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Abstract: Because of the promising results obtained by machine learning (ML) approaches in
several fields, every day is more common, the utilization of ML to solve problems in bioinformatics.
In genomics, a current issue is to detect and classify transposable elements (TEs) because of the
tedious tasks involved in bioinformatics methods. Thus, ML was recently evaluated for TE datasets,
demonstrating better results than bioinformatics applications. A crucial step for ML approaches is
the selection of metrics that measure the realistic performance of algorithms. Each metric has specific
characteristics and measures properties that may be different from the predicted results. Although
the most commonly used way to compare measures is by using empirical analysis, a non-result-based
methodology has been proposed, called measure invariance properties. These properties are calculated
on the basis of whether a given measure changes its value under certain modifications in the confusion
matrix, giving comparative parameters independent of the datasets. Measure invariance properties
make metrics more or less informative, particularly on unbalanced, monomodal, or multimodal
negative class datasets and for real or simulated datasets. Although several studies applied ML
to detect and classify TEs, there are no works evaluating performance metrics in TE tasks. Here,
we analyzed 26 different metrics utilized in binary, multiclass, and hierarchical classifications, through
bibliographic sources, and their invariance properties. Then, we corroborated our findings utilizing
freely available TE datasets and commonly used ML algorithms. Based on our analysis, the most
suitable metrics for TE tasks must be stable, even using highly unbalanced datasets, multimodal
negative class, and training datasets with errors or outliers. Based on these parameters, we conclude
that the F1-score and the area under the precision-recall curve are the most informative metrics
since they are calculated based on other metrics, providing insight into the development of an
ML application.

Keywords: transposable elements; metrics; machine learning; deep learning; detection; classification

1. Introduction

Transposable elements (TEs) are genomic units able to move within and among the genomes
of virtually all organisms [1]. They are the main contributors to genomic diversity and genome size
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variations [2], except for of polyploidy events. Also, TEs perform key genomic functions involved
in chromosome structuring, gene expression regulation and alteration, adaptation and evolution [3],
and centromere composition in plants [4]. Currently, an important issue in genome sequence analyses
is to rapidly identify and reliably annotate TEs. However, there are major obstacles and challenges in
the analysis of these mobile elements [5], including their repetitive nature, structural polymorphism,
species specificity, as well as high divergence rate, even across close relative species [6].

TEs are traditionally classified according to their replication mode [7]. Elements using an RNA
molecule as an intermediate are called Class I or retrotransposons, while elements using a DNA
intermediate are called Class 2 or transposons [8]. Each class of TEs is further sub-classified by a
hierarchical system into orders, superfamilies, lineages, and families [9].

Several bioinformatic methods were developed to detect TEs in genome sequences, including
homology-based, de novo, structure-based, and comparative genomic, but no combination of them can
provide a reliable detection in a relatively short time [10]. Most of the algorithms currently available
use a homology-based approach [11], displaying performance issues when analyzing elements in
large plant genomes. In the current scenario of large-scale sequencing initiatives, such as the Earth
BioGenome Project [12], disruptive technologies and innovative algorithms will be necessary for
genome analysis in general and, particularly, for the detection and classification of TEs that represent
the main portion of these genomes [13].

In recent years, several databases consisting of thousands of TE at all classification levels of
several species and taxa have been created and published [3]. Furthermore, these databases have
different characteristics, such as containing consensus [14–16] or genomic [17,18] TE sequences, coding
domains [9,19], and also TE-related RNA [20,21]. These databases have been constructed with the TEs
detected in species sequenced using bioinformatics approaches (commonly based on homology or
structure), which can produce false positive if there is no a curation process [11]. As other biological
sets (such as datasets of splice sites [22], or protein function predictions [23]), databases have distinct
numbers of different types of TEs producing unbalanced classes [23]. For example in PGSB, the largest
proportion of the elements corresponds to retrotransposons (at least 86%) [24]. The above is caused by
the replication mode of each TE class. As in other detection tasks, the negative instances for identifying
TEs are all other genomic elements than TEs (that constitute the positive instances) [25–27], such as
introns, exons, CDS (coding sequences), and simple repeats, among others, making the negative class
multimodal. These databases constitute valuable resources to improve tasks like TE detection and
classification using bioinformatics or also novel techniques such as machine learning (ML).

ML is defined as a set of algorithms that can be calibrated based on previously processed data or
past experience [28] and a loss function through an optimization process [29] to build a model. ML is
applied to different bioinformatics problems, including genomics [30], systems biology, evolution [28],
and metagenomics [31], demonstrating substantial benefits in terms of precision and speed. Several
recent studies using ML to detect TEs report drastic improvements in the results [32–34] compared to
conventional bioinformatics algorithms [13].

