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Abstract: Precise accounting of carbon stocks and fluxes in tropical vegetation using remote sensing
approaches remains a challenging exercise, as both signal saturation and ground sampling limitations
contribute to inaccurate extrapolations. Airborne LiDAR Scanning (ALS) data can be used as an
intermediate level to radically increase sampling and enhance model calibration. Here we tested
the potential of using ALS data for upscaling vegetation aboveground biomass (AGB) from field
plots to a forest-savanna transitional landscape in the Guineo–Congolian region in Cameroon, using
either a design-based approach or a model-based approach leveraging multispectral satellite imagery.
Two sets of reference data were used: (1) AGB values collected from 62 0.16-ha plots distributed both
in forests and savannas; and (2) an AGB map generated form ALS data. In the model-based approach,
we trained Random Forest models using predictors from recent sensors of varying spectral and spatial
resolutions (Spot 6/7, Landsat 8, and Sentinel 2), along with biophysical predictors derived after
pre-processing into the Overland processing chain, following a forward variable selection procedure
with a spatial 4-folds cross validation. The models calibrated with field plots lead to a systematic
overestimation in AGB density estimates and a root mean squared prediction error (RMSPE) of up to
65 Mg.ha−1 (90%), whereas calibration with ALS lead to low bias and a drop of ~30% in RMSPE (down
to 43 Mg.ha−1, 58%) with little effect of the satellite sensor used. Decomposing bias along the AGB
density range, we show that multispectral images can (in some specific cases) be used for unbiased
prediction at landscape scale on the basis of ALS-calibrated statistical models. However, our results
also confirm that, whatever the spectral indices used and attention paid to sensor quality and
pre-processing, the signal is not sufficient to warrant accurate pixelwise predictions, because of large
relative RMSPE, especially above (200–250 t/ha). The design-based approach, for which average AGB
density values were attributed to mapped land cover classes, proved to be a simple and reliable
alternative (for landscape to region level estimations), when trained with dense ALS samples.

Keywords: forest-savanna mosaics; AGB; Airborne LiDAR; satellite; upscaling; model-based;
design-based; bias

1. Introduction

The vegetation in tropical Africa plays a major role in the global carbon cycle [1–4], providing
valuable ecosystem services, storing vast amounts of carbon, and serving as a reservoir for climate
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mitigation [5]. Precise accounting of carbon stocks and fluxes by remote sensing approaches however
remains a challenging exercise. The sensitivity of currently available spaceborne data sources (prior
to the launch of GEDI and Biomass sensors) at high aboveground biomass (AGB) densities (say,
>200 Mg.ha−1) is known to be poor [6,7]. In areas with a high degree of cloudiness, like in western
Central Africa [8], atmospheric effects are responsible for spatial artefacts observed in the surface
reflectance of spaceborne optical data [9,10]. If we focus on high resolution multispectral (MS) imagery,
such as Spot 6-7, Landsat 8, or Sentinel 2, a range of spatial and spectral resolutions is available, with
potential to improve signal sensitivity to AGB. Spot 6-7 delivers 1.5 m high-resolution products with
five spectral bands. The Landsat 8 sensor provides six spectral bands with a spatial resolution of
30 m. Sentinel 2 offers ten spectral bands at refined 10 m spatial resolution. It is not clear however
which satellite data (between broad spectral bands and relatively high spatial resolution, i.e., Spot 6-7,
or narrower, more numerous spectral bands and lower spatial resolution, i.e., Landsat 8 and Sentinel 2)
provides the best solution for upscaling AGB from field data.

Another issue is that the cost of field data acquisition of sufficient quality generally leads to a
poor calibration of AGB prediction models. At the forest-savanna transition zone, complex mosaics of
contrasting land cover and land use types exacerbate the issue, making the precise quantification of AGB
stocks and stock change particularly difficult. To overcome this problem, several authors [7,11–14] have
recommended a multi-step upscaling approach based on airborne Light Detection And Ranging (LiDAR)
scanning (a.k.a. ALS). Due to its ability to accurately characterize the vegetation’s three-dimensional
structure, ALS has indeed emerged as the reference technology for mapping vegetation AGB variations
at landscape scales [12,15–17], although cost still prevents wall-to-wall mapping at regional or national
levels. The currently held assumption seems to be that the calibration of AGB mapping models based on
MS imageries is improved when using the larger calibration dataset allowed by an ALS sampling of the
territory [7,18]. Table 1 presents a synthesis of a selection of previous studies that used ALS sampling
to calibrate wall-to-wall vegetation AGB models from MS satellite imagery, and their performances.

Table 1. A selection of studies using airborne LiDAR scanning data to parameterize model-based
approaches and generate wall-to-wall aboveground biomass (AGB) maps from spaceborne optical
imagery. Statistics of model predictive performance (i.e., R2 and root mean square prediction error;
RMSPE) are derived from a variety of model validation strategies, including: (1) withholding of a
given proportion of data for model testing, with test data selected at random (strat. 1); (2) 10-fold
cross validation, with random split of data into folds (strat. 2); and (3) Monte Carlo cross-validation,
with random or spatial split of data into folds (strat. 3 and 4, respectively). Details of cross-validation
strategies can be found in the original studies. RMSPE provided in Mg of carbon per hectare in original
studies are converted to Mg of AGB per hectare with a carbon-to-AGB conversion factor of 0.5.

