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Abstract

Ongoing habitat loss and fragmentation alter the functional diversity of forests. Generalising
the magnitude of change in functional diversity of fragmented landscapes and its drivers is
challenging because of the multiple scales at which landscape fragmentation takes place.
Here we propose a multi-scale approach to determine whether fragmentation processes at
the local and landscape scales are reducing functional diversity of trees in the East Usam-
bara Mountains, Tanzania. We employ a structural equation modelling approach using five
key plant traits (seed length, dispersal mode, shade tolerance, maximum tree height, and
wood density) to better understand the functional responses of trees to fragmentation at
multiple scales. Our results suggest both direct and indirect effects of forest fragmentation
on tree functional richness, evenness and divergence. A reduction in fragment area appears
to exacerbate the negative effects resulting from an increased amount of edge habitat and
loss of shape complexity, further reducing richness and evenness of traits related to
resource acquisition and favouring tree species with fast growth. As anthropogenic distur-
bances affect forests around the world, we advocate to include the direct and indirect effects
of forest fragmentation processes to gain a better understanding of shifts in functional diver-
sity that can inform future management efforts.

Introduction

Forest loss and fragmentation result in long-lasting and complex changes in biodiversity that
may go beyond the loss of species to include the alteration of functional diversity of remaining
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communities. Forest fragmentation threatens the long-term persistence of species [1-3], as
well as the goods and services provided by those ecosystems [4]. Fragmentation is a hierarchi-
cal process that involves breaking apart the habitat of a focal species into populations isolated
from each other in a matrix of modified habitat [5-7]. Changes in the spatial configuration of
the landscape alter the abiotic and biotic filters that govern community assembly, selecting
individuals with suites of traits that enable them to survive, grow, reproduce, and colonize
remaining fragments. Species traits relate to physiological, morphological, and phenological
functions [8-10], and local functional diversity can influence ecosystem functioning [11,12]. If
species’ traits in remaining fragments become more similar over time, a process known as
functional homogenization, this could severely alter a variety of ecosystem functions per-
formed by remaining communities and, by extension, the ecosystem services they provide.
Previous studies provide evidence that forest fragmentation often favours plant species with
traits within a specific range of values [e.g. 13], potentially leading to functional homogeniza-
tion by reducing alpha diversity of functional traits [14]. By taking into account functional
diversity within a community, we can better understand how species respond to fragmentation
processes that alter the abiotic and biotic filters that govern community assembly.

Trait values that allow species to take advantage of recent disturbances are commonly
hypothesised to determine species success in fragmented landscapes [15,16]. Recent studies
have shown that reductions in fragment area and increases in the amount of edge habitat
locally favour tree species with faster growth rates (e.g. pioneers), smaller seeds, shorter leaf life
span and lower wood density [15-20]. Additionally, increased spatial isolation and an inhospi-
table matrix habitat are expected to select for abiotically-dispersed tree species and/or small-
seeded, animal-dispersed tree species that have the potential for wide dissemination by attract-
ing many seed-disperser species [16,18,20,21]. However, because of the variable results across
studies and systems, there is limited consensus on the generality of the magnitude of these
shifts and their drivers.

The process of landscape fragmentation can be considered at multiple, interacting scales.
Fragmentation effects via fragment isolation or matrix quality that impact dispersal among
fragments or meta-population dynamics may manifest most strongly at the landscape scale. In
contrast, fragmentation effects via edge effects, fragment shape or size that impact fine-scale
habitat quality and individual persistence may be best detected at the fragment-scale (as with
our study with fragments ranging from 0.011-9.51 km?). Furthermore, these landscape- and
fragment-scale changes typically occur concurrently which may lead to interactions among
various fragmentation effects. For example, dispersal between fragments typically declines
with isolation and an inhospitable matrix habitat may exacerbate the effects of fragment isola-
tion on species diversity [7]. In forest fragments, altered abiotic conditions such as greater des-
iccation through increased wind and light, causing higher temperatures and lower humidity,
are among the main edge effects as the shape of fragments becomes narrower and/or as the
size of fragments decreases [6]. Decreasing fragment size could both directly impact species
persistence by lowering local population sizes and increasing edge effects as the relative
amount of edge habitat is greater in smaller fragments. Teasing apart these co-occurring
changes across spatial scales has posed a major challenge in predicting the net response of
functional diversity to forest fragmentation to date [6,22,23].

