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Abstract: A field experiment was conducted at a tropical microtidal intermediate sandy beach with
a low tide terrace (Nha Trang, Vietnam) to investigate the short-term swash-zone hydrodynamics
and morphodynamics under variable wave conditions. Continuous 2D Lidar scanner observations
of wave height at the lower foreshore, subsequent run-up and swash-induced topographic changes
were obtained. These data were complemented by detailed real-time kinematic GPS topographic
surveys. Variable wave and tide conditions were experienced during the field experiment with
relatively large swell waves (offshore significant wave height, Hs = 0.9 m to 1.3 m; peak wave period,
Tp = 8 to 12 s) concomitant with spring tides at the beginning of the period, followed by mild
wind waves (offshore Hs under 0.5 m and Tp 5 s) and neap tides. This resulted in the following
morphological sequence: berm erosion followed by rapid neap berm reformation and beach recovery
within a few days. New insights into the link between intra-tidal swash dynamics and daily beach
profile evolution were found using the Lidar dataset. While waves directly cause morphology
changes on a wave-by-wave basis, tidal levels were found to be a key factor in determining the
morphological wave-effect (accretive or erosive) due to modulated interaction between surf and
swash hydro-morphodynamics.
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Highlights

• Nine-day detailed swash hydro-morphodynamic measurements of wave induced erosion and
recovery on a tropical beach (Nha Trang, Vietnam) with a Lidar.

• The wave height measured on the lower foreshore and active slope are key parameters to predict
vertical run-up on this type of intermediate beach.

• Tide induces a strong modulation of wave action and drives large intra- and daily changes on the
swash zone.

1. Introduction

Beaches continuously adapt to wave forcing at multiple temporal [1–3] and spatial scales [4] and
the morphological changes commonly observed in these environments are particularly related to the
hydrodynamics of the swash zone. Swash flows are composed of two distinct phases, an upslope,
landward directed flow (uprush) and a downslope, seaward directed flow (backwash). Although there
is a continuum of energy in swash spectra, they are commonly divided into short wave (f > 0.05 Hz)
and long wave, or infragravity, frequency bands (f < 0.05 Hz). The short wave band is normally more
energetic in bore-dominated, steeper intermediate and reflective beaches [2], while swash variance in
the infragravity band is typically observed on low gradient beaches [3]. Sandy beaches with a steep
upper slope and flat low-tide terrace (LTT) represent one of four types of intermediate beaches [4]
where the two distinct hydrodynamic regimes (reflective and dissipative) can be observed at different
stages of the tide [5,6].

The wave breaker type affects the processes in the swash zone. For example, previous work [7]
has suggested that the breaker type directly influences sediment transport, since the amount of
turbulence that reaches the sea bed leading to the suspension of sediment depends on the nature
of breaking (e.g., plunging breaker vortices mobilize larger amounts of sediment than spilling
breakers [8]). The turbulence generated by the bore collapse is advected into the swash-zone during
the uprush [9], leading to a high concentration of suspended sediment. Subsequently, during the
backwash, friction against the bed becomes the main source of turbulence [10]. This is enhanced in the
lower swash region by the formation of backwash bores [11] and the hydraulic jump originating from
the interaction between consecutive swashes [12]. The slope of the swash-zone also plays a significant
role on swash-zone processes. The steeper the beach face, the more upslope transport is inhibited and
more downslope transport is enhanced. The differences in forces that act during uprush and backwash
lead to an asymmetry in swash velocity time-series [13,14]. If the incident wave conditions are constant,
it becomes increasingly difficult to move sediment upslope on a steepening and accreting beach face
and the beach slope approaches an equilibrium value. Similarly, on a flattening and eroding beach face,
the slope contribution to the offshore sediment transport will progressively decrease, and the beach
profile will eventually approach equilibrium [15]. On a steep LTT, however, tide-induced changes in
the breaker type and swash-zone slope are expected to strongly influence swash processes, in particular
the swash asymmetry [14]. Tidal modulation of breaker type (e.g., plunging breakers at high tide and
spilling breakers at low tide) are known to occur on this type of beach [5,6]; however, the extent to
which tidal variation affects the swash-zone hydrodynamics and, hence, the morphological response is
still unclear [7]. Furthermore, although these theoretical concepts provide a basis for understanding
the swash dynamics on this type of intermediate beach, the details of the process are highly complex,
and limited field observations exist for validation.

Most previous research on steep beaches with an LTT has been performed on mixed sand-gravel
beaches (MSG), where typically the upper-beach face is composed of gravel and the terrace of
sand [5,16–18]. Similarities between MSG beaches and pure sandy beaches is mostly limited to the
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terrace where hydrodynamics and sediment transport mechanisms are analogous. The most landward
region of the inner surf and swash zone-dynamics are controlled by factors specific to MSG beaches,
including the role of the beach step [19], enhanced infiltration/exfiltration [20], the dominance of
bedload transport, and strong wave reflection.

