
Data Quality Checking for Machine Learning with MeSQuaL
[Demonstration paper]

Ugo Comignani
Aix Marseille Univ, Université de

Toulon, CNRS, LIS, DIAMS
Marseille, France

ugo.comignani@lis-lab.fr

Noël Novelli
Aix Marseille Univ, Université de

Toulon, CNRS, LIS, DIAMS
Marseille, France

noel.novelli@lis-lab.fr

Laure Berti-Équille
IRD, UMR ESPACE DEV, Montpellier
Univ de Toulon, AMU, CNRS, LIS,

DIAMS, Marseille, France
laure.berti@ird.fr

ABSTRACT
This demo proposes MeSQuaL, a system for profiling and check-
ing data quality before further tasks, such as data analytics and
machine learning. MeSQuaL extends SQL for querying relational
data with constraints on data quality and facilitates the verifi-
cation of statistical tests. The system includes: (1) a query inter-
preter for SQuaL, the SQL-extended language we propose for
declaring and querying data with data quality checks and statis-
tical tests; (2) an extensible library of user-defined functions for
profiling the data and computing various data quality indicators;
and (3) a user interface for declaring data quality constraints,
profiling data, monitoring data quality with SQuaL queries, and
visualizing the results via data quality dashboards. We showcase
our system in action with various scenarios on real-world data
sets and show its usability for monitoring data quality over time
and checking the quality of data on-demand.

1 INTRODUCTION
Assessing data quality is challenging and requires the detection
and elimination of a variety of data quality problems, such as
errors, duplicate, inconsistent, obsolete, and incomplete infor-
mation [3, 10]. A wide range of methods for statistical analysis,
constraint mining, consistency checking, and duplicate elimina-
tion has to be used [6] and their specifications can be complex
for various reasons:
• Data quality checking is a highly domain- and task-specific
problem. Data quality is multidimensional. A plethora of mea-
surable dimensions can be used to characterize the quality of
data with various indicators (e.g., value accuracy, consistency,
completeness, freshness, or absence of duplicate records). Multi-
ple techniques can be implemented to evaluate each dimension
whose specification ultimately depends on the requirements of
the user, the task at hand, and the application domain. Moreover,
depending on the machine learning (ML) task, statistical assump-
tions must be verified before applying a given ML model, and the
test results may ultimately influence the data preparation with a
selection of specific data transformations accordingly.
• Data quality checking is inherently a human-in-the-loop (HIL)
process. The user needs a tool offering a flexible and declarative
way to define, evaluate, and check various data quality indicators
and query the data with some data quality requirements in mind
that can be made explicit.
• Data quality checking is a continuous process. Data quality may
vary over time due to the temporal and dynamic nature of the
data and the evolving real world, but also as a consequence of
various data cleaning and repairing actions. This bears the need

© 2020 Copyright held by the owner/author(s). Published in Proceedings of the
23rd International Conference on Extending Database Technology (EDBT), March
30-April 2, 2020, ISBN 978-3-89318-083-7 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

{ SELECT timestamp, node_id,value_raw,valuehrf
 FROM ChicagoDataset
 WHERE ChicagoDataset.sensor = 'o3'
}
QWITH CheckBeforeAnalysis
 AND CheckQDB.completeness> 0.95;

Figure 5: SQuAL query example

SQuaL Query Interpreter

SQL

Database Metadata
RDBMS Storage

Qwith

 MeSQuaL Query & Visualization

DQT Manager

Data Quality
Checking UDFs

Quality Contract
Declaration

Figure 1: MeSQuaL Architecture.

for monitoring the quality of different versions of the database
and the quality of query results.

Our Approach. To deal with these challenges, we believe
that it is essential to build tools that enable the data scientists to
specify and verify data quality requirements in a declarative way.
In particular, tools for analyzing data quality, testing statistical as-
sumptions, and monitoring data quality continuously to provide
insights about the data glitches and help in selecting appropriate
data preparation and cleaning strategies. In this demo, we present
MeSQuaL that we built for this purpose.

