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Abstract. We propose a stochastic model for simulating malaria tolerance. The model relates the probability of a
clinical attack of malaria to the peripheral parasite densities via a pyrogenic threshold that itself responds dynamically
to the parasite load. The parameters of the model have been estimated by fitting it to the relationship between incidence
of clinical episodes and the entomologic inoculation rate, using age-specific incidence data from two villages in Senegal
and one village in Tanzania. The model reproduces the shifts in age distribution of clinical episodes associated with
variation in transmission intensity, and in keeping with the data, predicts a slightly higher lifetime number of episodes
in the mesoendemic village of Ndiop than in the holoendemic village of Dielmo. This model provides a parsimonious
explanation of counter-intuitive relationships between the overall incidence of clinical malaria and transmission inten-
sity. In contrast to the theory of endemic stability, recently proposed to apply to P. falciparum, it does not assume any
intrinsic age dependence in the outcome of infection. This model can be used to explore the consequences for predictions
of the effects of different anti-malarial interventions on the incidence of clinical malaria.

INTRODUCTION

The clinical outcome of Plasmodium falciparum malaria
infection can range from an absence of detectable morbidity
to rapid death.1 In naive hosts, symptoms occur before the
first peak of parasitemia, but untreated infections can persist
for many months, with intermittent periods of acute illness. In
malaria-endemic areas of sub-Saharan Africa, exposed
people are subjected to frequent superinfections, and develop
partial immunity that leads to control both of parasite densi-
ties and to reduction in the frequency of clinical episodes.
Malaria morbidity is shifted into older ages as transmission
intensity is reduced. This has been studied intensively in two
villages in Senegal.2,3 In Dielmo, where the annual entomo-
logic inoculation rate (EIR) is estimated to be approximately
200,3,4 almost all episodes are concentrated in the first years
of life. In Ndiop, with an annual EIR of 20,5 there is a sub-
stantial peak shift, with a high incidence in adolescents and
adults. In Ndiop, the EIR was detectable only during the
short rainy season, whereas in Dielmo it was detectable
throughout the year. The published data from Ndiop and
Dielmo do not provide a breakdown of the age-pattern in the
first year of life. In Idete in Tanzania, where transmission
intensity is similar to Dielmo,3,6 the incidence of clinical at-
tacks in the first three months of life is very low, but increased
strongly with age.6 A higher number of lifetime episodes oc-
curred in the lower transmission setting of Ndiop compared
with Dielmo (even assuming the same life expectancy), a pat-
tern seen elsewhere.7 To predict the potential impact of in-
terventions that affect parasitemia, mathematical models are
needed that predict not only the likely incidence of infections
but also how frequently these will result in clinical episodes of
malaria.

There is abundant evidence that most clinical episodes are
caused by newly inoculated genetically distinct parasites.8,9

One proposed model is that parasite populations are struc-
tured into a limited number of strains, each stimulating long-

term clinical immunity.10,11 However most analyses of the
population biology of P. falciparum have concluded that
there is frequent genetic exchange,12–15 many malaria anti-
gens are extremely polymorphic,16–18 cross-protection is
clearly important, and natural immunity to the immunodomi-
nant epitopes is not necessarily lifelong.19–21

The adequate modeling of all these complex immunologic
phenomena represents a major challenge. However epide-
miologic analyses of the tolerance of parasites can be used to
predict the likelihood of clinical episodes as a function of
densities of peripheral parasitemia without explicitly consid-
ering how those densities occur.22–25 In a study carried out in
Dielmo, where parasitemia was assessed twice weekly Rogier
and others estimated well-defined pyrogenic thresholds for
different ages of human host.24 We have now further ana-
lyzed these data to derive predictions of the thresholds as
functions of recent levels of parasitemia, rather than of the
age of the host. We have linked these predictions to a sto-
chastic model that predicts parasite densities in endemic areas
as a function of the pattern of transmission26,27 and fitted the
model for the incidence of clinical episodes to field data from
different epidemiologic settings in Ndiop, Dielmo, and Idete.
The resulting model enables us to predict, for a wide range of
malaria transmission settings, the occurrence of clinical epi-
sodes and to assess the likely effects of interventions on the
incidence of clinical attacks.