Previous investigations have yielded mixed results, with functional diversity responding
either positively or negatively to forest fragmentation [14,24,25]. This lack of consensus could
be the result of not accounting for the direct and indirect effects of both landscape- and frag-
ment-level effects. While measuring the independent effects of individual landscape properties
is useful to identify mechanisms behind fragmentation-driven biodiversity changes, such
approaches may miss critical indirect effects between fragment-level and landscape-level
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fragmentation variables [26], and potentially leads to incorrect inferences and predictions
regarding the impacts of forest fragmentation on communities. Structural Equation Models
(SEM) have been proposed as an alternative tool to jointly study the direct and indirect effects
of habitat amount and configuration because SEMs specify predictor variables that may not
have been measured or that may be difficult to observe directly, and therefore measure the
strength of causal relationships among predictors and provide rigorous estimates of direct and
indirect effects [27].

Here, we use a SEM approach that permits the evaluation of direct and indirect effects of
forest fragmentation on plant functional diversity in the East Usambara Mountains of Tanza-
nia. This approach in particular allows us to tease apart the attributes of forest fragmentation
that operate across different spatial scales and to compare the relative importance of local ver-
sus landscape-scale processes affecting different dimensions of functional diversity (e.g rich-
ness, evenness and divergence). In this study, we censused trees in plots across a fragmented
rainforest in the East Usambara Mountains, an area in Africa known for its high levels of bio-
diversity and endemism [28] that is currently protected under the United Nations Educational,
Scientific and Cultural Organization (UNESCO) Biosphere Reserve status. We hypothesize
that:

1. The variation in functional diversity in response to fragmentation is mediated by both frag-
ment- and landscape-scale factors (Fig 1). We expect that the impacts of fragment size,
shape complexity, and edge effects on functional diversity are indirectly affected by land-
scape-level processes such as fragment isolation and matrix quality. For example, edge
effects tend to be more severe in small and/or narrow or irregularly-shaped fragments,
which would therefore affect functional diversity. Finally, we anticipate a greater negative
effect of isolation on functional diversity for fragments surrounded by an inhospitable
matrix habitat.

Matrix
quality

Landscape level

Isolation

Functional
diversity
(Richness, evenness and divergence)

Fragment
area

AN

Fragment level complexity

Distance to
edge

Fig 1. Conceptual model illustrating the directional relationships between fragmentation processes occurring at
the landscape and fragment level affecting functional diversity. Functional diversity was defined in terms of
functional richness, evenness and divergence. Functional metrics were fitted in separate models. Arrows indicate the
hypothesized causal relationships, with dashed arrows representing indirect effects and continuous lines representing
direct effects.

https://doi.org/10.1371/journal.pone.0235210.9001
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2. The effects of fragmentation are expected to impact functional diversity in several ways:
a) functional richness, evenness and divergence of resource use traits are expected to
decline with reduced fragment area and shape complexity as the amount of forest edge
increases; b) low quality of matrix surrounding the remaining fragments is expected to
exacerbate the environmental stress in edge habitats, further reducing functional richness,
evenness and divergence (Fig 1); c) trait distribution is expected to become more skewed
towards species with trait values associated with fast resource use (e.g. short stature, light-
demanding species with low wood density and small seeds) within edge habitats; and d)
functional richness, evenness and divergence of dispersal traits are expected to decrease
with increasing fragment isolation and decreasing matrix quality. Specifically, we expect
abiotically-dispersed species and small-seeded, animal-dispersed species to dominate in
more isolated fragments surrounded by a less hospitable matrix.