2 MESQUAL OVERVIEW
Architecture. As in Fig. 1, MeSQuaL consists of two main com-
ponents: (1) the SQuaL query interpreter enabling the decla-
ration of contracts for data quality checking and SQL queries
extended with QWITH statement; (2) the Data Quality and Tests
(DQT) Manager that operates over three types of RDBMS (Oracle,
MySQL, and PostgreSQL) storing the data and related metadata.
Our framework provides: (1) several built-in functions for data
quality checking and statistical tests; (2) the possibility to call
functions in Python, Java, C++, R, and OCaml; or (3) the possibil-
ity to define custom command-line calls to a UDFs (User-Defined
Functions). Once a quality contract is declared in SQuaL with
a list of dimensions, associated UDFs, and constraints, the DQT
Manager computes the corresponding data quality indicators and
stores them as metadata. SQuaL query result and visualization
are displayed via a Grafana graphical interface1.

1https://grafana.com/

Demonstration

Series ISSN: 2367-2005 591 10.5441/002/edbt.2020.71

https://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2020.71

<squal-script> ::= (<squal-query> | <contract-type> | <contract>)*
<squal-query> ::= ‘{’ <sql-query> ‘}’ QWITH <qwith-formula> ‘;’
<sql-query> ::= <select-clause><from-clause>[<where-clause>] [<group-by-clause>] [<having-clause>] [<order-by>] [<sql-sets-operator><sql-query>]* ';'
<select-clause> ::= <attribute-name> [= <sql-subquery>]* [, <attribute-name> [= <sql-subquery>]*]*
<from-clause> ::= <from-element> [, <from-element> | <join-operator> <from-element> ON <join-equality>]*
<from-element> ::= (<sql-subquery> AS <name>|<relation-name> [AS <name>])
<where-clause> ::= WHERE [NOT] EXISTS <sql-subquery> | WHERE <expression> [NOT] IN <sql-subquery>
 | WHERE <expression> <comparison-operator> [ANY|ALL] <sql-subquery>
<having-clause> ::= <having-element> [AND <having-element>]*
<having-element> ::= <having-expression> <comparison-operator> (<compared-value>|<sql-subquery>)
<sql-subquery> ::= (<sql-query>|<squal-query>)
<qwith-formula> ::= <qwith-element> [AND <qwith-element>]*
<qwith-element> ::= (<contract-name> | <constraint>)
<contracttype> ::= (CREATE | REPLACE) CONTRACTTYPE <contracttype-name> <dimension> [‘,’ <dimension>]* ‘;’

 | DELETE CONTRACTTYPE <contracttype-name> ‘;’
<dimension> ::= <dimension-name> BY FUNCTION <binary-path> LANGUAGE <language>
<contract> ::= (CREATE | REPLACE) CONTRACT <contract-name> ‘(’<constraint> (‘AND’ <constraint>)* ‘);’

 | DELETE CONTRACT <contract-name> ‘;’
<constraint> ::= <contract-name> | [<contract-name> ‘.’] <dimension-name> <comparison-operator> <reference-value>
<comparison-operator> ::= ‘<>’ | ‘=’ | ‘!=’ | ‘>’ | ‘<’ | ‘<=’ | ‘>=’

CREATE CONTRACT RegressionAssumptions (
 StatTests.autocorrelation > 0
 AND StatTests.autocorrelation < 4
 AND StatTests.multicollinearity <= 4
 AND StatTests.heteroscedasticity < 0.05
 AND StatTests.SWerrorNormality < 0.05);

CREATE CONTRACT CheckBeforeAnalysis (
 RegressionAssumptions
 AND CheckQDB.consistency > 0.9
 AND CheckQDB.outlyingness < 0.2);

Figure 2: SQuaL Syntax in EBNF

Figure 3: CONTRACTTYPE Examples

CREATE CONTRACTTYPE StatTests (
 autocorrelation BY FUNCTION 'durbinWatsonTest.py' LANGUAGE PYTHON,
 multicollinearity BY FUNCTION 'varInflationFactor.py' LANGUAGE PYTHON,
 heteroscedasticity BY FUNCTION 'BreuschPaganTest.py' LANGUAGE PYTHON,
 KMerrorNormality BY FUNCTION 'KolmogorovSmirnov.py' LANGUAGE PYTHON,
 SWerrorNormality BY FUNCTION 'ShapiroWilkTest.py' LANGUAGE PYTHON);