MATERIALS AND METHODS

Model for parasite densities. The starting point for our
model for the incidence of clinical malaria is an individual-
based stochastic simulation model for P. falciparum parasi-
tology.26,27 This model makes predictions of the parasite den-
sity for each member of the simulated population using a
five-day time step, with the seasonal pattern of the EIR as
input. The parasite densities are sampled from log normal
distributions. We compared the observed parasitologic data
to the predictions of this model for the Ndiop and Dielmo
transmission patterns3,5 to evaluate its appropriateness as a
basis for the predicting clinical episodes in this setting.

Model for clinical malaria episodes. The parasitologic simu-
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lation includes stochastic variation between individual hu-
mans in average parasite densities and also stochastic varia-
tion around that average.26 We model clinical immunity as a
function of these stochastically varying parasite densities, and
of a set of five parameters that are independent of the indi-
vidual and of the transmission setting.

To predict the clinical outcome, for each five-day time step
we draw five independent samples from the simulated para-
site density distribution for each concurrent infection (to
simulate potential daily changes in morbidity status) and con-
sider only the maximum, Ymax(i,t), of the simulated densities
to determine whether a clinical episode occurred. When the
host is infected by several concurrent infections it is likely that
one of these contributes the bulk of the parasite load, so it is
logical to define Ymax(i,t) as the maximum over all infections.

A simple model is to assume that for each host there is a
specific parasite density, or pyrogenic threshold, at which
symptoms (e.g., fever) are triggered. Rogier and others24 con-
sidered a cohort of the inhabitants of the holoendemic village
of Dielmo, Senegal and fitted a step function to the probabil-
ity of fever as a function of parasite density. The parasite
density at which the step occurs corresponds to the pyrogenic
threshold, which was shown to vary with age.

In general, it is not realistic to assume that all individuals of
the same age will have exactly the same pyrogenic thresh-
old,28–31 so it is more reasonable to expect a sigmoidal rela-
tionship between the risk of fever and the parasite density
than a step function. We therefore propose a model in which
the probability that an episode occurs in individual i, at time
t, is related to the parasite density via a function of the fol-
lowing form:

Pm�i,t� =
Ymax�i,t�

Y*�i,t� + Ymax�i,t�
(1)

where Y*(i,t), the pyrogenic threshold for individual i at time
t, is defined as the parasite density at which the probability of
a clinical episode reaches 0.5, and Ymax(i,t) is the maximum
density during the time interval t (note that we present only
the formulae for our final choice of models).

The age pattern in the pyrogenic threshold in Dielmo, to-
gether with data derived from other study sites,29,32,33 sup-
ports the idea that the density of parasites required to stimu-
late acute pathology is higher in individuals who have been
recently exposed to high parasite densities. This may be a
result of stimulation of immune responses to toxins released
at schizogony, and very likely involves physiologic tolerance
of cytokines.34 The mechanism must be consistent with both
rapid acquisition and rapid loss of tolerance and cannot be a
simple function of antibody against toxin, which have a com-
pletely different age-pattern from that of the pyrogenic
threshold.35

We model the dynamics of the pyrogenic threshold with a
function of the form

dY*�i,t�
dt

= f1�Y�i,t�� f2�Y* �i,t�� − �Y* �i,t� (2)

where f1(Y(i,t)) is a function describing the relationship be-
tween accrual of tolerance and the parasite density Y(i,t);
f2(Y*(i,t)) describes saturation of this accrual process at high
values of Y*, and the term �Y*(i,t) leads to decay of the
threshold with first-order kinetics. The decay ensures that the

model conforms to the epidemiologic evidence suggesting
that parasite tolerance is short lived.

