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Preface

By virtue, nature is nonlinear! This cliche embodies the simple fact that natural sci
ences are irremediably confounded with persistent fuzzy and non linear dynamics that
any classical statistical methods may not simply solve.The recent developments in com
puter-aided identification of Artificial Neural Networks (ANNs) provides a way to proc
ess nonlinear relationships between variables. This is particularly true in biodiversity
research and conservation plans, environmental sciences and applied ecology, or evo
lutionary ecology, genetics and epidemiology. The question of how ANNs may help to
solve some fuzzy problems in natural sciences was explored during a workshop on the
Applications of Artificial Neural Networks to Ecological Modelling. The workshop was
held in December 1998 at the University of Toulouse III (France) and was eo-organized
by Sovan Lek (Universite Toulouse Ill, U.M.R. C.N.R.S.5576)and [ean-Francois Guegan
(U.M.R.C.N.R.S.-I.R.D. 9926, Montpellier). It was jointly funded by the French Centre
National de la RechercheScientifique and different sponsoring agencies. The presenta
tions featured different environmental, ecological and evolutionary models, such as land
scape ecology and remote sensing, population, community and ecosystem ecology,genet
ics and evolutionary ecology.The different contributions look at examples of applications
of ANNs in a large diversity of research areas, and our intention was to bring together, for
the first time, accessible discussions of the use of neural networks. This book probably
illustrates some of the most convincing demonstrations of the power of these techniques
in natural sciences. Readers who have no special kind of expertise in artificial networks or
those who already have a firm grasp on the area will be interested in the different ap
proaches and discussions scattered throughout this book.

The first chapter in this volume was written by Lek, Giraudel and Guegan. Intro
ducing the book, it presents two of the most popular ANN models, one supervised
network, the backpropagation algorithm, and one unsupervised network, the Kohonen's
Self-Organizing Mapping algorithm (SOM). In particular, it discusses techniques
(programmation, algorithms) to generate ANN models, and it then presents some in
teresting comparisons of ANN results with those obtained from other more conven
tional statistical methods. The book is then formed of four blocks of papers which
correspond to different subheadings, with contributions in landscape ecology and
remote sensing forming the first subgroup, then followed by a second subgroup of
papers in population to ecosystem ecology, then by a third subgroup in genetics, evo
lutionary ecology and related fields, and finally by a last one on new perspectives in
ANNs.

Kimes, Nelson and Fifer's article, which follows on from Lek,Giraudel and Guegan,
begins the second part on Artificial Neural Networks in Landscape Ecology and Re-



VIII Preface

mote Sensing, and it discusses the use of large data sets of the earth's surface during
NASA's Earth Observing Systemera, and the need to develop efficient algorithms which
may incorporate a wide variety of ecosystem data. Much of the discussion is devoted
to the relevance of ANNs in the context of specific examples dealing with the extrac
tion of vegetation variables of ecological interest. They round out their paper by
discussing some disadvantages of using ANNs with such data, and conclude that
ANNs can be more practically used as a variable selection tool in complex natural
nonlinear systems to define a set of variables which accurately predict variable(s) of
interest.

An interesting result in the same vein can be found in the next article by Foody.
Conventional hard statistical classification techniques are often used in mapping veg
etation from remotely sensed imagery, but these techniques typically make untenable
assumptions, i.e. acceptation of discrete and mutually exclusive vegetation classes
which is not really the case in nature, about the remotely sensed data and the vegeta
tion. Here, Foody argues that soft classifications based on ANNs may provide an ap
propriate representation of both discrete and continuous classes. Such derived soft
classifications provide more realistic and appropriate representations of the vegeta
tion, especially for transitional areas and ecotones, mixing of different plant commu
nities or other kinds of vegetation mosaic. Foody's findings reveal that, for instance, a
membership of a region to a certain vegetation type, say a woodland, based on con
ventional mapping may be misclassified, and a soft classification may be more appro
priated to reveal the vegetation's mosaic complexity. It is therefore not surprising that
it has many applications in the analysis of vegetation profiles.

Another example in which ANNs are applied to obtain results from ground-based
photographs is given by Dubois, Cournac, Chave and Riera. They describe how tree
diameter distribution may be predicted from ground-based photographs of the land
scape. Trained on a set of photographs taken in Equatorial French Guiana, for which
in situ measurements of tree diameters were available, the authors discussed the main
results of their work and perspectives for future application. Indeed, automatic sam
pling from ground-based photographs may prove to be of real interest for studying
ecosystem spatial dynamics. This permits us, for instance, to locate the various stages
of a forest during sylvigenetic cycles or the existence of different vegetation types in
rain forests, which contribute to the maintenance of plant biodiversity and probably
of animal diversity as a whole. Further, as Dubois and collaborators' article discusses,
not only does the processing of radar photographs distinguish between vegetation
communities, it may also yield efficient tools for detection of the effects of
perturbations, e.g. forest fires, and climate modifications, e.g. drier periods, on pat
terns of plant biodiversity.

