 × 100. Bottom-right displays ASPECT results, with
harmonic viscosity and resolution 91 × 100.

(a) (b)

Figure D3. Comparison of the time evolution of the mean velocity in the Rayleigh–Taylor two-layer system by van Keken et al. (1997), with JADIM and
OpenFOAM, with harmonic viscosity averaging and a resolution 100 × 100. Velocity is scaled by U and time is scaled by T , cf. eq. (11). γ = μ1

μ2
.
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A P P E N D I X E : I N F LU E N C E O F M E S H
R E S O LU T I O N, V I S C O S I T Y
I N T E R P O L AT I O N A N D I N T E R FA C E
P E RT U R B AT I O N O N
R AY L E I G H – TAY L O R I N S TA B I L I T I E S

We plot in Fig. E1(b) the time evolution of the velocity of the max-
imum vertical location of interface 1–2 with or without perturbing
the two interfaces with a random perturbation in JADIM. For t/τ ≤
180, the growth rate of the unperturbed interface is higher than that
of the perturbed interface but the velocity value is lower. For t/τ ≥
300, the growth rates become similar. The shape of interface 2–3
however, is significantly different depending on the type of initial
perturbation (see snapshots in Fig. E1). Without initial perturbation
both instabilities have a roughly similar wavelength and hence in-
terface 2–3 deforms as an unique diapir. This is different from the
prediction of the linear stability theory (Fig. 5d). Alternatively, the
results for the simulation with perturbation are in agreement with
the theory (Figs 5c and d). It turns out that in this case interface
2–3 has a wavelength very sensitive to the initial perturbation of

interfaces. This may be explained by how close the growth rates of
the two interfaces are. This is not the case for cases I (Fig. E1a)
and III (Fig. E1c) where the shape and dynamics of the interfaces
is roughly independent of the initial perturbation of the interfaces.

In the main text we display the results of Rayleigh–Taylor three-
phase systems with harmonic viscosity interpolation. Below, in
Figs E2 and E3 we show complementary tests comparing veloc-
ities between JADIM, OpenFOAM and ASPECT for various mesh
resolutions and viscosity averaging.

The time evolution of the maximum vertical velocity at inter-
face 1–2 using an arithmetic or a harmonic viscosity averaging are
compared in Fig. E3. For 0 < t/τ < 200, the arithmetic averaging
exhibits a higher growth rate than the harmonic averaging, but as
t/τ > 250, the growth rates become similar.

The evolution of layers 1 and 3 is roughly similar independently
of the viscosity averaging. Note however, that at time t/τ = 497 with
arithmetic averaging, the diapir of layer 2 is slightly smaller than that
with harmonic averaging. Indeed, the harmonic averaging favours
a behaviour controlled by the lowest viscosity at an interface, thus
it is easier for layer 2 to invade layer 1.
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Figure E1. Case I (a), II (b) and III (c) of Weinberg & Schmeling (1992): time evolution of the velocity of the maximum height of interface 1–2: with or
without an initial random perturbation at interfaces (JADIM code, harmonic viscosity averaging), compared to linear stability theory (Ramberg 1981a). Time
is scaled by T and t/T = 0 is set as the time when one of the interface has raised by a distance of 3 × 10−5 H.
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Figure E2. Influence of mesh resolution on Weinberg & Schmeling (1992) case II: time evolution of the mean velocity for (a) JADIM, (b) OpenFOAM and
(c) ASPECT, with harmonic viscosity averaging, γ = 100. Note that an initial perturbation at the interfaces was imposed for JADIM and ASPECT, not for
OpenFOAM.
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Figure E3. Three-phase system by Weinberg & Schmeling (1992), with an arithmetic or a harmonic interpolation of viscosity at interfaces, with JADIM:
Case II, the top layer is the densest, γ = 100. Time is scaled by T and t/T = 0 is set as the time when one of the interface has raised by a distance of
3 × 10−5 H.

Table E1. Relative error of the dimensionless growth rate κ as a function of mesh resolution. The case of resolution 240 × 100 is
arbitrarily taken as reference for JADIM and OpenFOAM.

Viscosity averaging harmonic harmonic harmonic harmonic arithmetic

Grid size 60 × 25 90 × 37 120 × 50 240 × 100 240 × 100
JADIM 1st instability 0.1 % 5 % 3 % REF 1 %

2nd instability 25 % 2 % 1.2 % REF 2 %
Grid size 60 × 25 90 × 37 120 × 50 240 × 100 240 × 100

OpenFOAM 1st instability 5 % 5 % 5 % REF 0.8 %
2nd instability 22 % 4.5 % 4.5 % REF 0 %

A P P E N D I X F : M E S H C O N V E RG E N C E
T E S T S W I T H JA D I M F O R Va t t e v i l l e e t a l .
( 2 0 0 9 ) ’ S C A S E

Figure F1. Rayleigh–Bénard problem (Vatteville et al. 2009): comparison of velocity between laboratory (Vatt-Exp) and numerical experiments with JADIM,
testing the influence of grid size. Velocity is scaled with VStokes = αg�TH2/νmax, time is scaled with τ = νmax/(αg�TH), and distance with the domain
height H.



3-D modelling of crustal polydiapirs with VOF methods 505

A P P E N D I X G : M A S S E R RO R F O R
D I F F E R E N T S E T U P C A S E S

Figure G1. Relative mass error �M as a function of time for JADIM, OpenFOAM and ASPECT: (a) Two-layer Rayleigh–Taylor system (γ = 100, harmonic
viscosity averaging, resolution 91 × 100); (b) Three-layer 2-D Rayleigh–Taylor system (solid line: layer 3; dotted line: layer 1 (2 for OpenFOAM); case II,
harmonic viscosity averaging, resolution 240 × 100); (c) Two-layer Rayleigh–Bénard system (harmonic viscosity averaging, resolution 90 × 90 × 44); (d)
Same as (b) in 3-D (resolution 120 × 100 × 120).
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A P P E N D I X H : C O D E S P E R F O R M A N C E S

Figure H1. Strong (a) and weak (b) scaling for the two-layer Rayleigh–Bénard problem of Le Bars & Davaille (2004), case II, for JADIM, OpenFOAM and
ASPECT with 10 time-steps. Dotted lines indicate optimal parallelization. For the strong scaling (a) a same 120 x 120 x 60 grid model is taken for all the
simulations. For the weak scaling (b), the CPU time is scaled over the CPU time spent by a same basic 30x30x30 model run on 1 core.




