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Abstract

Arbovirus infection of Aedes aegypti salivary glands (SGs) determines transmission. How-

ever, there is a dearth of knowledge on SG immunity. Here, we characterized SG immune

response to dengue, Zika and chikungunya viruses using high-throughput transcriptomics.

We also describe a transcriptomic response associated to apoptosis, blood-feeding and

lipid metabolism. The three viruses differentially regulate components of Toll, Immune defi-

ciency (IMD) and c-Jun N- terminal Kinase (JNK) pathways. However, silencing of the Toll

and IMD pathway components showed variable effects on SG infection by each virus. In

contrast, regulation of the JNK pathway produced consistent responses in both SGs and

midgut. Infection by the three viruses increased with depletion of the activator Kayak and

decreased with depletion of the negative regulator Puckered. Virus-induced JNK pathway

regulates the complement factor, Thioester containing protein-20 (TEP20), and the apopto-

sis activator, Dronc, in SGs. Individual and co-silencing of these genes demonstrate their

antiviral effects and that both may function together. Co-silencing either TEP20 or Dronc

with Puckered annihilates JNK pathway antiviral effect. Upon infection in SGs, TEP20

induces antimicrobial peptides (AMPs), while Dronc is required for apoptosis independently

of TEP20. In conclusion, we revealed the broad antiviral function of JNK pathway in SGs

and showed that it is mediated by a TEP20 complement and Dronc-induced apoptosis

response. These results expand our understanding of the immune arsenal that blocks arbo-

virus transmission.

Author summary

Arboviral diseases caused by dengue (DENV), Zika (ZIKV) and chikungunya (CHIKV)

viruses are responsible for large number of death and debilitation around the world.

These viruses are transmitted to humans by the mosquito vector, Aedes aegypti. During
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the bites, infected salivary glands (SGs) release saliva containing viruses, which initiate

human infection. As the tissue where transmitted viruses are produced, SG infection is a

key determinant of transmission. To bridge the knowledge gap in vector-virus molecular

interactions in SGs, we describe the transcriptome after DENV, ZIKV and CHIKV infec-

tion using RNA-sequencing and characterized the immune response in this tissue. Our

study reveals the broad antiviral function of c-Jun N-terminal kinase (JNK) pathway

against DENV, ZIKV and CHIKV in SGs. We further show that it is mediated by the com-

plement system and apoptosis, identifying the mechanism. Our study adds the JNK path-

way to the immune arsenal that can be harnessed to engineer refractory vectors.

Introduction

In recent decades, dengue (DENV), Zika (ZIKV) and chikungunya (CHIKV) viruses have

emerged as global public health issues, with over 50% of the world population at risk for infec-

tion [1]. DENV and ZIKV belong to the Flavivirus genus (Flaviviridae family), while CHIKV

belongs to the Alphavirus genus (Togaviridae family). DENV infects an estimated 390 million

people yearly, causing a wide range of clinical manifestations from mild fever to shock syn-

drome and fatal hemorrhage [2]. ZIKV recently emerged as an epidemic virus, infecting 1.5

million people over the past five years [3]. Although ZIKV infection is mostly asymptomatic, it

can result in life-debilitating neurological disorders including Guillain-Barré syndrome in

adults and microcephaly in prenatally-infected newborns [4]. CHIKV emerged as an epidemic

virus in 2004, and has infected more than 6 million people [5]. It causes mild fever but can

result in musculoskeletal inflammation, leading to long-term polyarthralgia. Amplified by

urban growth, climate change and global travel, arboviral outbreaks are unlikely to recede in

the near future [6].

DENV, ZIKV and CHIKV are primarily transmitted by Aedes aegypti mosquitoes. In the

absence of efficient vaccines [7] and curative drugs [8], targeting this common vector is the

best available strategy to control the spread of all three viruses. However, current vector con-

trol methods that rely on chemical insecticides are not effective in preventing outbreaks [9],

partly due to insecticide resistance [10]. A novel strategy employing Wolbachia to reduce virus

transmission by mosquitoes has been deployed as a trial in several countries [11]. However, its

long-term efficacy may be compromised by converging bacteria and virus evolution [12].

Other promising approaches utilize genetic engineering technology to develop refractory vec-

tor populations [13]. Mosquito innate immunity can drastically reduce virus transmission,

and characterization of mosquito immune pathways and mechanisms will aid in identifying

gene candidates for transformation.

Immunity in midguts, the first organ to be infected following a blood meal, has been exten-

sively studied by using transcriptomics. DENV and ZIKV activate the Toll, Immune Defi-

ciency (IMD) and Janus Kinase (JAK)/Signal Transduction and Activators of Transcription

(STAT) immune pathways [14–17]. Selective gene silencing studies have demonstrated the

anti-DENV impact of Toll and JAK/STAT pathways. However, JAK/STAT transgenic activa-

tion was not effective in reducing ZIKV and CHIKV infection [13]. Immune effectors down-

stream of these pathways include antimicrobial peptides (AMPs) and thioester containing

proteins (TEPs) [13–15,17–19]. AMPs such as Cecropin (Cec) and Defensin (Def) can have

direct antiviral activity [20], while TEPs that belong to the complement system tag pathogens

for lysis, phagocytosis, melanization [21,22] or induces AMPs [22]. Additionally, the RNA

interference (RNAi) pathway cleaves viral RNA genomes [23]. However, its impact against
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arbovirus infection is uncertain [24]. In Drosophila melanogaster, the Jun-N-terminal Kinase

(JNK) pathway regulates a range of biological functions including immunity and apoptosis

[25]. In Anopheles gambiae, the JNK pathway mediates an anti-malaria response through com-

plement activation [26]. Currently, the impact of JNK pathway on arbovirus infection remains

unexplored.

Following midgut invasion, arboviruses propagate to remaining tissues, including salivary

glands (SGs), from where they are expectorated with saliva during subsequent bites. Despite

the critical role of SGs in transmission, only three studies have examined DENV2-responsive

differential gene expression in SGs. These studies revealed activation of the Toll and IMD

pathways [20,27,28] and identified the anti-DENV2 functions of Cec [20], putative Cystatin

and ankyrin-repeat proteins [28]. Here, we characterized the SG immune response to DENV2,

ZIKV and CHIKV. We performed the first high throughput RNA-sequencing (RNA-seq) in

infected SGs and observed differentially expressed genes (DEGs) related to immunity, apopto-

sis, blood-feeding and lipid metabolism. Using gene silencing, we discovered that upregulated

components of the Toll and IMD pathways had variable effects against DENV2, ZIKV and

CHIKV infections. However, for all three viruses, silencing of a JNK pathway upregulated

component increased infection, and silencing of a negative regulator decreased infection in

SGs. Further, we show that the JNK pathway is activated by all viruses and triggers a coopera-

tive complement and apoptosis response in SGs. This work identifies and characterizes the

JNK antiviral response that reduces DENV2, ZIKV and CHIKV infection in A. aegypti SGs.