Significant recent developments in techniques for remotely sensing coastal processes have made
available a number of solutions, including ultrasonic altimeters, photographic techniques and Lidar,
that allow simultaneous observations of water motions and bed changes in the swash-zone [21–25].
Of these technologies, Lidar has significant advantages as it provides non-intrusive, direct measurements
of both water and bed surface elevation at high spatial and temporal resolution, and has minimal
logistical requirements for deployment. Lidar scanners can be deployed on a frame above the swash-zone
or from coastal structures such as piers to overlook the surf and swash zones [26]. Over recent years,
processes in the surf and swash zones have been observed using Lidar, including more detail and with
an accuracy comparable to that of other commonly used techniques [24,27–32].

In this work, we present a detailed analysis of a dataset obtained during a field experiment.
Hydrodynamics and morphology measured using Lidar during a nine-day field experiment are used
to assess swash asymmetry and the role of wave and tidal variability on swash-zone morphology at an
intermediate low-tide terrace beach.

2. Methods

2.1. Study Area

As part of the COASTVAR project (multi-scale and multi-method study of coastal variability in
the Gulf of Guinea and Vietnam), a field experiment was undertaken between 26th November and
4th December 2015 at Nha Trang Beach, a sandy beach located in a semi-enclosed bay in southeast
Vietnam (Figure 1). The bay is approximately 6 km long, has an overall NE–SW coastal orientation and is
partially protected from waves in the South China Sea (SCS) by a group of islands (Figure 1). The mean
sediment size varies considerably within the bay, with coarse sand in the north (D50 = 0.9 mm),
reducing to medium to coarse in the south (D50 = 0.4 mm). The experiment described here was
conducted in the northern part of the bay where the beach profile is characterized by a steep upper
foreshore (slope ∼ 1:10) and a narrow, flat (slope ∼ 1:100) and uniform LTT, approximately 40 m wide
(Figure 2, [33,34]). The wave climate in this region is strongly influenced by the two monsoon seasons,
the northeast (NM) and southwest (SM) monsoons. The NM is characterized by moderate winds
(between 8 and 12 m/s) and energetic waves, typically occurring during the wet season (November to
January), while the SM is characterized by mild winds and waves, between June and September [34–36].
In addition to the monsoon seasons, tropical cyclones, also known as typhoons, can produce very
energetic waves in the SCS, resulting in sporadic but significant erosion and inundation hazards [37–39].
Nha Trang Beach is characterized by a mixed tide (combination of daily and semi-daily tide components)
with microtidal amplitude (maximum amplitude of 1.5 m).
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Figure 1. Left: Location of Nha Trang bay and some important local features including: 1—Cai 
estuary; 2—Hon Tre island; 3—Hon Mieu island; 4—Hon Tam island. The yellow box indicates the 
section of the beach selected for this experiment (zoomed in the right panel). Right: Aerial 
photograph of the study site in which orange lines indicate the 15 cross-shore transects where 
topographic surveys were performed every low tide; in red is the profile where instruments were 
installed (right panel). 

2.2. Experimental Set-up 

A range of in-situ and remote sensing instruments were deployed along a cross-shore transect 
of the beach from the berm crest to depth offshore of 15 m (Figure 2). An acoustic Doppler current 
profiler (ADCP) was moored at 15 m depth (Figure 1) and provided a complete characterization of 
the offshore wave conditions during the experiment. A 2D Lidar was installed on a tower located at 
the top of the berm with an elevation of 3.5 m to measure inner surf and swash-zone hydrodynamics 
(free-surface elevation and instantaneous shoreline position, see [31,40]), and morphological 
evolution. Topographic surveys were performed every low tide using a real-time kinematic GPS 
system (RTK-GPS) in continuous survey mode along 15 cross-shore transects spaced by 10 m (Figure 
1). The results described in the present work are based on the data obtained from the ADCP, Lidar, 
and topographic survey data (only the topographic data from 3 of the 15 transects was used in this 
manuscript—see Figure 2). 

Figure 1. Left: Location of Nha Trang bay and some important local features including: 1—Cai estuary;
2—Hon Tre island; 3—Hon Mieu island; 4—Hon Tam island. The yellow box indicates the section of
the beach selected for this experiment (zoomed in the right panel). Right: Aerial photograph of the
study site in which orange lines indicate the 15 cross-shore transects where topographic surveys were
performed every low tide; in red is the profile where instruments were installed (right panel).

