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Abstract

Background

Twenty-seven villages were selected in southwest Burkina Faso to implement new vector

control strategies in addition to long lasting insecticidal nets (LLINs) through a Randomized

Controlled Trial (RCT). We conducted entomological surveys in the villages during the dry

cold season (January 2017), dry hot season (March 2017) and rainy season (June 2017) to

describe malaria vectors bionomics, insecticide resistance and transmission prior to this

trial.

Methods

We carried out hourly catches (from 17:00 to 09:00) inside and outside 4 houses in each vil-

lage using the Human Landing Catch technique. Mosquitoes were identified using morpho-

logical taxonomic keys. Specimens belonging to the Anopheles gambiae complex and

Anopheles funestus group were identified using molecular techniques as well as detection

of Plasmodium falciparum infection and insecticide resistance target-site mutations.

Results

Eight Anopheles species were detected in the area. Anopheles funestus s.s was the main

vector during the dry cold season. It was replaced by Anopheles coluzzii during the dry hot

season whereas An. coluzzii and An. gambiae s.s. were the dominant species during the

rainy season. Species composition of the Anopheles population varied significantly among

seasons. All insecticide resistance mechanisms (kdr-w, kdr-e and ace-1 target site muta-

tions) investigated were found in each members of the An. gambiae complex but at different

frequencies. We observed early and late biting phenotypes in the main malaria vector
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species. Entomological inoculation rates were 2.61, 2.67 and 11.25 infected bites per

human per month during dry cold season, dry hot season and rainy season, respectively.

Conclusion

The entomological indicators of malaria transmission were high despite the universal cover-

age with LLINs. We detected early and late biting phenotypes in the main malaria vector

species as well as physiological insecticide resistance mechanisms. These data will be

used to evaluate the impact of complementary tools to LLINs in an upcoming RCT.

Introduction

The World Health Organization (WHO) has reported 228 million malaria cases and 405 000

deaths worldwide in 2018 [1]. Significant progress has been made in the era of malaria control

and elimination between 2000 and 2017 in all regions of the world [2]. The number of malaria

cases worldwide has decreased by 62% between 2000 and 2015 but seems to rebound since

2016 [2–4]. Sub-Saharan Africa accounted for about 93% of cases and deaths in 2017 [1]. In

2017, the health ministry of Burkina Faso recorded 11.9 million cases and 4144 deaths attrib-

uted to malaria [5].

Malaria control is mainly based on symptomatic and preventive treatments (with artemisi-

nin-based combination therapies: ACTs) and vector control. Vector control aims at reducing

malaria transmission by targeting Anopheles mosquitoes that transmit Plasmodium parasites.

Core vector control measures rely mostly on the mass distribution of long-lasting insecticidal

nets (LLINs) and high coverage of indoor residual spraying (IRS) to reduce the risk of malaria

infection by targeting indoor biting mosquitoes [4]. It was estimated that LLINs have contrib-

uted to 68% of the decline in malaria cases observed between 2000 and 2015 in Africa [6]

despite moderate use rates (LLIN use rate reached 55% in 2015 in sub-Saharan Africa [7].

However, the emergence of physiological [8–10] and behavioral [11,12] insecticide resistance

mechanisms in Anopheles mosquitoes, as observed in most parts of Africa, could both compro-

mise the effectiveness of LLINs and explain the recent rebound in malaria cases. Consequently,

there is an urgent need for increasing or complementing the protection provided by the

LLINs. Complementary strategies exists but before being included into strategic plans by

national malaria control programs (NMCPs), supported by international donors and imple-

mented in endemic countries, they need to be evaluated through rigorous and independent

process [13]. In this context, Institut de Recherche en Sciences de la Santé (IRSS), Institut de

Recherche pour le Développement (IRD) and Institut Pierre Richet (IPR) have been funded to

conduct the REACT (Gestion de la REsistAnce aux inseCTicides au Burkina Faso et en Côte

d’Ivoire) project to evaluate in Burkina Faso and Côte d’Ivoire four complementary strategies

to LLINs trough a randomized controlled trial (RCT). These strategies included: i) larviciding

with Bacillus thuringiensis israelensis (Bti) to target immature stages of Anopheles species, ii)

Indoor residual spraying (IRS) with pirimiphos-methy to target endophilic malaria vectors, iii)

information, education, community (IEC) to improve LLINs use iv) ivermectin administration

to animals, a One health approach to tackle zoophagic behavior of malaria vectors and to

improve animal health. The current study conducted entomological surveys to describe

malaria vector bionomics, insecticide resistance and transmission prior to the implementation

of the REACT RCT.
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Materials and methods

Study site and design

The study was conducted in the Diébougou health district located in southwest Burkina Faso.

The natural vegetation is mainly wooded savannah dotted with clear forest gallery. The climate

is tropical with two seasons: one dry season from October to April and one rainy season from

May to September. The average annual rainfall is about 1200 mm. The dry season is “cold”

from December to February (with average minimal and maximal temperatures of 18˚C and

35˚C, respectively) and “hot” from March to April (with average minimal and maximal tem-

peratures of 25˚C and 40˚C, respectively). Agriculture (cotton growing and cereals) is the

main economic activity in the area, followed by artisanal gold mining and production of coal

and wood [14, 15]. The study took place in 27 villages that were selected considering accessibil-

ity during the rainy season, a size of 200–500 inhabitants per village and a distance between

two villages higher than two kilometers. According to a census carried out by our team in

August 2016 one month after a universal distribution by the NMCP, the proportion of house-

holds with at least one LLIN and with at least one LLIN for every two inhabitants were 96.15%

and 71.17%, respectively with 8680 inhabitants in the 27 selected villages. The proportion of

households with access to an LLIN in their household was 87.60%. We calculated these indica-

tors according to WHO formulas [16].

