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Abstract The stoichiometry of physical nutrient supply may provide a constraint on the spatial
distribution and rate of marine nitrogen (N2) fixation. Yet agreement between the N2 fixation rates
inferred from nutrient supply and those directly measured has been lacking. The relative transport of
phosphate and nitrate across the Gulf Stream suggests that 3–6 Tg N year−1 must be fixed to maintain steady
nutrient stoichiometry in the North Atlantic subtropical gyre. Here we show direct measurements of N2

fixation consistent with these estimates, suggesting elevated N2 fixation in and near the Gulf Stream. At
some locations across the Gulf Stream, we measured diazotroph abundances and N2 fixation rates that are
1–3 orders of magnitude greater than previously measured in the central North Atlantic subtropical gyre. In
combination, rate measurements and gene abundances suggest that biogeochemical budgets can be a robust
predictive tool for N2 fixation hot spots in the global ocean.

Plain Language Summary Marine photosynthetic organisms face a unique challenge: They are
confined to the ocean's near‐surface layer where there is sufficient light for photosynthesis, yet the nutrients
needed for growth are rapidly stripped from these layers. In response to this nutrient scarcity, some
microorganisms, called diazotrophs, evolved the ability to tap into alternative resources: They convert the
nitrogen gas that comprises a majority of the atmosphere and is abundantly dissolved in seawater into
ammonium needed for growth. Diazotrophs regulate the rate of new nitrogen input to the ocean, which
influences the productivity of marine fisheries, as well as how carbon dioxide is partitioned between the
atmosphere (where it contributes to the greenhouse effect) and the ocean (where it does not). Therefore,
understanding the controls on diazotrophy is a key oceanographic objective. It was previously hypothesized
that the Gulf Stream region could be a hot spot of nitrogen fixation. In this work, we tested this hypothesis by
measuring nitrogen fixation rates and diazotroph abundances across the Gulf Stream. We found robust
diazotrophy, far exceeding that previously measured in the subtropical North Atlantic. Understanding the
linkages between ocean circulation and N2 fixation helps us assess the vulnerability or stability of ocean
biology and chemistry to future change.

1. Introduction

Nitrogen is an essential element to all living organisms. However, over much of the surface ocean, bioavail-
able nitrogen is in scarce supply. Some microorganisms, called diazotrophs, have adapted to this scarcity by
fixing N2 gas dissolved in seawater to its bioavailable forms. In so doing, diazotrophs replenish the global
ocean reservoir of fixed nitrogen compounds and exert a key control on marine productivity and the ocean's
biological carbon pump (Tyrrell, 1999). Despite this important role in the Earth system, the rates and spatial
distribution of biological N2 fixation are highly uncertain (Landolfi et al., 2018). A quantification of N2 fixa-
tion rates in the subtropical North Atlantic, along with questions about the sources of non‐nitrogenous
nutrients, such as phosphorus (P) and iron (Fe), needed to fuel such fixation, have provoked extensive debate
(Capone et al., 2005; Gruber & Sarmiento, 1997; Mahaffey et al., 2005; Marconi et al., 2017; Palter et al.,
2011). Moreover, biogeochemical cycles in the North Atlantic can take on global importance, since this is
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the basin in which large‐scale ocean circulation unites the nutrients subducted in the Southern Ocean with
aeolian iron mobilized from the Northern Hemisphere land masses and deposited at the ocean's surface
(Moore et al., 2009).

Because N2 fixation is energetically costly, diazotrophs are thought to have a competitive advantage only
where the supply of bioavailable nitrogen compounds (N) is low relative to that of P and Fe with respect to
the demands of non‐diazotrophs (Falkowski, 1997; Landolfi et al., 2015; Ward et al., 2013). If
non‐diazotrophs can exhaust P or Fe before N begins to limit their growth, then there may be no niche for
N2 fixing organisms. Given that the P:N ratio is very low in the subsurface waters of the subtropical North
Atlantic (Palter et al., 2011), the phosphate that gets mixed vertically into the euphotic zone is accompanied
by more than enough nitrate to be completely consumed by non‐diazotrophs before any niche is created for
N2 fixing organisms (Ward et al., 2013). These subsurface nutrient ratios imply that N2‐fixing organisms in
the central gyre may depend on dissolved organic phosphorus to support their growth (Landolfi et al., 2015).