Country Multispectral Resolution
(m)

Model
Type

Model
Validation R2 RMSPE

(Mg.ha−1)
Ref.

Colombia & Peru MODIS 500 Random
Forest

strat 1
(10%) 0.86 31.4–35.2 [11]

China Sentinel 2 10 Random
Forest strat 2 0.62 50.36 [19]

Panama Landsat 5,7 100 Random
Forest

strat 1
(30%) 0.62 45 [20]

Cambodia QuickBird 1.5 Multiple
regression - 0.73 42.8 [21]

strat 3 0.76 61.29Democratic Republic
of Congo Landsat 8 100

Maximum
Entropy strat 4 0.65 62.16

[13]

Pantropical MODIS 500 Random
Forest

strat 1
(10%) 0.71–0.83 38–50 [22]

Peru Planet Dove 100 Random
Forest

strat 1
(20%) 0.7 50.76 [23]

Malaysian Borneo Landsat 8 30 Deep
learning strat 2 0.7 83.2 [24]
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In contrast to this model-based approach to AGB extrapolation, a design-based approach remains
well-accepted, notably recommended in the Intergovernmental Panel on Climate Change (IPCC)
guidelines for green-house gas inventories [25]. In this approach, average AGB densities (referred to as
emission factors in this context) are attributed to each land cover class. A precise estimation of these
AGB densities requires rigorous sampling, for instance via a national forest inventory [26], which is still
lacking in many tropical countries. This then imposes the need to resort to global database values for
attributing AGB densities to each land cover class, resulting in lower confidences in estimates (Tier 1).

In the context of a complex landscape mosaic in Cameroon, our objective was to: (i) test if
intermediate ALS sampling allows improvements to large scale AGB estimations in model-based or
design-based approaches; and (ii) test if the choice of multi-spectral satellite sensor or predictors can
improve signal and predictive power in the case of model-based approaches.

2. Material and Methods

2.1. Study Site

The field site is crossed by the Sanaga river and falls within a forest-savanna mosaic of the
Guineo–Congolian region with gallery forests along the river courses [27] and covers an area of 216 km2

(4◦ 00’–4◦ 30’ N and 11◦ 30’–12◦ 00’ E; Figure 1a).
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Figure 1. Study site. (a) Location of the study site in the Guineo-Congolian region. (b) Supervised
classification of the study area into land-use/land-cover classes (40 m resolution) and distribution of the
field plots within the different vegetation types. (c) Folding of the study area in four spatial folds for
cross-validation of the aboveground biomass prediction models. Proportion of the different vegetation
types (with a significant woody component) located within each fold.

The area is under the influence of an equatorial climate of Guinean type [28], which is hot and
humid with an average annual temperature of 25 ◦C. Mean annual rainfall is 1,500 mm, with a rainfall
distribution characterized by a dry season lasting over three months (December–March), during which
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the monthly rainfall is less than 70 mm. The average altitude is 600 m. Dominating soil types in the
area are ferralitic and hydromorphic soils [29]. The area is a target for small- and large-scale agriculture
(artisanal cocoa farms, palm plantations) and industrial activities (e.g. hydroelectric dam construction),
leading to a strong anthropogenic pressure on, for instance, the vegetation structure [30].

The vegetation is dominated by savanna formations (dominated by pyrophylous savanna species
Terminalia glaucescens Planch. ex Benth; Annona senegalensis Pers.; Bridelia ferruginea Benth.) interspersed
by gallery forests or semi-deciduous forests where Triplochiton scleroxylon K. Schum. and Terminalia
superba Engl. & Diels dominate. Land cover classes comprising a woody component of significant AGB
are agroforests (AF), degraded secondary forests (DF), old-growth secondary forests (OF), shrubby
savanna (SS), and woody savanna (WS) (Figure 1c). Their proportions vary across the study area, with
a higher proportion of AF, DF, and OF in the East (folds 3 and 4) and a higher proportion of SS and WS
in the Western part (folds 1 and 2; Figure 1b,c).

2.2. Data Acquisition and Processing

The general methodology used in in upscaling aboveground biomass from plot scale to satellite
scale with model-based and design-based approaches is presented in Figure 2.
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Figure 2. General workflow of the methodology used in upscaling aboveground biomass from plot
scale to satellite scale with model-based and design-based approaches.

2.2.1. Field Inventory Data

Field data acquisition campaigns were conducted from February to December 2018. We established
eighteen 0.16-ha plots in savannas and eleven 1-ha plots in forests. Field plots in savanna were set
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along a tree density gradient, from open grassy savanna to closed woody savanna [31] (Figure 1c).
Savanna plots size (i.e., 40 × 40 m) was set so as to sample relatively homogenous vegetation structure
within each plot, given the high spatial heterogeneity of the vegetation in this ecosystem. Forest plots
had a standard 1-ha (100 m × 100 m) area, and were distributed among the main types of closed-canopy
vegetations found in the area (see Figure 1b and Section 2.1). Plots geolocation was recorded with a
Trimble Geo7X Global Navigation Satellite System (GNSS) receiver, by collecting a point every 20 m
along each plot contour in order to increase geolocation accuracy [7]. In each plot, the diameter at breast
height (DBH; in cm) was measured for all trees with DBH ≥ 10 cm. Trees were identified in the field by
expert botanists, and herbarium specimens were collected on each species for cross-identification at
the herbarium of Université Libre de Bruxelles (BRLU). In savanna plots, the height (H) of all trees
with DBH ≥ 10 cm was measured using a graduated pole for short trees (H ≤ 7 m) and a laser range
finder device (Trupulse 360”R) for taller trees (> 7 m). In forest plots, tree height was measured on a
subsample of trees per plot (approximately 50 sampled along the DBH range) with their crown apex
visible using the laser range finder device. We subsequently used the BIOMASS R package [32] to fit
plot-level height-diameter allometric models via a three-parameter Weibull function and predict the
height of unmeasured trees. In total, we censused 4309 trees in the forests, belonging to 150 species,
and 3487 trees in the savanna from 43 species. In the following analyses, we used the savanna plot size
(40 × 40 m) as our minimum mapping unit, and thus split each 1-ha forest plots in four subplots of 40 *
40 m (selecting each time the subplots located on the external edge of the 1-ha plots; Appendix A).
The field dataset thus consisted in 62 field plots (18 and 44 plots in savanna and forests, respectively).
Table 2 presents a summary statistics of the 62 plots data installed in forest and savanna sites.