Results

Transcriptome regulation by DENV2, ZIKV and CHIKV in SGs

SGs were collected at 14 days post oral infection (dpi) with DENV2 and ZIKV, and at seven

dpi with CHIKV to account for variability between virus extrinsic incubation periods (EIP)

[29,30]. To maximize the transcriptome impact, we chose virus titers that resulted in 100%

infected SGs at the time of collection (S1A Fig). Differentially expressed genes (DEGs) were

calculated with edgeR, DESeq2, and Cuffdiff 2, and showed little overlap among the algorithms

(S2 Fig). To validate DEGs and select which software to use, we quantified the expression of 10

genes in a biological repeat with RT-qPCR and compared these values to the output from each

algorithm. RNA-seq gene expression obtained with DESeq2 correlated best with RT-qPCR val-

ues (DENV2: r2 = 0.69; ZIKV: r2 = 0.81; CHIKV: r2 = 0.79; S3 Fig), and only these DEGs are

discussed.

The SG transcriptome was the most regulated by CHIKV infection (966 DEGs), followed

by ZIKV (396) and DENV2 (202) (Fig 1A; S1 Table). Higher transcriptome regulation by

CHIKV may stem from higher infection intensity as determined by viral genomic RNA

(gRNA) copies (S1B Fig) and average percentage of RNAseq reads–e.g. DENV2, 11.16%; and

ZIKV, 12.27%; CHIKV, 52.60%. Only 19 DEGs were common amongst the three virus infec-

tions (S1 Text), indicating a virus-specific transcriptome response. Comparison between

DEGs from the current DENV2 infection and the three previous DENV2 studies with SGs col-

lected at 14 dpi showed little overlap among them (S4 Fig) [20,27,28]. However, despite techni-

cal variations (e.g. mosquito colony, virus strain, transcriptomics technology) DEGs belonged

to similar functional groups across the studies. We observed that immunity, apoptosis, blood-

feeding and lipid metabolism related genes were highly regulated by DENV2, ZIKV and

CHIKV (Fig 1B; DEGs related to apoptosis, blood-feeding and lipid metabolism are discussed

in S1 Text).

A high proportion of DEGs were related to immunity with DENV2, ZIKV and CHIKV

modulating 20, 118 and 86 immune genes, respectively (Fig 1B; S1 Table). Differential
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Fig 1. DENV2, ZIKV and CHIKV induced transcriptome regulation in A. aegypti salivary glands. (A) Venn diagram shows numbers of uniquely and commonly

regulated differentially expressed genes (DEGs) in DENV2 (green), ZIKV (red) and CHIKV (blue) infected salivary glands. Colorless area shows total number of

unchanged genes. Arrows indicate the direction of regulation for the corresponding color code. (B) Functional annotation of DEGs in DENV2, ZIKV or CHIKV

infected salivary glands. APO, apoptosis; BF, blood feeding; CS, cytoskeleton and structure; DIG, digestion; DIV, diverse functions; IMM, immunity; MET,
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regulation of the RNAi, Toll, IMD, JAK/STAT and JNK pathways were observed (S5–S7 Fig).

For the RNAi pathway, Dicer-2 (Dcr2) was upregulated by all viruses, while Argonaute-2 (Ago2)
was upregulated by DENV2 only (S5 Fig). From the Toll pathway, only components upstream

of the cytoplasmic cascade were regulated. We observed that ZIKV and CHIKV upregulated

Gram-negative binding protein A1 (GNBPA1) and downregulated GNBPB6, while ZIKV also

upregulated peptidoglycan recognition protein S1 (PGRPS1) and CHIKV downregulated GNBP2
(S6 Fig). Numerous serine proteases [e.g. CLIPs including Snake-likes (Snk-like) or Easter-likes

(Est-like)] and serine protease inhibitors (Serpins) were upregulated by the viruses, except for

Snk-like AAEL002273 and CLIPB41 downregulation by CHIKV, and SPE and CLIPB37 down-

regulation by DENV. For the IMD pathway, we observed that DENV2 and ZIKV downregu-

lated PGRP-LB, and that CHIKV downregulated Caspar and upregulated IKK2 and Ectoderm-
expressed 4 (Ect4) (Fig 1C). For the Jak/STAT pathway, we only observed an upregulation of

SOCS36E by CHIKV (S7 Fig). For the JNK pathway, CHIKV upregulated most of the JNK core

pathway components (i.e. Basket, c-Jun, Kayak and Puckered) and Traf4 (Fig 1C).

Upregulated components from JNK but not from Toll and IMD pathway

reduce DENV2, ZIKV and CHIKV

To determine how immune response influences DENV2, ZIKV and CHIKV multiplication in

SGs, we silenced nine previously uncharacterized immune genes that were upregulated by at

least one of the viruses (Table 1). They included four protease genes that initiate the Toll path-

way (CLIPB13A, CLIPB21, one of the Est-like, one of the Snk-like) (S6 Fig), two genes from the

cytoplasmic signaling of the IMD pathway (IKK2 and Ect4) (Fig 1C), one transcription factor

gene of the JNK pathway [Kayak (Kay)] (Fig 1C), and two putative immune genes—Galectin-5
(Gale5) and a juvenile hormone induced gene (JHI). Gale5 shows antiviral function against

O’nyong-nyong in A. gambiae [31], while juvenile hormone treatment regulates immune gene

expression in D. melanogaster [32] and JHI was upregulated by all three viruses in our study

(Table 1; S1 Table). RNAi-mediated gene silencing efficacy ranged from 50–85% in SGs (S8A

Fig) and did not affect mosquito survival (S9A Fig). Variation in gene silencing efficiency is

common to SG studies [28]. To bypass the midgut barrier, we intrathoracically inoculated

mosquitoes with a non-saturating inoculum of DENV2, ZIKV or CHIKV, resulting in 70–80%

infected SGs (S10 Fig). This permitted the evaluation of an increase or decrease in infection

upon gene silencing. At 10 days post inoculation, viral infection in SGs was measured using

two parameters, infection rate and infection intensity. Infection rate was defined as the per-

centage of infected SGs out of 20 inoculated ones and represents dissemination of intrathoraci-

cally injected viruses into SGs. Infection intensity was calculated as gRNA copies per

individual infected SGs and indicates virus replication. Of note, the two infection parameters

do not reflect isolated biological phenomenon. For instance, a negative impact on infection

intensity may lower infection rate due to virus clearance.

Silencing of most of the immune genes had a virus-specific effect on infection intensity and

infection rate (Fig 2A–2C and Table 1). Silencing of CLIPB13A increased ZIKV infection rate,

but decreased DENV2 and CHIKV infection rates. This suggests that CLIPB13A hinders ZIKV

dissemination and facilitates DENV2 and CHIKV dissemination into SGs. However, it has a

metabolism; PROT, proteolysis; RSM, redox, stress and mitochondria; RTT, replication, transcription and translation; TRP, transport; UNK, unknown functions. (C)

Transcriptomic regulation of the IMD and JNK pathways in DENV2, ZIKV and CHIKV infected salivary glands. First column represents a scheme of the JNK and

IMD pathways partially, modified from Sim et al., [43]. In the following columns, boxes indicate DEGs with AAEL number below for DENV2, ZIKV and CHIKV.