2.2. Experimental Set-up

A range of in-situ and remote sensing instruments were deployed along a cross-shore transect
of the beach from the berm crest to depth offshore of 15 m (Figure 2). An acoustic Doppler current
profiler (ADCP) was moored at 15 m depth (Figure 1) and provided a complete characterization of
the offshore wave conditions during the experiment. A 2D Lidar was installed on a tower located at
the top of the berm with an elevation of 3.5 m to measure inner surf and swash-zone hydrodynamics
(free-surface elevation and instantaneous shoreline position, see [31,40]), and morphological evolution.
Topographic surveys were performed every low tide using a real-time kinematic GPS system (RTK-GPS)
in continuous survey mode along 15 cross-shore transects spaced by 10 m (Figure 1). The results
described in the present work are based on the data obtained from the ADCP, Lidar, and topographic
survey data (only the topographic data from 3 of the 15 transects was used in this manuscript—see
Figure 2).
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Figure 2. Photograph showing the arrangement of all instruments along a cross-section of the beach 
(a); beach profile with instrument location and mean sea level (MSL) indication during this 
experiment (b); contour map of the study site topography with LIDAR profile location and two 
additional profiles used in this analysis (c). 

2.3.Two-Dimensional Lidar 

The Lidar deployed at the berm tower was a medium-range SICK LMS511 2D laser scanner 
(maximum range 80 m, and 30 m at 10% remission). The Lidar emits pulsed infrared laser beams (λ = 
905 nm) that are deflected onto an internal mirror rotating over a 190 degree field of view. The 
scanner head rotates at 25 Hz leading to an angular resolution of 0.1667 degrees and the target 
distance is calculated using the time of flight technique. With this angular resolution, the instrument 
provided a spatial resolution ranging from 0.01 m at nadir to 0.4 m at the most distant valid 
observation point offshore (Figure 3). This spatial resolution allowed complete coverage of the 
swash-zone and captured wave conditions at the base of the foreshore throughout the experiment. 

Figure 2. Photograph showing the arrangement of all instruments along a cross-section of the beach
(a); beach profile with instrument location and mean sea level (MSL) indication during this experiment
(b); contour map of the study site topography with LIDAR profile location and two additional profiles
used in this analysis (c).

2.3. Two-Dimensional Lidar

The Lidar deployed at the berm tower was a medium-range SICK LMS511 2D laser scanner
(maximum range 80 m, and 30 m at 10% remission). The Lidar emits pulsed infrared laser beams
(λ = 905 nm) that are deflected onto an internal mirror rotating over a 190 degree field of view.
The scanner head rotates at 25 Hz leading to an angular resolution of 0.1667 degrees and the target
distance is calculated using the time of flight technique. With this angular resolution, the instrument
provided a spatial resolution ranging from 0.01 m at nadir to 0.4 m at the most distant valid observation
point offshore (Figure 3). This spatial resolution allowed complete coverage of the swash-zone and
captured wave conditions at the base of the foreshore throughout the experiment.

The raw Lidar data captures both beach topography as well as the water surface, without any
distinction between the two (Figure 3b). To separate the topography from the water at each cross-shore
position, and over time, a moving-average time window variance filter was applied to all measurements,
following the approach described in [29]. After initial data processing, the Lidar data were separated
into two distinct time series: (1) beach topography (Figure 3d) and (2) swash (including water depth
and instantaneous shoreline evolution—Figure 3c).



J. Mar. Sci. Eng. 2020, 8, 302 6 of 18J. Mar. Sci. Eng. 2020, 8, x FOR PEER REVIEW 6 of 18 

 

 
Figure 3. a) Beach profile the Lidar position shown as a red circle and theoretical projection of the 
different laser beams on the topography of the beach. The distance between observations (black 
spots) is calculated as the horizontal distance between consecutive measurements of the laser beams 
(a); the lower panels show an example of raw Lidar time series (b) and post-processing products: 
water elevation (c) and bed altitude (d) time series. 
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tracking the water surface. While bore fronts can still be captured due to their more normal 
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3. Results 

3.1. Offshore Wave Forcing 

Wave and tidal conditions during this experiment varied considerably (Figure 4a). The first 
four days of the experiment (November 27–30, 2015) were characterized by energetic swells 
(narrow-banded energy band around 0.1 Hz—present in the wave spectra—Figure 4d) with offshore 
waves recorded by the moored ADCP having a significant wave height (Hs) between 0.9 and 1.3 m, 
and wave peak period (Tp) between 8 and 12 seconds, and spring tides (1.2 m amplitude). The 
following four days of the experiment were characterized by mild wind waves, with Hs under 1 m, 
Tp between five and eight seconds and a gradual reduction in tidal amplitude (< 1 m). It is important 
to note that the mixed nature of the tide (double high tide peak) was more pronounced during 
spring tide conditions and gradually weakened under neap tides (Figure 4a). 