CREATE CONTRACTTYPE CheckQDB (
 completeness BY FUNCTION 'completeness.py' LANGUAGE PYTHON,
 uniqueness BY FUNCTION 'uniqueness.py' LANGUAGE PYTHON,
 consistency BY FUNCTION 'consistency.py' LANGUAGE PYTHON,
 outlyingness BY FUNCTION 'outlyingness.py' LANGUAGE PYTHON);

Figure 4: CONTRACT Examples

{ SELECT timestamp, node_id,value_raw,valuehrf
 FROM ChicagoDataset
 WHERE ChicagoDataset.sensor = 'o3'
}
QWITH CheckBeforeAnalysis
 AND CheckQDB.completeness> 0.95;

Figure 5: SQuaL query example

SQuaL Query Interpreter

SQL

Database Metadata
RDBMS Storage

Qwith

 MeSQuaL Query & Visualization

DQT Manager

Data Quality
Checking UDFs

Quality Contract
Declaration

SQuaL Syntax. Each step of a data quality checking scenario
can be expressed in SQuaL, the SQL-extended language we im-
plemented on top of each RDBMS. The grammar of SQuaL is
provided in Fig. 2. A user can easily express data quality con-
cerns and requirements either re-using the library of UDFs we
provide with MeSQuaL or, depending on his/her programming
skills, adding new functions and codes in Python, Java, C++, R,
or OCaml to check the quality of data and test other hypotheses.

• Contract type. Data quality measures and indicators can
be expressed via the declaration of quality contract types. In the
⟨contracttype⟩ statement of the grammar in Fig. 2, a contract
type statement creates (or replaces) a contract type as a list of
quality dimensions of interest. Each dimension indicator is com-
puted by a UDF. Once the contract type is created and UDFs are
loaded, it can be instantiated as a contract with constraints on the
pre-declared dimensions and later on, invoked in SQuaL queries.
A dimension is defined by a ⟨dimension-name⟩, the path of its
UDF, and the language in which the UDF is implemented. Fig. 3
presents several examples of contract type declarations.

• Contract. A quality contract, described by the ⟨contract⟩
statement in Fig. 2, derives from one (or more) pre-existing con-
tract type(s) and is a set of one-sided range constraints on the di-
mensions declared in the contract type(s). Constraints are simple
comparison expressions involving the pre-declared dimension,

and a reference value. Fig. 4 presents several examples of contract
declaration based on the contract types declared in the examples
of Fig. 3. The DQT Manager executes the contracts on-demand
when they are invoked in the QWITH statement of a SQuaL query.

• Qwith Query. In a SQuaL query, described in the grammar
in Fig. 2 by the ⟨squal-query⟩ statement, the QWITH operator can
be used to extend and constraint a regular SQL query result as
illustrated in Fig. 5. It can be applied to the whole database or to a
query as it adds constraints to the semantics of the SQL query and
returns the query result that satisfies the quality requirements
defined in the contract types and contract instances with the
UDFs executed by the DQT Manager. Additionally, QWITH can be
used inside nested SQL queries.

Note that before declaring and creating data quality contract
types and contract instances using SQuaL, an important and chal-
lenging task in dealing with real-world (possibly dirty) data is
data exploration to better understand the reasons for poor data
quality and how it can affect the processes that consume the
data. Since data exploration is out of the scope of this demo and
not directly enabled by our system, we assume that data explo-
ration should be achieved before and externally for the adequate
specifications of the contract types, instances, and constraints.
Goals. In this demo, we showcase the principal features of
MeSQuaL:

• Seamless integration of user-defined functions and constraints
in the query language to compute and check various dimensions
of data quality. A common way to use our system is to declare the
data quality dimensions of interest, bind and invoke the functions
that compute relevant quality indicators (as shown in Fig. 3 with
CheckQDB contract type for example), and query the data with
constraints on these indicators using QWITH statement of our
query language (as illustrated in Fig. 5);

592

A B

C

D

E

F

Figure 6: Screenshot of MeSQuaL’s User Interface with Dynamic Dashboards

• Continuous data-quality checking and monitoring. MeSQuaL
results can help the user in defining or comparing various meth-
ods for checking and profiling the quality of data over time,
selecting the most appropriate ones, or refining the data quality
checking process, and select the most appropriate contracts to
monitor continuously;

• Statistical testing. Interactive hypothesis testing allows the
user to check various statistical assumptions on the data distribu-
tions and make sure that the data conform to the requirements
of a given ML model (as in Fig. 3 with StatTests contract type);

• Efficient profiling of data quality indicators and visualiza-
tion of static and dynamic profiles showing the evolution of data
quality over time with the Monitoring Panel

�� ��E in Fig. 6.
To increase the automation of data quality checking, we claim

that there is a need for augmenting database management sys-
tems with a flexible and declarative way to declare, check, and
monitor the quality of data, independently from the data model,
format, or application, and this actually motivated the design of
MeSQuaL.