In ML, the selection of adequate metrics that measure the algorithms’ performance is one of
the most crucial and challenging steps. Commonly used metric for classification tasks are accuracy,
precision, recall, and ROC curves [35,36], but they are not appropriate for all datasets [37], especially
when the positive and negative datasets are unbalanced [13]. Accuracy and ROC curves can be
meaningless performance measurements in unbalanced datasets [22], because it does not reveal the true
classification performance of the rare classes [38]. For example, ROC curves are not commonly used in
TE classification, because only a small portion of the genome contains certain TE superfamilies [34].
On the other hand, precision and recall can be more informative since precision is the percentage
of predictions that are correct [34] and recall is the percentage of true samples that are correctly
detected [26], nevertheless it is recommended to use them in combination with other metrics since the
use of only one of these metrics cannot provide a full picture of the algorithm performance [36].
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Most of the classification and detection tasks addressed by ML define two classes, positive and
negative [13]. Thus, expected results can be classified as true positive (tp) if they were classified as
positive and are contained in the positive class, while as false negatives (fn) if they were rejected but
did not belong to the negative class. On the other hand, samples that are contained in negative class
and predicted to be positive constitute false positives (fp), or true negative (tn) if they are not [13,28,39].
These markers are related in the confusion matrix, and most of the metrics used in ML are calculated
based on this matrix.

Depending on the goal of the application and the characteristics of the elements to be classified,
other metrics addressing classification (binary, multiclass, hierarchical), class balance (i.e., if training
dataset is imbalanced or not), and the importance of positive or negative instances [36] must be
considered. Another point is the ability of a metric to preserve the value under a change in the
confusion matrix, called measure invariance [40]. This properties give comparative parameters
between metrics that are not based on datasets, but in the way they are calculated. Each of the
properties of the invariance can be beneficial or unfavorable depending on the main objectives,
the balance of the classes, the size of the data sets, the quality, and the composition of the negative class,
among others [40]. Thus, invariance properties are useful tools in order to select the most informative
metrics in each ML problem.

Recently, different ML-based software have been developed to tentatively detect repetitive
sequences [34,41,42], classify them (at the order or superfamily levels) [27,43–45], or both [10,46].
Additionally, deep neural networks-based software were also developed to classify TEs [11,47].
Nevertheless, there are no studies about which metrics can be more suitable taking into account the
unique characteristics of transposable element datasets and their dynamic structure. Here, we evaluated
26 metrics found in the literature for TE detection and classification, considering the main features of
this type of data, the invariance properties and characteristics of each metric in order to select the more
appropriate ones for each type of classification.

2. Materials and Methods

2.1. Bibliography Analysis

As a literature information source, we used the results obtained by [13], who applied the systematic
literature review (SLR) process proposed by [48]. The authors applied the search Equation (1) to
perform a systematic review of research articles, book chapters and other review papers presented in
well-known bibliographic databases such as Scopus, Science Direct, Web of Science, Springer Link,
PubMed, and Nature.

(“transposable element” OR retrotransposon OR transposon) AND (“machine
learning” OR “deep learning”)

(1)

Applying the Equation (1), a total of 403 publications were identified of which authors removed
those which do not satisfy certain conditions such as repeated (the same study was found in different
databases); of different types (books, posters, short articles, letters and abstracts); and written in other
languages (languages other than English). Then, authors used inclusion and exclusion criteria in order to
select interested articles. Finally, 35 publications were selected as relevant in the fields of ML and TE [13].
Using these relevant publications, we identified the metrics used for the detection and classification of
TEs, preserving information such as representation and observations (i.e., the properties measured).
Next, we evaluated each metric that was reported as a decisive source in relevant publications.
The characteristics and properties of each metric were analyzed regarding their application to TEs,
considering that these elements have some characteristics, such as highly variant dynamics for each
class, negative datasets with a large number of genomic elements for detection, a great divergence
between elements of the same class, and species specificity.
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2.2. Measure Invariance Analysis