Arrows indicate the direction of regulation. Pink-filled boxes indicate genes regulated by more than one virus. Boxes with dotted line indicate DEGs selected for

functional studies. Dark and light shaded green areas differentiate IMD from JNK pathways.

https://doi.org/10.1371/journal.ppat.1008754.g001
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minor role in regulating virus replication in SGs. CLIPB21 silencing increased ZIKV infection

rate but decreased its infection intensity. Est-like silencing decreased, whereas Snk-like silenc-

ing increased CHIKV infection rate. Overall, Toll pathway upregulated components showed

mostly a virus-specific impact on dissemination into SGs (Fig 2A–2C and Table 1). Silencing

of IKK2 increased infection rate and decreased infection intensity for ZIKV. Ect4 silencing

increased DENV2 infection intensity and decreased CHIKV infection rate. Overall, IMD path-

way response appears both proviral and antiviral (Fig 2A–2C; Table 1). Gale5 silencing

decreased both ZIKV infection intensity and infection rate, and enhanced CHIKV infection

rate. Although JHI was upregulated by all viruses, it had no effect on any infections (Fig 2A–

2C; Table 1). The silencing studies reflect a complex interaction between transcriptomic

response and antiviral functions (Table 1) with the notable exception of Kay. Kay silencing

increased infection rate to 100% for both ZIKV and CHIKV, and increased infection intensi-

ties by 8.6-, 6.75- and 17.65-fold for DENV2, ZIKV and CHIKV, respectively (Fig 2A–2C;

Table 1). These results reveal a broad antiviral function of the JNK pathway in SGs. To

Table 1. Impact of immune response on DENV2, ZIKV and CHIKV infection in salivary glands.

Pathway Gene Virus Induced1 Log2(fold-change) Function2

Proviral Antiviral

Dissemination Replication Dissemination Replication

Toll CLIPB13A (AAEL003243) DENV2

ZIKV 0.7055

CHIKV 0.6353

CLIPB21 (AAEL001084) DENV2

ZIKV 1.3290

CHIKV 1.0705

Est-like (AAEL012775) DENV2

ZIKV

CHIKV 1.1382

Snk-like (AAEL002273) DENV2 1.5291

ZIKV

CHIKV 2.4517

IMD IKK2 (AAEL012510) DENV2

ZIKV

CHIKV 0.6699

Ect4 (AAEL014931) DENV2

ZIKV

CHIKV 0.4973

JNK Kayak (AAEL008953) DENV2

ZIKV

CHIKV 0.5394

Putative immune JHI (AAEL000515) DENV2 1.3759

ZIKV 0.7269

CHIKV 0.8029

Gale5
(AAEL003844)

DENV2 0.6647

ZIKV

CHIKV 1.4059

1Induction in SGs as measured with RNA-seq.
2Determined by RNAi-mediated silencing studies in SGs.

https://doi.org/10.1371/journal.ppat.1008754.t001
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Fig 2. Kayak depletion but not Toll or IMD component depletion increases salivary glands infection by DENV2, ZIKV and CHIKV, and midgut infection by

ZIKV. Four days post dsRNA injection, mosquitoes were infected by intrathoracic inoculation with DENV2, ZIKV or CHIKV, or by oral feeding with ZIKV. Viral

genomic RNA (gRNA) was quantified at 10 days post inoculation in salivary glands and 7 days post oral infection in midguts. (A-C) Effect of immune-related gene

silencing on gRNA copies and infection rate in salivary glands infected with (A) DENV2, (B) ZIKV, and (C) CHIKV. (D) Impact of Kayak silencing on gRNA

number and infection rate in ZIKV-infected midgut. Bars show geometric mean ± 95% C.I. from 20 individual pairs of salivary glands or 25 individual midguts. Each

dot represents one sample. dsCtrl, dsRNA against LacZ; dsCLIPB13A, dsRNA against CLIP domain serine protease B13A; dsCLIPB21, dsRNA against CLIP domain

serine protease B21; dsEst-like, dsRNA against Easter-like; dsSnk-like, dsRNA against Snake-like; dsIKK2, dsRNA against Inhibitor of nuclear factor kappa-B kinase;

dsKay, dsRNA against Kayak; dsEct4, dsRNA against Ectoderm expressed-4; dsJHI, dsRNA against Juvenile hormone inducible; dsGale5, dsRNA against Galectin 5.
�, p< 0.05; ��, p< 0.01; ���, p< 0.001, determined by post hoc Dunnett’s with dsCtrl, unpaired t-test or, for infection rate, Z-test.

https://doi.org/10.1371/journal.ppat.1008754.g002
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determine whether JNK pathway also restricts virus in midguts, we orally infected Kay-
silenced mosquitoes with ZIKV (S8B Fig). At seven dpi, while infection rate was already satu-

rated at 100% in the control, infection intensity increased in midguts (Fig 2D). Overall, our

functional studies discovered the antiviral and proviral roles of several immune-related genes

and established that JNK pathway has a broad ubiquitous antiviral function.

JNK pathway is induced by DENV2, ZIKV and CHIKV and reduces

infection in SGs

SG transcriptomics showed that Kay was induced by CHIKV at seven dpi, but not by DENV2

or ZIKV at 14 dpi (Fig 1C). To test whether JNK pathway is activated by the three viruses, we

monitored the kinetics of Kay expression in SGs after oral infection with either of the three

viruses. Kay was similarly induced by DENV2, ZIKV and CHIKV at three and seven dpi, but

not at 14 dpi (Fig 3A), corroborating the RNA-seq data. We quantified Puckered (Puc) expres-

sion, which is induced as a negative regulator [33]. Although not regulated at three and 14 dpi,

Puc expression was increased at seven dpi for all three viruses (Fig 3B). We then tested the

impact of Puc silencing (S8C Fig) in ZIKV-inoculated mosquitoes. Puc silencing did not alter

mosquito survival (S9B Fig). Although SG infection rate was not affected, SG infection inten-

sity was decreased by 8.85-fold at 7 days post inoculation (Fig 3C). Of note, this was achieved

despite a moderate silencing efficiency of 35% (S8C Fig). Altogether, our data demonstrate

that the JNK pathway is induced by DENV2, ZIKV and CHIKV at a time that corresponds to

the onset of infection in SGs [30] and further support the JNK antiviral function.

The JNK pathway antiviral response is mediated by TEP20 and Dronc in

SGs

JNK pathway can regulate complement system [26], apoptosis [34] and autophagy [35]. To

determine whether JNK pathway induces these functions in SGs, we monitored the impact of

Fig 3. Kayak and Puckered expressions are induced by DENV2, ZIKV and CHIKV infection, and Puckered depletion restricts ZIKV infection in salivary glands.