3 DEMONSTRATION SCENARIOS
We will demonstrate MeSQuaL using two domain-specific data
sets: the clinical database MIMIC-III2 [7] and the ChicagoDataset
from the Array of Things3 real-time urban data (AoT) [5]. The
users can examine and query the data sets and explore the data
quality checking functions available in MeSQuaL to gain a sense
of its usability. We will guide the users through the following
scenarios.

2https://physionet.org/content/mimiciii/1.4/
3https://aot-file-browser.plenar.io/data-sets

1) Declaring data quality indicators and constraints. This
scenario is dedicated to showcase the use of the SQuaL lan-
guage for creating and using relevant contract types and con-
tract instances to specify data quality checks and submit SQL
queries extended with QWITH statement. In Panel

�� ��C of Fig. 6,
the users can explore available contract types and contract in-
stances predefined for the data set, like CheckQDB contract type
and CheckBeforeAnalysis contract proposed in Fig. 3 and Fig. 4
that will check the completeness, uniqueness, consistency, or out-
lyingness of the data. The users will be able to declare new data
quality checks and rules, and query the data sets with SQuaL in
Panel

�� ��A . For the query of Fig. 5, Panel
�� ��B presents the results on

ChicagoDataset and red gauges of Panel
�� ��D show that neither

the constraints on data consistency and completeness are satisfied
by the queried data of ozone sensors (‘o3’), nor the constraints
defined in RegressionAssumptions contract. As presented in
Table 1, other SQuaL queries including nested SQuaL queries
(e.g., Q8) will be tested to show the usability of our system.
2) Evaluating the applicability of learning models with
declarative statistical hypothesis testing. In this scenario,
the user will see in more detail how MeSQuaL can be used to
declare various statistical tests, and visualize which data lead to
violations of some statistical assumptions or other requirements
of various ML models. For example, before the application of a
linear regression over a data set, at least four critical assump-
tions need to be verified: normality, linearity, homoscedasticity,
and absence of multicollinearity. Using StatTests contract type
instantiated by RegressionAssumptions contract (defined in
Fig. 3 and Fig. 4) available in the contract explorer (Panel

�� ��C),
the user will easily check if the statistical properties are met by
the query results. The attendees will notice that new contracts
can be added in a flexible and modular way, and they will ex-
plore our library of tests, inspect the logs of previous queries and

593

Table 1: SQuaL Query examples of the demo

Query# SQuaL Query SQuaL
Query
time (ms)

SQL
query
time (ms)

UDF
time
(ms)

Total
time
(ms)

Q1 CREATE CONTRACTTYPE CheckQDB2 (completeness2 FLOAT ON DATABASE BY FUNCTION ’completeness.py’ LANGUAGE
PYTHON, uniqueness2 FLOAT ON DATABASE BY FUNCTION ’uniqueness.py’ LANGUAGE PYTHON, consistency2 FLOAT
ON DATABASE BY FUNCTION ’consistency.py’ LANGUAGE PYTHON, outlyingness2 FLOAT ON DATABASE BY FUNCTION
’outlyingness.py’ LANGUAGE PYTHON);

24.6 - 2482.4 2507

Q2 CREATE CONTRACT RegressionAssumptions (StatTests.autocorrelation > 0 AND
StatTests.autocorrelation < 4 AND StatTests.multicollinearity <= 4 AND
StatTests.heteroscedasticity < 0.05 AND StatTests.SWerrorNormality < 0.05);

28.3 - 2550.8 2579.1

Q3 { SELECT * FROM ChicagoDataset } QWITH CheckQDB.completeness> 0.95; 32.9 587.2 566.2 1186.3

Ao
T Q4 { SELECT * FROM ChicagoDataset } QWITH CheckBeforeAnalysis AND RegressionAssumptions; 274.6 499.6 500.4 1274.6

