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ABSTRACT

Motivation: Microarray experiments that allow simultaneous

expression profiling of thousands of genes in various conditions

(tissues, cells or time) generate data whose analysis raises difficult

problems. In particular, there is a vast disproportion between the

number of attributes (tens of thousands) and the number of

examples (several tens). Dimension reduction is therefore a key

step before applying classification approaches. Many methods have

been proposed to this purpose, but only a few of them considered a

direct quantification of transcriptional interactions. We describe and

experimentally validate a new dimension reduction and feature

construction method, which assesses interactions between expres-

sion profiles to improve microarray-based classification accuracy.

Results: Our approach relies on a mutual information measure that

exposes some elementary constituents of the information contained

in a pair of gene expression profiles. We show that their analysis

implies a term that represents the information of the interaction be-

tween the two genes. The principle of our method, called FeatKNN, is

to exploit the information provided by highly synergic gene pairs to

improve classification accuracy. First, a heuristic search selects the

most informative gene pairs. Then, for each selected pair, a new fea-

ture, representing the classification margin of a KNN classifier in the

gene pairs space, is constructed. We show experimentally that the

interactional information has a degree of significance comparable to

that of the gene expression profiles considered separately. Our

method has been tested with different classifiers and yielded signif-

icant improvements in accuracy on several public microarray

databases. Moreover, a synthetic assessment of the biological signif-

icance of the concept of synergic gene pairs suggested its ability to

uncover relevant mechanisms underlying interactions among various

cellular processes.

Contact: hanczar_blaise@yahoo.fr

Supplementary information: Complementary results can be found

on the companion website at http://featknn.nutriomique.org

1 INTRODUCTION

Most cellular processes need to accommodate concomitantly

various types of solicitations, related either to the specificities of

a particular cellular state, or to variations of the parameters of

the intra- or the extracellular environments. Complex regulatory

mechanisms are therefore integrating internal demands,

environmental fluctuations as well as various extracellular

signals (e.g. growth factors, mediators, hormones, other auto-

crine and paracrine signals, etc.), and initiate specific adaptive

processes to maintain the metabolic homeostasis of the cell and

to assure its systemic role in the organism. In this article, we

propose an original approach designed to capture synergic

interactions between cellular processes from the information

encoded in the gene expression profiles, to improve the accuracy

of the classification of microarray experiments. We investigate

the feasibility and the potential advantages of considering gene

information interactions in the very phase of dimension

reduction. We show that pairs of genes with a high discrimina-

tion power need not include genes that are both individually

discriminant. Therefore, a feature reduction method that does

not consider interactions explicitly is likely to miss such useful

pairs. Figure 1 illustrates this situation. Genes Hsa.1221 and

Hsa.9025 are used to discriminate between two classes

(control subjects and patients affected by colon cancer),

represented by black and white dots, respectively. Expression

of gene Hsa.1221 is very useful for discrimination, as it appears

from the presence of a large proportion of white dots between

the values �0.5 and 2. This is not the case of gene Hsa.9025:

the values of the samples in both classes are spread over the

whole range of expression levels. A standard feature selection

method is likely to consider only the first gene as relevant for the

classification. However, as Fig. 1 suggests, the association of

these two genes may improve significantly the discrimination

between the two classes.
We devised an original approach that computes the mutual

information contained in the gene expression profiles to

identify gene pairs showing the strongest synergies, and then

used them to improve the accuracy of microarray experiments

classification. We point out that such synergic interactions

capture a biological information which is contextually relevant.
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2 RELATED WORK

There is a vast amount of work on gene reduction methods to

improve microarray data classification. Widely used, the scoring

approaches take an individual perspective by computing for

each gene a relevance score, depending on how well the

gene distinguishes the examples of different classes. A good

review of this kind of approaches is provided by Ben-Dor

(Ben-Dor et al., 2000). These methods are useful for microarray

data because they are fast (linear complexity with the number of

dimensions). However, they can only evaluate the relevance of

genes with respect to the class, but cannot discover redundancy

and basic interactions among genes. For this reason, the most

competitive methods are multivariate ones that rely on groups

of genes (i.e. the selection of a specific gene depends on the

others), instead of considering each gene individually.