Comparing the performance measures in ML approaches is not straightforward, and although
the most common way to select most informative measures is by using empirical analysis [49,50],
an alternative methodology was proposed [40], which consists of assessing whether a given metric
changes its value under certain modifications in the confusion matrix. This property is named measure
invariance, and can be used to compare performance metrics without focusing on their experimental
results but using their measuring characteristics such as detecting variations in the number of true
positives (tp), false positives (fp), false negative (fn), or true negatives (tn) presented in the confusion
matrix [40]. Thus, a measure is invariant when its calculation function f which receives a confusion
matrix produces the same value even if the confusion matrix has modifications. For example, consider

the following confusion matrix m =

[
10 4
3 16

]
, where tp = 10, fn = 4, fp = 3, and tn = 16 and the

function for calculating accuracy f = tp+tn
tp+ f p+ f n+tn , thus the accuracy for the confusion matrix presented

above is f (m) = 0.78. Now consider exchanging the positive (tp by tn) and negative (fp by fn) values

in the confusion matrix obtaining the following m′ =
[

16 3
4 10

]
. If we apply the function f over the

new confusion matrix, so we obtain f (m′) = 0.78. In this case, we can conclude that accuracy cannot
detect exchanges of positive and negative values and thus it is invariant due to f (m) = f (m′).

In this work, we used eight invariance properties to compare measures which were selected in
the bibliographic analysis. All these invariances were derived from basic matrix operations, such as
addition, scalar multiplication, and transposition of rows or columns, as following [40]:

• Exchange of positives and negatives (I1): A measure presents invariance in this property

if f
([

tp f n
f p tn

])
= f

([
tn f p
f n tp

])
, showing invariance corresponding to the distribution of

classification results due to its inability to differentiate tp from tn and fn from fp. An invariant
metric in this property may not be utilized in datasets highly unbalanced [40], such as the number
of TEs belonging to each lineage in the Repbase or PGSB databases.

• Change of true negative counts (I2): A measure presents invariance in this property if

f
([

tp f n
f p tn

])
= f

([
tp f n
f p tn′

])
, demonstrating the inability to recognize specificity of the

classifiers. This property can be useful in problems with multi-modal negative class (the class
with all elements other than the positive), i.e., in the detection of TEs, where negative class may
be composed by all other genomic features such as genes, CDS (coding sequences), and simple
repeats, among others.

• Change of true positive counts (I3): A measure presents invariance in this property if

f
([

tp f n
f p tn

])
= f

([
tp′ f n
f p tn

])
, losing the sensitivity of the classifiers, so their evaluation

should be complementary to other metrics.
• Change of false negative counts (I4): A measure presents invariance in this property if

f
([

tp f n
f p tn

])
= f

([
tp f n′

f p tn

])
, indicating stability even when the classifier has errors assigning

negative labels. It is helpful in detecting or classifying TEs when non-curated databases are used
in training (such as RepetDB), which may contain mistakes.

• Change of false positive counts (I5): A measure presents invariance in this property if

f
([

tp f n
f p tn

])
= f

([
tp f n
f p′ tn

])
, proving reliable results even though some classes contain

outliers, which is common in elements classified at lineage level due to TE diversity in their
nucleotide sequences [26].
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• Uniform change of positives and negatives (I6): A measure presents invariance in this property if

f
([

tp f n
f p tn

])
= f

([
k1tp k1 f n
k1 f p k1tn

])
, with k1 , 1. It indicates if a measure’s value changes when

the size of the dataset increases. The non-invariance indicates that the application of the metric
depends on size of the data.

• Change of positive and negative columns (I7): A measure presents invariance in this property if

f
([

tp f n
f p tn

])
= f

([
k1tp k1 f n
k2 f p k2tn

])
, with k1 , k2. If a metric is unchanged in this way, it will not

show changes when additional datasets differs from training datasets in quality (i.e., having more
noise), and indicating the needed of other measures as complement. On the contrary, if a metric
presents a non-invariant behavior then, it may be suitable if different performances are expected
across classes.

• Change of positive and negative rows (I8): A measure presents invariance in this property

if f
([

tp f n
f p tn

])
= f

([
k1tp k1 f n
k2 f p k2tn

])
, with k1 , k2. In this case, if a metric is non-invariant,

its applicability depends on the quality of the classes. It may be useful, for example, when curated
datasets are available such as Repbase.

Properties described above were calculated by [40] for commonly used performance measures
and we used them to analyze selected metrics (Table 1), except for area under the precision-recall curve
(auPRC) which was calculated by us, following the methodology proposed by authors.

Table 1. Invariance properties of selected metrics. 0 for invariance and 1 for non-invariance. Adapted
from [40].