Q5 { SELECT timestamp, node_id,value_raw,valuehrf FROM ChicagoDataset WHERE ChicagoDataset.sensor = ’o3’
} QWITH CheckBeforeAnalysis AND CheckQDB.completeness> 0.95;

214.2 21.5 784.7 1020.4

Q6 { SELECT * FROM Admissions } QWITH CheckQDB.completeness> 0.95; 42.1 346.8 472.3 861.2

MI
MI

C-
II

I Q7
{ SELECT * FROM Admissions WHERE Admissions.insurance = ’Private’ }
QWITH CheckBeforeAnalysis AND CheckQDB.completeness> 0.95;

237.0 154.1 493.8 884.9

Q8 { SELECT gender, dob, admittime FROM Admissions INNER JOIN (SELECT * FROM Patients WHERE dob < ’2090-12-12
00:00:00’ QWITH CheckQDB.completeness> 0.95) as Pat ON Admissions.subject_id=Pat.subject_id; }
QWITH CheckQDB.completeness> 0.95;

318.9 16.6 1610.1 1945.6

checks (Panel
�� ��F), and reload the visualization of some previous

SQuaL queries (from Panel
�� ��C). MeSQuaL combines the declara-

tive and scripting approaches for querying the data and checking
various assumptions simultaneously. It facilitates notably the
data preparation choices to meet the requirements of some ML
algorithms. Since the declared contracts are independent of the
data sets, they can be reused whenever the assumptions and data
quality checks need to be checked.
3) Monitoring the evolution of data quality indicators. In
this last scenario, the attendees will see the possibilities offered by
MeSQuaL for monitoring the evolution of data quality indicators
in Panel

�� ��E . Once declared, contract types and contract instances
are stored as metadata and executed regularly by MeSQuaL’s
DQT Manager via its configuration to schedule recurring SQuaL
queries. The user can act as a DBA and define various thresholds
for the declared data quality indicators to alert when some results
are suspicious. Using the AoT ChicagoDataset, the attendees
will see how MeSQuaL facilitates the continuous monitoring of
data quality indicators to detect, for instance, inconsistent data
from neighboring air pollution sensors or intermittent sensor
failures with the use of the library of UDFs provided byMeSQuaL.
Using MeSQuaL’s user interface shown in Fig. 6, the user can
visualize the declared data quality indicators and spot the periodic
or punctual errors in the data over time in Panel

�� ��E .

4 RELATEDWORK
Data quality has been extensively studied by the database com-
munity in the last decades [3, 10] with a line of data cleansing
commodity systems and tools that can detect anomalies and re-
duce the burden on data scientists for data repairing and data
preparation in the context ofML pipelines [1, 2, 8, 9, 13].MeSQuaL
is similar to some extent to two main operational data validation
systems: (1) Google TensorFlow Data Validation (TFDV) system
[4], used in production, is a library for exploring and validating
ML data, including schema inspection and anomaly detection,
such as missing features, out-of-range values, or wrong feature
types, and (2) the Amazon system implementing unit-tests for
data verification has been proposed in [11, 12]; it offers a declar-
ative API that allows users to define checks on their data by
composing a variety of available constraints. However, the main
drawback of these systems is that they do not provide the user
with (1) the possibility to interact with the data quality checking
process, (2) the flexibility to declare new data quality metrics with
user-defined functions, or constraints for data quality checks, and

(3) the extension of the query language to check the results with
respect to data quality requirements and constraints.

The key novelty of MeSQuaL is to provide the user with a
framework for checking the quality of their relational data by
declaring UDFs and constraints using SQuaL, an SQL-like query
language extension for querying data and checking on-demand
the quality of the results.

5 ACKNOWLEDGEMENTS
This work is funded by the French National Agency ANR Quali-
Health 18-CE23-0002.

REFERENCES
[1] L. Berti-Équille. Learn2Clean: Optimizing the Sequence of Tasks for Web Data

Preparation. In Proc. of the The Web Conf 2019, 2019.
[2] L. Berti-Équille. Reinforcement learning for data preparation with active

reward learning. In Internet Science - 6th International Conference, INSCI 2019,
Perpignan, France, December 2-5, 2019, Proceedings, pages 121–132, 2019.

[3] L. Berti-Équille. Quality Awareness for Data Management and Mining. Ha-
bilitation à Diriger des Recherches, Univ. Rennes 1, France, June 2007, http:
//pageperso.lis-lab.fr/~laure.berti/pub/Habilitation-Laure-Berti-Equille.pdf.