Researchers assume generally that a good gene subset is one

that contains genes that are highly correlated with the class, yet

uncorrelated among them. Based on this idea, several selection

methods have been developed. For example, MRMR

(Maximum Relevance, Minimum Redundancy) (Ding and

Peng, 2003) uses mutual information to select genes with

maximum relevance and minimal redundancy. ProGene

(Hanczar et al., 2003) reduces redundancy by building new

features from subsets of similar genes. In a recent work,

Dai et al. (2006) have carried out an extensive study to compare

three reduction methods, including partial least square (PLS).

PLS builds new features corresponding to components that

maximize the covariance between the variables and the class.
Other types of approaches aim to improve microarray

classification by integrating available a priori biological knowl-

edge about gene interactions. In this category, Rapaport et al.

(2007) have recently proposed an original method, which

integrates KEGGmetabolic interaction networks into a spectral

decomposition of gene expression profiles to derive a

classification algorithm. Whenever available, this type of data

integration should be used to improve any of the gene selection

approaches mentioned above.
Most of the available dimension-reduction methods do not

take into account explicitly the interactions among genes,

although some proposals of using pairwise gene interactions do

exist. Bo and Jonassen (2002) evaluate the gene pairs by

computing the projected coordinates of each example on the

axis of the diagonal linear discriminant in the gene-pair space.

The score is the two sample t-statistic on the projected points.

Geman et al. (2004) do not use the expression value, but the

expression rank of the genes. The pair score is computed from

the probability that the expression rank of the first gene of the

pair is higher than that of the second one, in each class. Their

experimental results confirm the claim that class prediction can

be improved using pairs of genes. In this article, we propose to

identify strongly interacting genes and systematically exploit

these pairs of synergies to improve the classification accuracy

and the biological significance of the results.

3 DECOMPOSITION OF GENE PAIR
INFORMATION

Let us first recall some definitions concerning mutual

information (Shannon, 1948). The entropy H(X) of a variable

X, which can take m values {x1, . . . , xm}, each value xi with a

probability p(X¼ xi), is defined as follows:

HðX Þ ¼ �
Xm

i¼1

pðX ¼ xiÞ log pðX ¼ xiÞ

The following propriety about entropy holds for any pair of

stochastic variables X and Y:

HðX;Y Þ ¼ HðY;XÞ ¼ HðXjY Þ þHðY Þ

The mutual information I(X,Y ) is a measure of the

dependency between two variables X and Y:

IðX;Y Þ ¼ HðX Þ �HðXjY Þ ¼ HðY Þ �HðYjX Þ ¼ IðY;X Þ

The following propriety about information holds for any pair

of stochastic variables X and Y:

0 � IðX;Y Þ � infðHðX Þ;HðY ÞÞ

Unlike the second order mutual information, the third order

mutual information can be either positive or negative. The

mutual information between three variables (X, Y, Z) is defined

as follows (Matsuda, 2000):

IðX;Y;ZÞ ¼ �HðX;Y;Z Þ þHðX;Y Þ þHðX;Z Þ þHðY;ZÞ

�HðX Þ �HðY Þ �HðZ Þ

In the case of microarray-based classification, the mutual

information between a gene Gi and a class C represents the

information that the gene provides to classify. The higher

the mutual information, the more informative the gene.