However, conditions near the Gulf Stream are distinct from the broader subtropical North Atlantic. North of
the Gulf Stream, phosphate concentrations are in excess of the average non‐diazotrophic biological nitrate
demand, as indicated by positive values of the metric P* = PO3 −

4 ‐NO−
3 /16. Assuming that the average com-

munity N:P ratio is 16 (Deutsch et al., 2007; Gruber & Sarmiento, 1997), a niche for N2 fixers may be created
in or near this region. Hydrographic sections occupied across the Gulf Stream consistently show positive P*
north of the current (Palter et al., 2011). Likewise, recent measurements have also shown that the Slope Sea,
between the Gulf Stream and North American shelf, has elevated concentrations of dissolved iron relative to
the subtropical gyre, so that the Fe:N ratio may exceed the cellular requirements of non‐diazotrophs near the
Gulf Stream (Conway et al., 2018). Finally, along its path from the Florida Strait to an offshore position of
60°W, 38°N, the Gulf Stream transports water with temperatures exceeding 20°C all year, and 23°C for all
but the coldest months. Therefore, the transport of P‐ and Fe‐rich waters from the Slope Sea across the warm
Gulf Stream may alleviate the nutrient limitation of diazotrophy and mitigate any potential temperature
effect of the cooler wintertime subtropical water masses.

A cross‐Gulf Stream supply of P* and Fe would also help explain satellite‐based indications (Westberry &
Siegel, 2006) and enigmatic video footage (Davis & McGillicuddy, 2006) of elevated abundances of the mar-
ine N2 fixing organism Trichodesmium along the southern fringe of the Gulf Stream. Here, we present direct
observations of N2 fixation across the Gulf Stream, along with gene copy abundances of Trichodesmium and
UCYN‐A2, and microscopic observations of Trichodesmium and Richelia. With these data, we lend evidence
in support of the hypothesis that the region in and near the Gulf Stream fosters high abundances of N2 fixing
organisms and robust rates of N2 fixation.

2. Methods
2.1. Overview of Sampling and Data Collection

The majority of the data presented here were collected during EN596, a 6‐day cruise aboard the R/V
Endeavor from 25–30 April 2017, which occupied a high‐resolution section across the Gulf Stream
(Figure 1). Additional opportunistic sampling was also conducted on a subsequent leg, EN597, from 1–7
May 2017 between Morehead City, NC, and Fort Lauderdale, Florida. The Gulf Stream was identified from
satellite sea surface temperature (SST) data, and the hydrographic section on EN596 was intended to cross
the Gulf Stream perpendicular to its local trajectory at 74°W. On this hydrographic section, seawater samples
were collected at approximately 24 discrete depth intervals from the surface to 1,000 m, and the distance
between stations was approximately 10 km.

Here we give an overview of the sampling and data collection, with all of the methodological details
explained in Text S1 in the supporting information. Water samples were collected and analyzed for nutri-
ents, nitrogen isotopes, and chlorophyll a at each of the hydrographic stations. Particulate material for
DNA extractions was also collected at each hydrographic station and during transits between stations using
an automated custom‐made seawater sampler (based upon the design of Holser et al., 2011) connected to the
ship's uncontaminated seawater system, drawing seawater from a nominal depth of 5 m. The filtration sys-
temwas programmed to iteratively redirect water through tubing connected to filter holders in order to sam-
ple at a high spatial resolution along the cruise track (Figure 1).
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On Leg 1, at Stations 2, 6, and 12 (Figure 1), the entire volume of a PVC rosette bottle (from a depth of 25m)
was gravity filtered through a 47‐mm diameter, 10 μm pore size, black polycarbonate filter with a Sterlitech
polyester drain disk as per the protocol of White et al. (2018) in order to enumerate large cell‐sized diazo-
trophic taxa. At these same stations, as well as Station 12 on Leg 1 and Stations 5, 8, and 9 on Leg 2, N2

and carbon fixation rates were measured via the modified bubble release 15N2‐tracer method of
Jayakumar et al. (2017) and via traditional 13C methods of Legendre and Gosselin (1997).