Mosquito collection and determination

We carried out three rounds of mosquito collection in January 2017 (dry cold season), March

2017 (dry hot season) and June 2017 (rainy season) using Human Landing Collections (HLC).

The procedure for conducting HLC was for a person to sit on a stool, and mosquitoes to alight

on his exposed legs where they were then collected using a hemolysis tube [17, 18]. Mosquitoes

were collected from 17:00 to 09:00 both indoors and outdoors at 4 sites per village (sites of col-

lection remained the same during the three surveys). We performed collections in three vil-

lages simultaneously for one night leading to 9 nights of collections needed to survey all 27

villages during each survey. Due to a long duration of collection (16h), two teams of 8 collec-

tors worked in each village. The first team worked from 17:00 to 01:00 when they were

replaced by the second team from 01:00 to 09:00. Collectors were rotated among the collection

points every hour. Indoor collection points were rooms that meet the following criteria: being

usually inhabited; quiet without excessive movement of peoples; open to the outside through a

door or a window. Outdoor collection was conducted in areas usually occupied by people but

are sheltered from wind, traffic, fires and are not large meeting areas. The distance between

collection sites was at least 50 m. The distance between indoors and outdoors collection points

in one site was at least 10 m to minimize competition between mosquito collectors. Mosqui-

toes were collected in individual tubes plugged with cotton and stored in hourly bags. Inde-

pendent staff supervised rotation of the mosquito collection and regularly checked for the

quality of the mosquito collection. The following criteria were checked: respected collection

location, collector at his post, collector awake, collector in a correct position, collector ade-

quately dressed, correct hourly bags used. If one of the criteria was not respected, required

arrangements were immediately made by the supervisor.

Morphological identification and dissection

Mosquitoes were morphologically identified where possible in the field to genus and species

levels using morphological keys [19, 20]. A subsample of 100 non blood-fed Anopheles spp.

individuals was randomly selected per survey and per village and dissected to identify their
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parity state (parous or nulliparous) [21]. Parous female are those that have laid eggs at least

once. All females belonging to the Anopheles genus were stored in individual tubes with silica-

gel and preserved at -20˚C for further analyses.

Molecular analysis

DNA extracted from head-thorax of Anopheles spp. individuals was used to detect Plasmodium
falciparum infection using quantitative polymerase chain reaction (PCR) assay [22]. Individu-

als belonging to the Anopheles gambiae complex and the Anopheles funestus group were identi-

fied to species by PCR [23–25].

PCR assay were carried out on all mosquitoes belonging to the An. gambiae complex to

detect the L1014F (kdr-w) [26], the L1014S (kdr-e) [27] and the G119S (ace-1) [28] mutations.

kdr-w and kdr-e confer insecticide resistance to pyrethroids whereas ace-1 confers resistance

to carbamates and organophosphates.

Parameters measured

We calculated the human biting rate (HBR; the number of vectors’ bites per human per night

(b.h-1.n-1), the sporozoite infection rate (SIR: the proportion of Anopheles infected by P. falcip-
arum), the entomological inoculation rate (EIR; the number of infected bites per human per

night (ib.h-1.n-1), the endophagy rate (ER; the proportion of Anopheles females collected

indoors) and the parous rate (PR; the proportion of parous females over the total dissected) for

each Anopheles species and for overall Anopheles spp. From PRs, we deduced daily survival

rates (p) using the Davidson’s method [29] (p ¼
ffiffiffiffiffiffi
PRg
p

with the duration of the gonotrophic

cycle g assumed to be 2 days). Knowing survival rates, we were able to estimate the proportion

Pd of the vector population that reach the epidemiologically dangerous age according to the

formulae given by MacDonald (Expression 5 p.16 in [30]: Pd = pn) assuming the sporogony

duration n of malaria parasites in mosquitoes takes 11 days after which the parasites can be

transmitted back to humans.

Statistical analyses

We assessed HBR, ER, SIR, EIR and PR using generalized mixed effect models (GLMM) with

collection points and villages as nested random intercept. All models were fitted using the

‘glmer’ function of the package ‘lme4’ [31] using R software [32]. For all models, we performed

backward stepwise deletion of the fixed terms followed by Likelihood ratio tests. Term remov-

als that significantly reduced explanatory power (p< 0.05) were retained in the minimal ade-

quate model. We used the post-hoc Tukey method to do multiple comparison among

modalities of the fixed terms and calculated estimated marginal means (EMM) using the

‘emmeans’ function of the ‘emmeans’ package [33]. We considered main effects and interac-

tions of the fixed terms in all the models.

We performed HBR and EIR analyses using negative-binomial models fitted on nightly

counts of all Anopheles and of Anopheles individuals found to be infected by P. falciparum,

respectively. Fixed terms were the season (dry cold, dry hot or rainy) and the collection posi-

tion (indoor or outdoor). The results of final models are presented (S1 File).

We performed SIR, ER and PR analyses using binomial models fitted on individual status

of the Anopheles (infected vs. uninfected, collected indoors vs. outdoors or parous vs. nullipa-

rous, respectively). Fixed terms for these binomial models were the season and the individual

species. Rate ratio (RR) for Negative Binomial models and Odds ratio (OR) for Binomial mod-

els were computed with 95% confidence intervals.
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The relationship between Anopheles species composition and seasons was tested using a

Fisher’s exact test.