For reasons of tractability and simplicity, expression levels are

often discretized. The most straightforward and widely used

approach relies on a histogram-based technique (Butte and

Kohane, 2000). The data is partitioned into equal-width discrete

bins, and the equations above may be used. The mutual

information I(Gi, C) can be expressed as follows:

IðGi;C Þ ¼ HðC Þ �HðCjGiÞ

Fig. 1. Example of synergy between two genes. The plot shows the

expressions of genes Hsa.9025 and Hsa.1221 from the colon cancer

dataset. White dots represent sick patients and black dots normal

controls. The association of the two genes clearly distinguishes the two

conditions.
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According to the above formula, the mutual information

between a gene Gi and the class C can be seen as the reduction

of the class entropy caused by the knowledge of Gi. In the same

way, we define the mutual information between the class C and

a pair of gene {GiGj} formed by the two genes Gi and Gj:

IðGiGj;C Þ ¼ IðGi;C Þ þ IðGj;C Þ � IðGi;Gj;C Þ ð1Þ

Formula (1) can be proved by the following argument. The

left-hand side of (1) can also be written:

IðGiGj;CÞ ¼ HðCÞ �HðCjGi;GjÞ ¼

¼ HðCÞ �HðGi;Gj;CÞ þHðGi;GjÞ

By introducing the terms H(Gi, C), H(Gj, C), H(Gi), H(Gj)

and H(C), we obtain:

IðGiGj;C Þ ¼ �HðGi;C Þ þHðGiÞ þHðC Þ

�HðGj;C Þ þHðGjÞ þHðC Þ

�HðGi;Gj;C Þ þHðGi;GjÞ þHðGi;C Þ

þHðGj;C Þ �HðGiÞ �HðGjÞ �HðC Þ

¼ IðGi;C Þ þ IðGj;C Þ � IðGi;Gj;C Þ

Formula (1) shows that the information of a gene pair is the

sum of the information of the first gene, the information of the

second gene, and the third order mutual information between

Gi, Gj and C. This last term represents the information provided

to the classification by the association of the two genes. We call

this term the interaction, which can be either positive or

negative. In the case of a positive interaction, the information

of the gene pair is lower than the sum of the information of the

two genes. In this case part of the information provided by the

genes is similar, and therefore we may speak of redundancy

between the two genes. On the contrary, when the interaction is

negative the information of the gene pair is higher than the sum

of the information of the two genes, which means that the

association of the two genes provides new information.

We speak then of synergy between the genes (Jakulin and

Bratko, 2003). In the example of Figure 1, the information

contained in the expression of gene Hsa.1221 is 0.20, whereas it

is 0.03 for gene Hsa.9025, and �0.27 for their synergic

interaction. The information of the pair formed by these two

genes is 0.50¼ 0.20þ 0.03�(�0.27).
It should be underlined that the mutual information is

computed from the probability distributions of the gene

expression (Steuer et al., 2002). However, because the real

probabilities are unknown, as they are only estimated from

limited data, we have conducted a set of experiments (details of

these experiments can be found on the companion website),

which shows that the mutual information is accurate enough to

identify the most informative pairs of genes.

4 REDUCING DIMENSIONALITY USING
SYNERGIES

In this section, we will describe a new dimension reduction

method, called FeatKNN, based on the use of synergic pairs of

genes. The most informative gene pairs are identified using

a sequential forward search (SFS) procedure. Then, for each

gene pair, a new feature, which summarizes the information
contained in the pair, is constructed.

4.1 The search for the most informative pairs of genes

The naive approach to finding informative pairs of genes

consists in computing the mutual information with respect to

the class of all the N(N�1)/2 different pairs, where N is the
number of genes, and then selecting the p best ones. However,

this approach has a complexity O(N2); in the context of
microarray data, where the number of genes is of the order of

several thousands, this solution is often computationally
infeasible. But, even in the case where the complexity may

not be a problem, there are two more reasons why this simple
approach might be unsuitable. The first is that we would like to

select pairs that not only provide high information for the
classification, but which provide an information superior to the

one brought by the single genes (i.e. the genes should interact
negatively). In fact, only those genes that satisfy this property

are interesting in the context of this work, which is based on the
assumption (grounded on biological findings) that synergic

gene interaction is important for improving classification.
The second reason is that correlated attributes usually

provide duplicated (redundant) information; in learning, it is

well known that it is preferable to exploit as diverse and
independent sources of information as possible. Preliminary

experiments showed that in some rare cases a dataset may
contain an exceptionally informative gene, such that it forms a