(A) Kayak (Kay) and (B) Puckered (Puc) expressions in salivary glands at 3, 7 and 14 days post oral infection with DENV2, ZIKV and CHIKV. Gene expression was

quantified in pools of 10 salivary glands. Actin expression was used for normalization. Bars show arithmetic means ± s.e.m. from three biological replicates. (C) Effect of

Puc depletion on infection in salivary glands at 7 days post ZIKV inoculation. Four days prior infection, mosquitoes were injected with dsRNA. Bars show geometric

means ± 95% C.I. from 20 individual pair of salivary glands. Each dot represents one sample. dsCtrl, dsRNA against LacZ, dsPuc, dsRNA against Puc. �, p< 0.05, as

determined by Dunnett’s test within time points with mock infection as control (A, B) or unpaired t-test (C).

https://doi.org/10.1371/journal.ppat.1008754.g003
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Kay silencing on expressions of four TEPs (TEP20, TEP24, TEP15 and TEP2), two pro-apopto-

tic (Caspase8 and Dronc) and two autophagy-related (ATG14 and ATG18A) genes at 10 dpi

with ZIKV. All these genes were upregulated by infection in the transcriptomic data (Fig 1C;

S1 Table). Control mosquitoes were injected with control dsRNA (dsCtrl). Kay silencing sig-

nificantly reduced expressions of TEP20 and Dronc, and moderately reduced TEP15 and

TEP24 (Fig 4A). TEP2 expression was increased and the two ATGs and Caspase8 were unaf-

fected. Based on these results we hypothesized that upon infection the JNK pathway induces

the complement system through TEPs, and apoptosis through Dronc, but not Caspase8.

To test the antiviral function of TEP20 and Dronc in SGs, we challenged either TEP20- or

Dronc-silenced mosquitoes (S8D Fig) by intrathoracically inoculating ZIKV. Because of the

high sequence homology among TEPs, we ensured that dsRNA injected against TEP20 specifi-

cally silenced TEP20 and not TEP2, TEP15, TEP22 and TEP24, which were regulated by virus

infection in the RNA-seq analysis (S11 Fig). Similar to Kay-silencing, TEP20- and Dronc-
silencing increased SG infection intensity by 21-fold to 2.6 x 106 gRNA and by 12-fold to 1.3 x

106 gRNA, respectively (Fig 4B). Since both complement and apoptosis can interact for cell

clearance [36], we determined whether TEP20 and Dronc act in the same antiviral pathway by

evaluating their synergistic effect when both genes were co-silenced (S8E Fig). We did not

observe a clear difference in SG infection between TEP20 and Dronc individual or co-silencing

(Fig 4C and 4D). As the infection conditions did not saturate the infection intensity (higher

inoculum resulted in 108 gRNA per infected SG; S10 Fig), the lack of synergism when TEP20

and Dronc are co-silenced suggests that TEP20 and Dronc function in the same antiviral path-

way. To confirm that TEP20 and Dronc mediate the JNK antiviral response in SGs, we

induced JNK pathway by silencing of Puc and co-silenced TEP20 or Dronc before ZIKV inocu-

lation. Control mosquitoes were injected with the same quantity of dsCtrl or dsRNA against

Puc. While infection intensity decreased upon Puc silencing, co-silencing of Puc with TEP20
or Dronc restored viral gRNA copies to the level in dsCtrl-injected SGs (Fig 4D). These results

demonstrate that JNK antiviral response is mediated by TEP20 and Dronc.

TEP20 regulates AMPs and Dronc induces apoptosis in infected SGs

In A. aegypti, a macroglobulin complement-related factor (AaMCR) that belongs to the TEP

family interacts with DENV2 through the scavenger receptor C (AaSR-C) and induces AMP

expressions to reduce virus infection [22]. To test whether TEP20 regulates AMP expres-

sions, we quantified expression of three AMPs (CecA, DefA and DefD) upon TEP20 silenc-

ing (S8D Fig) in SGs at 10 days post ZIKV inoculation. These AMPs were upregulated by

ZIKV in the RNA-seq transcriptome analysis (S6 Fig; S1 Table). TEP20 depletion signifi-

cantly reduced the expression of CecA and DefD, while the expression of DefA remained

unchanged (Fig 5A). TEPs that contain a thioester domain can directly bind to pathogens

[37]. Protein sequence observation and alignment with AaMCR revealed the presence of a

thioester motif (GCGEQ) in TEP20 (S12 Fig). These results indicate that TEP20 can interact

to DENV2 to induce AMPs.

Dronc triggers apoptosis by cleaving effector caspases [38]. To support the role of Dronc in

apoptosis in SGs, we depleted Dronc in SGs (S8D Fig) and quantified apoptotic cells at 10 days

post ZIKV inoculation by using TUNEL assay. As compared to dsCtrl-injected mosquitoes,

Dronc silencing significantly reduced the number of apoptotic cells (Fig 5A and 5B). Alterna-

tively, TEP binding can mediate clearance of apoptotic bodies in mosquitoes, as observed by

increased remaining apoptotic cells upon TEP1 depletion [39]. To determine the role of

TEP20 in apoptotic clearance, we quantified apoptotic cells in TEP20-silenced SGs (S8D Fig)

dissected at 10 days post ZIKV inoculation. We did not observe any impact of TEP20 depletion

PLOS PATHOGENS JNK immunity in mosquito salivary glands

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1008754 August 10, 2020 9 / 24

https://doi.org/10.1371/journal.ppat.1008754


on apoptotic cells, whereas simultaneous depletion of Dronc and TEP20 reduced apoptotic

bodies (Fig 5A and 5B). These results indicate that apoptosis in infected SGs depends on

Dronc but not TEP20.

Fig 4. Virus-induced JNK pathway activates an antiviral response through TEP20 and Dronc. (A) Impact of Kayak depletion on expression of genes related

to complement system (TEP20, TEP24, TEP15 and TEP2), apoptosis (Caspase8 and Dronc) and autophagy (ATG14 and ATG18A) at 10 days post ZIKV oral

infection. Gene expression was quantified in pools of 10 salivary glands. Actin expression was used for normalization. Bars show arithmetic means ± s.e.m.

from three biological replicates. (B-D) Effect of depletion of (B) Dronc or TEP20 alone, (C) Dronc and TEP20 simultaneously, and (D) Puc alone, or Puc and

Dronc simultaneously, or Puc and TEP20 simultaneously on salivary gland infection at 7 days post ZIKV inoculation. Four days prior infection, mosquitoes

were injected with dsRNA. Bars show geometric means ± 95% C.I. from 20 individual salivary glands. Each dot represents one sample. TEP, Thioester-

containing protein; ATG, Autophagy related gene; dsKay, dsRNA against Kayak; dsPuc, dsRNA against Puckered; dsCtrl, dsRNA against LacZ; dsTEP20,

dsRNA against TEP20; dsDronc, dsRNA against Dronc. �, p< 0.05; ��, p< 0.01; ���, p< 0.001, as determined by unpaired t-test (A) or Dunnett’s test with

dsCtrl as control (B-D).

https://doi.org/10.1371/journal.ppat.1008754.g004

PLOS PATHOGENS JNK immunity in mosquito salivary glands

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1008754 August 10, 2020 10 / 24

https://doi.org/10.1371/journal.ppat.1008754.g004
https://doi.org/10.1371/journal.ppat.1008754