Table 2. Summary statistics of field plot data: mean (min-max).

Sites No.
Stem (ind.ha−1)

Lorey’s Height (m) Basal Area
(m2.ha−1)

Woody Biomass
(Mg.ha−1)

Forest 392 (216–538) 27 (24–33) 28 (19–35) 234 (80–422)
Savanna 239 (50–550) 7 (5–10) 18 (12–28) 21 (1–133)

2.2.2. Airborne LiDAR Data

Airborne LiDAR Scanning data were acquired in 2012 with a Riegl LMQ-560 sensor mounted
on an airplane of type Pilatus PC6 with a flight height of 600 m above ground level and an average
ground speed of 167 km.h−1. The scan angle was 60◦ with a band swath of 690 m and 50% of overlap
among adjacent flight lines which resulted in an average point density of 8.4 points.m−2. The ALS
point error was 10 cm vertically and 15 cm horizontally. We used the lidR R package (v2.0.2; [33]) to
process the ALS point cloud and generated a 2-m resolution canopy height model (CHM).

2.2.3. Spaceborne Data

We considered three multispectral sensors, namely Spot 6-7, Landsat 8, and Sentinel 2.
Among cloud-free images in sensors archives, we looked for dry-season images acquired: (i) at
(approximately) the same date (to mitigate cross-sensor differences associated to change in land
cover or vegetation phenology); and (ii) as close as possible to the ALS acquisition date. The year
2015 matched our criteria and we collected Level-1C images for Spot 6/7 (acquired on January 9th,
Row/Column 4912/3514), Landsat 8 (acquired on 1 December; Path/Row 185/057) and Sentinel 2B
(acquired on December 19th mosaic of T32NQK & T32NRL).

We processed spaceborne optical data using the Overland algorithms [34]. Overland is a satellite
image processing chain developed by AIRBUS DS Geo which aims to produce cloud and shadow
masks and perform image atmospheric corrections, especially for areas with a high degree of cloudiness
like western Central Africa. It is primarily coded in the IDL language (Harris) for image processing
algorithms, with a core scene model and model inversion engine that has been developed in Matlab
(MatWorks) Overland uses look-up tables from LOWTRAN and performs an inversion of a coupled
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atmospheric scene model [35] to estimate atmospheric parameters and discard influences from sky,
aerosols, and clouds on the surface reflectance. Another feature of Overland is the ability to partition the
reflectance of individual pixels into respective contributions of soil, photosynthetic vegetation (green
matter), and the non-photosynthetic matter (dead wood), and characterize the self-cast shadows of the
rough vegetation canopies. For this, it implements a vegetation model by combining PROSPECT [36],
SAIL [37], and a soil model. By inverting this vegetation model, we can notably derive the fractional
cover of green vegetation (fCover), the canopy shade factor (CSF), and the leaf area index (LAI).

To predict vegetation AGB, we considered the three variables provided by Overland, as well as
images spectral bands and vegetation indices from corrected images summarized in Table 3. The dataset
of spaceborne optical variables thus consisted of 11 variables for Spot 6/7, 13 variables for Landsat
8 and 24 variables for Sentinel 2.

2.3. Upscaling AGB from Field to Spaceborne Measurements

2.3.1. Field-Based AGB Estimates

We used the R BIOMASS package [32], which relies on the Global Wood Density Database [38,39],
to attribute to each tree a wood density (WD) value based on tree taxonomy. For trees identified at
the species or genus level, the average WD of the respective taxonomic level was used. For trees
identified at the family level, or unidentified trees, the plot average WD was used. We then computed
tree AGB using allometric models based on DBH, H and WD. For forest trees, we used the pantropical
AGB model of Chave et al. [40]. For trees from savanna plots, we used an AGB model developed for
semi-arid savanna by Colgan et al. [41]. Lastly, we computed plot AGB density (AGBFIELD) as the sum
of individual tree AGBs over the plot area (expressed in Mg.ha−1).

2.3.2. LiDAR-Based Reference AGB Map and Land-Cover Classification

We extracted vegetation structural metrics from the CHM (2 -m resolution) within square windows
of 40 × 40 pixels so as to be an integer divisor of the size of our field plots (40 × 40 m). We computed
several vegetation metrics (quantiles of pixels height distribution, canopy gap fraction, statistics of leaf
area vertical distribution). These metrics allowed us to derive a simple land cover classification map
(Figure 1b) via supervised classification (maximum likelihood) in Envi 5.0.