We assessed nightly activity of each major Anopheles species by comparing their Median

Catching Time (MCT), which represents the time at which 50% of the individuals were col-

lected [11], using a Kruskal-Wallis test and a Dunn’s post-hoc test for multiple comparisons

(function ‘dunnTest’ of the ‘VIA’ package) in R [34].

We compared the genoptypes frequencies of kdr and ace-1 mutations among seasons and

species using the G-test [35] implemented in Genepop 4.7 and run in R [36]. Genotypic fre-

quencies at the kdr and ace-1 mutations were tested for conformity to Hardy-Weinberg equi-

librium using the “Exact HW test” [37]. In case of disequilibrium, we tested heterozygote

excess and deficiency using the score test [38]. We tested the relationship between infectious-

ness and the genotypes for the mutations kdr-w, kdr-e and ace1 using Pearson’s Chi-square

tests (or a Fisher’s exact test when one or more count were < 5).

Ethics approval and consent to participate

The protocol of this study was reviewed and approved by the Institutional Ethics Committee

of the Institut de Recherche en Sciences de la Santé (IEC-IRSS) and registered as N˚A06/2016/

CEIRES. Mosquito collectors and supervisors gave their written informed consent. They

received a vaccine against yellow fever as a prophylactic measure. Collectors were treated free

of charge for malaria according to WHO recommendations.

Results

Anopheles densities and composition

During the three surveys, we collected a total of 2591 mosquitoes belonging to four genus:

Anopheles spp. (n = 1936, 74.72%), Aedes spp. (n = 481, 18.56%), Culex spp. (n = 161, 6.21%)

and Mansonia spp. (n = 13, 0.50%) (Table 1). We successfully identified by PCR 92.84% (1530/

1648) of the An. gambiae s.l. individuals and 96.15% (250/260) of the members of the An.

funestus group. Among the 1530 Anopheles individuals morphologically identified as members

of the An. gambiae complex and proceeded by PCR, 1131 were An. coluzzii, 325 were An. gam-
biae s.s. and 74 were An. arabiensis. Anopheles morphologically identified as members of the

An. funestus group and successfully proceeded by PCR were all (n = 250) An. funestus s.s.
Other Anopheles species found during our surveys were Anopheles nili (n = 3), Anopheles phar-
oensis (n = 23), Anopheles rufipes (n = 1) and Anopheles squamosus (n = 1) (Fig 1A–1C). The

average HBR of Anopheles spp. mosquitoes was 1.30 and 1.34 b.h-1.n-1 (bites per human per

night) during dry cold and dry hot season (RR [95% CI] = 1.15 [0.78, 1.71], Tukey’s p = 0.67),

respectively and these were significantly lower than 6.31 b.h-1.n-1 during the rainy season

(RR = 0.090 [0.063, 0.130], Tukey’s p< 0.0001 and RR = 0.078 [0.054, 0.114], Tukey’s p<

0.0001, respectively for dry cold and dry hot season, when compared to rainy season) (Fig 2).

During the dry cold season, An. funestus s.s was the most abundant species representing

78.64% (n = 221/281), followed by An. gambiae s.s (6.04%, n = 17/281), An. coluzzii (4.98%,

n = 14/281) and An. pharoensis (4.98%, n = 14/281) (Fig 1A). The other species were found at

very low percentages (~1%) (Fig 1A). The relative abundance and species composition of the

Anopheles population varied from one village to another. We collected Anopheles mosquitoes

in 19 villages out of the 27 surveyed with the highest densities registered in Diagnon (n = 149,

4 species) and Kpédia (n = 39, 3 species) (Fig 1A). We observed the highest Anopheles species

diversity in Niaba (n = 15, 6 species) where six species were identified. At the opposite in nine

villages, only one species of Anopheles was found (either An. funestus s.s, An. coluzzii or An.

pharoensis).
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During the dry hot season, An. coluzzii (75.86%, n = 220/290) almost totally replaced An.

funestus s.s (8.27%, n = 24/290) while proportions of other species do not vary substantially.

During this season, Anopheles mosquitoes were collected in only 15 villages (Fig 1B). Highest

densities and species diversities were observed in Diagnon (n = 179, four species) and Kpédia

(n = 65, four species) (Fig 1B). We identified three Anopheles species in both Nouvielgane and

Nipodja villages and two Anopheles species in Yelbelela and Niaba. In all other villages, only

one Anopheles species was present at low density.

During the rainy season, An. coluzzii remained the major species (65.71%, n = 897/1365)

followed by An. gambiae s.s (20.95%, n = 286/1365) and An. arabiensis (4.54%, n = 62/1365).

During this season, An. funestus s.s fall under 1% of the total. We collected Anopheles spp. mos-

quitoes in 25 villages out of the 27 surveyed (Fig 1C). The highest densities were observed in

Niaba (n = 264, four species), Diagnon (n = 224, six species) and Kpédia (n = 190, three spe-

cies). We identified four Anopheles species in Lobignonao (n = 31), Palembiro (n = 100) and

Yelbelela (n = 59), two Anopheles species in Dangbara (n = 31), Kouloh (n = 25), Niombripo

Table 1. Abundance and diversity of mosquito species in the Diébougou area during pre-intervention surveys.

Dry cold season Dry hot season Rainy season Total

Mosquito species abundance (216

human-nights)

% of human-night

with > = 1 ind.

abundance (216

human-nights)

% of human-night

with > = 1 ind.

abundance (216

human-nights)

% of human-night

with > = 1 ind.