Fig 5. Functions of TEP20 and Dronc in SGs. DsRNA-injected mosquitoes were inoculated with ZIKV and analyzed

10 days later. Controls were injected with dsCtrl. (A) Impact of TEP20 depletion on expression of the AMPs: CecA,

DefA and DefD. Gene expression was quantified in pools of 10 salivary glands. Actin expression was used for

normalization. Bars show arithmetic means ± s.e.m. from three biological replicates. (B) Apoptotic staining in SGs

upon depletion of Dronc (dsDronc), TEP20 (dsTEP20) and both simultaneously (dsDronc/dsTEP20). Apoptotic cells
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Discussion

Dengue, Zika and chikungunya are widespread mosquito-borne diseases primarily transmitted

by A. aegypti. Disease mitigation through insecticide-based vector control has mostly

remained ineffective to prevent outbreaks [7]. Currently, insecticide-free vector-control strate-

gies are being extensively investigated. The improved understanding of the vector-virus inter-

action at the molecular level proposed here paves the way to manipulate mosquito biology to

make them refractory towards arboviruses. This study discovers the antiviral function of the

JNK pathway in A. aegypti SGs against three major arboviruses, DENV2, ZIKV and CHIKV,

belonging to two virus families. Further, we determine that the antiviral response is mediated

through induction of complement system and apoptosis.

Several studies have functionally characterized the immune response in A. aegypti midgut,

the first barrier to infection, determining the antiviral function of Toll, IMD and JAK/STAT

pathways [14,15,27,40]. However, only a couple of studies tested the impact of SG (exit barrier)

immune response [20,28]. Luplertlop et al.[20] used Digital Gene Expression tag profiling to

quantify the impact of DENV2 infection in SGs. They reported overexpression of Toll pathway

components, but did not test their functions. Instead, they characterized the most abundant

protein, an AMP from the Cec family (AAEL000598), and revealed its broad antiviral function

in vitro. This Cec was not regulated in our transcriptomic analysis, although two other Cec

(CecA and G) were differentially modulated by the different viruses. Sim et al.[28] used micro-

arrays to identify SG-specific transcripts as compared to carcasses. An enrichment in

immune-related genes suggested the ability to mount an immune response in SGs. Further, in

the same study, they determined the transcriptome upon DENV2 infection. Similar to our

data, they reveal a high regulation of serine proteases that could initiate the different immune

pathways or play a role in blood feeding when secreted. While they did not functionally test

the immune pathways, Sim et al. [28] revealed the antiviral and proviral functions of three

DENV2-upregulated genes. This supports the complex interaction between gene regulation

and function that we also observed.

In our study, we functionally tested for the first time the impact of upregulated components

from Toll, IMD and JNK pathways on DENV2, ZIKV and CHIKV in SGs. The Toll pathway is

triggered when extracellular pattern recognition receptors (PRR) (e.g. PGRP and GNBP) bind

to pathogen-derived ligands and activate a proteolytic cascade that leads to activation of pro-

Spätzle to Spätzle by Spätzle processing enzyme (SPE) (S6 Fig) [41]. Spätzle binding to trans-

membrane receptor Toll induces a cytoplasmic cascade that leads to nuclear translocation of

NF-κB transcription factor Rel1a to initiate effector gene transcriptions. We only observed a

regulation of pattern recognition receptors (PRRs) and pre-cytoplasmic proteases. Of note,

downregulation of the SPE protease by DENV is reminiscent of downregulation of Toll path-

way components by subgenomic flaviviral RNA (sfRNA) in SGs [42]. The IMD pathway, simi-

larly to Toll, is triggered by microbial ligand recognition by PRRs, which activate PGRP-LC

transmembrane protein (Fig 1C). In the ensuing cytoplasmic cascade, NF-κB transcription

factor Rel2 is phosphorylated by IKK2 and cleaved by DREDD to induce its nuclear transloca-

tion. IMD pathway is repressed by Caspar [43], Ect4 [44] and PGRP-LB [45]. IMD may have

been activated upon DENV and ZIKV infection through PGRP-LB downregulation and upon

were detected via TUNEL staining (red) and nuclei were stained using DAPI (blue). Scale bar, 200 μm. (C) Number of

apoptotic cells in salivary glands upon depletion of Dronc, TEP20 and both. Cells were counted on twelve 0.05 mm2

areas observed from two SGs per condition. dsCtrl, dsRNA against LacZ; dsTEP20, dsRNA against TEP20; dsDronc,

dsRNA against Dronc; CecA, Cecropin A; DefA; Defensin A, DefD, Defensin D. ���, p< 0.001, as determined by

Tukey’s post-hoc test.

https://doi.org/10.1371/journal.ppat.1008754.g005
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CHIKV infection through Caspar downregulation and IKK2 upregulation, while Ect4 upregu-

lation by CHIKV may have controlled the activation. The JAK/STAT pathway is triggered by

binding of Unpaired (Upd) to transmembrane protein Domeless (Dome), which dimerizes

and phosphorylates Hopscotch (Hop) (S7 Fig) [43]. The activated Dome/Hop complex phos-

phorylates STATs, which upon dimerization translocate to nucleus and initiate transcription.

The phosphorylation of STATs is controlled by Suppressor of Cytokine Signaling (SOCS) fam-

ily of inhibitors [46]. SOCS36E upregulation upon CHIKV infection suggests pathway inhibi-

tion. The JNK pathway is triggered by Hemipterous (Hep) phosphorylation through tumor

necrosis-associated factor 4 (Traf4) or Tak1, the latter being an IMD pathway component (Fig

1C). Hep activates Basket (Bask) that phosphorylates c-Jun and Kay transcription factors. Acti-

vated c-Jun and Kay dimerize to form the activator protein-1 (AP-1) complex, which translo-

cates to nucleus and induces transcription. Puc transcription is induced by the JNK pathway

and represses Bask [33], acting as a feedback loop. Upregulation of most of the core compo-

nents by CHIKV infection strongly indicates JNK pathway activation, while Traf4 upregula-

tion suggests an IMD-independent activation. The lack of impact against DENV2, ZIKV and

CHIKV when silencing the upregulated components of Toll and IMD pathways may not

reflect the antiviral capabilities of these pathways. Indeed, it is possible that a complete shut-

down of the signaling cascades increases virus infection. Importantly, however, we discovered

the antiviral impact of the JNK pathway against DENV2, ZIKV and CHIKV in SGs.

JNK pathway activation by DENV2, ZIKV and CHIKV in SGs occurred early during infec-

tion at 3 dpi. This time corresponds to the onset of SG infection [30]. Such an early induction

may affect virus dissemination to SGs as reflected in ZIKV and CHIKV infection rates. The

JNK pathway can be induced either through IMD-mediated pathogen recognition or oxidative

stress. Tak1 activates the IMD and JNK pathways through IKK2 and Hep, respectively [47].