To predict vegetation AGB density from the LiDAR canopy height model, we evaluated the
predictive power of a set of models using a leave-one-out cross-validation (LOO-CV) procedure.
LOO-CV consists of iteratively training the model on N-1 plots (with N the total number of plots),
each time withholding a different plot for testing. To account for potential autocorrelation between
0.16-ha forest subplots extracted from the same 1-ha plot (which would violate the independence
hypothesis between training and test sets of the CV procedure and result in overly optimistic CV
statistics), we discarded 0.16-ha forest subplots of the same 1-ha plot from the training set each time
a forest subplot was tested. The vector of independent AGB predictions was then used to compute
CV statistics, namely the squared correlation between AGB predictions and AGBFIELD (henceforth R2;
Equation (1)) and the root mean squared prediction error (RMSPE), with:

RMSPE =

√√ n∑
i = 1

(yi − ŷi)
2

n
(1)

where n is the number of plots, yi is the AGBFIELD estimate for plot i, and ŷi is its AGB prediction.
We found that a simple linear model (Equation (2)) based on vegetation median height (MCH)

yielded the best results as in [16] with an R2 of 0.81 and a RMSPE of 52.7 Mg.ha−1 (Appendix A):

AGBFIELD = 6.27 + 8.52×MCH (2)
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where AGBFIELD is the plot AGB density (Mg.ha−1) derived from field data, MCH is the vegetation
median height (m) over the plot on the 2 m CHM obtained in Section 2.3.2. This best LiDAR-based
model was used to predict vegetation AGB over the entire study area (AGBALS map; res = 40 m) that
constituted our intermediary scale for the cal/val of spaceborne-based and design-based AGB models
(see next section).

Table 3. Band names and vegetation indices used to generate different aboveground biomass predictive
models based on satellite data: Spot 6/7 (S. 6/7), Landsat 8 (L. 8), and Sentinel 2 (S. 2). Checked spectral
bands and vegetation indices are candidate predictors retained for each model.

Spectral band Candidate predictors
Designation S. 6/7 L. 8 S. 2 S. 6/7 L. 8 S. 2

Blue - B2 B2
Green B2 B3 B3 x x x

Red B3 B4 B4 x x x
Red1 - - B5 x
Red2 - - B6 x
Red3 - - B7 x
NIR B4 B5 B8 x x x
Red4 - - B8a x

SWIR1 - B6 B11 x x
SWIR2 - B7 B12 x x

Vegetation indices
Equations References

RGR (Red/Green) [42] x x x
NIRGR (NIR/Green) x x x
NDVI (NIR - Red)/(NIR + Red) [43] x x x

EVI 2.5*[(NIR - Red)/(1 + NIR + 6*Red -7.5*Blue)] [44] x x x
SR (NIR/RED) [45] x x x

SAVI (NIR - Red)/(NIR + Red + L)*1.5 with L = 0.5 [44] x
IRECI (NIR - Red)/(Red1/Red2) [46] x
S2REP [705 + 35*(0.5*(Red3 + Red)/2) - NIR)/(Red2 - NIR)] [46] x
NDVI1 (NIR - Red1)/(NIR + Red1) [47] x
NDVI2 (NIR - Red2)/(NIR + Red2) [47] x
NDVI3 (NIR - Red3)/(NIR + Red3) [47] x
NDVI4 (NIR - Red4)/(NIR + Red4) [48] x

NIR = near infra-red; Red 1, 2, 3 = red-Edge 1, 2, 3; Red 4 = NIR narrow; SWIR 1, 2 = short-wave infra-red 1,
2; RGR = red green ratio; NIRGR = near infra-red green ratio; NDVI = normalized difference vegetation index;
EVI = enhanced vegetation index; SR = simple ratio; SAVI = soil-adjusted vegetation index; IRECI = inverted
red-edge chlorophyll index; S2REP = Sentinel 2 red-edge position.

2.3.3. Design-Based AGB Estimates

As a reference AGB prediction method, we followed the recommendation of the IPCC [25,49] by
averaging AGB density values (either AGBALS or AGBFIELD) per (woody vegetation) land cover class.
In the case of ALS, the area was fully characterized, and hence not sampled stricto sensu.

2.3.4. Model-Based AGB Estimates

Imagery products from the different satellite sensors were co-aligned to the AGBALS raster
and aggregated to 40 m resolution. We used the Random Forest (RF) algorithm [50] implemented
in the randomForest R package [51] to model vegetation AGB density from spaceborne optical
variables. RF is a popular machine learning technique in remote sensing studies due to its ability
to handle high-dimensional datasets, to account for non-linear relationships between response and
predictor variables, and to its relative robustness to multicollinearity, model overparameterization,
and overfitting [52]. Here, we built several RF models, considering each time a different set of
spaceborne optical variables (i.e., from Spot 6/7, Landsat 8, or Sentinel 2) and using either field-based
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AGB estimations (strategy 1, henceforth RFFIELD) or the LiDAR-based AGBALS map (strategy 2,
henceforth RFALS) for model specification and training. We then evaluated the predictive power of the
RF models by comparing RF models’ predictions to independent reference AGB estimations.