3. Results and Discussion
3.1. Oceanographic Context

As is evident in Figure 1a, the high‐resolution section crossed the Gulf Stream where its ribbon of warm
(>25°C), surface waters separates the cold (<19°C) Slope Sea waters to the north from the subtropical spring
mixed layer (22°C and 23°C) to the south. The Slope Sea is much richer in chlorophyll than the Gulf Stream
or subtropical gyre (Figure 1b). Eddies and filaments of elevated chlorophyll concentrations extend hun-
dreds of kilometers southward and eastward from the Gulf Stream into the more oligotrophic central gyre.
These warm, high chlorophyll features show how water is stirred across the Gulf Stream and stretched into
coherent structures.

Finite Size Lyapunov Exponents (FSLE), calculated from the altimetric surface geostrophic velocity field and
made freely available from the AVISO group (d'Ovidio et al., 2004), identify regions where the mesoscale
velocity field stretches tracer into thin tendrils (Figure 2). More specifically, the large‐magnitude ridges of
the backward FSLE (Figure 2) indicate convergent flow lines (Liu et al., 2018) and partition the flow field
into regions that have come from a similar origin. Many studies have shown that these ridges correspond
with filaments of chlorophyll and other tracers in the ocean, consistent with their convergent nature (e.g.,
Hernández‐Carrasco et al., 2018; Lehahn et al., 2007). The fact that many of these ridges coincide with

Figure 1. Sea surface properties and the EN596 and 597 cruise stations. (a) The sea surface temperature (°C, background colors) on 27 April 2017 from NASA JPL
Multi‐scale Ultra‐high Resolution Foundation Temperature. The surface geostrophic speed of 90 cm s−1 from altimetry (black contour) marks the
Gulf Stream path on 27 April 2017. The black dots show the locations of the DNA extractions from the underway autosampler. The red circles
show the locations of the 25m 15N2‐enriched incubations, and the red numbers give the mean of the duplicate or triplicate N2 fixation rates
in nmol L−1 d−1 (uncertainty and limits of detection are provided in Table S1). (b) The MODIS Aqua 4 km satellite chlorophyll (mgm−3; colors),
averaged over 1–8 May 2017, which is the 8‐day average closest to the cruise dates with reasonably cloud‐free view of the cruise region.
Cloud covered pixels are white. The crosses are stations where qPCR was performed on bottle samples collected at various depths and
reported in Table S2. The numbers next to the crosses are the leg and station numbers (labeled as leg.station). Bottles were collected
to a depth of 1,000m for the analysis of nutrients and natural abundance of δ15N of nitrate at 12 stations between stations 1.1 and
1.12. All other symbols are the same as in panel a.
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elevated chlorophyll and SST structures on the subtropical side of the Gulf
Stream (Figure 1) suggests that these features have been, at least in part,
passively advected by the surface circulation. An illustration of such a fea-
ture is the tongue of high chlorophyll extending southeastward from the
Gulf Stream at 74°W and about 35°N to 33°N, along a clear ridge of the
backward FSLE (Figure 2), a feature that is also visible as a tongue of
warm SST (Figure 1a).

3.2. Diazotroph Abundance and N2 Fixation Rates

Figure 2 shows the distribution of N2 fixation rates and Trichodesmium
nifH gene copy abundances across the Gulf Stream. This section is shown
versus latitude in Figure 3, along with the nifH gene copy abundances of
the unicellular cyanobacteriumUCYN‐A2, above the Gulf Stream velocity
as a function of depth and latitude. The highest Trichodesmium and
UCYN‐A2 nifH gene abundances are found very near the swiftest veloci-
ties of the Gulf Stream, while the highest N2 fixation rate was measured
at a station more than 10 km south of the zero velocity isotach and, there-
fore, outside of the Gulf Stream. The satellite chlorophyll concentration
and FSLE ridges (Figure 2) indicate that the high Trichodesmium and
UCYN‐A2 abundances coincide with regions of lateral convergence, sug-
gesting that the circulation field may passively accumulate the cells.
Trichodesmium is known be positively buoyant and may be prone to accu-
mulate while it floats in convergent surface circulation (Detoni et al.,
2016; Walsby, 1975). Indeed, diazotroph gene abundance was much
higher at 5 m than any other depth (Table S3), consistent with the hypoth-
esis of passive accumulation of the cells, but also typical of the vertical dis-
tribution of cyanobacterial diazotrophs (decreasing with depth). Cell
counts determined via epifluorescence microscopy at 25 m were much
lower (≤14 Trichodesmium cells L−1 and ≤437 Richelia heterocysts L−1)
but did independently confirm the presence of these large cell‐sized diazo-