Materials and methods
Study area

The forest of the East Usambara Mountains stretches continuously from about 250 m to 1100
m asl in the southern part of this mountain range to form what is now protected as Amani
Nature Reserve (8380 ha; -5°04°58.80" S 38°40°1.20" E). To the north of this reserve is Nilo
Nature Reserve, and eastwards is the Derema corridor and several large fragments of lowland
forest. Rainfall averages at 2000 mm per annum, falling largely from March to May and Octo-
ber to November; however, with the exception of January and February, precipitation is preva-
lent in most other months due to moisture carried across from the adjacent Indian Ocean
[29]. The forest on the submontane plateau, in and around the primary study area of Amani
Nature Reserve, is dominated by a suite of wet rainforest species. These include two emergent
species Newtonia buchananii (Fabaceae) and Maranthes goetzeniana (Chrysobalanaceae),

and several canopy and midstory/understorey species such as Allanblackia stuhlmannii
(Clusiaceae), Cephalosphaera usambarensis (Myristicaceae), Sorindeia madagascariensis (Ana-
cardiaceae), Parinari excelsa (Chrysobalanaceae), Isoberlinia schefflerii (Fabaceae), Greenwayo-
dendron suaveolens (Annonaceae), Anisophyllea obtusifolia (Anisophylleaceae), Leptonychia
usambarensis (Sterculiaceae), Myrianthus holstii (Urticaceae), Macaranga capensis (Euphor-
biaceae), Trilepisium madagascariense (Moraceae) and Strombosia scheffleri (Olacaceae). The
forest also contains Maesopsis eminii (Rhamnaceae), an exotic, invasive gap- and edge-special-
ist tree species [29,30].

Amani Nature Reserve is surrounded by several forest fragments of varying sizes in the sub-
montane plateau (S1 Fig) and is primarily separated by a homogenous matrix of tea planta-
tions. Apart from subsistence cultivation, which has shaped the forested landscape in more
recent decades, much of the extensive forest loss and fragmentation arose from initial human
occupation in the early pre-colonial period [31], but more extensively from the historical
expansion of tea plantations, starting in the late 1800s [32]. Loss of original forest cover is esti-
mated to exceed 50% [33]. Ten forest fragments and a large portion of the continuous forest
were used to sample tree communities in 67 vegetation plots between May and July 2000; all
sites are at 900-1100 m asl (S1 Table). Each vegetation plot was 20 x 20m and the plots were
randomly located at ~25, ~150, ~250 and ~ 400 m from the forest edge towards the interior;
smaller fragments (i.e. < 20 ha) did not have plots sampled at >200 m from the forest edge.
All trees > 10 cm Diameter at Breast Height (DBH) within each plot were identified to species.

PLOS ONE | https://doi.org/10.1371/journal.pone.0235210  July 2, 2020 4/16


https://doi.org/10.1371/journal.pone.0235210

PLOS ONE

A multi-scale approach of functional diversity

Functional trait data

We collated five traits (seed length, dispersal mode, shade tolerance, maximum tree height,
and wood density) that correspond to key dimensions of species ecological strategies and have
been previously used to explain competitive ability, growth, and reproduction in the context of
forest fragmentation [14]. Traits for all the tree species were obtained through an exhaustive
search of existing literature as well as online databases (52 Table). Data on seed length and dis-
persal mode were obtained from Chapman et al. [34] and the African Tree Database (https://
figshare.com/articles/Plant_animal_interactions_from_Africa/1526128). Seed length was
based on the largest average length of the diaspore that is transported by the vector, and not
necessarily the seed kernel size. Seed length reflects a seed number-seedling survival trade-off
with small seeds being produced in large quantities and being better colonizers than larger
seeds at the expense of withstanding lack of resources or different hazards thus reducing seed-
ling survival and establishment [35]. Dispersal mode included zoochory (animal-dispersal),
anemochory (wind-dispersal), and barachory (gravity or explosive dispersal). Dispersal mode
influences the capacity of an individual to colonize newly formed or isolated fragments [36].
Maximum tree height was obtained from the literature [37] and an online database (http://
www.prota.org). Maximum tree height is associated with competitive ability for light with tal-
ler trees displaying greater carbon assimilation potential than smaller trees [38-40]. Wood
density for each species, or genus (when data for a species was not known), was derived from
the global wood density database [41,42]. Wood density is a critical component for many
essential functions, such as mechanical support and nutrient storage [43] and reflects a trade-
off between radial growth to acquire physical stability at the expense of vertical growth [44,45].
Finally, for shade-tolerance guilds, we followed the classifications of Ouédraogo and collabora-
tors [46,47], and where necessary, supplemented information from other sources [37,48].
Plant successional guilds included pioneer (species dependent on gaps or forest edge to estab-
lish), shade-tolerant (species dependent on shade across different ontogenetic levels), and
light-demanding non-pioneer (species that establish in shade but initially require light to max-
imize growth) [46, sensu 49].