Since RF have shown to overfit training data when predictors are correlated (e.g. [32,33]) or spatially
auto-correlated [53], both properties being expected in our sets of optical variables, we performed a
spatial forward variable selection procedure (see Appendix B). This procedure starts with no variable
in the model, computes the decrease in model’s relative RMSPE (calculated by dividing the RMSPE
by the mean of “observed” AGB values) that the addition of each candidate explanatory variable
would lead to, and adds to the model the variable leading to the largest relative RMSPE decrease.
The procedure is iterated as long as adding a supplementary variable in the model leads to relative
RMSPE decrease larger than 1%. In the case of RFFIELD, the RMSPE at each iteration of the procedure
was computed using a LOO-CV over the 62 AGBFIELD estimates (as in Section 2.3.2). In the case of
RFALS, the number of AGBALS estimates (i.e., 117,415 pixels) makes the LOO-CV computationally
prohibitive. We thus used a four-fold block CV for variable selection.

2.3.5. Four-Fold Cross-Validation

We evaluated the ability of design- and model-based approaches to predict vegetation AGB
outside training areas, using the LiDAR-based AGBALS map as target AGB density values, and the
four folds (blocks) defined in Figure 1c.

For design-based approaches, average AGB densities per class were assessed in the three training
folds, either using ALS or field data from these folds. In the remaining fold, the mean fold AGB density
was computed by multiplying the AGB density of each land cover class by its respective area, relative
to the total woody vegetated area of the fold. Validation could only be performed (qualitatively) at the
scale of each land cover class or the whole fold.

For model-based approaches, in the case of RFALS, we generated AGB density predictions outside
training areas using the four-fold block CV. In the case of RFFIELD, to circumvent the relatively small
plot number, all 62 AGBFIELD estimates were used to train the model (see LOO-CV procedure in
Section 2.3.2) and generate AGB density predictions in each of the four folds. The vector of independent
AGB predictions was used to compute the CV statistics as in Section 2.3.2 (i.e., R2 and RMSPE). We also
computed the mean signed deviation (MSD; Equation (3)) as an indicator of model bias:

MSD =
1
n

n∑
i = 1

(ŷi − yi) (3)

where n is the number of pixels, ŷi is the AGB prediction of pixel i by RFFIELD or RFALS and yi is its
AGBALS value.

3. Results

In model-based approaches, the variables selected varied depending on the training data
(calibration on field AGB; RFFIELD or calibration on the intermediate AGBALS map; RFALS; see
Appendix B) and satellite sensor used for model calibration. Table 4 shows the variables selected
(RFFIELD & RFALS) and the model performances in cross-validation for the different models.
Independently of the satellite sensor, RFFIELD models gave the poorest performances, with R2 values
around 0.6, and RMSPE of up to 65 Mg.ha−1 (i.e., 90%), whereas RFALS models greatly improved the
prediction accuracy (drop of ~30% in RMSPE and relative RMSPE). RFALS models based on Landsat
8 or Sentinel 2 predictors lead to a decrease of 10% both in RMSPE and relative RMSPE (R2 = 0.7;
RMSPE of c. 43 Mg.ha−1 and relative RMSPE of c. 60%) compared to RFALS models based on Spot
6/7 predictors (R2 = 0.6; RMSPE = 48 Mg.ha−1 and relative RMSPE = 66.5%)
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Table 4. Structure and performances (R2, RMSPE in Mg.ha−1 and relative RMSPE in %) of the different
models selected for each spaceborne sensor. Performance metrics are based on 4-fold cross validation.
Spot 6/7 (S. 6/7), Landsat 8 (L. 8), and Sentinel 2 (S. 2). CSF; canopy shade factor.

Sensor RFFIELD Models R2 RMSPE Relative
RMSPE RFALS Models R2 RMSPE Relative

RMSPE

S. 6/7 Green + CSF +
EVI 0.58 65 90 Red + CSF + LAI 0.62 48.3 66.5

L. 8 Red + SWIR 2 +
SAVI 0.61 64.8 88 Red + SWIR 2 +

Green + fCover + EVI 0.7 43.1 60

S. 2 S2REP + SWIR 2
+ NDVI 2 0.58 63.2 85

NDVI 2 + SWIR 2 +
IRECI + NDVI 4 +

Red + NDVI 3
0.7 42.8 58

As model-based approaches provide pixelwise predictions, we can have a detailed look at the
scatterplots of observed vs. predicted AGB density values in Figure 3 (for the Sentinel 2 sensor),
and Appendix C & Appendix D (Spot 6-7 and Landsat 8 respectively). Concordance between predictions
and observations was greatly improved, i.e., closer to the 1:1 line, for models calibrated on ALS data
relative to those calibrated with field data, whereas the spaceborne sensor used seemed to make
little difference. Predictions were capped around 250 Mg.ha−1 for all RFALS models. At first sight,
RFFIELD models seemed capable of predictions over slightly higher AGB ranges than RFALS (point
cloud extending beyond predicted AGB values > 250 Mg.ha−1 in Figure 3a), but predictions were in
fact much less accurate overall and strongly biased in this upper range.