Metric I1 I2 I3 I4 I5 I6 I7 I8

F1-score 0 1 0 0 0 1 0 0
auPRC * 1 0 0 0 0 1 0 1
Fscoreµ 0 1 0 0 0 1 0 0

PrecisionM 0 1 0 1 0 1 1 0
RecallM 0 1 0 0 1 1 0 1
FscoreM 0 1 0 0 0 1 0 0

Precision↓ 0 1 0 1 0 1 1 0
Recall↓ 0 1 0 0 1 1 0 1
Fscore↓ 0 1 0 0 0 1 0 0
Fscore↑ 0 1 0 0 0 1 0 0

* The invariance properties of this metric were calculated by authors in this study. I1: Exchange of positives and
negatives, I2: Change of true negative counts, I3: Change of true positive counts, I4: Change of false negative
counts, I5: Change of false positive counts, I6: Uniform change of positives and negatives, I7: Change of positive
and negative columns, and I8: Change of positive and negative rows.

2.3. Experimental Analysis

To test the behavior of the most commonly used metrics, such as accuracy, precision, and recall,
and the best scoring metric found in this study, we performed several experiments addressing the
specific problem of multi-class classification of LTR retrotransposons at the lineage level in plants.
We selected this problem since LTR retrotransposons are the most common repeat sequences in almost
all angiosperms and they represent an important fraction of their host genome; for instance, 75% in
maize [51], 67% in wheat [52], 55% in Sorghum bicolor [53], and 42% in Robusta coffee [54]. As input,
we used two well-known TE databases: Repbase (free version, 2017) [14] and PGSB [17]. For Repbase,
we joined the LTR domains with the internal section (concatenating before and after) of each LTR
retrotransposon found in the database. The first step was to generate a well-curated dataset of LTR
retrotransposons; thus, we classified LTR retrotransposons from both databases at the lineage level
using the homology-based Inpactor software [55] with RexDB nomenclature [9]. Inpactor has two
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filters for deleting nested elements: (1) Removing elements with domains belonging to two different
superfamilies (i.e., Copia and Gypsy) and (2) removing elements with domains belonging to two or
more different lineages. Additionally, we applied three extra filters: (1) Removing elements with
lengths different from those reported by the Gypsy Database [19] with a tolerance of 20% (this value
was chosen to filter elements with nested insertion of others TEs but keeping elements with natural
divergence), (2) removing elements with less than two domains (incomplete elements derived from
deletion processes), and (3) removing elements with insertions of partial or complete TEs from class II
(present in Repbase). Finally, we removed elements from the following lineages: Alesia, Bryco, Lyco,
Gymco, Osser, Tar, CHLAMYVIR, Retand, Phygy, and Selgy due to their very low frequency or absence
in angiosperms.

Since the datasets used in this study are categorical (nucleotide sequences), we transformed them
using the coding schemes shown in Table 2. Also, we used two additional techniques to automatically
extract features from the sequences; (1) for each element, we obtained k-mer frequencies using k
values between one and six (this range of values of k was selected due to k-mers with k > 6 are rare in
sequences and probably do not provide informational features and they are computationally expensive
to calculate) and (2) we extracted three physical-chemical (PC) properties, such as average hydrogen
bonding energy per base pair (bp), stacking energy (per bp), and solvation energy (per bp), which are
calculated by taking the first di-nucleotide and then moving in a sliding window of one base at a
time [56]. Since the ML algorithms used here require sequences of the same lengths, we found the
largest TE in each dataset and completed the smaller sequences by replicating their nucleotides.

Table 2. Coding schemes for translating DNA characters in numerical representations. Adapted
from [13].

Coding Scheme Codebook Reference

DAX {‘C’:0, ‘T’:1, ‘A’:2, ‘G’:3} [57]

EIIP {‘C’:0.1340, ‘T’:0.1335, ‘A’:0.1260, ‘G’:0.0806} {‘C’:−1, ‘T’:−2, ‘A’:2, ‘G’:1} [58]

Complementary {‘C’:−1, ‘T’:−2, ‘A’:2, ‘G’:1} [59]

Enthalpy
{‘CC’:0.11, ‘TT’:0.091, ‘AA’:0.091, ‘GG’:0.11, ‘CT’:0.078, ‘TA’:0.06,

‘AG’:0.078, ‘CA’:0.058, ‘TG’:0.058, ‘CG’:0.119, ‘TC’:0.056, ‘AT’:0.086,
‘GA’:0.056, ‘AC’:0.065, ‘GT’:0.065, ‘GC’:0.1111}

[60]

Galois (4)
{‘CC’:0.0, ‘CT’:1.0, ‘CA’:2.0, ‘CG’:3.0, ‘TC’:4.0, ‘TT’:5.0, ‘TA’:6.0,

