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Abstract: Zoonotic cutaneous leishmaniasis (ZCL) caused by Leishmania major Yakimoff & Shokhor
and transmitted by Phlebotomus papatasi (Scopoli) is a public health concern in Morocco. The disease
is endemic mainly in pre-Saharan regions on the southern slope of the High Atlas Mountains.
The northern slope of the High Atlas Mountains and the arid plains of central Morocco remain
non-endemic and are currently considered high risk for ZCL. Here we investigate and compare the
population genetic structure of P. papatasi populations sampled in various habitats in historical foci
and non-endemic ZCL areas. A fragment of the mtDNA cytochrome oxidase I (COI) gene was amplified
and sequenced in 59 individuals from 10 P. papatasi populations. Haplotype diversity was probed,
a median-joining network was generated (FST) and molecular variance (AMOVA) were analyzed.
Overall, we identified 28 haplotypes with 32 distinct segregating sites, of which seven are parsimony
informative. The rate of private haplotypes was high; 20 haplotypes (71.4%) are private ones and
exclusive to a single population. The phylogenetic tree and the network reconstructed highlight
a genetic structuration of these populations in two well defined groups: Ouarzazate (or endemic
areas) and Non-Ouarzazate (or nonendemic areas). These groups are separated by the High Atlas
Mountains. Overall, our study highlights differences in terms of population genetics between ZCL
endemic and non-endemic areas. To what extent such differences would impact the transmission of
L. major by natural P. papatasi population remains to be investigated.

Keywords: Phlebotomus papatasi; Leishmania major; zoonotic cutaneous leishmaniasis; genetic structure;
Cytochrome oxidase subunit I; Morocco

1. Introduction

The Leishmaniases are a group of parasitic diseases caused by various species of protozoa belonging
to the genus Leishmania (Trypanosomatida, Kinetoplastidae) and transmitted by several species of
phlebotomine sand fly vectors (Diptera, Psychodidae) [1–3]. Phlebotomus papatasi (Scopoli, 1786) is the
proven vector of L. major Yakimoff & Shokhor 1914, which causes zoonotic cutaneous leishmaniasis
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(ZCL) in North Africa and other geographic areas, with rodents acting as reservoir hosts [4,5].
In Morocco, L. major zymodeme MON 25 is transmitted by P. papatasi [6,7], and Meriones shawi grandis
is the reservoir host [8]. The first registered historical outbreak of ZCL was in the 1970s throughout the
south of the High Atlas Mountains, from Ouarzazate to Errachidia (Figure 1). Data from the health
ministry [9] pinpoint that ZCL is increasing but still remains mainly subordinated to the pre-Saharan
zone on the southern slope of the High Atlas Mountains, despite the presence of the proven vector
and reservoir for L. major as well as favorable eco-climatic conditions. These areas should therefore be
classified as at high risk for ZCL [10,11].
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Phlebotomus papatasi present a wide geographical distribution [12] and adapt to diverse habitats
including highly disturbed ones [13–16]. Strikingly, the distribution of P. papatasi exceeds that of
L. major and its reservoir hosts, extending to southern Europe and the eastern regions of the Indian
subcontinent, where it is often abundant in domestic and peri-domestic biotopes far from rodent
colonies [4,17]. It is hypothesized that two cryptic populations are involved in the transmission of
L. major between rodents and from rodents to humans [17]. The underlying population structure
and genetic variability within and among geographically distant populations may influence vectoral
capacity, thus having epidemiological implications warranting assessment of control strategies to
prevent transmission of CL. Overall population genetics analysis with cytochrome b mtDNA sequences
showed that Phlebotomus papatasi populations are relatively homogeneous [18] despite pockets of genetic
variation [19–23]. Such molecular homogeneity in diverse geographical populations of P. papatasi is
also demonstrated with another molecular marker, the second internal transcribed spacer ribosomal
DNA (rDNA ITS2) [24]. Microsatellite markers applied to P. papatasi populations from the North
African and the Mediterranean subregions have provided evidence for genetic differentiation [25,26]
and have also revealed genetic differentiation in Sudanese P. papatasi populations at a microgeographic
scale [27].
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In Morocco, P. papatasi are one of the most frequently trapped sandfly species [12,28–30];
they express a preference for arid and perarid bioclimates [29] and their distribution is limited
by elevation [31]. High densities of P. papatasi are recorded in urban areas and in unhealthy suburbs of
large cities such as Marrakech and Agadir, particularly in wild dumps and areas of sewage application,
far away from human dwellings [16]. Phenotypic variations or “abnormalities” in the male genitalia of
P. papatasi are frequently recorded, with symmetrical anomalies being observed in the lateral lobes,
along with abnormal styles, which correlate with environmental human-caused disturbances [15].
Here, using the cytochrome c oxidase I gene as a molecular marker, we investigated the genetic structure
of wild P. papatasi populations sampled in endemic and non-endemic areas for ZCL in Morocco.