Aedes aegypti 2 0.93 1 0.46 103 20.83 106

Aedes africanus 0 0.00 0 0.00 6 1.85 6

Aedes fowleri 0 0.00 0 0.00 100 22.22 100

Aedes furcifer 0 0.00 0 0.00 101 18.52 101

Aedes
lutheocephalus

0 0.00 0 0.00 16 6.94 16

Aedes opok 0 0.00 0 0.00 16 4.17 16

Aedes vexans 0 0.00 0 0.00 89 16.67 89

Aedes vittatus 0 0.00 6 2.78 41 12.04 47

Anopheles funestus 230 17.13 25 5.56 5 1.85 260

Anopheles gambiae
s.l.

35 11.57 264 20.37 1349 74.07 1648

Anopheles nili 1 0.46 0 0.00 2 0.93 3

Anopheles
pharoensis

14 6.02 1 0.46 8 3.24 23

Anopheles rufipes 1 0.46 0 0.00 0 0.00 1

Anopheles
squamosus

0 0.00 0 0.00 1 0.46 1

Culex cinereus 1 0.46 9 1.85 15 2.78 25

Culex decens 0 0.00 1 0.46 2 0.46 3

Culex poicilipes 0 0.00 1 0.46 1 0.46 2

Culex
quinquefasciatus

21 5.09 42 9.26 62 8.33 125

Culex univittatus 1 0.46 0 0.00 5 1.39 6

Mansonia africana 4 0.93 4 1.85 0 0.00 8

Mansonia
uniformis

2 0.46 0 0.00 3 1.39 5

Total 312 354 1925 2591

Ind: individuals.

https://doi.org/10.1371/journal.pone.0236920.t001
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Fig 1. A. Map of Anopheles densities and composition during dry cold season. Top-left box shows the location of the

Diébougou health district in Burkina Faso. Background was obtained freely from openstreetmap.org. B. Map of

Anopheles densities and composition during dry hot season. Top-left box shows the location of the Diébougou health

district in Burkina Faso. Background was obtained freely from openstreetmap.org. C. Map of Anopheles densities and

composition during rainy season. Top-left box shows the location of the Diébougou health district in Burkina Faso.

Background was obtained freely from openstreetmap.org.

https://doi.org/10.1371/journal.pone.0236920.g001
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(n = 6), Sarambour (n = 16) and Tiakiero (n = 10), and one Anopheles species in Gongombiro

(n = 3), Ouidiaro (n = 3) and Tiordiero (n = 7). In the remaining villages, three Anopheles spe-

cies were identified. No Anopheles spp mosquitoes were collected in Sousoubro and Moulé

(Fig 1C).

Species composition of the Anopheles population varied significantly among seasons (Fish-

er’s exact test p = 0.0005).

Fig 2. Human biting rates of Anopheles mosquitoes measured during dry cold, dry hot and rainy seasons in 27 villages of the Diébougou health

district, Burkina Faso. Boxes indicate inter-quartile range (IQR) and median of human biting rates recorded at each season. Whiskers indicate 2.5–

97.5 percentiles. The upper whisker extends from the hinge to the largest value no further than 1.5 � IQR from the hinge. Black small dots indicate HBR

recorded at each collection point and red dots show the mean HBR per season.

https://doi.org/10.1371/journal.pone.0236920.g002
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Mosquito biting behavior

Overall, endophagy rate (ER) of Anopheles spp. [95% CI] was 63.23% [57.50–68.96], 50.18%

[44.27–56.09] and 57.18% [54.44–59.90] during the dry cold, dry hot and rainy seasons,

respectively (Table 2).

During dry cold season, An. funestus s.s (EMM ER [95% CI] = 64.8% [56.6, 72.2], Tukey’s

p = 0.0005) and An. gambiae s.s. (EMM ER = 83.7% [59.0, 94.9], Tukey’s p = 0.012) were

significantly endophagic. During this season, ER of other species were not different than 50%

(Tukey’s p>0.25).

During dry hot season, EMM ERs of An. funestus s.s and An. gambiae s.s decreased to

56.2% [35.5, 75.0] and 71.1% [48.3, 86.6], respectively, no longer different than 50% (Tukey’s

p = 0.56 and Tukey’s p = 0.069, respectively) but the numbers of individuals collected were

small (n = 24 and n = 22, respectively) (Table 2). During this season, ER of other species were

also not different than 50% (Tukey’s p>0.14).

Compared to dry hot season, the ER of An. coluzzii increased significantly (RR = 0.61 [0.41,

0.89], Tukey’s p = 0.0066) during rainy season to 59.3% [54.7, 63.8] that was significantly

higher than 50% (Tukey’s p = 0.0001). During this season, ER of other species were not differ-

ent than 50% (Tukey’s p> 0.12).

The median catching times of An. coluzzii, An. gambiae s.s, and An. pharoensis were

recorded between 01:00 and 02:00 while those of An. funestus s.s and An. arabiensis were

recorded one hour later (between 02:00 and 03:00; Fig 3). These differences were significant

between An. funestus s.s and both An. coluzzii and An. gambiae s.s (Dunn’s multiple compari-

son test p-values = 0.01 and 0.004, respectively). An. coluzzii, An. gambiae s.s, An. pharoensis
and An. funestus s.s showed earlier biting activity (beginning at 18:00) than An. arabiensis
(beginning at 21:00). A late biting activity (after 06:00) was observed with An. coluzzii, An.

gambiae s.s and An. funestus s.s (Fig 3).

Plasmodium infection and transmission intensity

We analyzed a total of 1808 head-thoraxes of Anopheles for the research of P. falciparum infec-

tion. The overall sporozoite infection rate (SIR) was 0.07 [0.02–0.14] (19/272), 0.06 [0.01–0.11]

Table 2. Anopheles species composition and abundance.