‘TG’:7.0, ‘AC’:8.0, ‘AT’:9.0, ‘AA’:1.0, ‘AG’:11.0, ‘GC’:12.0, ‘GT’:13.0,
‘GA’:14.0, ‘GG’:15.0}

[61]

We applied the workflow described in [62] to compare commonly used ML algorithms using
supervised techniques. As the authors suggested, we applied four types of pre-processing strategies:
none (raw data), scaling, data dimensionality reduction using principal component analysis (PCA),
and both scaling and PCA. On the other hand, we used some of the most common ML algorithms [62],
including linear support vector classifier (SVC), logistic regression (LR), linear discriminant analysis
(LDA), K-nearest neighbors (KNN), naive Bayesian classifier (NB), multi-layer perceptron (MLP),
decision trees (DT), and random forest (RF). All algorithms were tested by varying or tuning parameter
values to find the best performance (Table 3).

The experiments consisted in executing all possible combinations between databases, coding
schemes, pre-processing strategies, and ML algorithms (Figure 1 and Table 4). First, we used the
accuracy and, the F1-score using the macro-averaging strategy as main metric in tuning process
(Table 3). Finally, we calculated other common metrics using the best value of the tuned parameter in
each algorithm for comparison. All the experiments were performed using Python 3.6 and Scikit-Learn
library 0.22 [63], installed in a Anaconda environment in Linux over a CPU architecture. We ran our tests
using the HPC cluster of IFB (https://www.france-bioinformatique.fr), IRD itrop (https://bioinfo.ird.fr/)
and Genotoul Bioinformatics platform (http://bioinfo.genotoul.fr/), all of them are managed by Slurm.

https://www.france-bioinformatique.fr
https://bioinfo.ird.fr/
http://bioinfo.genotoul.fr/
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Table 3. Tested algorithm parameters.

Algorithm Parameter Range Step Description

KNN n_neighbors 1–99 1 Number of neighbors

SVC C, gamma =
1×10−6 10–100 10 Penalty parameter C of the

error term.

LG C 0.1–1 0.1 Inverse of regularization strength

LDA tol 0.0001–0.001 0.0001 Threshold used for rank estimation
in SVD solver.

NB var_smoothing 1×10−1–1×10−19 1×10−2
Portion of the largest variance of all
features that is added to variances

for calculation stability.

MLP
Solver = ‘lbfgs’,

alpha = 0.5,
hidden_layer_sizes

50–1050 50
Number of neurons in hidden

layers. In this study, we used solver
lbfgs and alpha 0.5

RF n_estimators 10–100 10 The number of trees in the forest.

DT max_depth 1–10 1 The maximum depth of the tree.
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Table 4. Description of experiments performed.

Experiment ID Database Algorithm Pre-Processing Main Metric

Exp1 Repbase LR, LDA, MLP, KNN, DT,
RF, SVM, NB

None, Scaling, PCA,
Scaling + PCA Accuracy

Exp2 Repbase LR, LDA, MLP, KNN, DT,
RF, SVM, NB

None, Scaling, PCA,
Scaling + PCA F1-score

Exp3 PGSB LR, LDA, MLP, KNN, DT,
RF, SVM, NB

None Scaling, PCA,
Scaling + PCA Accuracy

Exp4 PGSB LR, LDA, MLP, KNN, DT,
RF, SVM, NB

None, Scaling, PCA,
Scaling + PCA F1-score
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3. Results

3.1. Bibliography and Invariance Analysis

Based on relevant literature sources (articles) detected in [13], by searching in several databases,
we collected 26 metrics that are commonly used in different types of classification tasks, such as binary,
multi-class, and hierarchical (Table 5). We were interested in classification metrics because the detection
task can be considered as a binary classification (using TEs as positive class and non-TEs as negative
class). Additionally, we assigned an importance level for each metric (Table 5) based on the following
aspects: (i) How appropriate is its application to analyzing TE datasets (detection and classification)?
(ii) Which features are measured and how important are these features for TE analysis? For each
metric, each aspect is assigned a level of importance (low, medium, high). Furthermore, the properties
reported in relevant publications were used to evaluate each metric. In this way, we extracted and
summarized information about each metric and we evaluated if its use for TE datasets is plausible.
General observations of metrics can be found in the observations column in Table S4.

Table 5. Metrics used in classification problems. Adopted from [22,34,35,40,64–68].