2. Materials and Methods

2.1. Origins and Sampling of Sand Flies

Sand fly specimens were collected between April and November from 2006 to 2008. They were
captured using CDC-miniature light traps placed in houses and sticky traps (castor oil papers) placed
in intra-domestic, peri-domestic, and sylvatic habitats (Table 1). Collected sand flies were stored in 96%
ethanol. Sampling was performed in two geographic areas (Figure 1). The first one corresponded to
the historical focus of ZCL due to L. major in Ouarzazate, southern Morocco. The second one, in central
and southwestern Morocco, is a non-endemic area for L. major. The two areas are separated by the
High Atlas Mountains (Figure 1).

Table 1. Sampling stations in the study area.

Stations Latitude Longitude Altitude (m) Number of
Specimens

Trapping
Method

Ouarzazate 31◦23′19 N 5◦59′15 W 1648 20 CDC trap
Nfifa 31◦32′40 N 8◦45′58 W 322 10 CDC trap

Labrouj 32◦30′0 N 7◦12′0 W 388 6 CDC trap
Chouiter 31◦34′0 N 7◦49′0 W 529 2 Sticky trap
Taferiat 31◦32′59 N 7◦36′29 W 755 5 Sticky trap

Amizmiz 31◦13′0 N 8◦15′0 W 1004 8 Sticky trap
Zinit 31◦4′60 N 8◦41′60 W 1148 2 CDC trap

Ijjoukak 31◦0′0 N 8◦10′0 W 1233 2 CDC trap
Sti Fadma 31◦13′0 N 7◦42′0 W 1772 2 CDC trap

Oukaemiden 31◦12′21 N 7◦51′51 W 2613 2 CDC trap

2.2. Morphological Identification

The head and the abdominal Terminalia of each specimen were dissected with sterilized
microneedles and mounted on a slide in Canada balsam [32]. Morphological identification at
the species level was performed by the examination of the external genitalia and pharyngeal armatures
for males. The rest of the body was used for DNA extraction.

2.3. DNA Extraction, Cytochrome Oxidase Subunit I (COI) Amplification, and DNA Sequencing

Total DNA was extracted using the QIAmp kit (Qiagen, Manchester, England), according to the
manufacturer’s protocol.

Polymerase chain reaction (PCR) was performed in a total volume of 50 µL. The primers
LepF (5′-ATTCAACCAATCATAAAGATATTGG-3′) and LepR (5′-TAAACTTCTGGATGTCCAAAA
AATCA-3′) were used to amplify a 681 bp fragment of the COI gene [33]. Each amplification reaction
contained 4 µL of DNA, each primer at 0.5 µM final concentration, 0.2 mM dNTPs and 0.02 U of
Phusion DNA Polymerase (Finnzyme). Amplification was performed according to the following
cycling conditions: an initial denaturation step at 98 ◦C for 45 s; followed by 35 cycles at 98 ◦C for
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10 s, 57 ◦C for 30 s and 72 ◦C for 30 s; and a final extension at 72 ◦C for 7 min. The PCR products were
directly sequenced in both directions using the primers used for DNA amplification.