We define the function f1(Y(i,t)) in such a way as to ensure
that the stimulus is not directly proportional to Y but rather
that it asymptotically reaches a maximum at high values of Y,
using

f1�Y�i,t�� =
�Y�i,t�

Y*1 + Y�i,t�
(3)

To ensure saturation of the accrual process, we require that at
high values of Y*, a higher parasite load is required to achieve
the same increase by defining

f2�Y* �i,t�� =
1

Y*2 + Y*�i,t�
, (4)

Overall therefore we propose the following dynamics for Y*:

dY*�i,t�
dt

=
�Y�i,t�

�Y*1 + Y�i,t�� �Y*2 + Y*�i,t��
− �Y*�i,t� (5)

where � Y*1 , and Y*2 are constants to be estimated. To com-
plete the specification of the model, we set the initial condi-
tions to be Y* (i,0) � Y*0 at the birth of the host, thus defining
a further parameter Y*0 .

Data sources. We fitted the model for acute episodes to two
distinct datasets. The first was published data on the age pat-
tern of clinical episodes in the villages of Ndiop and Dielmo
in Senegal.2 The village populations were visited daily to de-
tect and treat any clinical malaria attacks (with quinine).
Thus, effectively all acute episodes were thought to be treated
in these villages. In the simulations of Dielmo and Ndiop we
assumed that there had been no treatment of clinical malaria
prior to the start of the follow-up period. To ensure that the
analysis remains tractable, we approximate the patterns of
transmission with recurring annual cycles (although there was
variation between years in the predominant vectors and sea-
sonality of transmission).

We also compared the predicted patterns from the simula-
tion model for P. falciparum parasitology with those from
parasitologic surveys in these two villages to evaluate its ap-
propriateness as a basis for the predicting clinical episodes in
this setting. In Dielmo, two thick blood smears were prepared
per week for each individual from May 29, 1990 to September
30, 1990. In Ndiop, one thick blood smear was prepared per
week for each individual from July 15, 1993 to January 15,
1994 and one per month from January 2, 1994 to July 15, 1995.
Slides were only declared negative after 200 high-power fields
had been scanned for parasites. Parasite densities were origi-
nally expressed as the parasite:leukocyte ratio. To adjust
these densities to the same scale as that used in fitting the
simulation model to other datasets, the parasite:leukocyte ra-
tios were then multiplied by a factor of 1,416 to give a no-
tional density in parasites/microliter of blood.26

The model was fitted to a second dataset of age-incidence
rates for clinical malaria in infants less than one year of age
recorded at the health center in the village of Idete, Tanzania
from June 1993 to October 1994.6,25 These data were included
to estimate the initial conditions (the value of Y*0) and to
ensure that the model predicts the age pattern of acute epi-
sodes that is actually observed in infants. For the Idete data
we used the case definitions and age groups in the paper by
Vounatsou and others25 and the annual pattern of inocula-
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tions reported by Charlwood and others36 as input. We as-
sume a common value of Y*0 across all sites and therefore
require data for infants from only a single transmission set-
ting.

Implementation and fitting of the simulation model. To ob-
tain estimates of the five parameters �, �, Y*0 , Y*1 , and Y*2 we
fitted the model to the age-pattern of clinical malaria in all
three villages (i.e., Ndiop and Dielmo in Senegal, and Idete in
Tanzania) and simultaneously to the pyrogenic thresholds for
Dielmo estimated by Rogier and others24 (Table 1).