trophs. We note that due to known polyploidy and limitations in qPCR assays we would not expect 1:1 rela-
tionship with gene copies and cell counts (White et al., 2018).

While vertical profiles of gene copies could suggest physical accumulation of at least Trichodesmium, we can-
not rule out the possibility that conditions within the Gulf Stream fostered active Trichodesmium growth at
locations where its abundance was high, as there were no incubations or microscopic observations precisely
colocated with the highest gene abundances. From the underway data at 5 m, Trichodesmium showed as the
most consistently dominating diazotroph in the area. Its abundances were measured at 104 nifH gene copies
L−1 at all the stations both within the Gulf Stream and south of its swiftest central velocity (Figures 2 and 3).
UCYN‐A2 abundances were up to 5,000 gene copies L−1 in the Gulf Stream, with the notable exception of
the station closest to the center of the current measuring 60,000 gene copies L−1. UCYN‐A2 has often been
considered a coastal phylotype, but the understanding of its global distributions is evolving (Thompson et al.,
2014). The g24774A11 diazotroph phylotype was found consistently at 'detected but not quantifiable' (DNQ)
levels along the high resolution sampling transect, with the exception of the northernmost stations beyond
the Gulf Stream north wall, where it was not detected in the samples. The g24774A11 distributions thus sup-
port the idea that Gulf Stream waters are enhancing diazotroph fitness.

One hypothesis to explain the disconnect between the N2 fixation rates and gene abundances is that in the
areas where highest rates were measured, the diazotrophic cells experienced conditions more favorable for
fixation, resulting in greater N2 fixation activities per cell. Conversely, in areas with reduced N2 fixation
rates, the diazotroph cells may have been senescent. Alternatively, a relatively fast local reduction in
cell‐specific N2 fixation rates could have been induced by a local injection of dissolved inorganic nitrogen
(DIN) to the system. Trichodesmium can switch to nitrate uptake when it becomes available, while reducing
its N2 fixation rates (e.g., Holl &Montoya, 2005). In addition, it is possible that such disconnect between rates
and gene abundances may arise by changing diazotroph community composition across the transect. In this

Figure 2. Trichodesmium gene abundance (gene copies L−1, shown as
colored circles, with legend on land) and N2 fixation rates from
incubations (black crosses and numbers in nmol L−1 day−1) on the
high‐resolution Gulf Stream sections. The background colors are
chlorophyll (as in Figure 1b). The black contours are the ridges of the
backwards Finite Size Lyaponov Exponents (d'Ovidio et al., 2004),
calculated from the surface geostrophic velocity
field deduced from the satellite altimetry on 27 April 2017. FSLE are
related to the exponential rate of separation between two neighboring
particles over time and accordingly have units of day−1. These ridges
generally align with regions of convergent flow and therefore
coincide with elevated chlorophyll in the subtropical gyre.
For reference, the station which averaged an N2
fixation rate of 6 nmol L−1 day−1 is at the
center of the Gulf Stream.

10.1029/2020GL089103Geophysical Research Letters

PALTER ET AL. 4 of 10



study we screened for the presence of the known key oceanographic dia-
zotroph groups; yet it is possible that some of the active diazotrophs were
missed. Amplicon sequencing data (not shown) targeting the nifH gene
containing communities was processed from the stations and showed pre-
sence of many non‐cyanobacterial (presumably heterotrophic) diazo-
trophs in addition to the ones quantified with qPCR. These groups could
have potentially contributed to rates, although evidence is scarce in terms
of their actual contributions to N2 fixation activity in the oceanic surface
waters (e.g., Moisander et al., 2017).