2.4. Data Analysis

Sequences (681 bp) were manually edited and aligned with the online service Multalin [34]
(http://ribosome.toulouse.inra.fr/multalin/multalin) using the cytochrome c oxidase I gene as a molecular
marker. Gaps were treated as missing data. Sequence analysis and Kimura’s two-parameter genetic
distance calculation were performed using MEGA v. 4.0 [35,36]. The estimation of nucleotide
diversity between and within populations using the Φ [37,38] and π statistics [39] was performed
with ARLEQUIN v. 3.0 [40]. ARLEQUIN v. 3.0 was also used for calculating Tajima’s D and
Fu’s Fs, and molecular analysis of variance (AMOVA) was used to determine the genetic structure
of populations and their differentiation (FST) [39]. Significance was tested by performing 1000
permutations. Fst values > 0.25 indicate strong genetic differentiation. The median-joining algorithm,
implemented in the software package NETWORK v. 3.1 [41,42], was used to construct a median-joining
network. Phylogenetic analysis was carried out using maximum likelihood analysis, using the default
settings of the online phylogeny website (https://www.phylogeny.fr/) [43]. Alignments were done
on the 654 bp of P. papatasi COI gene sequences from Morocco, or from Spain (LC090048.1), Serbia
(KY848828.1), Turkey (MH780862.1), Cyprus (MF968974.1), and of P. ariasi (KJ1481169.1), P. sergenti
(KC755398.1), or P. perniciosus (KJ1481136.1).

3. Results

3.1. Sequence Analysis

The PCR amplification of the 3′ end of the mitochondrial COI gene produced a band of
approximately 700 bp in a 1% agarose gel. The 681 bp sequences were manually trimmed, resulting
in good quality sequences with a length of 654 bp. Sequence alignment of the 654 bp COI sequences
did not identify any nucleotide insertion/deletions (indels), and sequences can be fully translated
with the Drosophila mitochondrial code. Seven parsimony-informative sites were recorded in more
than one haplotype. All sequences are available in GenBank under accession numbers MT074053-054,
MT075056-57, MT075059-61, MT075064-75, MT075057, and MT075078-85. Sequence analysis delineated
the presence of 28 haplotypes with 32 distinct segregating sites (Table 2). A relatively low abundance
of GC and an excess of AT (59.98%) is recorded. Twenty-nine substitutions are identified, including
17 A→G transitions and 12 T→C transversions; transitions outnumbered transversions. The average
haplotype diversity (0.9381 +/− S.D = 0.0403) and nucleotide diversity (θS = 5.41756 +/− 0.59318;
θπ = 4.86013 +/− 0.20454; π = 486,013 +/− 0.20454) are high. Finally, Tajima’s D and Fu’s Fs neutrality
values are negative and significant in all sampled populations. These pinpoint probable episodes of
population expansion (mean Tajima’s D = −0.36383, p = 0.39850; mean Fu’s Fs = −3.57473, p = 0.18700).
See Supplementary Materials for more information on statistics (Table S1).

Table 2. P. papatasi haplotypes within the 59 Moroccan P. papatasi specimens sampled.

Haplotypes Specimen Code Nb Variant Character Position

H1 PAP78,70,43,41,
19,13,11,10,9 9 GGTCGCA CCTTGGGCGA TTAGGAGTAG CTATAT

H2 PAP61 1 ....... .......... .C........ ......
H3 PAP62 1 ....... ..A....... .......... ....G.
H4 PAP35 1 .A..... .......... .......... ......
H5 PAP44 1 ....... .......... .......... ...C..
H6 PAP79,17 2 ...T... .......... .......... ......
H7 PAP21 1 ....... ........A. .......... ......

H8 PAP80,77,76,75,71,55,47,
46,45,36,22,18,12,9 14 ...T... ........AG C.....A.G. ......