‘good’ pair when coupled with a large number of the other

genes. This situation is undesirable, and we want to avoid it.
In order to face the above problems, we propose in this

article a simple search algorithm, guided by a powerful

heuristics, which allows the p most informative pairs of genes
to be found with a complexity O(pN). The search proceeds as

follows: in the beginning, the mutual information I(Gi,C)
between each single gene Gi and the class C is computed, and

the most informative gene Gi � is selected. Then, the mutual
information IðGi �Gj;CÞ, between the class and each pair of

genes which include the gene Gi � , is computed. The gene pair
ðGi �Gj � Þ that maximizes IðGi �Gj;CÞ is selected, and the genes

Gi � and Gj � are removed from the list of genes to be analyzed.
This procedure is iterated p times to obtain p pairs of genes. The

deletion of the selected genes from the list of the available ones
is motivated by the goal of eliminating the redundant pairs

mentioned earlier.

4.2 Feature construction from gene pairs

For each of the p informative gene pairs (GiGj), a new feature

Ai, j is constructed. The idea is the following one: the higher the
difference between the densities of the classes around a point,

the higher the probability that this point belongs to the higher
density class. The value of the new feature is the difference

between the local densities of the classes.
More precisely, let E¼ {e1, . . . , eM} be a set of M instances,

each belonging to one of the two classes {Ca ,Cb}. From an
informative pair of genes (GiGj) we construct a new feature Ai, j

as follows: the instances in E are projected onto the two-
dimensional space defined by the expressions of G1 and G2. We

have to define the value Ai, j (x) of the feature Ai, j for every
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point x of this space. The probabilities pa(x) and pb(x) at point

x belongs either to class Ca or to class Cb, respectively, can

be approximated by using the k-nearest neighbors of

x : paðxÞ � naðxÞ=k and pb(x)� 1� pa(x), where na(x) is the

number of points belonging to class Ca among the k-nearest

neighbors of x. The value of the new feature Ai, j at the point x

is the difference between pa(x) and pb(x):

AðxÞ ¼ paðxÞ � pbðxÞ �
naðxÞ

k
� ð1�

naðxÞ

k
Þ

¼ �1þ 2
naðxÞ

k

The values of the new feature are between �1 and þ1. When an

instance is close to intances belonging to class Ca (respectively,

Cb), the feature tends to þ1 (respectively, �1).
It should be underlined that the definition of this new feature

is the same as the margin defined by Shapire for the voting

methods in machine learning (Schapire et al., 1997). The new

feature, that we have defined, represents the classification

margin of the k nearest neighbor classifier in the space of the

gene pairs.

5 RESULTS AND DISCUSSION

In order to test the effectiveness of the proposed method, an

experimental study was designed and set up to answer the

following questions: is our selection heuristic adapted to find

informative pairs of genes? What is the amount of information

contained in the interaction compared to that of the individual

genes? Is our feature construction method effective for

synthesizing the information contained in a pair of genes?

Does FeatKNN improve classification accuracy?

Six public datasets are used in these experiments, their

characteristics are described in Table 1.

5.1 Identification of the most informative pairs of genes

Our method is based on the identification of the most

informative gene pairs that is performed by SFS procedure.