Species Dry cold season Dry hot season Rainy season

Indoor1 Outdoor1 Total2 Indoor1 Outdoor1 Total2 Indoor1 Outdoor1 Total2

An. arabiensis 2 2 4 2 6 8 31 31 62

An. coluzzii 5 9 14 106 114 220 525 372 897

An. gambiae s.s 14 3 17 16 6 22 159 127 286

An. funestus s.s 146 75 221 14 10 24 3 2 5

An. nili 1 - 1 - - 1 1 2

An. pharoensis 3 11 14 - 1 1 2 6 8

An. rufipes 1 - 1 - - - - -

An. squamosus - - - - - 1 1

Total 172 100 272 138 137 275 721 540 1261

% Indoors [95% CI] 63.23 [57.50–68.96] 50.18 [44.27–56.09] 57.17 [54.44–59.90]

1 108 human-nights of collection;
2 216 human-nights of collection.

https://doi.org/10.1371/journal.pone.0236920.t002
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(19/275) and 0.06 [0.00–0.70] (81/1261) in dry cold season, dry hot season and rainy season,

respectively (Table 3). No An. nili, An. pharoensis, An. rufipes or An. squamosus individuals

tested were infected. The SIR did not vary significantly among seasons (Likelihood ratio test

χ2 = 4.47, df = 2, p = 0.1). The SIR of An. gambiae s.s was lower than that of An. funestus s.s
(OR = 0.20 [0.05, 0.90], Tukey’s p = 0.03). No other differences between species have been evi-

denced (Tukey’s p-values > 0.23). The overall SIR both indoors and outdoors were included

in (S1 Table). We collected infectious Anopheles spp. mosquitoes in seven villages out of the 27

surveyed (S1–S3 Figs).

Entomological inoculation rate (EIR) was 0.375 [0.30–0.44] infected bites per human per

night (ib.h-1.n-1) during the rainy season significantly higher than 0.087 ib.h-1.n-1 [0.06–0.10]

measured during the dry cold season (RR = 0.25 [0.11, 0.56], Tukey’s p = 0.0002) and 0.089

ib.h-1.n-1 [0.05–0.11] measured during the dry hot season (RR = 0.23 [0.10, 0.51], Tukey’s

p = 0.0001) (Table 3).

Fig 3. Median catching time of Anopheles. Boxes indicate 1st-3rd quartile and median hours of biting activity. Whiskers indicate 2.5–97.5 percentiles.

Red dashed line indicated time at which 50% of the population are asleep (20h) and waked up (05h).

https://doi.org/10.1371/journal.pone.0236920.g003
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Physiological age

We dissected 966 Anopheles for determination of parous rate. Anopheles parous rate was

76.00% [68.51–83.48], 78.80% [72.28–85.32] and 66.66% [63.14–70.18] in the dry cold season,

dry hot season and rainy season respectively (S2 Table). These values of parous rate were used

to calculated the percentage of Anopheles which could be found beyond the epidemiologically

dangerous age and could therefore transmit malaria parasites. The percentages of Anopheles
beyond the epidemiologically dangerous age were 22.10%, 27.16% and 10.78% in the dry cold,

dry hot and rainy seasons, respectively. The average parous rate of Anopheles mosquitoes

during both cold and hot dry seasons was significantly higher than during the rainy season

(OR = 1.8 [1.008–3.21], Tukey’s p = 0.046 and OR = 1.95 [1.134–3.36], Tukey’s p = 0.011,

respectively). Overall, parous rate was 76.38%, 68.97%, 67.24%, 72.65%, 77.77% and 100%

for An. funestus s.s, An. arabiensis, An. coluzzii, An. gambiae s.s, An. pharoensis and An. nili
respectively (S2 Table). The parous rate did not differ significantly among the species (Likeli-

hood ratio test χ 2 = 2.51, df = 3, p = 0.47).

Frequencies of L1014F kdr, L1014S kdr and G119S ace-1 mutations in An.

gambiae s.l.

Numbers of individuals of each genotype of the three mutations and their frequencies in An.

arabiensis, An. gambiae s.s. and An. coluzzii are presented for each season (Table 4). We were

not able to find a significant relationship between infectiousness and the genotypes of the kdr-
w mutation (χ2 = 1.44, df = 2, p = 0.48), kdr-e mutation (Fisher’s exact test, p = 0.16) and ace-1
mutation (Fisher’s exact test, p = 0.17) in the An. gambiae s.l. population.

In An. arabiensis, the kdr-w mutation did not vary significantly among seasons (exact G test

p-values > 0.15) nor among villages (exact G test p-values > 0.08). The population did not dif-

fer significantly from the Hardy-Weinberg equilibrium (HWE) whatever the season (exact

HW test p> 0.31).

The kdr-w frequency in An. coluzzii during the dry cold season was 0.61, it increased (not

significantly, exact G test p = 0.41) to 0.69 during dry hot season and then decreased signifi-

cantly to 0.55 during the rainy season (exact G test p<0.001). During the dry hot season, when

the frequency of the kdr-w mutation was the highest, the population was not at the HWE

Table 3. Entomological transmission parameters.