[4] E. Breck, M. Zinkevich, N. Polyzotis, S. Whang, and S. Roy. Data validation
for machine learning. In Proc. of SysML, 2019.

[5] C. E. Catlett, P. H. Beckman, R. Sankaran, and K. K. Galvin. Array of things:
A scientific research instrument in the public way: Platform design and early
lessons learned. In Proc. of the 2nd International Workshop on Science of Smart
City Operations and Platforms Engineering, SCOPE ’17, pages 26–33, New York,
NY, USA, 2017. ACM.

[6] I. F. Ilyas and X. Chu. Trends in cleaning relational data: Consistency and
deduplication. Foundations and Trends in Databases, 5(4):281–393, 2015.

[7] A. E. Johnson, T. J. Pollard, L. Shen, H. L. Li-wei, M. Feng, M. Ghassemi,
B. Moody, P. Szolovits, L. A. Celi, and R. G. Mark. MIMIC-III, a freely accessible
critical care database. Scientific data, 3:160035, 2016.

[8] S. Krishnan, J. Wang, E. Wu, M. J. Franklin, and K. Goldberg. Activeclean:
Interactive data cleaning for statistical modeling. Proc. VLDB Endow., 9(12):948–
959, Aug. 2016.

[9] T. Rekatsinas, X. Chu, I. F. Ilyas, and C. Ré. Holoclean: Holistic data repairs
with probabilistic inference. PVLDB, 10(11):1190–1201, 2017.

[10] S. W. Sadiq, T. Dasu, X. L. Dong, J. Freire, I. F. Ilyas, S. Link, M. J. Miller,
F. Naumann, X. Zhou, and D. Srivastava. Data quality: The role of empiricism.
SIGMOD Record, 46(4):35–43, 2017.

[11] S. Schelter, F. Biessmann, D. Lange, T. Rukat, P. Schmidt, S. Seufert, P. Brunelle,
and A. Taptunov. Unit testing data with deequ. In Proc. of the 2019 International
Conference on Management of Data, SIGMOD ’19, pages 1993–1996, New York,
NY, USA, 2019. ACM.

[12] S. Schelter, D. Lange, P. Schmidt, M. Celikel, F. Bießmann, and A. Grafberger.
Automating large-scale data quality verification. PVLDB, 11(12):1781–1794,
2018.

[13] M. Yakout, L. Berti-Équille, and A. K. Elmagarmid. Don’t be scared: use scalable
automatic repairing with maximal likelihood and bounded changes. In Proc.
of the ACM SIGMOD, pages 553–564, 2013.

594

Advances in Database Technology
— EDBT 2020

23rd International Conference
on Extending Database Technology

Copenhagen, Denkmark, March 30–April 2, 2020
Proceedings

Editors

Angela Bonifati
Yongluan Zhou

Marcos Antonio Vaz Salles
Alexander Böhm

Dan Olteanu
George Fletcher

Arijit Khan
Bin Yang

http://OpenProceedings.org/

Advances in Database Technology — EDBT 2020 Series ISSN: 2367-2005
Proceedings of the 23rd International Conference
on Extending Database Technology
Copenhagen, Denkmark, March 30–April 2, 2020

Editors

Angela Bonifati, Lyon 1 University, France
Yongluan Zhou, University of Copenhagen, Denmark
Marcos Antonio Vaz Salles, University of Copenhagen, Denmark
Alexander Böhm, SAP Research, Germany
Dan Olteanu, University of Oxford, United Kingdom
George Fletcher, Eindhoven University of Technology, The Netherlands
Arijit Khan, Nanyang Technnological University, Singapore
Bin Yang, Aalborg University, Denmark

OpenProceedings.org
University of Konstanz
University Library
78457 Konstanz, Germany

COPYRIGHT NOTICE: Copyright © 2020 by the authors of the individual papers.

Distribution of all material contained in this volume is permitted under the terms of the Creative Commons license CC-by-
nc-nd 4.0

OpenProceedings ISBN: 978-3-89318-083-7 DOI of this front matter: 10.5441/002/edbt.2020.01

http://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2020.01

	Data Quality Checking for Machine Learning with MeSQuaLUgo Comignani, Noël Novelli, Laure Berti-Equille