The choice of this SFS has been based on the assumption that

the most informative pairs of genes include at least one of the

most informative gene. To validate this assumption, we exam-

ined the rank of the genes forming the best pairs. We defined

a ranking of the genes based on their mutual information with

the class. The gene with the highest mutual information has

rank 1, and the one with the lowest mutual information has

the lowest rank. In the same way, we compute the mutual

information between the class and all gene pairs, and we

defined a ranking of the gene pairs. Notice that here we do not

select the best pairs using the SFS procedure, but we compute

the mutual information for all exclusive pairs of genes. A figure

on the companion website shows the average rank of the two

genes forming the most informative gene pairs. It shows that

the first genes of the best pairs were among the top informative

genes, while the second genes have a much higher rank. For

example, the two genes forming the 50 best pairs have on

average rank 58 and 209, respectively. The same results were

observed on the other six datasets which are described in the

Table 1.

The observation of the values of the mutual information of

the genes and pairs of genes leads to the conclusion that all the

best pairs include, on average, a highly informative gene. This

observation validates our assumption for microarray data.

Also, this suggests a positive answer (from an empirical point of

view) to the second question regarding the ability of our

heuristic to find highly informative gene pairs. It also indicates

the usefulness of this heuristic choice for selecting pairs, which

are formed starting from the gene with the best rank. It should

be underlined that standard feature selection methods, dis-

regarding interactions, may miss many useful pairs, as it was

already said in the introduction.

5.2 Analysis of the most informative pairs

Our assumption is that the explicit account of the synergic

interaction between genes may improve classification accuracy.

To validate this assumption we computed, for each dataset, the

information of all genes and all gene pairs; both genes and gene

pairs have been ordered according to increasing rank. Figure 2

shows the decomposition of the information of the 100 best

gene pairs of the six datasets. It can be seen that around 40% of

Table 1. Description of the datasets

Dataset name Number

of Genes

Number of

Samples

Class Ca Class Cb

Leukemia 7129 72 47 25

Colon cancer 2000 62 40 22

Prostate cancer 12 600 102 52 50

SRBCT 6567 63 43 20

Lung cancer 3588 43 22 21

Breast cancer 7129 49 25 24

It shows the data type, the number of genes measured and the number of samples

contained in each class.

Fig. 2. Decomposition of the information contained in the best gene

pairs. The black part shows the amount of information of the most

informative genes. The dark grey part shows the amount of information

of the second genes. The light grey part shows the amount of

information of the interaction.
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the information provided by the pairs of genes resides in the

interaction of their components. For example, in the 100 most

informative gene pairs of the breast cancer dataset, 38% of the

information is provided by the best gene, 24% by the second

gene and 38% by their interaction.

5.3 Information obtained by feature construction

The aim of feature construction is to synthesize the

information contained in the genes and their interactions.

In order to measure the effectiveness of our feature construc-

tion method, we empirically compared the information

contained in the most informative gene pairs (Gi,Gj) and in

the associated newly constructed features Ai, j. For the p¼ 100

best gene pairs of the six datasets described above, the mutual

information of the newly constructed attribute is on average

in 90% of the cases higher than the information of the best gene

in the pair. These results suggest that our feature construction

method is effective for synthesizing the information contained

in a gene pair, thus answering our third question.

5.4 Classification accuracy

To measure the impact of our dimension reduction method on

the classification, we examined classification accuracy on the

six datasets. The cross-validation estimator is the most

commonly used error estimation method in microarray-based

classification. We have used the 10-times 10-fold cross-

validation procedure in our experiment to measure the

generalization error. However, Braga-Neto and Dougherty

(2004) have shown that this estimator is not the most

appropriate one for a small instance sample like the ones

available in microarrays analysis. Cross-validation has a high

variance and therefore bootstrap estimators are preferred, in

particular the 0.632 estimator (Efron, 1983). The 0.632 boot-

strap estimator is a weighted sum of the empirical error and the

out-of-bag bootstrap error. We have also used the 0.632

bootstrap estimator in our experiment to complete the results

obtained by cross-validation. Total 100 bootstrap iterations

were performed. It should be noted that for the evaluation

procedure (both cross-validation and bootstrap) the test

samples were not used in the dimension reduction and classifier

design. Thus, we avoided the problem of selection bias

pointed out by Ambroise and McLachlan (2002) and

Reunanen (2003). It should be underlined that the number of

features used in classifier design is a meta-parameter, whose

value is chosen by an internal cross-validation procedure.