Figure 3. (a) Beach profile the Lidar position shown as a red circle and theoretical projection of the
different laser beams on the topography of the beach. The distance between observations (black spots)
is calculated as the horizontal distance between consecutive measurements of the laser beams (a);
the lower panels show an example of raw Lidar time series (b) and post-processing products: water
elevation (c) and bed altitude (d) time series.

As the grazing angle between the Lidar and the target decreases, the energy scattered back to
the instrument reduces and the variability of the signal increases [29]. This can be important when
tracking the water surface. While bore fronts can still be captured due to their more normal orientated
surface (relative to the Lidar) and the active foam that they produce, laser beam reflections from a
more horizontal (non-foamy) surface are weaker or can be lost. As a result, the number of data gaps
or spikes due to erratic returns increases seaward with the distance to the Lidar. For this reason,
Lidar observations used here (both water levels and bed elevations) were truncated at a cross-shore
distance of 25 m relative to the Lidar.

3. Results

3.1. Offshore Wave Forcing

Wave and tidal conditions during this experiment varied considerably (Figure 4a). The first four
days of the experiment (27–30 November 2015) were characterized by energetic swells (narrow-banded
energy band around 0.1 Hz—present in the wave spectra—Figure 4d) with offshore waves recorded by
the moored ADCP having a significant wave height (Hs) between 0.9 and 1.3 m, and wave peak period
(Tp) between 8 and 12 s, and spring tides (1.2 m amplitude). The following four days of the experiment
were characterized by mild wind waves, with Hs under 1 m, Tp between five and eight seconds and a
gradual reduction in tidal amplitude (<1 m). It is important to note that the mixed nature of the tide
(double high tide peak) was more pronounced during spring tide conditions and gradually weakened
under neap tides (Figure 4a).
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spectrum (d).

3.2. Wave Characteristics and Run-up Observed from the Lidar

The wave characteristics at the base of the foreshore (x = 25 m, see Figure 2) and the vertical
run-up time-series obtained from the Lidar observations were separated into 15-minute bursts, with the
assumption of tidal stationarity within each burst. For each burst, spectral energy density and
significant wave heights (Hs,LIDAR) were computed from the Lidar data at the same cross-shore location.
In addition, the Iribarren number [41] was calculated as ξ = tanβ/

√
(Hs/L0), where L0 is the offshore

wavelength measured at the ADCP and tanβ is the active foreshore slope extracted from the Lidar
dataset (here, tan β is defined as the slope between the maximum run-up elevation and the minimum
elevation of the run-down). The significant vertical run-up height (Rs) was calculated as four times the
standard deviation of the shoreline elevation time series (R) within each 15-minute burst.

The time series of the HsLIDAR show a general trend similar to that of the offshore Hs, with initially
larger waves up to HSLIDAR = 1.6 m that gradually decreased as the experiment progressed (Figure 5).
The significant wave height measured at the base of the foreshore displayed a clear tidal dependence
(Figure 5) indicating depth-control on surf zone wave heights as observed at other intermediate beach
sites [42] and highlighting the role of the LTT on incident wave energy dissipation in the surf zone
(Figure 5). The significant run-up height and periods also show a strong tidal modulation, suggesting
that mean water levels are key factors controlling swash zone hydrodynamics at Nha Trang Beach.
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Calculations of wave power energy spectral density indicate that tidal modulation of the HsLIDAR and
Rs affects not only the height of the waves but also the wave period through the distribution of energy
between the infragravity and gravity frequency bands (Figure 5c). During low tide, lower water levels
favor wave breaking on the gently sloping LTT, creating very dissipative conditions, and the LTT acts
as a low-pass filter to the swash-zone [43], dissipating a large part of the wave energy in the short
wave band (f between 0.05 and 0.3 Hz). This results in a dominance of infragravity waves (f < 0.05 Hz)
that do not fully dissipate in the surf-zone. At high tide, the water level in the LTT is greater and the
terrace becomes less efficient at dissipating the energy of incident short waves. A clear indication of
this modification in the hydrodynamic regime is given by the ratio between offshore significant wave
height measured by the ADCP and significant wave height measured LIDARon the lower foreshore by
the Lidar (Hs/HsLIDAR; Figure 6). During high tide conditions, this ratio is close to 1 (HsLIDAR is similar
to Hs) while, during low tide conditions, HsLIDAR is up to 3.5 times larger than Hs.
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with the overlap of measured tide (blue line); (b) raw vertical run-up observations (black dots) and
significant vertical run-up (red dots); (c) normalized wave spectra measured on the lower foreshore,
and; (d) Iribarren number (blue dots).
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Table 1 shows that overall, run-up estimations are better during high-tide for this intermediate 
beach, which is likely to be due to the reduced influence of the LTT on surf-zone wave 
transformation. As a result, high correlation coefficient values were obtained for all the tested 
parameters. Similar results were also observed at other intermediate beaches by [46] and [47]. Table 
1 also indicates that HsLIDAR has a particular importance for run-up predictions during low-tide 
conditions, when offshore wave height measurements are significantly different from the wave 
heights measured at the base of the foreshore (Table 1). 