 Remote Sens. 2020, 12, x FOR PEER REVIEW 9 of 22 

RMSPE of c. 60%) compared to RFALS models based on Spot 6/7 predictors (R2 = 0.6; RMSPE = 48 Mg.ha−1 
and relative RMSPE = 66.5%) 

As model-based approaches provide pixelwise predictions, we can have a detailed look at the 
scatterplots of observed vs. predicted AGB density values in Figure 3 (for the Sentinel 2 sensor), and 
Appendix C & D (Spot 6-7 and Landsat 8 respectively). Concordance between predictions and 
observations was greatly improved, i.e., closer to the 1:1 line, for models calibrated on ALS data relative 
to those calibrated with field data, whereas the spaceborne sensor used seemed to make little difference. 
Predictions were capped around 250 Mg.ha−1 for all RFALS models. At first sight, RFFIELD models seemed 
capable of predictions over slightly higher AGB ranges than RFALS (point cloud extending beyond 
predicted AGB values > 250 Mg.ha−1 in Figure 3a), but predictions were in fact much less accurate overall 
and strongly biased in this upper range.  

Table 4. Structure and performances (R2, RMSPE in Mg.ha−1 and relative RMSPE in %) of the different 
models selected for each spaceborne sensor. Performance metrics are based on 4-fold cross validation. 
Spot 6/7 (S. 6/7), Landsat 8 (L. 8), and Sentinel 2 (S. 2). CSF; canopy shade factor. 

Sensor RFFIELD Models R2 RMSPE Relative 
RMSPE RFALS Models R2 RMSPE Relative 

RMSPE 
S. 6/7 Green + CSF + EVI 0.58 65 90 Red + CSF + LAI 0.62 48.3 66.5 

L. 8 Red + SWIR 2 + SAVI 0.61 64.8 88 
Red + SWIR 2 + Green 

+ fCover + EVI 
0.7 43.1 60 

S. 2 S2REP + SWIR 2 
 + NDVI 2 

0.58 63.2 85 
NDVI 2 + SWIR 2 + IRECI + 

NDVI 4 + Red + NDVI 3 
0.7 42.8 58 

 

Figure 3. Performance of Random Forest (RF) AGB prediction models (RFFIELD: top row; RFALS: bottom row) 
based on Sentinel 2 optical data. (a, d) Heat plots showing the relationships between Lidar-based AGB 
estimates vs. predictions from RFFIELD (panel a) and RFALS (panel d) models. Solid black lines represent the 1:1 
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Figure 3. Performance of Random Forest (RF) AGB prediction models (RFFIELD: top row; RFALS:
bottom row) based on Sentinel 2 optical data. (a,d) Heat plots showing the relationships between
Lidar-based AGB estimates vs. predictions from RFFIELD (panel a) and RFALS (panel d) models.
Solid black lines represent the 1:1 line. Dashed grey lines represent the fit of simple linear models
between observed and predicted AGBs (b,c,e,f). Plots showing the relationships between statistics of
models prediction error (namely the root mean squared prediction error (RMSPE) in red and the mean
signed deviation (MSD) in blue) along the ranges of predicted AGB (panels b & e) and “observed”
LiDAR-based AGB (panels c & f).
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To better characterize the uncertainties of RF models estimates and possible dependence to AGB,
we grouped the mean values of the RMSPE and the MSD (all in Mg.ha−1) into equally sized bins
of 25 Mg.ha−1. We decomposed error and bias along the axes of both predicted and observed AGB.
From a prediction perspective, RFFIELD models lead to a systematic overestimation of AGBALS (MSD
> 0, hence predictions are higher than observations) across the whole predicted AGB range, with
both increasing bias and error towards large AGB values (Figure 3a–c; the diagrams display model
performances for Sentinel 2 predictors). This means that in any predicted AGB bin, average predictions
were both largely inaccurate and imprecise when calibrating extrapolation models with field data,
and all the more so at high AGB values. When binning errors along the observed AGB axis, the story
was a little different, with a hinge point around 200 Mg.ha−1 below which predictions overestimated
observed AGBs (MSD > 0) and above which predictions increasingly underestimated observed AGBs.
RFALS models allowed a near complete bias reduction in predicted AGB values with a MSD close
to zero (Figure 3d,e) along the whole range of predicted AGB values except for the highest values.
In other words, despite considerable scatter, predictions were on average unbiased at the landscape
level across all AGB bins up to about 200 Mg.ha−1. Along the observed AGB axis, error and bias were
distributed similarly to RFFIELD, with a slightly lower hinge point.

To have a better understanding of the implication of the different AGB prediction approaches
outside of training areas, we had a closer look at the distribution of predicted AGB density in the four
blocks used in the 4-fold CV (Figure 4). We first investigated ALS-trained approaches. Using RFALS, (a
model-based approach, based on Sentinel 2 imagery data), we could use the continuous distribution of
biomass predictions. In all folds, but more markedly in the 3rd and 4th folds, the shape of the density
curve diverged from the reference (ALS) curve over the higher range of AGB density values, with
the expected drop around 250 Mg.ha−1. Folds 3 and 4 comprise a much higher proportion of forest
vegetation than the two others (Figure 1c), which explains the difficulty of the model-based approach
to faithfully reproduce de AGB density distribution. At the fold scale however (colored arrows beneath
density plots), the mean predicted AGB density was close (below +/-10%) to the reference ALS value,
except for the 4th fold (+13% difference). This illustrates that a well-trained statistical model, even
with poor per-pixel predictive power, can provide unbiased prediction at the landscape level, at least
as long as the landscape matrix is not too different from the training conditions. The design-based
approach, which does not require any biomass prediction model from optical satellite predictors and
‘blindly’ applies an average LiDAR-based AGB density value to each land cover class, appeared to
perform equally well, with mean AGB densities between -7.2% and +12% of the ALS reference value.