Fragmentation metrics

Fragments were mapped using the high-resolution satellite imagery from Google Earth Pro.
After mapping, metrics were calculated for each plot and all forest fragments using the GRASS
GIS software [50,51]. Edge effects were evaluated based on the calculated distance of the center
of the sampled plot to the forest edge. We also calculated fragment area (km?), distance from
the edge of a fragment to the closest edge of the continuous forest (m), matrix quality based on
the surrounding cultivated land, and shape complexity.

For assessing matrix quality, we first characterized the matrix habitat of the study area into
three land cover types: tea plantations (the primary matrix habitat), Eucalyptus woodlots, and
subsistence cultivation of mixed crops such as bananas, beans, maize, cassava, cardamom,
cloves and cinnamon. Tea and eucalyptus plantation represent a more hostile environment
surrounding fragments, while subsistence cultivation is less hostile as it includes a mix of small
forest patches and multi-crop species farms. To calculate matrix quality (MQ), we quantified
the percentage of the forest edge in contact with each of the mentioned land covers as
MQ = 100—(%tea + %eucalyptus). Thus, matrix quality is reduced as the percentage of forest
edge in contact with the hostile matrix habitats comprising of tea or eucalyptus plantation
increases.

To describe the shape complexity of the fragment, we calculated a fractal dimension index
[52,53] where lower values correspond to regular shapes and higher ones to convoluted shapes,
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as follows:

where P represents the perimeter and A the fragment area. FDI measures how much a shape
deviates from a circumference thus excluding the effect of area on the edge complexity; if frag-
ments are more complex, the perimeter increases and yields a higher fractal dimension.

Analysis

Functional diversity. We used functional indices that capture three major components of
functional diversity: functional richness (FRic) or the amount of niche space occupied by the
community [54], evenness (FEve) or regularity of the distribution of species abundances in the
functional space [55] and divergence (FDiv) or variance of species trait distribution in the trait
space [54]. We calculated multivariate FRic, FEve and FDiv using all five functional traits, as
studies have demonstrated that considering a single trait can lead to an oversimplification of
results [e.g. 56]. All indices were calculated within the FD package [57] in R (Version 3.6.1; R
Core Team 2019) and Gower distances were used to calculate functional distance between spe-
cies pairs as it allows for the inclusion of both continuous and categorical traits. We calculated
a weighted FEve index using the abundance of species (defined using number of stems) with
different trait values within a community and an unweighted FEve index independent of spe-
cies abundances. We then compared both weighted and unweighted FEve indices to improve
the interpretation of this index as suggested by Legras and Gaertner [56]. To determine the
functional trait value of a species community and explore how shifts along individual trait axes
underlie the observed FRic, FEve and FDiv patterns, we calculated community-weighted mean
(CWM) values (i.e. mean plot-level species trait values weighted by their relative abundance).
To explore how community shifts along single traits underlie the observed FRic, FEve and
FDiv patterns, we also calculated community-weighted mean (CWM) trait values (i.e. species
trait values weighted by their relative abundance in each plot).