For Dielmo and Ndiop we further predicted parasite den-
sities for a sample of 10,000 individuals over a 10-year period
drawn from the age-groups of interest. For Idete, where we
were concerned only with infants less than one year of age, we
used a sample size of 2,000. In each village we assumed a
typical sub-Saharan African age-distribution taken from the
demographic surveillance area that includes Idete.37

Simulated clinical episodes of malaria occurred with prob-
ability Pm(i,t), which was dependent on both the simulated
maximum density and the current value of Y*(i,t) for each
individual and each five-day time point in the 10-year follow-
up period. In the simulations of Ndiop and Dielmo we simu-
lated effective treatment of all clinical episodes within the
five-day period in which they occurred. In the simulation of
Idete we assumed that some proportion, Pt, of the episodes
were effectively treated (i.e., the parasites were cleared within
the course of one time interval), and that this proportion
corresponded to the proportion of episodes reported to the
village dispensary. In Idete village, simulated episodes occur-
ring within 30 days of a preceding episode were not counted
(these have been registered in the surveillance system as re-
crudescence, rather than new episodes). In Ndiop and Dielmo
this restriction did not hold.38

For each simulated individual in each village the model
thus predicted the incidence of clinical malaria as a stochastic
function of the inoculation rate. These incidences were sum-
marized over age groups and compared with the published
values.2,25 Similarly, the model predicted the pyrogenic
threshold, Y*(i,t), at each time point for each individual. The
geometric mean of these values was calculated for each age
group in the simulation of Dielmo village, and the logarithms
of these values compared with the logarithms of the age-
specific pyrogenic thresholds estimated by Rogier and oth-
ers.24 Simulated annealing39,40 was used to identify the pa-
rameter values that minimized the residual sum of squares
summed over all three villages and both outcomes for Di-
elmo. The Fisher information estimated from a least squares
quadratic fit to the residual sum of squares was used to give
approximate confidence intervals.

RESULTS

The parameter estimates are given in Table 1. Our model
was able to reproduce the age incidence patterns very well
considering that only five parameters were fitted across three
datasets (Figure 1).

The value of �, estimated as 2.5/year, implied that in the
absence of stimulation, the pyrogenic threshold decays with a
half life of 0.33 years. The predicted total numbers of episodes
up to age 60 were 56 for Ndiop (EIR � 20) and 53 for Dielmo
(EIR � 200) compared with the published overall incidence
of clinical malaria cumulative numbers of episodes up to the
age of sixty of 62 and 43, respectively.2 In the simulations of
both villages the age of peak incidence was a little younger
than in the data predicted incidence and incidence was rather
lower in the youngest individuals than the observed values,
and higher in adults. The extent of the peak shift was similar
in the model to the data.

Although the model was not fitted to the patterns of age
prevalence and of age density in Dielmo or Ndiop, it does
make predictions of these quantities, which we could there-
fore compare with the observed curves. The predicted age-
prevalence curve for Dielmo was very similar to that observed
(Figure 2a), as were the predicted geometric mean densities in
children in that village (Figure 3a). In adults the model pre-
dicted rather higher densities than those observed in Dielmo,
while for adults in Ndiop the model predicted higher preva-
lence in adults (Figure 2b) but lower densities (Figure 3b)
than those observed. This would be expected if the burden of
malaria is concentrated in a smaller proportion of individuals
in Ndiop than in the dataset to which the parasitologic model
was fitted. A reasonably good fit was obtained for the average
pyrogenic threshold, but the model did not give a very good
fit to the age-trend in Y*(i,t), predicting that the peak was at
a greater age than the estimates of Rogier and others24 (Fig-
ure 4).

DISCUSSION

Our model can reproduce the patterns of the age-specific
incidence of acute episodes from the three transmission set-
tings. In particular, we were able to reproduce both the shape
of the age-specific incidence curves and total the lifetime in-
cidence of acute episodes for sites with very different trans-
mission intensities with a model with only five parameters.
Within this model, the higher incidence of clinical attacks in
older individuals in Ndiop than in Dielmo arises both because
of lower immunologic control of asexual blood stages and less
clinical tolerance.