Figure 6. Timeseries of the ratio between offshore significant wave height (Hs) and significant wave
height measured on the lower foreshore by the Lidar (HsLIDAR) is shown in orange and the tidal
elevation is in blue.

To evaluate the effect of tide on the role of the beach profile and wave characteristics on run-up,
data were grouped according to the tide level, following the approach proposed by [44]. Groups were
defined as low-, mid-, and high-tide. The boundaries of these groups were arbitrarily defined as 1/3
(low to mid) and 2/3 (mid to high) of the tidal range observed at Nha Trang beach. The significant
run-up elevation, Rs was compared to various parameters commonly related to the run-up [44,45].
Figure 7 shows three scatter plots of the significant vertical run-up (Rs) as a function of offshore wave
characteristics ((HsLo)0.5), tanβ(HsLo)0.5 and tanβ(HsLIDARLo)0.5, where tanβ is the foreshore slope
measured by the Lidar. The results show that the vertical run-up at Nha Trang beach cannot be scaled
by offshore wave conditions solely, as very low determination coefficients (r2 = 0.43) were obtained for
the relationship between Rs and (HsLo)0.5 (Figure 7a). The ratio tanβ(HsLo)0.5 was able to explain 78%
of the variability observed in the vertical run-up observations; nevertheless, when Hs was replaced by
the HsLIDAR, the ratio was able to explain 88% of the variability (Figure 7).
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Table 1 shows that overall, run-up estimations are better during high-tide for this intermediate
beach, which is likely to be due to the reduced influence of the LTT on surf-zone wave transformation.
As a result, high correlation coefficient values were obtained for all the tested parameters. Similar results
were also observed at other intermediate beaches by [46,47]. Table 1 also indicates that HsLIDAR has a
particular importance for run-up predictions during low-tide conditions, when offshore wave height
measurements are significantly different from the wave heights measured at the base of the foreshore
(Table 1).
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Table 1. Statistical results of the linear regression between Rs and three different dimensional versions
of an Iribarren-based relationship.

Parameter
High-Tide Mid-Tide Low-Tide

r2 RMSE (m) r2 RMSE (m) r2 RMSE (m)

(HsLo)0.5 0.68 1.01 0.35 1.3 0.3 1.5

tanβ(HsLo)0.5 0.85 0.2 0.64 0.19 0.65 0.13

tanβ(HsLIDARLo)0.5 0.88 0.2 0.77 0.16 0.83 0.07

3.3. Daily Morphological Evolution

The daily morphological evolution of the study site was assessed at three different locations
(Lidar profile and transects to the north and south of the Lidar profile—see Figure 2) through low tide
beach surveys performed using RTK-GPS (Figure 8). Initial surveys (measured on the 27/11) showed
that the Lidar profile was similar to the south profile, with both showing a berm and a concave beach
face shape. On the north profile, the berm was absent, the top of the profile was truncated at the
seawall and the beach face was characterized by a steep slope with a slightly convex shape (Figure 8).
It is important to note that the LIDAR and the south profiles were located on the straight section of
Nha Trang bay, while the north profile was located on the curvilinear end of the bay. This is important
since the morphological response observed during the experiment at the north profile was distinct
from the LIDAR and south profiles. While at the north profile, the lower foreshore was progressively
eroded and the top of the profile slightly accreted, and at the LIDAR and south profile, the initial berm
erosion was followed by the development of a neap-berm. The erosion of the berm occurred on the
28/11, when spring tides together with energetic waves were present. Part of the eroded sand was
deposited landward over the berm crest due to the overtopping processes, with the remainder being
transported onto the LTT (Figure 8). The berm formation phase started on 29/11 and ceased on 03/12,
when no further growth was observed. This phase was characterized by a decrease in the tidal range
and lowering offshore wave heights. As a result, reduced wave run-up was no longer able to reach
the pre-existing berm crest leading to an accumulation of sediment lower on the foreshore (Figure 8).
While these cross-shore sediment exchanges were observed at the LIDAR and south profile, in the
north a persistent erosion of the lower foreshore did not result in a proportional accumulation on the
top of the profile. Since no evident along-shore gradient in sediment transport and morphological
changes were noticed during the present experiment, it is suggested that the eroded sediment was
likely transported offshore, beyond the limit of the surveys.
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3.4. Intra-Tidal Morphological Evolution