To further examine the potential drivers of functional diversity from the forest edge to inte-
rior of forests, we examined patterns of recruitment between edge and interior plots. It is pos-
sible that edge habitats have a more even distribution in wood density due to a mix of pre-
fragmentation trees with high wood density and new post-fragmentation trees characterized
by mostly low wood density. Thus, to evaluate whether there was a difference in tree size, we
compared size distributions between interior and edge habitats for each guild using a Kolgo-
morov-Smirnov test. Edge plots were defined as all plots within <100 m of the fragment/forest
edge and interior plots included all plots >100 m from the edge following Laurance [58] as
100 m being the threshold for edge effects.

Statistical modelling. We implemented a structural equation modelling approach using
the R package piecewiseSEM [59] to investigate direct and indirect relationships of fragment-
and landscape-scale variables in predicting local functional diversity. The general model inves-
tigated in this study (Fig 1) hypothesizes that variation in functional diversity among plots can
be explained by the interacting direct and indirect effects of processes occurring at the frag-
ment-level and the landscape-level. These include distance of plot to the nearest forest edge,
distance of fragment to continuous forest as a measure of isolation, fragment area, matrix qual-
ity, and shape complexity. We used linear functions for all relationships in the structural equa-
tion models and ran separate models for each functional metric. To derive comparable
estimates, we standardized all quantitative predictors to a mean of zero and standard deviation
of one. In some cases, variables were log-transformed to achieve a normal error distribution.
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To further explore potential shifts in trait distributions underlying variation in FRic FEve and
FDiv, we used general linear models as a post-hoc test to determine changes in CWM traits
values as a result of fragment- and landscape-scale variables. In these models, the responses are
CWM values and the predictors are fragment- and landscape-level variables.

Results
Relationships among fragmentation variables

We found a strong positive relation between matrix quality and fragment isolation

(coef =0.704, se = 0.11, p < 0.001; Fig 2) and found a weak relationship between matrix quality
and distance from plot to forest edge (coef = -0.595, se = 0.189, p = 0.568; Fig 2). The distance
from plot to forest edge increased with fragment area (coef = 0.603, se = 0.156, p < 0.001; Fig
2) and tended to decrease as shape complexity of the fragment was reduced (coef = -0.423,

se = 0.167, p = 0.015; Fig 2). Finally, shape complexity was positively associated with fragment
area (coef = 0.541, se = 0.116, p < 0.001; Fig 2), with larger fragments characterized by more
complex shapes than small fragments.

Response of functional diversity to fragmentation

We found that direct and indirect effects between fragment-level fragmentation attributes
appeared to be important drivers of local functional diversity within plots, while landscape-
level attributes seemed to be less important in most cases. Functional richness tended to
decrease with reduced shape complexity (coef = -0.936, se = 0.314, p = 0.004; Fig 2A). In addi-
tion, we found evidence that functional evenness tended to increase with fragment isolation
(coef =0.038, se = 0.017, p = 0.03; Fig 2B). No other significant effects at the landscape or frag-
ment level were captured on functional evenness (Fig 2B). Finally, functional divergence
tended to decrease with distance of a plot from the forest edge (coef = -0.028, se = 0.012,

p = 0.031; Fig 2C), with no other significant effects on functional divergence (Fig 2C).
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Fig 2. Structural equation models examining the effects of forest fragmentation on functional diversity in the East
Usambara Mountains, Tanzania. A) functional richness, B) functional evenness and C) functional divergence. Grey
lines represent indirect effects and dark lines representing direct effects. Values associated to lines represent
standardized path coefficients. Significant results (p < 0.05) are represented in dark blue.

https://doi.org/10.1371/journal.pone.0235210.9002
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Shifts in community weighted mean traits with fragmentation