H9 PAP8 1 ...T... ........A. C.....A.G. ......

http://ribosome.toulouse.inra.fr/multalin/multalin
https://www.phylogeny.fr/
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Table 2. Cont.

Haplotypes Specimen Code Nb Variant Character Position

H10 PAP31 1 ......G ........A. ......A... ......
H11 PAP34 1 ....... ........A. ......A... ......
H12 PAP56 1 ....... ....A...A. ......A... ......
H13 PAP28 1 ....... .....A..A. ..G....... ......
H14 PAP5,49 2 ....... .....AATA. ........GA ......
H15 PAP3 1 .....T. .....AATA. ........GA ......
H16 PAP72,40 2 ....... .....AATA. ........GA .....C
H17 PAP2 1 ....... .....AATA. ........GA T.....
H18 PAP25 1 ..C.... ....AAATA. ......A.GA .C....
H19 PAP1 1 ....... .....AATA. .......GGA ..G...
H20 PAP58,33,24 3 ....... .....AATA. ........G. ..G...
H21 PAP37 1 C...... T....AATA. ........G. ..G...
H22 PAP32 1 ....... .....AATA. ...A....G. ..G...
H23 PAP26 1 ....... ...C.AATA. ........G. ..G...
H24 PAP4 1 ....... .....AATA. ........G. ......
H25 PAP67,60,57,38,7 5 ...T... .T.A.AATA. .......... ..G...
H26 PAP29 1 ....... .....AATA. .......... ......
H27 PAP30 1 ....A.. .....AATA. .....G..GA ......
H28 PAP73,6 2 ....A.. .......TA. ....A...T. ......

Alignment of variant nucleotide positions for the 654 bp of the mitochondrial COI gene. Only polymorphic positions
are shown. Spaces represent identity with respect to the first reference sequence.

3.2. Haplotype Diversity and Distribution

The 28 haplotypes recorded within the 59 P. papatasi samples are presented in Table 2. Haplotype
H8 is the most frequently recorded. It is present in seven populations from non-endemic areas.
Other haplotypes are less frequent; H1 and H25 are present in three populations, and H14 is recorded
in only two populations (Table 3). The haplotype H25 is the only shared haplotype between P. papatasi
sampled in endemic and non-endemic areas. The other 24 of the 28 identified haplotypes (85.7%) are
private ones. Thirty private haplotypes (H10–H13, H15, H17–H19, H22–H24, H26–H27) are associated
with Ouarzazate, five (H2–H4, H7, H21) with Nfifa, one (H9) with Labrouj, and one with Taferiat (H5).
The rate of private haplotypes is high in populations from the ZCL-endemic areas of Ouarzazate. Here,
13 of the 15 identified haplotypes (86.6%) are unique. In non-endemic areas, the corresponding rate is
only of 42.8% (6 out of 14 haplotypes).

Table 3. Distribution of COI haplotypes within the Moroccan populations of P. papatasi included in this
study. Unique haplotypes are underlined.

Stations COI-Haplotypes Unique Haplotypes

Ouarzazate H10, H11, H12, H13, H15, H17, H18, H19, H20,
H22, H23, H24, H25, H26, H27 13

Nfifa H1, H2, H3, H4, H7, H8, H21, H25 5
Labrouj H8, H9, H14, H16, H25, H28 1
Chouiter H8, H14 0
Taferiat H5, H8 1