In the global diazotroph abundance databases of Luo et al. (2012) and
Tang and Cassar (2019), there are no samples of nifH gene abundance
measurements directly in the Gulf Stream. In the central subtropical gyre
(i.e., near Bermuda, about 32°N), Trichodesmium and UCYN‐A abun-
dances are generally below 100 gene copies L−1 and often not detectable
at any depth (c.f. Tang & Cassar, 2019, their Figures S1 and S2). Thus,
the peak measured gene copies here are 1–3 orders of magnitude above
those typically measured in the central North Atlantic subtropical gyre,
though they are several orders of magnitude smaller than frequently mea-
sured in the tropical Atlantic.

The N2 fixation rates reported here are also between a factor of two and
ten higher than nearby open ocean measurements: with rates between 6
and 18 nmol L−1 day−1 during this April cruise (Figure 1, Table S1), com-
pared to rates consistently below 4 nmol L−1 day−1 measured in the open
ocean subtropical North Atlantic gyre in August (Tang et al., 2019). These
rates are consistent with those newly reported for the northwestern gyre
(Tang et al., 2020).

3.3. Comparing Measured Rates to Inferences from Biogeochemical Budgets

The strong gradients across the Gulf Stream are a reflection of its role as a sharp dynamical and biogeochem-
ical divide, with high nutrient layers outcropping at the sea surface to the north of the current and near‐zero
concentrations to the south (Figure 4). As has been observed on six previous cross‐Gulf Stream nutrient sec-
tions (Marshall et al., 2009; Palter et al., 2011), P* is enriched on the northern side of the current (Figure 4b).
Additionally, a Geotraces cruise (GA03) recently revealed that the Slope Sea is enriched in iron relative to the
Sargasso Sea (Conway et al., 2018). Therefore, the environment near the Gulf Stream has many of the nutri-
ent elements required for diazotrophs to thrive. Moreover, down‐front winds and a rich spectrum of mesos-
cale eddies associated with the Gulf Stream drive a down‐gradient flux of P* and iron into the subtropical
gyre (Conway et al., 2018; Letscher et al., 2016; Palter et al., 2011; Roussenov et al., 2006; Williams &
Follows, 2003; Williams et al., 2011; Yamamoto et al., 2018).

To maintain steady state nutrient ratios in the Sargasso Sea, any net P* supply must be consumed (Deutsch
et al., 2007). The most likely P* sink is diazotrophic N2 fixation, which consumes water column phosphate
without drawing down nitrate. The steady state budget equation for P* can be rearranged to solve for N2 fixa-
tion, Jfix(N), integrated over the annual maximum mixed layer of depth, H, as in (Palter et al., 2011):

Z 0

−H
Jf ixðNÞ∂z¼ λ

Z 0

−H
−u · ∇P∗
zfflfflfflfflffl}|fflfflfflfflffl{1

þ Ah∇2P∗
zfflfflfflffl}|fflfflfflffl{2 !

∂ z þ wP∗jz¼−H

zfflfflfflfflfflffl}|fflfflfflfflfflffl{3
− Av

∂P∗

∂z
jz¼−H

zfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflffl{4
−

FatmðNÞ
16

zfflfflfflffl}|fflfflfflffl{52
64

3
75: (1)

Here, the P* supply terms include (1) advection across a P* gradient by the horizontal velocity field u and (2)
the lateral mixing of the P∗ gradient with horizontal mixing coefficient Ah, both integrated above the depth
H. The third term is the vertical advection of P* across the base of the layer with vertical velocity, w, and the
fourth term is the turbulent mixing across a gradient in P* at the base of the layer with vertical mixing coef-
ficient Av. The supply of fixed nitrogen by atmospheric deposition (the fifth term on the right hand side)