Values of community-weighted means were significantly associated with fragment isolation
and distance from plot to forest edge (i.e. edge effects). CWM values for dispersal mode was
significantly associated with fragment shape complexity, with anemochory increasing in more
complex fragments (estimate = 0.182, se = 0.073). CWM values for wood density significantly
declined with increasing fragment isolation (estimate = -0.015, se = 0.006). Furthermore,
CWM values for successional guilds were significantly associated with fragment isolation and
edge effects (distance from plot to forest edge). Specifically, CWM values for shade tolerance
significantly declined with increasing fragment isolation (estimate = -0.071, se = 0.025) and
increasing distance from plot to forest edge (estimate -0.388, se = 0.122). Distance from plot to
forest edge was negatively associated with CMV values of light-demanding non-pioneer spe-
cies (estimate = -0.171, se = 0.083), but, in contrast, positively associated with pioneer species
(estimate = 0.097, se = 0.022). We also found distance of plot to forest edge was positively asso-
ciated with maximum height (estimate = 1.305, se = 0.630) and wood density (estimate = 0.022,
se = 0.005). See Table 1 for all results.

Patterns of recruitment between edge and interior plots

We found significant differences in size distributions between the edges and the interior habi-
tats for light-demanding non-pioneer species (D = 0.25, p = 0.03), with many small sized indi-
viduals found at the edges of the forest (Fig 3). We found a similar pattern for pioneer species
(Fig 3), although this difference was not statistically significant (D = 0.18, p = 0.23). For shade-
tolerant species, larger individuals were found at the interior of the forest (Fig 3), but, similar
to pioneer species, this difference was not statistically significant (D = 0.07, p = 0.65).

Discussion

Delineating the different processes that occur during landscape fragmentation and evaluating
how they affect functional diversity is challenging. This is because landscape fragmentation
leads to a series of changes in forest dynamics that occur at multiple spatial scales. Using a
SEM approach with data from the rainforest of East Usambara Mountains, Tanzania, we detect
several direct and indirect effects of forest fragmentation for different facets of functional
diversity. We use this example to illustrate the great potential for significant advancements
towards a more in depth understanding of the ecological consequences of forest fragmenta-
tion. At the landscape level, we find an indirect effect of matrix quality on functional evenness
via its effect on increased fragment isolation. At the fragment-level, we find an indirect effect
of fragment area on functional richness and functional divergence via its effects on shape com-
plexity and edge effects (i.e. distance from plot center to forest edge), respectively. In this
study, loss of shape complexity leads to significant changes in functional richness for traits
related to dispersal mode. For resource use traits, we find that functional richness and diver-
gence decline with decreasing shape complexity and distance from plot to forest edge, respec-
tively, while functional evenness increased with isolation. Our results also suggested a negative
relationship between fragment shape complexity and distance from plot center to forest edge,
in line with previous work [7,60,61]. A reduction in fragment shape complexity might exacer-
bate edge effects on functional diversity, effects that might not be revealed when analysed
using simple regression [7].

The relative importance of landscape and fragment-level factors vary considerably between
traits, but fragment-level factors were generally more important than landscape characteristics
in explaining variation in functional richness and divergence. By favouring tree species with
fast growth, edge effects and shape complexity seem to be key drivers of changes in the
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Table 1. Effects of isolation, shape complexity and distance to edge on community weighted means for plant functional traits in the East Usambara Mountains,

Tanzania.

Trait Metric
Anemochory Isolation
Zoochory

Barochory

Height

Light-demanding Non-Pioneer

Pioneer

Shade-Tolerant

Seed length

Wood density

Anemochory Shape complexity
Zoochory

Barochory

Height

Light-demanding Non-Pioneer

Pioneer

Shade-Tolerant

Seed length

Wood density

Anemochory Distance to edge
Zoochory

Barochory

Height

Light-demanding Non-Pioneer

Shade-Tolerant

Pioneer

Seed length

Wood density

https://doi.org/10.1371/journal.pone.0235210.t001

Estimate
-0.064
-0.005

0.073
-0.406
0.111
0.179
-0.071
-0.458
-0.015
0.182
0.007
0.059
-0.009
0.119
0.038
0.013
-0.478
0.001
-0.006
-0.015
0.104
1.305
-0.171
-0.388
0.097
1.127
0.022