When focusing on specific land cover classes (histogram insets in Figure 4) the model-based
approach, as could be expected, systematically underestimated AGB density relative to LiDAR-based
estimates in the old-growth secondary forest land cover type. The expected opposite trend
(overestimation) at the other end of the biomass gradient, was more subtle in low biomass vegetations
such as woody savanna, with higher overestimations on the 4th fold. Design-based predictors did not
present a systematic bias tendency in any vegetation type.

A similar analysis with models calibrated with AGBFIELD is presented in Appendix E.
Here model-based predictions showed clearly aberrant density curves, and produced fold-level mean
AGB density predictions comprised between +36.6% and +35.4% of the ALS reference. The design-based
approach performed better in three folds, with meant overall AGB density below 12%, but showed a
30.9% bias in fold 3. These variations can be explained by the poor sampling rate (and design) in the
training folds due to the small number of available plots, which results in some large errors in the
estimation of the AGB density of some of the land cover classes (up to 100%).
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Figure 4. Detailed analysis of model-based (Sentinel 2 sensor) and design-based AGB predictions in
each fold and land-cover class, in ALS trained approaches. a = Fold 1; b = Fold 2; c = Fold 3; d = Fold 4.
Density curves show the distribution of Lidar-based AGB (red) and model-based predicted AGB values
(green). The arrows represent the mean AGB density values obtained by the different approaches.
Inset bar plots represent mean AGB density estimates for each vegetation class. AF = agroforest;
DF = degraded secondary forest; OF = old-growth secondary forest; SS = shrubby savanna; WS = woody
savanna; GS = grassy savanna.

4. Discussion

Transitional landscapes cover broad extents in Central Africa, and thus significantly affect the
carbon budget of the continent [54]. Achieving unbiased estimation of carbon stocks and fluxes in
these highly dynamic environments, characterized by mosaics of very different land uses and covers,
is a critical challenge. Major climate change mitigations strategies, such as national greenhouse gas
inventories (MRV-REDD+) or high carbon stock (HCS) approaches, depend on our ability to meet
this challenge.

Despite known limitations, multispectral spaceborne data remain widely used for AGB
extrapolations. A widely held assumption is that Airborne LiDAR scanning (ALS) data ensure
better model calibration, and hence partly compensates signal limitations [14,16,18,55]. Our results
indeed show that model fit and error can be drastically improved, with an R2 of 0.7 and a RMSE
decrease of 30 %, when using a Random Forest model calibrated with AGBALS reference data (RFALS)
instead of field plots (RFFIELD). Predictions of the latter moreover proved highly biased (inaccurate)
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and imprecise along the whole range of AGB densities. Looking closely at the AGB predictions
of RFALS, we can however see that the signal of multispectral data, whatever the sensor, does
not in fact allow accurate AGB predictions in low and high ranges of actual vegetation biomass
(i.e., AGBALS). Indeed, low biomass ranges are systematically overestimated, and high biomass
ranges are underestimated. This behavior has been already evidenced across the tropics [23,56] in
similar studies, highlighting the fact that errors in AGB estimations when using optical signals are
unfortunately still both unavoidable and crippling for large scale wall-to-wall AGB mapping [7]. It is
thus important to better benchmark the values and limitations of optical signals in varying contexts
through landscape-scale studies integrating highly informative ALS data. Here we showed that
improved calibration of spaceborne models by ALS data did ensure unbiased estimation of AGB
overall. In other words, although the signal does not allow accurate predictions of AGB in a given
forest or savanna location, RFALS models still provide accurate prediction of average AGB levels across
the landscape. This is only true, however, inasmuch as the balance between land cover types in the
predicted landscape is comparable to that of the training area. Notably, the underestimation of total AGB
will plummet with the share of land harboring high AGB forests, above the hinge point of saturation of
about 225–250 Mg.ha−1. This threshold ought to be kept in mind in any further applications.

Regarding possible effects of the compromise between spatial and spectral resolution allowed by
different spaceborne sensors, RFALS models based on lower spatial resolution and narrow-wavelength
spaceborne images (i.e., Landsat 8 & Sentinel 2) seemed to perform slightly better than models based
on higher spatial resolution broad-wavelength imagery (Spot 6/7) with a minor decrease of 10% in
RMSPE. Similarly, the variability in the spectral predictors selected by our forward model selection
procedure does not allow being conclusive regarding the relative interest of any given spectral index
over others.

The well-accepted design-based approach, on the other end, provided a simple and accurate
alternative for landscape-level AGB estimation, when trained on a dense sample of ALS data. As a
single AGB value is attributed to each land cover class, this approach does not provide a detailed
intra-class variation map. However, if the model-based approach does provide such a map, it is
unreliable anyways, as we have shown, as long as the available predictors remain poorly correlated to
AGB. It might be better not to lure the user with the pretense of a high-resolution product, when the
estimates are only valid at large scale.