TABLE 1
Parameter estimates from the best fitting model*

Parameter Meaning of parameter Estimate 95% confidence interval

� Factor determining increase in Y*(i,t) 143,000 parasites2 �L−2 day−1 103,000–197,000
� Decay rate of pyrogenic threshold 2.5 year−1 2.1–3.0
Y0* Pyrogenic threshold at birth 296.3 parasites/�L 3–30,000
Y1* Critical value of parasite density in determining increase in Y* 0.60 parasites/�L 0.17–2.13
Y2* Critical value of Y*(i,t) in determining increase in Y*(i,t) 6.5 × 103 parasites/�L 5.2 × 103–8.2 × 103

Pt Compliance in Idete (proportion of episodes detected and treated) 0.36 0.27–0.48
* The residual sums of squares for the three datasets were 0.2 (Idete), 4.4 (Ndiop), and 3.4 (Dielmo), computed from 4, 22, and 22 distinct age groups, respectively (corresponding to 43 residual

degrees of freedom. The residual sum of squares for the pyrogenic threshold for Dielmo was 3.3.
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This good fit was obtained despite the use of a parasitologic
model that only crudely reproduces within-host parasite dy-
namics, since we fitted it to cross-sectional data.26 Day-to-day
variation in parasite densities may be critical in determining

levels of tolerance, and our model, based on five-day time
steps, did not aim to simulate this accurately. This may ex-
plain why the density of patent parasitemia did not appear to
be very important, and may also be the explanation of why we

FIGURE 2. Parasite prevalence. a, Dielmo. Points and error bars show prevalence of patent parasitemia and 95% confidence intervals
determined in surveys from 1990 to 1994. Continuous line � model predictions. b, Ndiop. Points and error bars show prevalence of patent
parasitemia and 95% confidence intervals determined in surveys from 1990 to 1994. Continuous line � model predictions. Prevalence is assessed
as the proportion of individuals with parasite density (simulated or observed) above the actual level of detection used in the field study.

FIGURE 1. Age incidence curves. a, Idete, Tanzania. �––� � measured incidence of clinical malaria at health center; thick line � model
prediction for overall incidence of clinical malaria; □––□ � model prediction for incidence of clinical malaria at health center. b, Ndiop and
Dielmo, Senegal. Thin black line � observed incidence of clinical malaria in Ndiop; thin gray line � observed incidence of clinical malaria in
Dielmo; thick black line � model prediction of incidence of clinical malaria in Ndiop; thick gray line � model prediction of incidence of clinical
malaria in Dielmo.
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could not obtain a better fit for the age-pattern of the pyro-
genic threshold. It is possible that the important variations in
density and levels of tolerance are much more rapid than our
model could capture, especially if they involve physiologic
tolerance of cytokines.34

The relatively poor prediction of parasite prevalence and
density in adults in Ndiop is possibly because the model as-
sumes the degree of within-village heterogeneity in transmis-
sion to be the same in each village. Focality of transmission
leads to lower prevalence, but higher densities in those who
are infected, because of increased levels of superinfection.
Based on these criteria, transmission in Ndiop appears to be
more focal than that in the villages to which we fitted the
parasitologic model.26 Within our model effects of focal trans-
mission on incidence of clinical episodes should be only of
secondary importance because there is little interaction be-

tween concurrent co-infections. Thus, at any given level of
immunity the incidence of clinical episodes depends primarily
on the overall force of infection and not on how the infections
are distributed between individuals.

It was not possible to obtain a better fit for infants in Ndiop
because the number of infection events predicted for this age
group by our model of infection27 is less than the number of
clinical episodes. We have assumed all episodes are immedi-
ately treated so that no more than one episode can occur for
any one infection event, but this was not necessarily always
the case. We assumed mosquito biting to be proportional to
body surface area, using Tanzanian anthropometric data to
estimate age-specific surface areas.41 Different patterns of hu-
man growth or mosquito behavior may account for some of
the discrepancies. Selection effects that might arise because of
differential mortality of susceptible individuals are an addi-
tional factor that we did not take into account.