A figure representing the study design can be found on the

companion website (Fig. 1).
In our experiments, each dimension reduction methods is

associated to three different classification algorithms: the

support vector machines (SVM), k-nearest neighbors (KNN)

and diagonal linear discriminant (DLD). We have chosen these

algorithms because they are among the most efficient for

microarray data classification. Dudoit et al. (2002) have

pointed out the excellent results of the simplest methods like

KNN and DLD. Furey et al. (2000) and Lee et al. (2005) have

published a comparative study of the classification methods for

microarray data, and they concluded that the SVMs are the

best model. All of the experiments have been performed with

the statistical environment R, the numbers of neighbors k for

KNN was 3 and the SVM has been implemented using the

package ‘e1071’ with a radial kernel.
We have compared FeatKNN to other methods that are

widely used in the literature and reach good performances.

These dimension reduction methods are the following:

� All genes: all the genes are used.

� Single MI: the genes with the highest mutual information

with respect to the class are selected. This method is

commonly used in the literature (Ben-Dor et al., 2000;

Wang et al., 2005).

� Pair MI: the gene pairs with the highest mutual informa-

tion with the class are selected (i.e. FeatKNN without the

feature construction step). This method is tested to show

the importance of feature construction.

� BO: the gene pair-based method developed by Bo and

Jonassen (2002).

� Geman: the gene pair selection method used by Geman

et al. (2004) in their TSP classifier.

� PLS: new features are constructed as the components

which maximize the covariance between the class and the

variables (Dai et al., 2006).

In this article, we focus on the results obtained by 0.632

bootstrap; the results by cross-validation can be found on the

companion website, and leads to the same conclusions. Table 2

reports the classification error rates for different reduction

methods. We used a paired Wilcoxon test to compare the

results. The detail of the P-values of significance can be found

in the companion website.
It is not surprising to see that dimension reduction methods

improve classification performance considerably. In all cases

the performances reported in the column ‘All genes’, are worse

than the others. The columns ‘Single MI’ and ‘Pair MI’

represent the results obtained when we select the genes

(respectively, gene pairs) having the highest mutual information

with respect to the class. We see that the methods using single

genes (column ‘Single MI’) and pairs of genes (column ‘Pair

MI’) obtain similar results. We have shown that the gene pairs

were more informative than single genes. This may suggest that

the information contained in the interaction between the genes

composing the pairs is not well exploited by the classification

algorithms, and therefore much of the information computed

during the pair-selection phase is lost. This phenomenon is

avoided in FeatKNN, thanks to the feature construction step.

The new features constructed by FeatKNN synthesize the

information contained in the genes and their interactions,

which explain the better results. FeatKNN outperforms

Geman’s method in all datasets with the three classifiers.

Bo’s method is competitive, especially with the DLD classifier:

9 times out of 18 Bo’s results are as good as FeatKNN’s

ones, and it outperforms FeatKNN on the SRBCT dataset with

a DLD classifier. FeatKNN is statistically significantly

(95% level) better than all other methods but PLS. PLS

results are almost as good as FeatKNN. It is the only method

that is not significantly worse than FeatkNN.
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5.5 A biological interpretation of the concept of synergic

transcript pairs

The exploration of the biological significance that may be

enfolded in the concept of synergic transcript pairs had to

consider two distinct aspects, one more particular related to the

analyzed clinical situations, and another more general regard-

ing the type of biological interactions that may explain the

synergic behavior exhibited by the genes belonging to the same

pair. To answer these questions, we started by separating the

two components of gene pairs and then we carried out a

discriminative functional profiling of the two resulting lists of

genes (i.e. a first pairs component list and a second pairs

component list). Based on the functional assignments pro-

vided by the Gene Ontology (GO) consortium (http://

www.geneontology.org), and by the NCBI genomic repository

(http://www.ncbi.nlm.nih.gov), an automated annotation pro-

cedure combined with a gene set enrichment analysis allowed to

identify biological themes significantly overrepresented in each

of the two lists of genes.