Since Tak1-mediated JNK activation is transient, lasting less than one hour [48], the observed

JNK activation (lasting at least 3–7 dpi) is probably due to an IMD-independent activation.

Upon oxidative stress, the JNK pathway is induced through p53 upregulation of Traf4 that

then phosphorylates Hep [49–51]. Activated JNK pathway then induces other oxidative stress-

associated genes, such as FoxO and κ-B Ras (AAEL003817) [52]. In our transcriptomic data,

we reported the upregulation of several oxidative stress-associated genes upon infection

including p53, Traf4, FoxO, CYPs and κ-B Ras (S1 Table). These results suggest that JNK path-

way is activated in SGs as a result of infection-induced oxidative stress.

Using in vivo functional studies, we showed that the JNK antiviral function depends on

complement system and apoptosis inductions. The complement system is activated when

TEPs bind to pathogens and trigger lysis, phagocytosis [37] or even AMP production [22,53].

TEPs such as TEP15 and AaMCR can restrict DENV in mosquitoes [22,54], although TEP22

does not [13]. In the current study, we show that TEP20 regulates expression of CecA and

DefD in SGs. While DefD antiviral function has not been studied, CecA depletion increased

DENV infection [19]. The data suggests that TEP20 antiviral function is at least partially medi-

ated through AMP regulation. Apoptosis was previously reported in SGs infected with differ-

ent flaviviruses and alphaviruses [55–57]. Apoptosis antiviral function in mosquitoes is

supported by two observations. Firstly, an arbovirus with an apoptosis-inducing transgene was

selected out during mosquito infection [58], and secondly, there is an association between the

ability to induce apoptosis and colony refractoriness in different virus-mosquito systems [59–

61]. These indicate that apoptosis can define vector competence, emphasizing its importance

as a target to control transmission. In our study, we reported the antiviral function of the apo-

ptotic activator Dronc. Furthermore, we tested whether TEP20 and Dronc act in the same

pathway. A lack of synergistic effect when both TEP20 and Dronc were silenced suggests that

complement system and apoptosis function in the same cascade to reduce virus infection.
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Binding of complement components can mediate apoptotic cells clearance in mammals [36]

and in testes of A. gambiae mosquitoes [39]. However, we did not observe any impact of

TEP20 depletion on apoptotic cell number in infected SGs. Alternatively, apoptosis-triggered

nitration of virus surface could be required to direct thioester-mediated TEP binding, as in

Anopheles mosquitoes infected with parasites [62,63]. While co-regulation of Dronc and

TEP20 by the JNK pathway and absence of any synergistic effect on virus infection upon their

silencing strongly suggest that they function in the same pathway, the exact interaction among

them is yet to be determined.

A recent study established a negative association between the presence of efficient Plasmo-
dium-killing immune response in mosquitoes and epidemics in Africa, confirming the long-

suspected impact of mosquito immunity on epidemiology for arthropod-borne diseases [64].

Upon close inspection of field-derived A. aegypti colony transcriptomes [15], we found that

DENV2-refractory colonies expressed a higher level of Kay, c-Jun and TEP20. This suggests

that variation in vector competence among these colonies is partially related to JNK pathway.

Consistent with our study, this points to a role of JNK pathway in determining the arbovirus

transmission dynamics in the field. Because JNK pathway is sensitive to various microbes [65],

differential activation by distinct microbes present in natural habitats may also represent a

trigger that influences transmission.

Development of transgenic refractory mosquitoes have gained prominence in preventing

arboviral transmission [66]. Engineered overexpression of a JAK/STAT activator in mosqui-

toes reduced DENV2 propagation and established its proof-of-concept [13]. However, JAK/

STAT is ineffective against ZIKV and CHIKV. To our knowledge, no promising candidates

have been identified to be antiviral against DENV2, ZIKV and CHIKV. In this context, our

work reveals that the JNK pathway components could be harnessed to develop effective trans-

mission blocking tools against a broad range of arboviruses.

Material and methods

Mosquitoes

Aedes aegypti mosquitoes were collected in Singapore in 2010. Eggs were hatched in MilliQ

water and larvae were fed with a mixture of fish food (TetraMin fish flakes), yeast and liver

powder (MP Biomedicals). Adults were reared in cages (Bioquip) supplemented with 10%

sucrose and water. The insectary was held at 28˚C and 50% relative humidity with a 12h:12h

light:dark cycle.

Virus isolates

The dengue virus serotype 2 PVP110 (DENV2) was isolated from an EDEN cohort patient in

Singapore in 2008 [67]. The Zika virus Paraiba_01/2015 (ZIKV) was isolated from a febrile

female in the state of Paraiba, Brazil in 2015 [68]. The chikungunya virus SGP011 (CHIKV) was

isolated from a patient at the National University Hospital in Singapore [69]. DENV2 and

ZIKV isolates were propagated in C6/36 and CHIKV in Vero cell line. Virus stocks were titered

with BHK-21 cell plaque assay as previously described [70], aliquoted and stored at -80˚C.

Oral infection

Three-to-five day-old female mosquitoes were starved for 24 h and offered an infectious blood

meal containing 40% volume of washed erythrocytes from serum pathogen free (SPF) pig’s

blood (PWG Genetics), 5% 10 mM ATP (Thermo Scientific), 5% human serum (Sigma) and

50% virus solution in RPMI media (Gibco). Mosquitoes were left to feed for 1.5 h using
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Hemotek membrane feeder system (Discovery Workshops) covered with porcine intestine

membrane (sausage casing). The relative long feeding was required to warm the blood meal

previously kept in the refrigerator to 37˚C to maximize feeding. The virus titers in blood meals

were 2 x 107 pfu/ml for DENV2, 6 x 106 pfu/ml for ZIKV, and 1.5 x 108 pfu/ml for CHIKV,

and validated in plaque assay using BHK-21 cells. Control mosquitoes were fed with the same

blood meal composition except for virus. Fully engorged females were selected and kept in a

cage with ad libitum access to a 10% sucrose solution in an incubation chamber with condi-

tions similar to insect rearing.

Virus inoculation

Mosquitoes were cold anesthetized and intrathoracically inoculated with either DENV2, ZIKV

or CHIKV using Nanoject-II (Drummond). The same volume of RPMI media (ThermoFisher

Scientific) was injected as control. Functional studies were conducted by inoculating 0.1 pfu of

DENV2, 0.01 pfu of ZIKV and 0.2 pfu of CHIKV.

SG collection, library preparation and RNA-sequencing

SGs from DENV2- and ZIKV-orally infected mosquitoes were dissected at 14 dpi. Those from

CHIKV-orally infected mosquitoes were dissected at 7 dpi. Controls for CHIKV were dis-

sected at 7 days post feeding on a non-infectious blood meal, and at 14 days post feeding for

DENV2 and ZIKV. Inoculum resulted in 100% infected SGs (S1 Fig). Fifty pairs of SGs per

condition were homogenized using a bead mill homogenizer (FastPrep-24, MP Biomedicals).