ID Metric Classification
Type Used in TEs

Level of
Applicability

to TEs

Level of
Mmeasured

Features

1 Accuracy Binary [10,32,45,69,70] Low Low
2 Precision (Positive predictive value) Binary [34] Medium Medium
3 Sensitivity (recall or true positive rate) Binary [10,32,34,71] Medium Medium
4 Specificity Binary [71] Low Low
5 Matthews correlation coefficient Binary NO High Low
6 Performance coefficient Binary NO Low Low
7 F1-score Binary [34,47,72] High High
8 Precision-recall curves Binary [25,34] High High

9 Receiver Operating Characteristic
curves (ROCs) Binary [71] Low Low

10 Area under the ROC curve (AUC) a Binary [25,70] Low Low

11 Area under the Precision Recall
Curve (auPRC)b Binary NO High High

12 False-positive rate Binary [70,71] Medium Low
13 Average Accuracy Multiclass [42] Low Low
14 Error Rate Multiclass NO Low Low
15 Precisionµ Multiclass NO Medium Low
16 Recallµ Multiclass NO Medium Low
17 Fscoreµ Multiclass NO High Low
18 PrecisionM Multiclass [34,43] Medium Medium
19 RecallM Multiclass NO Medium Medium
20 FscoreM Multiclass NO High High
21 Precision↓ hierarchical [11,23,24] Medium Low
22 Recall↓ hierarchical [11,23,24] Medium Low
23 Fscore↓ hierarchical [11,23,24] High Low
24 Precision↑ hierarchical [11,23,24,27] Medium Medium
25 Recall↑ hierarchical [11,23,24,27] Medium Medium
26 Fscore↑ hierarchical [11,23,24,27] High High

Although a and b are areas under the curve, they can be viewed as a linear transformation of the Youden Index [73].
Rows in bold were selected to perform invariance analyses. Additional information, such as metric representation
and general observations of this table, is available in Table S1–S3 and observations about levels of applicability and
measured features can be found in Table S4: Rows in bold were selected to perform invariance analyses.

We performed invariance analyses on the metrics with the best evaluation for each classification
type (Table 1). Precision-Recall curves were excluded for further analysis at this step since it is
impossible to calculate graphics from a confusion matrix. We obtained the invariance properties for
almost all metrics from [40], except for area under the precision recall curve (ID = 11). For this metric,
we generated a random confusion matrix and applied all the transformations presented in [40] in order
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to calculate its value and determine if it changed or not. The invariance analyses were performed
based on the one described by [40].

3.2. Experimental Analysis

To evaluate the relevance of the literature reports about metrics, we applied them to experiments
on the multi-class classification of LTR retrotransposons in angiosperm plants at the lineage level.
Using nucleotide sequences from Repbase [14] (free version, 2017) and PGSB [17] as input, we performed
a classification process using Inpactor [55]. We generated high-quality datasets by removing sequences
that did not satisfy certain filters (See Materials and Methods). After filtering and homology-based
classification, we obtained 2,842 TEs from Repbase and 26,371 elements from PGSB (Table 6).

Table 6. Number of nucleotide sequences of each plant lineage used in Repbase and PGSB databases.

Lineage Repbase PGSB

ALE 53 230
ANGELA 32 1344
ATHILA 107 1844
BIANCA 36 319

CRM 101 1041
DEL 162 2738

GALADRIEL 27 109
IKEROS 0 59
IVANA 7 7
ORYCO 438 1169
REINA 551 1086

RETROFIT 781 1151
SIRE 63 4393
TAT 203 9578

TEKAY 0 11
TORK 281 1292

TOTAL 2842 26,371

We executed four experiments using the generated datasets (Table 4) to evaluate the behavior of
each metric in different configurations. In the first two experiments, we were interested in analyzing
the performance of accuracy and F1-score metrics using a well-curated dataset (Repbase) but with a
few different sequences in some lineages (Figure 2, Figures S1 and S2). In the last two experiments,
we evaluated a larger dataset (PGSB) and tested the same two metrics (Figure 3, Figure S3 and S4).
The complete results of all the experiments can be consulted in Tables S5–S8.
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Figures 2 and 3 show the best performance achieved by each algorithm after tuning one parameter
(Table 3), using as main metric accuracy or F1-score. Since each coding scheme displayed a different
behavior, we were interested in further analyzing how each metric behaves in different algorithms
and coding schemes. K-mers (Figure 4) showed the best performance, PC (Figure 5) displayed the
worst performances, and complementary (Figure 6) showed an intermediate performance, which were
selected for further analyses.
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4. Discussion