Figure 3 shows overrepresented biological themes character-

izing each of the two components of the first 100 most

informative pairs extracted from the colon cancer dataset,

which resulted from microarray experiments performed to

compare expression profiles of tumor and normal colon tissues.

The functional profiles depicted in Figure 3 seem to indicate

highly distinct biological assignments for the two components

of gene pairs. Thus, while the first pair component seems to

be related mostly to intracellular processes located either in

the nucleus (i.e. nucleus, nuclear part) or in the cytoplasm

(i.e. intracellular part, intracellular non-membrane-bound

organelle, cytoskeletal part), the second pair component

appears to be involved exclusively in cell membrane-related

processes (i.e. plasma membrane, membrane part, intracellular

membrane-bound organelle). Moreover, these findings seem to

be well supported by the molecular functions assigned to the

Table 2. Classification results on six public datasets

Classifier Data All gene Single MI Pair MI FeatKNN Bo Geman PLS

SVM Leukemia 12.3� 1.1 4.3� 1 4.8� 1.2 2.8� 1.0 3.9� 0.9 6.1� 1.1 2.4� 1.3

Colon cancer 17.5� 1.1 12.5� 1.3 11.8� 1.0 10.7� 1.1 13.9� 1.3 14.6� 1.0 11.1� 1

Prostate cancer 9.5� 1.1 6.1� 1.0 6� 1.0 6.0� 0.8 5.6� 0.9 6� 0.7 6.2� 0.6

SRBCT 7.6� 0.5 2.1� 0.4 3.8� 0.3 0.2� 0.2 0.2� 0.2 0.7� 0.3 1.7� 0.5

Lung cancer 24.9� 1.1 21.7� 0.8 21� 0.9 19.5� 1.0 21.5� 1.1 21� 1.0 20.7� 1.3

Breast cancer 14.6� 0.8 11.4� 1.1 11.2� 0.9 8.7� 1.0 11.4� 1.1 11.2� 1.0 9.7� 1

KNN Leukemia 8.4� 1.1 6.1� 0.9 6.2� 1.0 5.0� 1.2 4.6� 1.2 6.3� 1.1 5.4� 0.9

colon cancer 20.0� 1.2 14.9� 1.2 14.4� 1.0 12.8� 0.9 15.9� 1.0 16� 1.1 12.4� 1.1

Prostate cancer 20.2� 1.0 17.8� 0.8 18� 0.9 8.1� 0.7 8.7� 0.8 9.8� 1.0 8.5� 0.9

SRBCT 11.6� 0.7 1.1� 0.2 1� 0.5 0.1� 0.1 0.1� 0.1 0.1� 0.1 1.3� 0.4

Lung cancer 35� 0.7 29.1� 1.0 28.2� 0.9 20.8� 1.0 23.7� 1.3 24.2� 1.0 21.7� 1.4

Breast cancer 20.8� 0.7 14.3� 0.9 13.5� 1.0 9.0� 1.0 12� 1.1 13.1� 1.0 8.4� 1

DLD Leukemia 11.5� 1.2 4.8� 1.2 4.8� 1.0 3.8� 1.1 4.1� 1.0 5.0� 1.1 2.7� 0.8

colon cancer 19.5� 1.4 15.7� 1.2 15.4� 1.0 12.5� 1.0 14.4� 1.1 15� 1.3 12.9� 1.1

Prostate cancer 37.5� 1.0 10.5� 0.8 10.1� 0.9 7.6� 0.9 7.3� 1.0 8� 0.7 7.3� 1

SRBCT 5.4� 0.7 0.8� 0.2 0.5� 0.2 0.7� 0.2 0.2� 0.1 0.1� 0.1 2.5� 0.6

Lung cancer 25.4� 1.2 21.6� 0.8 22.1� 0.9 20.6� 1.0 20.3� 0.8 20.2� 1.0 20.2� 1.1