The morphological evolution of the swash-zone was assessed using high-frequency observations
obtained using the Lidar. Time-averaged (over 15-min segments) beach profiles were used to compute
cumulative vertical changes (Figure 9). Inspection of Figure 9 shows the significant intra-tidal
morphological changes that occurred within the swash-zone: berm erosion followed by the development
of a neap-berm by the end of the experiment.
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Figure 9. Beach response measured using the Lidar, with the top panel showing the cumulative vertical
changes overlain by the 5%, 50% and 90% of swash inundation lines (percentage that specific swash
location is covered by water during a 10 min segments); red colors indicate accretion while blue colors
indicate erosion. The bottom panel presents the cumulative vertical bed elevation changes observed on
the 5% and 50% inundation lines (∆z5% and ∆z50% respectively), together with the daily-mean values.
The tidal elevation is indicated in grey.

Intra-tidal cycles of accretion and erosion were captured by the Lidar between 27/11 and 01/12,
with the largest amplitude of changes around the mid-swash-zone location (∆z50% in Figure 9).
During these cycles, an accretion phase was observed from the low to mid tide stage of the rising tide,
followed by an erosive period from the mid to high-tide and falling tide stages (Figure 9). The accretion
phase led the formation of sand deposits that reach up to 0.5 m and were completely remobilized on the
subsequent falling tide, resulting in minor (close to zero) net of changes over the tidal cycle. As a result,
the daily-mean cumulative vertical changes observed in the mid-swash zone are close to zero. A distinct
pattern was observed in the upper swash-zone (5% of inundation region), where negative net change
was observed until 29/11; however, positive changes were observed after this. These results indicate
that the net vertical changes observed in the upper swash-zone were directly related to modifications in
the offshore wave conditions, which were characterized by relatively large, long period waves during
the early part of the experiment followed by smaller, shorter period waves (see Figure 4d). In the mid
swash, this relationship is not as clear.

3.5. Morphological Evolution and Hydrodynamic Forcing

The swash zone morphological evolution depends on multiple factors that act simultaneously,
thus, including slope, incident wave height or run-up characteristics. A multiple linear regression
(Equation (1)) was used to investigate the role of four forcing parameters on the cumulative vertical
changes observed in the mid swash-zone (50% inundation, ∆z50%).
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Y = C0 +
n∑
1

CkZk + ε (1)

where Y is the prediction, Z the predictor variable, n is the number of hourly observations, C0 and Ck
are the non-standardized regression coefficients and ε is the residual term. The relative contribution
(as a percentage) of each forcing parameter was estimated from the ratio of individual variance to the
total following Equation (2):

P(Z) = 100

√
Sk
Sy

(k = 1, 2, 3, 4) (2)

where Sk is the variance of CkZk and Sy is defined as the sum of variances of all causative components to
ensure a total of 100%. The causative variables used in the multiple linear regression include incident
wave height at the base of the foreshore (HsLIDAR), the swash excursions variability, represented by the
standard deviation of the vertical run-up (σRz), and two parameters that relate the foreshore slope
condition to the concomitant vertical run-up spectral bands (incident and infragravity, expressed by
(tanβ.Rincident)0.5 and (tanβ.Rincident)0.5 respectively). The predictions based on the computed multiple
linear regression was able to explain 78% of the variability in the ∆z50% observations (Figure 10),
including the intra-tidal cycles of accretion/erosion. Results show that (tanβRinfra)0.5 was the parameter
with the largest contribution (53%) followed by (tanβRincid)0.5 (38%), with a minor contribution from
HsLIDAR and σRz.
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Figure 10. (a) Predictions of the multiple linear regression model (black line) compared with the
cumulative vertical changes in the mid swash zone (∆z50%, red line) observed during the field experiment.
(b) Scatter diagram showing the correlation between the multiple linear regression model and ∆z50%

observations. The coefficient of correlation (r2) obtained for this linear regression was 0.78. (c) Individual
contributions of the forcing parameters used in the multiple linear regression expressed as a percentage.

4. Discussion

4.1. Tidal Modulation of Waves and Run-Up Heights

Field measurements performed at Nha Trang beach show that under relatively constant offshore
wave forcing (e.g., over a full tidal cycle), wave height at the base of the foreshore and swash motions
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were distinctly different between low and high tide as the swash zone oscillated between reflective
(high Iribarren number) and dissipative (low Iribarren number; Figures 5 and 6) conditions. As a
consequence of this tidal influence on the surf and swash hydrodynamics, the use of offshore wave
characteristics solely is insufficient to predict Rs ([42,48,49]—see Figure 7). Present observations indicate
that the lack of relationship between offshore wave characteristics and run-up is particularly evident
during low tide conditions, when the LTT acts as a low-pass-filter and potentially enhances energy
transfer to the infragravity band [45]. Some previous research has addressed this issue, suggesting
that wave characteristics measured nearshore enable improved predictions of run-up [42]. The results
presented here confirm this as using HSLIDAR in an Irribarren-type parameter resulted in better run-up
estimation at Nha Trang than using offshore Hs. A similar tidal modulation has been observed on
barred beaches (another type of intermediate beach) by [42,48]; however, in these cases, the spectral
signature of the vertical run-up during low tide was composed of a mixture of both incident and
infragravity components rather than dominated only by the infragravity band as observed at Nha
Trang (Figure 5).