Figure 3. N2 fixation rates, diazotroph gene abundances, and velocity on
the high‐resolution cross section of the Gulf Stream at approximately 74°W.
(a) N2 fixation rates at 25 m (left axis, nmol L−1 d−1) in blue diamonds,
Trichodesmium gene copies (inner right axis, gc L−1) in green circles,
and UCYN‐A2 (outer right axis, gc L−1) in red circles. The standard
deviations of the triplicate N2 fixation incubation measurements
are 7.8, 0.5, and 2.5 nmol L−1 d−1 from south to north. (b) The Gulf Stream
velocity (m s−1) as a function of depth and latitude from the ship's
hull‐mounted ADCP. In Figure 4, the location of the highest
depth‐averaged velocity (36.1°N) is taken as the center of the Gulf
Stream, and the horizontal distance axis is transformed
to be perpendicular to the current direction at this location.
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reduces the amount of N2 fixation required to balance the physical supply
of P*. The factor λ represents the number of moles of N that must be fixed
to balance each mole of P* supplied to the region (Deutsch et al., 2007).
For oligotrophic systems like the Sargasso Sea with low fractions of
organic material exported from the mixed layer, λ predominantly reflects
the N:P ratio for non‐N2 fixing organisms, and is often elevated above 16
(Mills & Arrigo, 2010; Moreno & Martiny, 2018; Weber & Deutsch,
2010). Thus, a choice of λ = 16 should yield a conservative estimate of
the N2 fixation required to balance the estimated P* supply. An upper
bound of the N:P ratio for the subtropical North Atlantic has been esti-
mated at 25 (Galbraith &Martiny, 2015). If we were to use this higher esti-
mate for λ, all of the N2 fixation rates from the P* budget calculations
would be revised upwards by a factor of approximately 1.5.

Using the average P* gradients from six cross‐Gulf Stream nutrient sec-
tions, similar to those shown in Figure 4b, together with satellite winds
and mixing coefficients taken from the literature, Palter et al. (2011) esti-
mated the physical supply of P* by transport across the Gulf Stream, as in
Equation 1. A scale analysis showed that atmospheric nitrogen deposition
and vertical mixing and advection were small P* sink terms, and were
essentially negligible in the budget. Thus, the budget simplified to a bal-
ance between the P* lateral transport convergence (Term 1) and the biolo-
gical N2 fixation that consumes it (Jfix(N)). This budget calculation
suggested the cross‐Gulf Streammixing and advection of P* could support
subtropical gyre N2 fixation rates of 4.7 ± 1.6 Tg N year−1. The new hydro-
graphic and nutrient data collected during EN596 are consistent with
these estimates, because the cross‐stream P* gradients are very close to
the averages reported in Palter et al. (2011). A comparison of the P* trans-
port during EN596 to the earlier work is included in Text S2.

The N2 fixation rates measured in the incubations (Figure 1, Table S1)
agree with those that would be inferred from the P* budget, if the P* con-
vergence were evenly distributed over an area 3 × 1012 m2 (i.e., the north-
western gyre with a zonal extent of approximately 30° longitude and
meridional extent of 10° latitude). We do not know the precise area over
which the lateral P* transport converges, since our observations permit
the quantification of only the cross‐stream transport, which moves P*
from the north side of the Gulf Stream toward its swiftly flowing center.
The Gulf Stream then advects the P* further downstream, and much of
it likely recirculates over a broad region in the northwest gyre. Models

(Letscher et al., 2016) and observation‐based estimates of the Ekman convergence (Palter et al., 2011) suggest
these lateral transports may elevate productivity and/or N2 fixation in a large area of the northwestern gyre.
If so, the per‐area fixation rate inferred from the biogeochemical budget would be approximately 0.1 mol m2

year−1, or an average volumetric rate of 10 nmol L−1 day−1 spread over the top 25 m of the water column, in
line with the measured N2 fixation rates in the incubations. If robust diazotrophy were to extend throughout
a deeper layer or was heightened at the ocean's surface relative to that measured at 25m, it would imply the
P* budget could be balanced by a higher areal rate of N2 fixation over a smaller region. In addition, it is
important to recognize that the P* budget assumes a steady state over an annual cycle, whereas our incuba-
tions measure daily rates during a single week in April at just a few stations in a turbulent ocean. We would
expect that such fixation would be patchy in space and time, perhaps tracking the mesoscale features that
deliver P*‐ and Fe‐rich water to the subtropics. Higher‐resolution data would be needed to test whether rates
we measured represent an average over this larger region.