Breast cancer 14.9� 0.6 10.7� 1.0 10.9� 1.0 9.1� 1.1 9.3� 0.9 10.1� 0.9 9.6� 1

All errors are estimated using the 0.632 bootstrap estimators.

Boldfaced values highlight the best results.

Fig. 3. Overrepresented biological themes discriminating the two

components of the first 100 most informative synergic transcript pairs

extracted from the colon cancer dataset (see text for details).
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translation products of these genes, which were found to be
related to nucleotide binding, structural molecule activity and
transcriptional activator activity for the first pairs component,
and to transmembrane receptor activity and transporter activity

for the second pairs component.
Considering the experimental framework from which this

dataset resulted, these functional profiles seem to indicate that

the biological themes that best distinguish tumoral from normal
colon cells concern essentially the nuclear transcriptional control
of a large panel of intracellular processes (i.e. cell differentia-

tion, proliferation, metabolism, apoptosis, extracellular matrix
production, etc.) on one side, and the cell communication and
extracellular signaling modulated by cell membrane structures

(i.e. involved in processes as focal adhesions, cell attachment
and migration, growth factor receptor expression and signaling,
etc.) on the other.
These findings are in total agreement with the most up-to-

date understanding of the tumoral biology. Indeed, it is well
acknowledged that tumor cell survival is dictated by both
internal properties of the cell, such as status of components of

the apoptotic machinery, and its extracellular environment,
such as extracellular matrix and growth factor receptor
expression and signaling (Dennis and Kastan, 1998) that

modulate apoptosis regulation. Apoptotic anomalies represent
a major distinction between tumor and normal cells, as they
allow tumor cells to avoid programmed cellular death, and
confer them the capacity to proliferate indefinitely. Some of

these anomalies, which involve the nuclear compartment, may
result in an inactivation of key tumor suppressor genes (TSGs),
acknowledged as being central to the development of all forms

of human cancer (Rhee et al., 2002). This inactivation is
induced by a combination between epigenetic silencing and
promoter hypermethylation of various TSGs. On the other side,

the importance of extracellular survival signals as key
regulators of apoptosis is now being recognized by the ability
of growth factors (GFs), GF receptors (GFRs) and GFR

signaling to promote cellular survival. Indeed, recent evidence
suggests that a number of abnormal cell membrane constituents
may disrupt apoptosis regulation in tumor cells by pathologi-
cally amplifying the anti-apoptotic effect of normal extracel-

lular survival signals (Leask and Abraham, 2006). All these
evidences suggest that the concept of synergic gene pairs not
only uncovered a noteworthy functional behavior singularizing

tumor cells, but also captured the synergic aspect of the
interaction between underlying biological mechanisms.

6 CONCLUSION

In this article, we have presented a dimension reduction
procedure for microarray data oriented towards improving
classification performance. This method is based on the idea

that the information provided by the interaction between genes
cannot be ignored in the feature selection phase. We have
proposed a decomposition of the information contained in the

gene pairs. Although it is natural to quantify information from
genes and interactions from the computation of mutual
information, this simple reduction does not necessarily improve
performance. Therefore, we have developed a feature

construction method that forces learning algorithms to take
into account pairs with a high level of information. The

usefulness of this approach was experimentally assessed on six

datasets and yielded a significant improvement in performance.

Moreover, a synthetic assessment of the biological significance

of the concept of synergic gene pairs suggested its ability to

uncover relevant mechanisms underlying interactions among

various cellular processes.
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