Total RNA was extracted using E.Z.N.A Total RNA kit I (OMEGA Bio-Tek). RNA-seq librar-

ies were prepared using True-Seq Stranded Total RNA with Ribo-Zero Gold kit (Illumina),

according to manufacturer’s instructions. Following quantification by RT-qPCR using KAPA

Library Quantification Kit (KAPA Biosystems), libraries were pooled in equimolar concentra-

tions for cluster generation on cBOT system (Illumina) and sequenced (150 bp pair-end) on a

HiSeq 3000 instrument (Illumina) at the Duke-NUS Genome Biology Facility, according to

manufacturer’s protocols. Two repeats per condition were processed. The need for more than

two repeats was mitigated by using a large number of tissues from different mosquitoes in

each repeat. Raw sequencing reads from RNA-seq libraries are available online under NCBI

accessions: SRR8921123-8921132.

RNA-seq data processing and identification of differentially expressed

genes (DEGs)

Reads were quality checked with FastQC (www.bioinformatics.babraham.ac.uk) to confirm that

adapter sequences and low-quality reads (Phred+33 score< 20) had been removed. The reads

were then aligned against the A. aegypti genome [VectorBase [71]] AaegL3.3) using TopHat

v2.1.0 [72] with parameters–N 6 –read-gap-length 6 –read-edit-dist. 6 set to account for regional

genetic variation between the RNA-seq and genome. SAM tools v0.1.19 [73] and HTSeq v0.6.0

[74] were used to format and produce count files for gene expression analysis. DEGs were identi-

fied using DESeq2 [75] with at least 1.4-fold change between control and infected conditions, an

adjusted False Discovery Rate (FDR) of 0.05. edgeR [76] and Cuffdiff 2 [77] (following the Cuf-

flinks pipeline [78] were also used to identify DEGs following the same criteria.

Gene annotations

DEGs were annotated through several pipelines. Predicted gene protein sequences were

searched against the NCBI nr database (accessed July 2017) (BLASTp; e-value 1.0E-5 and word
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size 3), VectorBase [71] Aedes peptide database (downloaded July 2017) with BLAST+ [79]

(BLASTp; e-value 1.0E-5 threshold and word size 2), and FlyBase [80] D. melanogaster peptide

database (downloaded August 2017) with BLAST+ (BLASTp; e-value 1.0E-5 threshold and

word size 2) for identification of orthologues. Gene ontology terms were assigned in BLAS-

T2GO [81] (program default parameters). Signal peptides were identified using SignalP v4.1

[82]. Functional annotations were also assigned based on literature.

Double-stranded mediated RNAi

Mosquito cDNA was used to amplify dsRNA targets with gene specific primers tagged with T7

promoter as detailed in S2 Table. The amplified products were in vitro transcribed with T7

Scribe kit (Cellscript). dsRNAs were annealed by heating to 95˚C and slowly cooling down to

4˚C using a thermocycler. Three to five-day-old adult female mosquitoes were cold-anesthe-

tized and intrathoracically injected with 2 or 4 μg of dsRNA using Nanoject II. The same quan-

tity of dsRNA against the bacterial gene LacZ was injected as control (dsCtrl). Validation of

gene silencing was conducted 4 days post injection by pooling 10 SGs or 5 midguts.

Gene expression quantification using RT-qPCR

Total RNA was extracted from 10 SGs or 5 midguts using E.Z.N.A. Total RNA kit I, DNAse

treated using Turbo DNA-free kit (Thermo Fisher Scientific), and reverse transcribed using

iScript cDNA synthesis kit (Biorad). Gene expression was quantified using qPCR with Sensi-

Fast Sybr no-rox kit (Bioline) and gene specific primers detailed in S2–S4 Tables. Actin expres-

sion was used for normalization. The reactions were performed using the following cycle

conditions: an initial 95˚C for 10 min, followed by 40 cycles of 95˚C for 5 s, 60˚C for 20 s and

ending with a melting curve analysis. The delta delta method was used to calculate relative fold

changes.

Quantification of virus genome RNA (gRNA) copies using RT-qPCR

Individual pairs of either SGs or midguts were homogenized with a bead Mill Homogenizer in

350 μl of TRK lysis buffer (E.Z. N. A Total RNA kit I). Total RNA was extracted using the

RNA extraction kit and reverse-transcribed using iScript cDNA synthesis kit. DENV2 gRNA

copies were quantified by RT-qPCR using i-Taq one step universal probes kit (BioRad) and

ZIKV and CHIKV gRNA copies with i-Taq one step universal sybr kit (BioRad) with primers

detailed in S5 Table. Amplification was run on CFX96 Touch Real-Time PCR Detection Sys-

tem (BioRad) with the following thermal profile: 50˚C for 10 min, 95˚C for 1 min, followed by

40 cycles at 95 ˚C for 10 s, 60 ˚C for 15 s. A melt-curve analysis was added for Sybr qPCR.

Absolute quantification of gRNA was obtained by generating a standard curve for each

virus target. Viral cDNA was used to amplify qPCR target using qPCR primers with T7-tagged

forward primer. RNA fragments were generated with T7-Scribe kit and RNA concentration

calculated by Nanodrop was used to estimate concentration of RNA fragments. Ten-time serial

dilutions were quantified with RT-qPCR and used to generate absolute standard equations.

Three standard dilutions were used in each subsequent RT-qPCR plate to adjust for inter-plate

variation.

Apoptotic cell staining

SGs were dissected at 10 days post ZIKV inoculation, dried on a SuperFrost Plus slide (Ther-

moFisher Scientific), fixed with 2% paraformaldehyde for 30min, permeabilized in 0.5% Tri-

ton X-100 (Sigma) for 15min at room temperature (RT) and blocked with 0.5% Triton X-100
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and 1% BSA (Sigma) for 15 min at RT. After two PBS washes, TUNEL staining was performed

with ApopTag Peroxidase In Situ Apoptosis Detection Kit (Merck). Briefly, the SGs were incu-

bated in equilibration buffer for 20 sec at RT. After removing excess liquid, the SGs were incu-

bated for 40min with TdT enzyme in a humidified chamber at 37˚C. The samples were next

incubated with the anti-digoxigenin conjugate in dark for 10min at RT, and later washed few

times with PBS. Finally, the tissues were mounted with ProLong Gold antifade mountant that

contains DAPI (Invitrogen). Pictures were taken with a fluorescence microscope (Nikon

Eclipse 80i). The apoptotic cells were counted on twelve 0.05mm2 areas on images taken from

two SGs per condition.

Data analyses and software used

In figures, the geometric means of viral loads were shown. The geometric mean indicates the

central tendency of a set of numbers by using the product of their values. Mathematically, the

geometric mean calculates the arithmetic mean of a log-transformed data. Since viral loads fol-

lowed a logarithmic distribution as determined by D’Agostina-Pearson Omnibus test (K2)

after logarithmic transformation, we chose geometric mean to represent their central

tendency.