The δ15N of nitrate is also frequently used to investigate the integrated rate and spatial distribution of N2

fixation (e.g., Knapp et al., 2008) and is defined as

Figure 4. Properties as a function of distance across the Gulf Stream and
pressure. (a) Nitrate concentration, (b) P* concentration (μM); (c) δ15N of
nitrate (‰). White regions in the bottom panel are shown where the low
nitrate concentrations and small volume of the samples precluded the
isotopic analysis. The top two panels show velocity contours from
the shipboard ADCP, with the contours labeled in m s−1 in panel a.
The bottom panel shows two isopycnals, labeled with their potential
density anomaly (potential density referenced to the sea surface in
kgm−3, minus 1,000). As in Thomas and Joyce (2010), the
horizontal axis is distance from the center of the Gulf
Stream, with geographical coordinates (xo, yo). The
Gulf Stream center is defined as the location of
the maximum depth‐averaged horizontal velocity
from the shipboard ADCP, (U ; V ). The direction
of the velocity vector at (xo, yo), that is, ϕ ¼ tan−1ðV =U Þjxo ; yo ,
sets the cross‐stream coordinate.
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δ15N vs · airð Þ ¼
15N
14N

� �
sample

15N
14N

� �
N2 in air

− 1

2
64

3
75 × 1;000: (2)

Newly fixed N has a δ15N that is similar to that of atmospheric N2, approximately −2‰ to 0‰ (e.g.,
Carpenter et al., 1997). In contrast, nitrate δ15N in the North Atlantic north of ∼30°N and within/beneath
the thermocline is typically above 4‰, as documented in Marconi et al. (2017) and in Figure 4c.
Therefore, the light isotopic values (2‰ and 3‰) measured on the southern fringe of the Gulf Stream are
suggestive of N2 fixation, though it is unclear whether the isotopically light nitrate is added locally or is
advected with the Gulf Stream from the tropics. Preliminary evidence that local N2 fixation within the sub-
tropical gyre is at least partly responsible for the isotopic signature of these water masses is provided by the
fact they have potential densities between 1,026 and 1,027 kg m−3 (Figure 4c). Water mass analysis suggests
that these density classes in the Gulf Stream are comprised almost entirely of recirculated subtropical water,
with little contribution from the throughput of tropical or Southern Hemisphere sourced water in the
Atlantic Meridional Overturning Circulation (Palter & Lozier, 2008; Schmitz & McCartney, 1993; Schmitz
& Richardson, 1991; Schmitz et al., 1993).

The total subtropical N2 fixation inferred from the P* budget and verified with the incubation measurements
agrees with a recent analysis by Marconi et al. (2017), who estimate the N2 fixation in the Atlantic from the
divergence of the nitrate δ15N transport between two latitudes. Their method takes advantage of the require-
ment for isotope mass balance, and the assumption that the divergence in δ15N meridional transport is prin-
cipally driven by the addition of isotopically light nitrate due to biological N2 fixation. The difference
between the estimated meridional transport of δ15N across 24°N and 48°N suggests that 3–5 Tg N year−1

must be fixed between these latitudes, similar to the total N2 fixation potentially supported by the
cross‐Gulf Stream supply of P* (Palter et al., 2011). If these fixation rates were distributed evenly over the
entire Atlantic between 24°N and 48°N and above 25 m, it would imply volumetric fixation rate of only 1
nmol L−1 day−1, about an order of magnitude lower than the incubation results reported herein. Thus, this
comparison suggests the likelihood of a region of elevated N2 fixation in the northwestern subtropical gyre
under the influence of the Gulf Stream and its recirculations.