The detection and classification of transposable elements is a crucial step in the annotation
of sequenced genomes, because of their relation with genome evolution, gene function, regulation,
and alteration of expression, among others [74,75]. This step remains challenging given their abundance
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and diverse classes and orders. In addition, other characteristics of TEs, such as a relatively low
selection pressure and a more rapid evolution than coding genes [26], their dynamic evolution due
to insertions of other TEs (nested insertion), illegitimate and unequal recombination, cellular gene
capture, and inter-chromosomal and tandem duplications [76], make them difficult targets for accurate
and rapid detection and classification procedures. Indeed, TEs showing uniform structures and
well-established mechanisms of transposition can be easily clustered and classified into major groups
such as orders or superfamilies (e.g., LTR retrotransposons) [77]. However, this task is relatively
complex and time-consuming when classifying TEs into lower levels, such as lineages or families [78].
For these reasons, TE classification and annotation are complex bioinformatics tasks [79], in which,
in some cases, manual curation of sequences is required by specialists. The ability of biologists to
sequence any organism or a group of organisms in a relatively short time and at relatively low costs
redefines the barrier of the genomic information. The current limitation is not the generation of genome
sequences but the amount of information to be processed in a limited time. Complex bioinformatics
tasks may be accomplished by machine learning algorithms, such as in drug discovery and other
medical applications [80], genomic research [38,81], metagenomics [31,82], and multiple applications
in proteomics [83].

Previous works apply ML and DL for TE analysis, such as Arango-López et al. (2017) [43] for the
classification of LTR-retrotransposons, Loureiro et al. (2012) [84] for the detection and classification of
TEs using developed bioinformatics tools, and Ashlock and Datta (2012) [69] distinguishing between
retroviral LTRs and SINEs (short interspersed nuclear elements). Deep neural networks (DNN) are also
used to hierarchically classify TEs by applying fully connected DNN [11] and through convolutional
neural networks (CNN) and multi-class approaches [47].

In TE detection and classification, the dataset could be highly imbalanced [23]; therefore, commonly
used metrics such as accuracy and ROC curves may not be fully adequate [36]. For the detection
task, the positive class will be much lower than the negative, because the latter will have all other
genomic elements. In classification, each type of TE (classes, orders, superfamilies, lineages, or families)
has different dynamics that produce a distinct number of copies. For example, in the coffee genus,
LTR-retrotransposons show large copy number differences depending on the lineage [85]. In Oryza
australiensis [86] and pineapple genomes [87], only one family of LTR-retrotransposons contributes to
26% and 15% (Pusofa) of the total genome size, respectively.

For binary classification (for example, to detect TEs or classify them into class 1 and class 2),
the most appropriate metric is F1-score (id = 7), which considers precision and recall values. Precision
is a useful parameter when the number of false-positive must be limited and recall measures how
many positive samples are captured by the positive predicted [36]. However, the use of only one
of these metrics cannot provide a full picture of the algorithm performance. Altogether, our results
suggest that F1-score is appropriate for TE analyses.

In multi-class approaches (such as TE classification into orders, superfamilies, or lineages), F1-score
(id = 20) also seems to be the most suitable metric, combined with the macro-averaging strategy, probably
due to the high diversity of intra-class samples. For TE detection and classification, it appears more
important to weigh all classes equally than to weigh each sample equally (micro-averaging strategy).
Finally, for hierarchical classification approaches (i.e., considering the hierarchical classification of
TEs proposed by Wicker and coworkers [8]), F1-score↓ (id = 26) and F1-score↑ (id = 23) seem most
suitable. These results demonstrate the importance of calculating the performance of each hierarchical
level. Additionally, precision-recall curves and area under the precision-recall curve provided the best
results for binary classification, demonstrating that, for TE datasets, they are more appropriate than
the commonly used ROC curves.

Area under the precision-recall curve, auPRC (id = 11), is a unique metric, which showed
invariance in I1 and non-invariance in I2. Its invariance properties make auPRC a robust measure of
the overall performance of an algorithm and it is insensitive to the performance for a specific class (I1).
However, it less appropriate for data with a multi-modal negative class (~I2).
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All metrics presented invariance in I3, indicating that they could not measure true positive change.
This suggests that they can be used when the positive class is not very strong. PrecisionM (id = 18) and
Precision↓(id = 21) showed non-invariance in I4, which demonstrates that these metrics may be less
reliable when manual labeling follows rigorous rules for a negative class. On the other hand, RecallM
(id = 19) and Recall↓ (id = 22) exhibited non-invariance in I5, indicating that these metrics may not
provide a conservative estimate when the positive class has outliers, as commonly found in TE datasets.
Thus, these metrics might not be informative in TE detection and classification. The non-invariance
properties of all metrics in I6, shown in Table 1, demonstrated that these metrics can vary in data with
large size differences. Consequently, these metrics must be used carefully for comparison with other
and different datasets.