Species Dry cold season Dry hot season Rainy season

SIR (%) EIR SIR (%) EIR SIR (%) EIR

An. arabiensis 0.00 0.000 12.50 0.005 1.61 0.005

An. coluzzii 14.29 0.009 7.73 0.079 6.35 0.264

An. gambiae s.s 11.76 0.009 4.55 0.005 8.04 0.106

An. funestus s.s 6.79 0.069 0.00 0.000 0.00 0.000

An. nili 0.00 0.000 - - 0.00 0.000

An. pharoensis 0.00 0.000 0.00 0.000 0.00 0.000

An. rufipes 0.00 0.000 - - - -

An. squamosus - - - - 0.00 0.000

Mean 0.07 0.087 0.06 0.089 0.06 0.375

[95% CI] [0.02–0.14] [0.06–0.10] [0.01–0.11] [0.05–0.11] [0.00–0.7] [0.30–0.44]

SIR: Sporozoite infection rate; EIR: entomological inoculation rate; [95% CI]: 95% Confidence interval.

https://doi.org/10.1371/journal.pone.0236920.t003
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(exact HW test p< 0.001) due to heterozygote deficiency (exact HW test p<0.001) observed in

the village of Diagnon where most of the individuals (131/220) where collected.

In An. gambiae s.s, the kdr-w mutation frequency was 0.97 during dry cold season and sig-

nificantly decrease to 0.59 in dry hot season (exact G test p< 0.001). During the rainy season

when mosquito densities were very high, the kdr-w frequency rose up to 0.88. That was signifi-

cantly higher than during dry hot season (exact G test p< 0.001) but not different than during

dry cold season (exact G test p = 0.12). This population was not at the HWE for the kdr-w
mutation (exact HW test p< 0.001) due to heterozygote deficiency (exact HW test p< 0.001).

Heterozygote deficiency was observed in most of the villages during each season (S2 File).

In An. arabiensis, the kdr-e mutation was detected only during the rainy season at a fre-

quency of 0.30. The frequency of the kdr-e mutation did not vary significantly among villages

(exact G test p> 0.10). A significant deviation to HWE was observed (exact HW test p =

0.002) due to heterozygote excess in rainy season (exact HW test p = 0.001). However, we did

not observe this heterozygote excess at the village scale (S3 File).

In An. coluzzii, the kdr-e mutation was not detected during the dry-cold season and only

one heterozygous individual was collected during the dry hot season corresponding to a fre-

quency of 0.002. The frequency increased significantly to 0.12 during the rainy season (exact G

test p< 0.001). A significant deviation to HWE was observed for the kdr-e mutation (exact

HW test p< 0.001) due to heterozygote excess in most of the villages during each season

(S4 File).

In An. gambiae s.s, the kdr-e mutation was detected only during the rainy season at a fre-

quency of 0.03. The kdr-e mutation did not vary significantly among villages (exact G test

p> 0.11). The population did not differ significantly from the HWE (exact HW test p> 0.05)

in rainy season.

In An. arabiensis, the ace-1 mutation was detected only during the dry hot season at a fre-

quency of 0.12. The frequency of the ace-1 mutation did not vary significantly among villages

(exact G test p> 0.48). The population did not differ significantly from the HWE (exact HW

test p> 0.05) in dry hot season.

The frequency of the ace-1 allele in An. coluzzii was 0.07, 0.02 and 0.02 in dry cold, dry

hot and rainy seasons, respectively. There were no significant difference in the ace-1 allele

Table 4. Allele frequency of kdr L1014F, kdr L1014S and ace-1 G119S mutations in Anopheles gambiae s.l. populations.

Genotypes kdr-
w

Genotypes kdr-
e

Genotypes

ace-1
Species Period N SS RS RR f (1014F) p(HW) N SS RS RR f(1014S) p(HW) N SS RS RR f(119S) p(HW)

An. arabiensis Dry cold season 4 0 4 0 0.500a 0.3141 4 4 0 0 0.000a - 3 3 0 0 0.000a -

Dry hot season 8 5 3 0 0.188a 1.0000 8 8 0 0 0.000a - 8 6 2 0 0.125b 1.0000

Rainy season 56 35 18 3 0.214a 0.6978 53 22 31 0 0.292b 0.0022 61 61 0 0 0.000a -

An. coluzzii Dry cold season 14 1 9 4 0.607ab 0.3164 14 14 0 0 0.000a - 14 12 2 0 0.071a 1.0000

Dry hot season 219 37 63 119 0.687a 0.0000 218 217 1 0 0.002a - 219 211 8 0 0.018a 1.0000

Rainy season 823 176 389 258 0.550b 0.1938 743 453 289 1 0.196b 0.0000 888 849 39 0 0.022a 1.0000

An. gambiae s.s Dry cold season 17 0 1 16 0.971a - 17 17 0 0 0.000a - 16 9 7 0 0.219a 0.5446

Dry hot season 22 8 2 12 0.591b 0.0000 22 22 0 0 0.000a - 22 17 5 0 0.114a 1.0000

Rainy season 258 16 26 216 0.888a 0.0000 226 213 13 0 0.031a 1.0000 282 179 97 6 0.193a 0.1253

N: number of mosquitoes; SS: homozygous susceptible; RS: heterozygous; RR: homozygous resistant; kdr-w: kdr-west; kdr-e: kdr- east; f(1014F): frequency of the 1014F

resistant kdr allele; f(1014S): frequency of the 1014S resistant kdr allele; f(119S): frequency of the 119S resistant ace-1 allele; p(HW): exact Hardy-Weinberg test p-value;

‘-’: not determined; In each species and mutation, allelic frequencies carrying the same superscript letter do not differ significantly (G-test p > 0.05).

https://doi.org/10.1371/journal.pone.0236920.t004
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frequency among seasons (exact G test p> 0.11) nor among villages (exact G test p> 0.13).

The ace-1 allele frequency in An. coluzzii did not differ from the HWE (exact HW test

p> 0.05).