5. Conclusions

We showed that airborne LiDAR-based AGB data can significantly improve the calibration of
prediction models from spaceborne multispectral data, with an error reduction of ~30% compared to
a field-based AGB calibration. It is however crucial to acknowledge that, due to signal limitations,
irrespective of the multispectral sensor and mix of spectral indices used, predictions are only unbiased
at the landscape or regional level, and for land cover conditions similar to the training area. Data from
upcoming new radar-based (BIOMASS, NISAR) and LiDAR-based space missions (GEDI, ICESat-2,
MOLI) are expected to improve our extrapolation capacities by providing both global coverage and
signals with better relationships to vegetation structure [7,57]. However, some of those valuable data
will need spatial interpolation (GEDI or Ice) from optical data or will not be available for long-term
monitoring. Therefore improving the use of optical data will remain an issue. Attributing average AGB
density values to broad land-cover classes (referred to as design-based sampling here) will continue to
remain a valid alternative to obtain regional unbiased AGB estimations.
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Figure A1. (a) Illustration of data sampling within four 40 m × 40 m subplots for each 1 ha forest
plots and (b) scatterplot of field-derived biomass (AGBFIELD, Mg.ha−1) vs. biomass predicted from the
ALS model (AGBALS, Mg.ha−1) in the leave-one-out cross-validation. The solid black line represents
the 1:1 line. AF = agroforest; DF = degraded secondary forest; OF = old-growth secondary forest;
SS = shrubby savanna; WS = woody savanna plots.
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Figure A2. Results of the spatial forward variable selection procedure for RFFIELD model (left column)
and RFALS Models (right column); (a,b) models based on Spot 6/7; (c,d) models based on Landsat
8 predictors; (e,f) models based Sentinel 2 predictors. The red dot marks the last variable leading to a
decrease larger than 1% in model RMSPE.
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Figure A3. Performance of RF AGB prediction models (RFFIELD: top row; RFFIELD: bottom row) based on 
Spot 6/7 optical data. (a, d) Heat plots showing the relationships between Lidar-based AGB estimates vs. 
RFFIELD (panel a) and RFALS (panel d) predictions. Solid black lines represent the 1:1 line. Dashed grey 
lines represent the fit of simple linear models between observed and predicted AGBs (b, c, e, f). 
Scatterplots showing the relationships between statistics of models prediction error (namely the root 
mean squared prediction error, RMSPE, in red and the mean signed deviation, MSD, in blue) along the 
ranges of predicted AGB (panels b & e) and LiDAR-based AGB (panels c & f). 

Figure A3. Performance of RF AGB prediction models (RFFIELD: top row; RFFIELD: bottom row)
based on Spot 6/7 optical data. (a,d) Heat plots showing the relationships between Lidar-based AGB
estimates vs. RFFIELD (panel a) and RFALS (panel d) predictions. Solid black lines represent the 1:1 line.
Dashed grey lines represent the fit of simple linear models between observed and predicted AGBs
(b,c,e,f). Scatterplots showing the relationships between statistics of models prediction error (namely
the root mean squared prediction error, RMSPE, in red and the mean signed deviation, MSD, in blue)
along the ranges of predicted AGB (panels b & e) and LiDAR-based AGB (panels c & f).
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Figure A4. Performance of RF AGB prediction models (RFFIELD: top row; RFFIELD: bottom row) based 
on Landsat 8 optical data. (a, d) Heat plots showing the relationships between Lidar-based AGB 
estimates vs. RFFIELD (panel a) and RFALS (panel d) predictions. Solid black lines represent the 1:1 line. 
Dashed grey lines represent the fit of simple linear models between observed and predicted AGBs (b, 
c, e, f). Scatterplots showing the relationships between statistics of model prediction error (namely 
the root mean squared prediction error, RMSPE, in red and the mean signed deviation, MSD, in blue) 
along the ranges of predicted AGB (panels b & e) and LiDAR-based AGB (panels c & f). 

 

Figure A4. Performance of RF AGB prediction models (RFFIELD: top row; RFFIELD: bottom row)
based on Landsat 8 optical data. (a,d) Heat plots showing the relationships between Lidar-based AGB
estimates vs. RFFIELD (panel a) and RFALS (panel d) predictions. Solid black lines represent the 1:1 line.
Dashed grey lines represent the fit of simple linear models between observed and predicted AGBs
(b,c,e,f). Scatterplots showing the relationships between statistics of model prediction error (namely
the root mean squared prediction error, RMSPE, in red and the mean signed deviation, MSD, in blue)
along the ranges of predicted AGB (panels b & e) and LiDAR-based AGB (panels c & f).
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Figure A5. Detailed analysis of model-based (Sentinel 2 sensor) and design-based AGB predictions in 
each fold and land-cover class, in the case of AGBFIELD trained approaches. a = Fold 1; b = Fold 2; c = 
Fold 3; d = Fold 4. Density curves show the distribution of LiDAR-based AGB (red) and model-based 
predicted AGB values (green). The arrows represent the mean AGB density values obtained by the 
different approaches. Inset bar plots represent mean AGB density estimates for each vegetation class. 
AF = agroforest; DF = degraded secondary forest; OF = old-growth secondary forest; SS = shrubby 
savanna; WS = woody savanna; GS = grassy savanna. 

Figure A5. Detailed analysis of model-based (Sentinel 2 sensor) and design-based AGB predictions in
each fold and land-cover class, in the case of AGBFIELD trained approaches. a = Fold 1; b = Fold 2;
c = Fold 3; d = Fold 4. Density curves show the distribution of LiDAR-based AGB (red) and model-based
predicted AGB values (green). The arrows represent the mean AGB density values obtained by the
different approaches. Inset bar plots represent mean AGB density estimates for each vegetation class.
AF = agroforest; DF = degraded secondary forest; OF = old-growth secondary forest; SS = shrubby
savanna; WS = woody savanna; GS = grassy savanna.
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