Non-invariance in I7 shown by precision (id = 18 and 21) supported the combined use of this
metric with other metrics (such as in F1-score) common in ML algorithms. Finally, auPRC (id = 11),
RecallM (id = 19), and Recall↓ (id = 22) may be better choices for the evaluation of classifiers if different
data sizes exhibit the same quality of positive (negative) characteristics, as in the case of generated
(simulated) data due to their non-invariance properties in I8.

Our tests for the multi-class classification task of LTR retrotransposons at the lineage level show
an overestimation of the performance of all ML algorithms used here (Figures 2 and 3) for both datasets
(Repbase and PGSB). Furthermore, our experiments support the information found in the literature,
indicating that accuracy is not the most informative metric for highly unbalanced datasets, such as
those used in this study. Additionally, Figures 2 and 3 indicate that this tendency of overestimation is
generalized for nearly all the algorithms, pre-processing techniques, and coding schemes used here.

A clear exception, however, is shown by k-mers (in both training and validation datasets,
Tables S4–S7), for which accuracy and F1-scores did not show any differences. Nevertheless, if the
F1-score is used in the tuning process (Figure 4B,D, Figure 5B,D, and Figure 6B,D), accuracy also
overestimates the performance of almost all the algorithms in comparison to F1-score, sensitivity (recall),
and precision. Interestingly, RF performs in a similar manner to that of the other algorithms when
PGSB (with more than 26,000 elements) is used, but DT presents the same behavior in both datasets.

When the performance of a given scheme is low, the overestimation shown by accuracy is more
evident (Figures 5 and 6). This is due to the extremely low performance on some lineages and, thus,
accuracy is not very informative if it is not used combined with another metric. As suggested by the
literature and invariance analyses, F1-score appears to be the most adequate and informative metric
in the experiments performed here, since it is a harmonic estimate of precision and sensitivity by
measuring the combined amount of false-positive and positive samples captured by the algorithm.

Overall, the results shown here can also be applied to data similar to TEs, such as retrovirus and
endogenous retrovirus or data with highly imbalanced classes, high intra-class diversity, and negative
multi-modal classes (in detection tasks).

5. Conclusions

Altogether, our analyses suggest that F1-score may be the best metric for each of the ML
classification types, except for simulated data, for which auPRC and Recall should be more appropriate
because of their invariance properties. Conversely, precision should be used in combination with
other metrics to avoid non-realistic estimates of algorithm performance. In binary classification,
precision-recall curves must be used instead of ROC curves. In multi-class classification approaches,
the macro-averaging strategy seems to be more appropriate for TE detection and classification. As future
work, we propose to develop a ML model based on the databases, algorithms, and coding schemes
used here and using F1-score in the tuning process, to improve classification of LTR retrotransposons
at the lineage level in angiosperms.

Supplementary Materials: The following are available online at http://www.mdpi.com/2227-9717/8/6/638/s1:
Figure S1. Performance of ML algorithms and Repbase using accuracy as the main metric (experiment 1) and the
following pre-processing techniques: (a) None, (b) scaling, (c) PCA, (d) PCA + scaling. Figure S2. Performance of
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ML algorithms and Repbase using F1-score as the main metric (experiment 2) and the following pre-processing
techniques: (a) None, (b) scaling, (c) PCA, (d) PCA + scaling. Figure S3. Performance of ML algorithms and
PGSB using accuracy as the main metric (experiment 3) and the following pre-processing techniques: (a) None,
(b) scaling, (c) PCA, (d) PCA + scaling. Figure S4. Performance of ML algorithms and PGSB using F1-score as the
main metric (experiment 4) and the following pre-processing techniques: (a) None, (b) scaling, (c) PCA, (d) PCA +
scaling. Table S1. Metrics used in binary classification. Adopted from [22,34,35,40,64–68]. Table S2. Metrics used
in multi-class classification. Adopted from [22,34,35,40,64–68]. Table S3. Metrics used in hierarchical classification.
Adopted from [22,34,35,40,64–68]. Table S4. Evaluation for metric collection. Table S5. Results of experiment 1.
Table S6. Results of experiment 2. Table S7. Results of experiment 3. Table S8. Results of experiment 4.
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