In An. gambiae s.s, the frequencies of the ace-1 allele were 0.22, 0.11 and 0.19 in dry cold,

dry hot and rainy seasons, respectively. The frequency did not vary significantly among sea-

sons (exact G test p> 0.23) nor among villages (exact G test p> 0.07). The population did not

differ significantly from the HWE (exact HW test p> 0.12) whatever the season.

Three hundred and fifty four (354) individuals An. gambiae s.l carried multiple insecticide

resistance mechanisms. Two hundred and seven (207) carried at least one mutated allele for

both kdr-w and kdr-e mutations (belonging the An. gambiae s.s, An. coluzzii and An. arabiensis
species). One hundred and forty-two (142) carried at least one mutated allele for both kdr-w
and ace-1 mutations (belonging the An. gambiae s.s, An. coluzzii and An. arabiensis species)

and 16 carried at least one mutated allele for both kdr-e and ace-1 mutations (belonging the

An. gambiae s.s and An. coluzzii species). Eleven (11) individuals carried the three mutations

(belonging the An. gambiae s.s and An. coluzzii species).

Discussion

This study showed that the malaria vector species and abundance in the Diébougou area varied

significantly according to the season. Anopheles funestus s.s was the predominant vector during

the dry cold season (January 2017) but most individuals were collected in one village (Diag-

non) that is close to swamps on the edge of the dam of Bapla. Anopheles funestus s.s densities

were ten times lower two month later during the dry hot season (March 2017) and it almost

disappeared in June 2017 during the rainy season. Anopheles funestus s.s is known to breed in

large permanent or semi-permanent pools preferentially with emergent vegetation on its mar-

gins [39, 40]. In Burkina Faso, two chromosomal forms of An. funestus have been described

named Folonzo and Kiribina [41, 42]. Folonzo form of An. funestus is mainly associated with

the presence of water reservoirs containing natural vegetation, such as swamps. The swamps

near Diagnon are upstream from the Bapla dam and become dry at the end of the dry season.

Provided that An. funestus in our study area is of the Folonzo form, this may explain why An.

funestus s.s almost disappeared during the dry hot season and until swamps become green and

flooded again.

Anopheles coluzzii was shown at very low densities during the dry cold season but became

the predominant malaria vector species from the dry hot season (March 2017) to the rainy sea-

son (June 2017). During the dry hot season, most of individuals were collected in Diagnon, the

same village where An. funestus s.s densities were simultaneously falling. In Burkina Faso, An.

coluzzii is known to breed in permanent or semi-permanent breeding sites [43, 44]. Its pres-

ence in Diagnon during the dry season is certainly linked to the dam. However, it is not clear

why An. coluzzii was present in very low densities during January 2017 and became numerous

two months later. We hypothesize that the reduction of the breeding sites favorable to An.

funestus s.s may have increased An. coluzzii competitiveness against An. funestus s.s around the

Bapla dam. This result is in accordance with the high variability of An. coluzzii densities during

the dry season as described by Dao et al. [45] in the neighboring Mali.

Densities of An. gambiae s.s. and An. arabiensis were low during both dry (cold and hot)

seasons and increased substantially during the rainy season (in the largest extent for An. gam-
biae s.s.). This is consistent with the preference of both these species to breed in temporary

rain-dependent pools and puddles [40, 43, 46].

These four species (An. funestus s.s, An. coluzzii, An. gambiae s.s and An. arabiensis) were

responsible for all the P. falciparum transmission recorded in this study. Sporozoite infection
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rate (SIR) did not vary among seasons but EIR increase from an average of about 3 infected

bites per human per month in dry (cold and hot) seasons to more than 10 bites per human per

month during the rainy season. The values of EIR recorded in our study are consistent with

previous works in the same region of Burkina Faso [47–49]. Such levels of transmission

(EIR > 100 infected bites per person per year) are relatively high when put in the African con-

text [50]. As SIR was stable over the study, the increase in EIR in rainy season was mathemati-

cally due to the increase in vectors densities. According to our results, malaria transmission (as

measured by EIR) persists year round in the study area despite high spatial disparities. Indeed,

during the dry cold and dry hot seasons, the spatial distribution of An. funestus s.s. and An.

coluzzii, that were the main malaria vectors, was restrained to a small number of villages that

concentrated malaria transmission. During the rainy season, the spatial distribution of malaria

vector (with predominance of An. coluzzii and An. gambiae s.s.) was more homogeneous.

In addition to these well-known primary malaria vectors, we recorded the presence of four

other Anopheles species in low densities (An. nili, An. pharoensis, An. rufipes, An. squamosus).
While we were not able to detect Plasmodium parasites in the few individuals belonging to

these species, they are all potential vectors of Plasmodium [40, 51–55]. Because they are consid-

ered secondary vectors [56, 57] (due to their main trophic behavior including exophagy and/

or zoophagy) or found in low densities, these species are often neglected in most of the recent

studies carried out in Burkina Faso [58]. However, these vectors could possibly maintain resid-

ual levels of transmission [57, 59]. Indeed, drastic reduction of the major vector densities may

free up their ecological niches for secondary vectors [60–63]. Therefore, secondary vectors

deserve particular attention [64]. Their bionomics and competence for P. falciparum transmis-

sion remain to be investigated.