One-way ANOVA and post-hoc Dunnett’s test or unpaired T-test were used to test differ-

ences in gene expression and log10-transformed gRNA copies. Normal distribution of log-

transformed viral loads (gRNA) was confirmed by K2 test. These analyses were done using

GraphPad Prism 5. Z-score was used to test differences in infection rate with www.

socscistatistics.com/tests/ztest/. Standard error for sample proportion was calculated with

www.easycalculation.com.
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S1 Fig. Infection level in salivary glands from mosquitoes orally fed with different inocula

of DENV2, ZIKV and CHIKV. Mosquitoes were orally infected with a blood meal containing

105 to 108 pfu per ml of either DENV2, ZIKV or CHIKV. At 14 days post infection with

DENV2 and ZIKV, and 7 days post infection with CHIKV, 20 salivary glands were dissected
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and virus was quantified using RT-qPCR. (A) Infection rate as measured by the percentage of

infected SGs. Bars show percentage ± standard error. (B) Infection intensity as measured by

gRNA copies per infected salivary glands. Inocula presented were the one selected for RNAseq.

Bars show geometric means ± 95% C.I.

(TIF)

S2 Fig. Comparisons of Differentially Expressed Genes (DEGs) obtained with edgeR,

DESeq2 and Cuffdiff 2. (A-C) Venn diagrams presenting overlaps in up- and downregulated

DEGs between edgeR, DESeq2 and Cuffdiff 2 in salivary glands infected with (A) DENV2, (B)

ZIKV and (C) CHIKV.

(TIF)

S3 Fig. Correlations between RNA-seq and RT-qPCR gene expressions. (A-C) The expres-

sion of 10 genes in (A) DENV2, (B) ZIKV or (C) CHIKV infected salivary glands was quanti-

fied with RT-qPCR and correlated to their respective fold change determined from DESeq2,

edgeR or CuffDiff 2 outputs. Log2 Fold-Change (log2FC) is displayed on axes. Three replicates

of 10 salivary glands were used for RT-qPCR. RT-qPCR and RNA-seq samples were collected

from different biological repeats. r2 indicates Pearson correlation for gene expressions between

the two methods.

(TIF)

S4 Fig. Comparisons of Differentially Expressed Genes (DEGs) in DENV2 infected salivary

glands between our dataset and three previous studies. Venn diagram showing common

and different DEGs in (i) Singapore A. aegypti colony orally infected with PVP110 virus (this

study), (ii) Rockefeller/UGAL A. aegypti colony orally infected with New Guinea C virus [28],

(iii) Liverpool A. aegypti colony orally infected with 16681 virus [20], (iv) Chetumal A. aegypti
colony orally infected with Jam1409 virus [27].

(TIF)

S5 Fig. Transcriptomic regulation of the RNAi pathway in DENV2, ZIKV and CHIKV

infected salivary glands. Boxes indicate differentially expressed genes (DEGs) with AAEL

number below. Arrows indicate the direction of regulation. Pink boxes indicate DEGs by

more than one virus.

(TIF)

S6 Fig. Transcriptomic regulation of the Toll pathway in DENV2, ZIKV and CHIKV

infected salivary glands. Boxes indicate differentially expressed genes (DEGs) with AAEL

number below. Arrows indicate the direction of regulation. Pink boxes indicate DEGs by

more than one virus. Dotted boxes show genes selected for functional studies.

(TIF)

S7 Fig. Transcriptomic regulation of the JAK/STAT pathway in DENV2, ZIKV and

CHIKV infected salivary glands. Boxes indicate differentially expressed genes (DEGs) with

AAEL number below. Arrows indicate the direction of regulation. Pink boxes indicate DEGs

by more than one virus.

(TIF)

S8 Fig. Silencing efficiencies in salivary glands and midgut. Each mosquito was injected

with dsRNA against the candidate gene. Same quantity of dsCtrl was injected as control. Four

days later, mRNA was quantified using RT-qPCR in pools of 10 salivary glands or 5 midguts.

Actin expression was used for normalization. Corresponding gene expression after injection

with (A) 2 μg of dsCLIPB13A, dsCLIPB21, dsEst-like, dsSnk-like, dsIKK2, dsEct4, dsKay,
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dsJHI or dsGale5 in salivary glands; (B) 2 μg of dsKay in midgut; (C) 2 μg of dsTEP20 or

dsDronc in salivary glands; (D) 4 μg of equal amount of dsTEP20 and dsDronc in salivary

glands; (E) 2 μg of dsPuc in salivary glands; and (F) 4 μg of dsPuc, or equal amount of

dsTEP20 and dsDronc in salivary glands. Bars show means ± s.e.m. from three repeats. dsRNA

target: dsCtrl, LacZ; dsCLIPB13A, CLIP domain serine protease 13A; dsCLIPB21, CLIP

domain serine protease B21; dsEst-like, Easter-like; dsSnk-like, Snake-like; dsIKK2, Inhibitor of

nuclear factor kappa-B kinase; dsKay, Kayak; dsPuc, Puckered; dsEct4, Ectoderm expressed-4;

dsJHI, Juvenile hormone inducible; dsGale5, Galectin 5; dsDronc, Dronc; dsTEP20, Thioester

containing protein 20. �, p< 0.05; ��, p< 0.01, as determined by unpaired t-test.

(TIF)

S9 Fig. Mosquito survival upon gene silencing. Each mosquito was injected with 2μg of

dsRNA against the candidate gene or control dsRNA (dsCtrl). Mosquito survival at 4 days post

dsRNA injection against (A) the candidate immune genes and (B) Puckered (Puc). Bars show

percentage ± standard error. N, number of dsRNA-injected mosquitoes.

(TIF)

S10 Fig. Quantification of salivary gland infection after inoculation with different inocula

of DENV2, ZIKV and CHIKV. Four days after injection with dsRNA control (dsCtrl), mos-

quitoes were inoculated with different inoculum doses (plaque forming unit, pfu) of either

DENV2, ZIKV or CHIKV. Ten days later, viral genomic RNA (gRNA) was quantified in 20

salivary glands. gRNA copies and infection rate in salivary glands from mosquitoes inoculated

with (A) DENV2, (B) ZIKV and (C) CHIKV. Each dot represents one pair of salivary glands.

Bars show geometric means ± 96% C.I.

(TIF)

S11 Fig. Silencing specificity of dsTEP20 in salivary glands. Each mosquito was injected

with dsRNA against TEP20 (dsTEP20). Same quantity of dsCtrl was injected as control. Four

days later, mRNA was quantified using RT-qPCR in pools of 10 salivary glands. Actin expres-

sion was used for normalization. Salivary gland gene expression for TEP20, TEP2, TEP15,

TEP22 and TEP24. Bars show arithmetic means ± s.e.m. from three repeats. �, p< 0.05; as

determined by unpaired t-test.

(TIF)

S12 Fig. Functional domains found in TEP20. (A) Schematic representation of TEP20 func-

tional domains predicted using the pfam webserver (http://pfam.xfam.org). (B) Localization of

the thioester domain in TEP20 and its absence in AaMCR. Sequences were aligned with Clus-

tal Omega (https://www.ebi.ac.uk/Tools/msa/clustalo/)).

(TIF)
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