SE

0.078
0.013
0.133
0.653
0.083
0.121
0.025
0.671
0.006
0.073
0.013
0.113
0.655
0.081
0.122
0.026
0.668
0.006
0.104
0.013
0.106
0.630
0.083
0.122
0.022
0.652
0.005

p-value
-0.812 0.424
-0.410 0.683
0.551 0.586
-0.621 0.537
1.344 0.185
1.482 0.145
-2.903 0.005
-0.068 0.946
0.006 0.012
2.476 0.020
0.528 0.600
0.526 0.603
-0.014 0.989
1.473 0.147
0.309 0.759
0.505 0.616
-0.716 0.477
0.210 0.834
-0.059 0.953
-1.161 0.251
0.980 0.334
2.071 0.044
-2.070 0.044
-3.176 0.003
4.326 < 0.001
1.727 0.09
4.249 < 0.001

competitive hierarchies of tree communities in the fragmented forests of the East Usambaras.

The lesser importance of landscape-scale variables in the current study, only observed for func-
tional evenness, may be driven in part by our focus on plot-scale functional diversity. While
the plot-scale data are informative in assessing variation in diversity at small spatial scales, they
might not capture changes in diversity at large scales (e.g., at landscape scales or patterns in
beta-diversity). Future work examining patterns in functional diversity aggregated at larger
scales and across landscapes will extend the work presented here and better inform models of

the main factors driving tree communities in fragmented forests.

Functional diversity of resource use traits in response to fragmentation

A decrease in area of suitable habitat is expected to lead to the loss of species and a correspond-
ing narrowing of trait value, resulting in lower alpha functional richness [62]. We found evi-
dence of a decline in functional richness and divergence for traits related to resource use (e.g.

wood density and regeneration strategy) due to reduced shape complexity and distance to

edge respectively, both mediated by fragment area. Our results suggest the presence of strong
post-fragmentation edge effects, leading to an increase in pioneer species while shade tolerant
species are negatively impacted. In addition to area-based effects, fragmentation creates more
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Fig 3. Size distribution of each of the three successional guilds at edge versus interior vegetation plots in the East Usambara Mountains,
Tanzania.

https://doi.org/10.1371/journal.pone.0235210.9003

edge habitat typified by elevated radiation, temperature and wind turbulence, and lower soil
fertility and air moisture [63,64]. However, CWM trait values suggested that even if we found
evidence of functional divergence decreasing with distance from plot to forest edge, species at
the edges were more functionally diverse. This is likely the result of strong post-fragmentation
edge effects leading to an increase of small stature, light-demanding species characterized by
low wood density, combined with the older and taller, shade-tolerant and high wood-density
species persisting from pre-fragmentation communities.

The studied area has experienced a long history of land use with varying levels of anthropo-
genic disturbance, resulting in significant forest loss and fragmentation [33]. In this highly
fragmented landscape, edge effects on microclimate variables (air temperature, vapor pressure
deficits and light intensity) are stronger within 60 to 94 m from the edge, as compared to the
forest interior [65], explaining the observed changes in the competitive hierarchies of tree
communities in the fragmented forest of the East Usambara Mountains. Functional divergence
for resource use traits decreased with increasing distance of the plot from the forest edge, espe-
cially in large fragments as smaller fragments (< 20 ha) generally included far fewer interior
plots (>200 m from the forest edge). The edge effects found here are in line with other studies
[17,18,66-68], where species associated with slow growth rates are outcompeted in forest
edges by light-demanding or pioneer species with fast growth. Old-growth species are particu-
larly vulnerable to the detrimental effects of wind turbulence, desiccation, and liana
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dominance that characterise the edge of forest fragments [15], including those in the East
Usambaras [65].