Regarding the behavior of the main malaria vector species, we observed that An. coluzzii,
An. gambiae s.s and An. funestus s.s were slightly but mainly endophagic (50 to 65% depending

on the season) that is in accordance with previous results recorded in another location in

southwest Burkina Faso [47]. This indicates that indoor vector control measures (such as

LLINs and IRS) are expected to target a significant part of the vector population but probably

insufficient to stop the transmission. The peak of aggressiveness of the main Anopheles species

occurred during the second part of the night. This observation is consistent with the usual pat-

terns of hourly biting aggressiveness of these species [65]. This period corresponds to the

moments of deep sleep of the human populations who are potentially protected by LLINs [46,

66]. However, we observed early- and late-biting phenotypes in the main malaria vector spe-

cies (An. coluzzii, An. funestus s.s. and An. gambiae s.s). These phenotypes might mediate

residual transmission and we might expect to see them selected by the massive use of insecti-

cide-based vector control tools such as LLINs [67, 68]. It is therefore crucial to monitor

malaria vector behavior in this area when implementing malaria vector control strategies in

order to track the possible emergence of behavioral resistances.

This study showed high parous rates of malaria vectors (> 60%) in the study area, regard-

less of the season. The parous rate was significantly lower in the rainy season than in the cold

and hot dry seasons, indicating that young females were more prevalent in the rainy season.

The lower parous rate of Anopheles vectors during the rainy season may be due to the presence

of more breeding habitats which yield more nulliparous mosquitoes in vector populations

[69]. It is also possible that a higher usage of LLINs during the rainy season as a result of a

higher nuisance and lower temperatures might result in smaller proportions of parous vectors

[70]. The three target-site mutations kdr-w, kdr-e and ace-1 that were tested for were detected

in the three species of the An. gambiae complex but at varying frequencies among species and

seasons. In June 2017 during the rainy season (when the populations were most abundant),

the kdr-w mutation frequency was very high in An. gambiae s.s. (almost fixed, f = 0.88). Since
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the discovery of this mutation [26] in An. gambiae s.s, the kdr-w frequencies have always been

high in this species in Southwest Burkina Faso [8, 10, 71] indicating that the mutation has a

low cost for this species or that strong selection pressures occur. Selection pressure likely to

occur might be due to vector control (universal distribution of LLINs is implemented in Bur-

kina Faso since 2010 [72]) and massive use of pesticides in agriculture [73]. Indeed, the inten-

sive use of insecticides in cotton cultivation might be a major factor driving the selection of

pyrethroid-resistant specimens in Southwest Burkina Faso [10]. Most of the populations of

An. gambiae s.s. from this study showed heterozygote deficiency for the kdr-w mutation that

could indicate a Wahlund effect resulting from the presence of several populations within each

given village. This might be explained by the colonization of temporary breeding sites by dif-

ferent vector populations during the rainy season as evidence the annual reappearance of An.

gambiae s.s. in the Sahel after the dry season [45]. To note that no disequilibrium was observed

for the kdr-e and ace-1 mutations in this species indicating that these populations, if they exists,

resemble the local population in terms of genotypic composition for these loci.

During the rainy season, the kdr-w mutation frequency was lower in An. coluzzii (f = 0.55)

and An. arabiensis (f = 0.21) than in An. gambiae s.s. But in counterpart, both An. coluzzii
(f = 0.19) and An. arabiensis (f = 0.29) showed higher prevalence of the kdr-e mutations than

An. gambiae s.s. (f = 0.03). In An. coluzzii and An. arabiensis, a heterozygote excess was

observed for the kdr-e mutation. This disequilibrium may result from a heterozygote advan-

tage as it has been observed in mating in An. coluzzii specimen from Southwest Burkina Faso

carrying the kdr-w mutation [74]. The causes of this disequilibrium remain to be explored.

Both kdr mutations are well “implanted” in the vector population of our study area. These

mutations provide physiological resistance to the pyrethroids insecticides, the only family of

compounds authorized to impregnate LLINs. Although the impact of pyrethroids resistance

on the efficacy of malaria control remains disputable [75], the development and the implemen-

tation of resistance management strategies need to be encouraged.

Regarding the ace-1 mutation that confers resistance to carbamates and organophosphates

insecticides, it was present in the three species at a moderate frequency in An. gambiae s.s. but

at very low frequencies in An. coluzzii and An. arabiensis. In Burkina Faso, the three species

may express high frequencies of the ace-1 mutation depending on the location [76]. In our

study area, An. gambiae s.s. seems to suffer more selection pressure possibly due to a wide use

of carbamates and organophosphates particularly for cotton growing.

Recent studies in Tanzania and Senegal showed a relationship between the genotype for the

kdr mutation of wild Anopheles gambiae s.l. and Plasmodium falciparum infection [77]. The

mosquitoes carrying the mutation were more infected than those carrying the wild alleles. In

contrast, we were not able to show such a relationship whatever the mutation studied (kdr-w,

kdr-e or ace-1). This may be explained by the complex interactions occurring between insecti-

cide resistance and Plasmodium infection as summarized in [78]. Indeed, while an insecticide

resistance mutation may be associated with increased vector competence [79], the infection by

Plasmodium falciparum tends to decrease survival of vectors carrying this mutation [80].

Conclusions

Malaria transmission in the Diébougou area was mainly due to An. funestus s.s, An. coluzzii,
An. gambiae s.s and An. arabiensis with high spatio-temporal heterogeneities. The entomologi-

cal indicators of malaria transmission were high despite the presence of LLINs. We observed

early and late biting phenotypes in the main malaria vector species. These phenotypes might

mediate residual transmission. Three mutations kdr-w, kdr-e and ace-1 were present in the

three species of the An. gambiae complex with high frequency variability between species.
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These data will be used to evaluate the impact of complementary tools to LLINs in an upcom-

ing RCT.
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Funding acquisition: Karine Mouline, Florence Fournet, Alphonsine Amanan Koffi, Cédric

Pennetier, Nicolas Moiroux, Roch Kounbobr Dabiré.
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