Our model assumes particular functional forms for the re-
lationships between the pyrogenic threshold and the risk of
clinical episodes and the pyrogenic threshold and the parasite
density itself. Exploratory analyses indicated that the fitted
age-incidence relationships are not very sensitive to the exact
functional forms used for these relationships. Empirical rela-
tionships between parasite density and risk of illness depend
on how the cases are detected. In the studies in Senegal par-
asitemia and fever were monitored daily, so episodes were
generally detected early and this may account for the abrupt
pyrogenic thresholds reported by Rogier and others.24 More
usually, fever cases are detected when they report to a health
facility, as in the study in Idete.6 The arrival of the cases at the
health facility is at varying intervals after the beginning of the
episode and this tends to blur the relationship between fever
risk and parasite density. If fever episodes are detected at
household visits, which are carried out at intervals of more
than a few days at times that are unrelated to the onset of
disease, then the relationship between parasite densities and
fever risk is weaker (e.g.,22,42).

FIGURE 4. Pyrogenic threshold in the village of Dielmo, Senegal.
Filled circles � the pyrogenic threshold (Y × a) by age in Dielmo
(results of Rogier and others24). Line � model prediction.

FIGURE 3. Geometric mean parasite densities a, Dielmo. Points and error bars show geometric mean and 95% confidence intervals of densities
of patent parasitemia determined in surveys from 1990 to 1994. Continuous line � model predictions of the geometric means. b, Ndiop. Points
and error bars show geometric mean and 95% confidence intervals of densities of patent parasitemia determined in surveys from 1990 to 1994.
Continuous line � model predictions of the geometric means.
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In areas endemic for P. falciparum malaria, the incidence of
clinical attacks is highly age dependent, with the peak inci-
dence occurring at younger ages the higher the transmission.
Such peak shifts are not only characteristic for malaria but
also for many other infectious diseases.43 A superficially simi-
lar shift is also seen in patterns of age prevalence for P. fal-
ciparum,44 but the peak in prevalence is generally reached at
an older age than that of acute morbidity. Unlike the pattern
for clinical episodes, reduction in transmission is associated
with reduction in infection prevalence over almost all of the
age range, (although in some age groups there may be a small
increase). The peak shift in clinical attacks is more pro-
nounced than that in prevalence, and the incidence of acute
malaria attacks in older children and adults can be substan-
tially greater at low transmission levels than at high ones
(Figure 1).

The observation that reduction in transmission may lead to
an increased incidence of disease in P. falciparum has been
attributed to the phenomenon of endemic stability observed
with many veterinary pathogens.45 For endemic stability to
occur there must be at least two processes accounting for the
age-incidence curves, one leading to an increase in incidence
with age in the youngest age groups, and the other to a de-
creasing incidence in older individuals. Coleman and others45

suggest that the first of these conditions must be satisfied by
a worsening of the outcome of infection with age over at least
part of the age range. Our model demonstrates that this as-
sumption is not necessary, for we explain the initial increase
in morbidity with age as a consequence of increase in expo-
sure to mosquitoes as the host grows in body surface area.27

Idete, Dielmo, and Ndiop are all villages with stable endemic
P. falciparum. Although Ndiop is an example of mesoende-
micity, contrasting with the holoendemic transmission in
Idete and Dielmo, it still experiences a much higher EIR than
areas of unstable transmission. The theory of endemic stabil-
ity therefore needs adapting for the analysis of the case of
endemic malaria.

We propose to use the sub-model of equations 1–5 as part
of a comprehensive model for examining the likely conse-
quences of a wide range of interventions, including vaccina-
tion. The incidence of acute illness is only one of these con-
sequences, which can include severe life-threatening disease,
chronic anemia, and indirect mortality. Even an intervention
that leads to an increase in the incidence of uncomplicated
illness in some age groups might lead to a reduction in mor-
tality or severe disease. We know that parasite tolerance and
anti-parasitic immunity have different dynamics, and conjec-
ture that they make differential contributions to uncompli-
cated and severe disease, respectively.
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