The beach slope is also seen to be a key factor that affects vertical run-up. This result is in line
with the findings from [42,50] who showed that including beach slope led to significant improvements
in predictions of vertical run-up on a variety of intermediate beaches. At present, there is no consistent
definition of the appropriate beach slope for use in run-up predictors; however, the laboratory
experiments of [50] demonstrated that surf-zone slope led to better predictions than the active foreshore
slope. The main reason for this result was thought to be that surf-zone slope is more physically
related to the breaking conditions (position, height and type of breaking), which directly affects the
swash dynamics. Recently, the authors of [47] demonstrated that the characteristics of the nearshore
bathymetry, not usually accounted for in run-up predictors that use the offshore wave conditions and
foreshore slope, is an important source of errors in run-up predictions, especially on barred beaches.
Although the full surf-zone slope was not measured at Nha Trang, considering that this beach is a
simple two-slope beach and that during the low tide conditions the Lidar was able to measure the
LTT toe, it is possible that the foreshore slope observations were able to indirectly capture the tidally
induced changes in the surf-zone slope.

In addition to the beach slope, the results presented here show that including significant wave
height at the base of the foreshore improves the vertical run-up prediction. This result is in agreement
with other studies, where a clear relationship between wave run-up and bore height and celerity at
collapse was observed [31,51]. Although this improvement was verified for all the tidal stages (Table 1),
it was more evident during low tide conditions when the most wave transformation takes place in
the surf-zone leading to significant changes in the wave and run-up height. Considering the fact
that the most extreme run-up excursions and potential coastal overtopping take place during high
tide, our results suggest that offshore wave characteristics and foreshore slope can be used to predict
extreme vertical run-up on intermediate beaches with an LTT.

4.2. Upper-Beach Erosion and Recovery

4.2.1. Daily Evolution

Observations of morphological evolution in the swash-zone, including daily and intratidal
measurements presented in Sections 3.3 and 3.4, showed a continuous and rapid adjustment of the
beach to different tidal and wave conditions. Overall, the morphological response of the swash-zone
during the experiment can be divided into two main phases: (1) berm erosion; (2) berm formation.
In both cases, the morphological response was likely to be the result of a morphological adjustment to
changes in water levels and an offshore wave height. Higher water levels and larger waves exposed the
initial berm to overtopping and consequent erosion, while milder waves and neap tides caused a neap
berm to form [52,53]. Daily low tide surveys were sufficient to describe this overall beach response,
but intra-tidal Lidar observations captured more detail of the morphodynamic processes on a sandy
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beach with an LTT. More specifically, the intra-tidal cycles of accretion and erosion observed in the
mid swash-zone, during the individual tidal cycles between 27/11 and 01/12 (Figure 9). A similar
morphological response has been observed on mixed coarse-grained beaches with a sandy LTT [17,18]
and on a pure gravel beach [29,54] and associated with the cross-shore translation of the beach step.
Despite some similarity, such as the location in the swash where these processes occur (mid swash),
or the effect of the tide on lower foreshore wave height [29], important differences related with enhanced
infiltration/exfiltration processes [17] and sediment transport mechanisms make a direct comparison
with previous studies difficult. In addition to this, the mixed tide component observed at Nha Trang
was not observed in any of the previous studies and may play an important role.

4.2.2. Intra-Tidal Profile Evolution

An accretion phase was observed between the falling tide and the peak of the first high tide.
During this phase, the run-up was dominated by infragravity frequency motions and the swash slope
was gradually decreasing (Figure 11). Infragravity swash events are characterized by a rapid uprush
phase and potentially greater ability to transport sediments onto the foreshore. Slower, longer-lasting
backwash flows on a gentler slope are expected to promote deposition conditions (sediments have
more time to settle down, and the low angle reduces the downrush flows). In addition to this, and as it
was observed on other sandy beaches [55,56], the lower water table position during the lower tidal
levels enhances uprush infiltration and contributes to the aggradation of the foreshore. This feedback
between hydrodynamics and morphology led to the development of a sandy deposit in the mid-lower
swash-zone during this period of time. This accretion phase lasted until the first high tide peak,
and once the tide begins to rise again, the erosion phase is initiated (Figure 11).