However, we caution that the apparent agreement between the North Atlantic N2 fixation rate estimates of
Marconi et al. (2017) and those estimated by Palter et al. (2011) may be coincidental. Because δ15N was never
measured on the zonal sections used in the divergence estimates, Marconi et al. (2017) used δ15N values from
cross‐over points between the zonal sections and a meridional section in the eastern Atlantic where δ15N
data were available. This practice neglects the likelihood that the Gulf Stream, which is the conduit of almost
all the northward volume transport at these latitudes (Rayner et al., 2011), could have a different nitrate δ15N
concentration than in the eastern basin, even on the same isopycnals. Indeed, the average Gulf Stream δ15N
we measured at approximately 36°N/74°W, weighted by velocity and nitrate concentration in each grid cell,
is 4.2‰, which is lighter than the purported 4.9‰ of the northward transport at both 24° and 48° from the
cross‐over point method of Marconi et al. (2017). The inference of N2 fixation from the δ15N transport diver-
gence is extraordinarily sensitive to small differences in the δ15N of the northward and southward transport.
Therefore, it is crucial that δ15N of nitrate be measured at the same time and location as the velocity field to
accurately deduce the net meridional transport of the isotope and the implied N2 fixation rate.

4. Conclusions

Advection and mixing across the Gulf Stream supply P* and iron to the northwest subtropical gyre (Conway
et al., 2018; Palter et al., 2011). A quantification of the P* supply led to the hypothesis that there is likely ele-
vated N2 fixation in and near the Gulf Stream (Palter et al., 2011). Here we report the results from a cruise
designed to test this hypothesis by measuring N2 fixation and the abundance of diazotrophs in this region.
The measurements made on this cruise confirmed the presence of diazotrophs and reveal rates of N2 fixation
in and near the Gulf Stream 1–3 orders of magnitude greater than those previously measured in the central
and southern subtropical gyre. These N2 fixation rates are on the order of 10 nmol L−1 day−1, consistent with
estimates of the fixation needed to balance P* supply, if that supply were consumed within a broad region in
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the northwestern subtropical gyre. The high resolution measurements also show sharp gradients in diazo-
trophic abundance that would be missed from more typical station spacing. The patchiness in
Trichodesmium abundance possibly indicated that the cells accumulated along convergent structures in
the surface circulation, though more sampling would be needed to confirm this speculation.

The sources and sinks of fixed nitrogen in the ocean are thought to be tightly coupled, thereby stabilizing the
ocean nitrogen reservoir (Deutsch et al., 2007). One mechanism behind this hypothesized homeostasis is
that denitrifying bacteria create a niche for diazotrophs by decreasing nitrogeneous nutrients to concentra-
tions that limit non‐diazotrophic competitors. However, the scarcity of iron can decouple denitrification and
N2 fixation (Bonnet et al., 2017), contributing to the mismatch between N2 fixation inferred from a
model‐based P* budget and that measured in incubations and estimated from nitrogen isotopes in the tropi-
cal Pacific (Knapp et al., 2016). The separation between P* supply and consumption can have important
implications for the time scale over which a perturbation to the ocean nitrogen budget might persist. For
instance, Moore et al. (2009) proposed that nitrogen fixed in the North Atlantic, where there is relatively
abundant iron, is added to the North Atlantic Deep Water; this fixed nitrogen helps balance nitrogen lost
in the denitrifying, sub‐oxic zones of the Indo‐Pacific. In this paradigm, a perturbation to either the removal
or inputs of nitrogen could persist over centuries to a millennium, the average time scale over which a parcel
of water makes a circuit through the global‐scale circulation pathways connecting these distant regions.

These considerations reveal the importance of understanding the rate and spatial distribution of Atlantic N2

fixation and how phosphate and iron are supplied to support it. Circulation features, like the Gulf Stream,
that transport water masses from distant locales into new biogeographical regions, play an important role
in these nutrient cycles. Expanding our observations to quantify the mean N2 fixation rates in and near
the Gulf Stream, their spatial and temporal variability, the diazotrophic communities responsible, and the
phosphate and iron sources that sustain these communities will ultimately help uncover the stability or
variability of the oceans fixed nitrogen reservoir.

Data Availability Statement

Sea surface temperature and MODIS chlorophyll data were downloaded from the NASA JPL site: https://
podaac.jpl.nasa.gov. Biological and hydrographic data are archived in the Biological and Chemical
Oceanography Data Management Office (BCO‐DMO), http://lod.bco-dmo.org/id/dataset/774288.
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