Amizmiz H1, H8 0
Zinit H8 0

Ijjoukak H1 0
Sti Fadma H6 0

Oukaemiden H8 0

3.3. Phylogenetic Analysis

Phlebotomus papatasi belongs to the Phlebotomus subgenus. The consensus tree (Figure 2A)
recovered displays that samples from Morocco fall within the clade of other P. papatasi samples collected
in Turkey, Spain and Cyprus. They are clearly divergent from P. (Laroussius) ariasi, P. (Laroussius)
perniciosus or P. (Transphlebotomus) sergenti which belong to the Laroussius and Transphebotomus subgenus.
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Overall, within P. papatasi samples collected in Morocco, the presence of at least two P. papatasi
populations that fall into two groups which show some genetic relatedness is depicted (bootstrap
support values above 50%). Most specimens sampled in the endemic area of Ouarzazate are grouped
together and constitute the “Ouarzazate group”, with a bootstrap value of 56%. This group is
interrupted by two individuals from Labrouj in the central Morocco area. The other specimens from
non-endemic areas, or “Non-Ouarzazate” areas, constitute a geographically mixed group.
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3.4. Median-Joining Network Analysis

The median-joining analysis displays a highly structured network. Within each major clade,
the internal and terminal nodes can be interpreted as old and recently derived haplotypes. The network
display places all haplotypes into two groups: “Ouarzazate” or endemic; and “Non-Ouarzazate”
or non-endemic. Within the Non-Ouarzazate group, two groups (named Mix1 and Mix2) are
distinguishable (Figure 3). These two groups encompass haplotypes from the Ouarzazate and
Non-Ouarzazate areas. The Mix2 group is closer to the Ouarzazate group in term of haplotype
composition than Mix1—it might be considered as a sister group of the latter. Overall, the clustering
displayed by the median-joining network agrees well with the topology of the trees generated by the
maximum likelihood analysis. The clear variation in clustering between haplotypes of endemic and
non-endemic supports a genetic differentiation between these populations.Microorganisms 2020, 8, x FOR PEER REVIEW 8 of 13 
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3.5. Population Differentiation

The genetic differentiation among populations of P. papatasi was defined by F statistics. AMOVA
results presented in Table 4 confirm variation among and within populations; 31.03% and 68.97%,
respectively (Table 4).

Table 4. Molecular variance (AMOVA).

Source of Variation * d.f Sum of Squares Variance Components Variation (%)

Among populations 1 31.716 1.08341 Va 31.03
Within populations 57 137.284 2.40850 Vb 68.97
Total 58 169.000 3.49190 /
Fixation index (FST) 0.31026 / / /

* d.f: degree of freedom.

The FST values were calculated in a pairwise manner for the main populations (Ouarzazate and
Non-Ouarzazate, encompassing Mix 1 and Mix2). With a FST value of 0.31026, the matrix of significance
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for 110 permutations reached p = 0.05, which highlights some genetic differentiation between the two
groups that were analyzed using our 59 samples.

4. Discussion

Natural barriers like high mountains play an important role for limiting dispersal and isolating
populations. The Atlas, a natural barrier, may have played a role in limiting the diffusion of zoonotic
cutaneous leishmaniasis to the Saharan regions of Morocco. This Atlas consists of three parallel ranges:
the Anti-Atlas in the southwest, which gives way to the High Atlas, where the country’s highest
peak rises to 4165 m; the Middle Atlas is located northeast of the High Atlas. Rolling plateaus east of
the mountains gradually lead into the Sahara, located in southeastern and southern Morocco. Here,
in sub-Saharan areas, L. major is largely widespread. The central Moroccan plateaus overlooking the
northern slope of the High Atlas, notably the Haouz plain and Chichaoua, remain non-endemic but,
according to entomological data, is considered high risk.