J. Mar. Sci. Eng. 2020, 8, x FOR PEER REVIEW 14 of 18 

 

the initial berm to overtopping and consequent erosion, while milder waves and neap tides caused a 
neap berm to form [52,53]. Daily low tide surveys were sufficient to describe this overall beach 
response, but intra-tidal Lidar observations captured more detail of the morphodynamic processes 
on a sandy beach with an LTT. More specifically, the intra-tidal cycles of accretion and erosion 
observed in the mid swash-zone, during the individual tidal cycles between 27/11 and 01/12 (Figure 
9). A similar morphological response has been observed on mixed coarse-grained beaches with a 
sandy LTT [17,18] and on a pure gravel beach [29,54] and associated with the cross-shore translation 
of the beach step. Despite some similarity, such as the location in the swash where these processes 
occur (mid swash), or the effect of the tide on lower foreshore wave height [29], important 
differences related with enhanced infiltration/exfiltration processes [17] and sediment transport 
mechanisms make a direct comparison with previous studies difficult. In addition to this, the mixed 
tide component observed at Nha Trang was not observed in any of the previous studies and may 
play an important role. 

4.2.2. Intra-tidal profile evolution 

An accretion phase was observed between the falling tide and the peak of the first high tide. 
During this phase, the run-up was dominated by infragravity frequency motions and the swash 
slope was gradually decreasing (Figure 11). Infragravity swash events are characterized by a rapid 
uprush phase and potentially greater ability to transport sediments onto the foreshore. Slower, 
longer-lasting backwash flows on a gentler slope are expected to promote deposition conditions 
(sediments have more time to settle down, and the low angle reduces the downrush flows). In 
addition to this, and as it was observed on other sandy beaches [55,56], the lower water table 
position during the lower tidal levels enhances uprush infiltration and contributes to the 
aggradation of the foreshore. This feedback between hydrodynamics and morphology led to the 
development of a sandy deposit in the mid-lower swash-zone during this period of time. This 
accretion phase lasted until the first high tide peak, and once the tide begins to rise again, the erosion 
phase is initiated (Figure 11).  

 
Figure 11. Cumulative vertical changes observed in the mid swash-zone (Δz50%) during the first four 
tidal cycles (a); percentage of infragravity on the vertical run-up observations (b); and slope changes 
(c). 

Figure 11. Cumulative vertical changes observed in the mid swash-zone (∆z50%) during the first four
tidal cycles (a); percentage of infragravity on the vertical run-up observations (b); and slope changes (c).

An onshore migration of the surf and swash-zone gradually alters the hydrodynamic regime,
and the run-up becomes gradually dominated by the incident band on the steepest sections of the
beach. At this stage, plunging breakers and high turbulence rates are more likely to mobilize and
suspend sediment into the water column around the break point [57]. The steeper swash-zone reduces
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the run-up asymmetry during this period of time, increasing the ability of the backwash to transport
sediment offshore. As the tide rises, the swash-zone becomes steeper, reducing upslope transport and
enhancing transport down the slope and erosion of the deposit. It is expected that at this time of the
tide, the water table is higher in the foreshore, reducing uprush infiltration and enhancing downrush
erosion [56]. This erosion phase stops at the beginning of the falling tide, when the average water
level reaches its maximum on the steepest part of the beach. The falling tide is much faster than the
rising phase, and few changes are observed in morphology. During gentle waves and neap tides,
the swash zone slope becomes gentler (Figure 11c), favoring the conditions for deposition, and a new
berm is formed. It is possible that at this stage, the morphology is approaching a new equilibrium
with the dominant hydrodynamics and beach slope, resulting in limited morphological changes on
the foreshore.

5. Conclusions

A nine-day field experiment was conducted on Nha Trang Beach (Vietnam), a microtidal sandy
beach with a low tide terrace (LTT), to study swash hydrodynamics and morphodynamics under
variable wave forcing. The tide was found to play a crucial role in controlling the hydrodynamics of
the surf and swash zones. Lidar observations demonstrated that significant wave height measured just
seaward of the swash zone together with the foreshore active slope improves predictions of vertical
run-up. Under energetic waves and spring tide conditions, the upper-beach was eroded (berm erosion).
When wave energy and tidal amplitude reduced, the beach rapidly recovered, and a new berm was
built on a lower part of the foreshore. The Lidar dataset has provided new insights on intra-tidal
morphological changes in the mid swash-zone, with individual tidal cycles showing distinct phases of
accretion and erosion. Using multiple linear regression analysis, it was possible to verify that the key
factors underlying the mid swash cycles of accretion/erosion are the foreshore slope and infragravity
swash motions.
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