Functional diversity of dispersal traits in response to fragmentation

Fragments with more elongated shapes have higher proportion of total edge than interior habi-
tat [60]. Reduced fragment shape complexity often results in low habitat heterogeneity, thus,
communities in fragments with narrow and elongated shapes may exhibit reduced species
richness and abundance [7]. Our results suggest that when fragments reach a certain reduced
size, loss of shape complexity leads to significant changes in functional richness for traits
related to dispersal mode. Increased complexity of fragment shape may limit impact of wind
action to toppling large trees, which may explain why anemochorous species, like the emergent
Newtonia buchananni (Fabaceae), remain in large and more complex East Usambara frag-
ments. Small and less complex shaped fragments tend to be more vulnerable to edge-related
wind damage increasing rates of windthrow and forest structural damage due to the higher
ratio of perimeter to edge compared to larger and more complex shaped fragments [60].
Unfortunately, generalizing on the overall effects of fragment shape complexity on functional
diversity is limited because it remains understudied compared to other fragmentation pro-
cesses. It is important to highlight that our evidence of fragmentation effects on functional
diversity comes from data of mature trees that represent the historical legacies of pre-fragmen-
tation communities. Hence, without data on seedlings and saplings, it is difficult to ascertain
whether the abundance of wind dispersed species is associated with reduced animal seed dis-
persers and therefore dispersal limitation which are negatively impacted by forest fragmenta-
tion in this study area [24,74,75]. Evidence from research in this study area has shown that
several important frugivores are absent from or occur in lower abundance in forest fragments
as compared to the continuous forest, threatening their persistence, as well as trees dependent
on many these vectors [69-71].

Furthermore, we failed to uncover a relationship between traits related to dispersal (i.e.
seed length, dispersal mode) and fragment isolation or matrix quality. Instead, our results sug-
gest a less even distribution for traits related to resource use (e.g. wood density) as fragments
became more isolated. Wood density is a strong indicator of successional dynamics with light
wood often associated to early successional species (e.g. pioneer, light demanding species) that
exhibit high fecundity and long-distance dispersal allowing them to colonize recently dis-
turbed sites [41,72]. Therefore, light-wood species may be able to reach more isolated frag-
ments perhaps due to better colonization abilities than hard-wood species. Fragmentation
leads to increasing degree of isolation between fragments, hereby increasing the minimum dis-
persal distance for species from the regional pool to colonize fragments. However, it is impor-
tant to highlight a potential correlation between dispersal and resource acquisition traits.
Specifically, seed mass tends to define the mode of dispersal and is also related to the succes-
sional habit that determines resource acquisition strategies [40,73]. Light-demanding, early
successional species often produce numerous small seeds and thus are considered better colo-
nizers than shade-tolerant, late successional species [35], with potential to increase in abun-
dance over time and negatively impacting the future establishment of late-successional trees.

The effects of isolation and matrix quality may require exploring functional diversity at a
larger scale, beyond the local scale investigated in this study. Fragmentation leads to a high
degree of isolation between the remaining fragments increasing the minimum dispersal dis-
tance for species from the regional pool to colonize fragments [61,74-76]. As species become
more dispersal limited with decreasing fragment connectivity, we expect that fragments would
become more similar in species composition, decreasing alpha functional richness and
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increasing evenness. Moreover, a more diverse matrix may promote habitat heterogeneity
between fragments increasing the range of total available niches at the landscape scale [77-79],
potentially increasing functional richness and evenness. However, with most studies con-
ducted at a local scale, the effects of isolation and matrix type on functional diversity remains
fairly unexplored.

Conclusion

By analysing trait variation due to processes occurring at the landscape scale and integrating
this information with well-known fragment-scale processes using a structural equation
approach, we were able to provide a more in-depth understanding of the different components
of fragmentation and their impact on functional diversity. Specifically, the effects of fragment
variables on functional diversity of trees were largely mediated by the indirect effect of frag-
ment area on the amount of edge habitat and shape complexity. Our results demonstrate the
power of this approach in detecting the effects of processes occurring at different spatial scales
that may have been missed if only the direct impacts of landscape fragmentation would have
been considered. This approach could greatly facilitate future empirical work in forest frag-
mentation and help advocate for management and restorations strategies that aim to achieve
long-term persistence of remaining forests. Given that many fragmented forest systems will
experience environmental conditions outside the range to which they are adapted, it is impor-
tant to improve efforts to predict biodiversity responses to current human pressure to imple-
ment effective management and conservation strategies.
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