We have investigated the genetic structure of 10 populations collected from both endemic and
non-endemic areas for zoonotic cutaneous leishmaniasis using the cytochrome c oxidase subunit I
(CoxI or COI) as molecular marker to gather clues on the influence of the Atlas Mountains on the
evolutionary history of P. papatasi populations in Morocco. The cytochrome c oxidase gene is used
as a DNA barcode to guide the identification of new animal species and to delineate cryptic taxon
and the association between their life stages [44–46]. The sequence polymorphism at this locus
has been used to investigate the population genetic structure of Lutzomyia longipalpis [47], and to
discriminate L. umbratilis sibling species [48]. In Old World sand fly species, COI in combination with
the cytochrome b (Cytb) gene can differentiate two closely related species, P. chabaudi and P. riouxi [49].
Here, we observe a genetic diversity of the COI gene in Morocco, reminiscent of a genetic structuration
in P. papatasi populations. Samples collected were indistinguishable by morphological observation
and genomic analysis of the 18srRNA (data not shown). The haplotype distributions displayed in the
median-joining network as well as the phylogenetic analysis supported the notion of a geographic
clustering of P. papatasi, in Morocco. Two groups, with distinct genetic structures, can be differentiated.
The first one encompasses P. papatasi samples from the ZCL endemic areas of Ouarzazate. The second
one, designated the “Non-Ouarzazate” group, includes a mix of individuals from non-endemic areas
sampled on the northern slope of the High Atlas Mountains and the arid plains of central Morocco,
as well as samples from endemic areas.

The median-joining network, as well as nucleotide analyses, provide additional evidence of
a probable demographic expansion of P. papatasi populations. A complex scenario of P. papatasi
populations might have taken place in Morocco, with expansion events allowing the appearance of
multiple haplotype subgroups. The Ouarzazate population of P. papatasi, which derives from the
populations of the southern slope of the High Atlas Mountains, is expected to have experienced a
period of isolation due to the physical barrier of the Atlas Mountains. Then, population expansion and
genetic diversification might have occurred, maybe following a climatic shift. These assumptions are
supported by the high rate of private haplotypes recorded in this group (87%), which could reflect some
local adaptation. The diversity of the ecological conditions may affect the distribution and density of
P. papatasi, including the bioclimate, anthropization, urbanization, and elevation [50]. The bioclimate is
Saharan in Ouarzazate. At stations from central and southwestern Morocco, it varies from arid in Nfifa,
Labrouj and Chouiter to semi-arid and sub-humid in Taferiat, Amizmiz, Zinit, Ijjoukak, Sti Fadma
and Oukaemiden. In non-endemic areas, sampling was performed on plains where the P. papatasi
density is high and in mountainous localities where P. papatasi is less frequent [31]. Despite the very
high diversity in the ecological conditions, samples from non-endemic areas were always genetically
intermingled, forming the Non-Ouarzazate group. This group includes Mix1, close to P. papatasi from
endemic areas, and the more distant Mix2. The Mix1 and Mix2 populations are not geographically
isolated by the High Atlas Mountains. It therefore appears that ecological habitats do not play a key
role in shaping the genetic variation of P. papatasi populations. This finding agrees with other reports
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from Hamarsheh et al. [22,25,26] that highlight a genetic structure of P. papatasi linked to latitude rather
than to ecological environment.

It will be now of interest to gather more precise information on the evolutionary scenarios that
have governed the dispersal of P. papatasi populations and therefore have had an impact on the current
and future ZCL incidence in Morocco. To this aim, the use of microsatellite markers may help to more
precisely define the demographic history of Moroccoan P. papatasi populations.

5. Conclusions

This work, based on a maternally inherited marker (the COI gene), highlights clear differences in
the genetic structure between P. papatasi populations living the L. major-endemic area of Ouarzazate
and those of non-endemic areas of central Morocco. In addition, morphological differences have been
reported in P. papatasi populations in Morocco [51]. Indeed, these populations sampled from both sides
of the High Atlas Mountains also show genetic differences in another marker, the galectin gene [52],
which plays a pivotal role in the recognition of L. major by its specific vector P. papatasi [53]. This study
pinpoints a polymorphism in the galectin gene (PpGalec) with a mutation affecting an amino acid
involved in substrate recognition. Although performed on a limited number of samples, this further
highlights an unequal distribution of this mutation in populations from endemic and non-endemic
areas for zoonotic cutaneous leishmaniasis [53]. All these reported observations question potential
variation in the vectoral capacity/competence of P. papatasi populations from the southern and the
northern slope of the High Atlas Mountains in Morocco.
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