The ANN analysis of plant dynamics is not limited to the spatial patterns of plant
communities. In their chapter, Tomasel and Paruelo provide an example of the use of
ANNs to investigate time-series analysis in plant dynamics. Their results demonstrate
that ANN analysis of NDVI (Normalized Difference Vegetation Index) data, which
represents a surrogate of Aboveground Net Primary Production (ANPP) of the sys
tem, separates between two different phytogeographical areas in Argentina (Patagonia
and Monte steppes), and it allows for a satisfactory prediction of the NDVI values up
to six months ahead. On the basis of these results, the authors conclude that the com
bination of ANNs and satellite data offers a very promising approach for the predic-
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tion of ANPP and forage availability over extensive rangelands, providing a critical
piece of information for ranchers and natural resource managers to devise sustain
able systems in arid and semiarid lands.

Manslow, Brown and Nixon's chapter ends the first subheading of this book. This
paper presents a novel probabilistic interpretation of area-based fuzzy classifications
of mixed pixels, and it may run in counterpoint to the central theme of this book since
Manslow and colleagues' contribution concerns the theory of a probabilistic tool, not
its direct application. Techniques traditionally used to extract land cover information
from remotely sensed images have tended to produce crisp (or hard) classifications of
image pixels. This has been criticised since the resulting maps of ground cover consist
of grids of pixels of homogeneous class membership, and are hence inherently dis
similar to the true ground cover,which they intend to model. An alternative approach,
which is discussed in this paper, is to represent the composition of pixels by the pro
portions of the sub-pixel area occupied by each cover class, a process sometimes re
ferred to as fuzzy classification. The scope of this chapter obviously is connected to
the previous papers, and certainly with that proposed by Foody and Giraudel and
collaborators. Probably, much effort has to be made to increase the richness of such
pixel based classifications by, for example, relating the probability of class member
ship of pixels in particular classes to the sub-pixel area occupied by those classes.
Indeed, there are some common research interests in the results of Manslow, Brown
and Nixon and those which have the same flavour as the results of Foody or Giraudel
and his contributors. Manslow and colleagues round out their chapter by discussing
new developments in this area.

The third part deals with Artificial Neural Networks in Population, Community and
Ecosystem Ecology, and it begins with the chapter by Chon, Park and Cha. Patterning
temporal dynamics of animal communities is an important topic in ecosystem man
agement, especially in aquatic ecosystems where communities are easily affected by
disturbances caused by various natural and anthropogenic agents. Data for commu
nity dynamics, however,are complex and difficult to analyse since they consist of many
species, varying in nonlinear fashion in spatio-temporal domain. The field data used
in this study by Chon and collaborators were monthly densities of selected genera in
benthic macro invertebrate communities collected from urbanized streams in a wide
range of organic pollution in the Suyong and Han rivers in Korea. After training the
multivariate data, the authors test the feasibility of temporal ANNs in forecasting
community changes in a short time period. The authors present some interesting ap
plications of these techniques, including a comparison between macroinvertebrate
community changes in the two rivers surveyed. Temporal networks seem to be excit
ing new methods for time-series analysis and forecast purposes, and a careful reading
of this paper by community ecologists will be well regarded.

In the next chapter of Scardi, we see how ANNs may be used to predict the
phytoplankton primary production at different, i.e. from global to lowest, spatial scales
in the oceans. The role of phytoplankton productivity is crucial in driving the global
carbon cycle, and its assessment is a major ecological problem. However, empirical
models, which were developed to obtain estimates of the global phytoplankton pri
mary production on the basis of remotely sensed data, may fail to effectively repro
duce the local functioning of phytoplankton production at a specific locality. Using
two different types of data bases, i.e, a global set which consists of 2 218 phytoplankton
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biomass, irradiance, temperature and primary production data and a local one with
the information collected at a single sampling station in the Gulf of Napoli (Italy)
during a five-year cycle of fortnight measurements, Scardi clearly demonstrates in his
contribution the major advantage of ANNs for modelling phytoplankton primary
production. He also compares the performance of ANNs to conventional models of
primary phytoplankton productivity, and he ends his chapter with some new
perspectives, i.e. the use of fluorometric data, for instance. It is therefore not sur
prising that ANNs have many applications in the analysis of phytoplankton produc
tivity.

In their chapter, Boet and Fuhs use results of in situ electrical fish catches covering
the whole Seine River basin. These data include the results of over 700 fish catches at
583 sampling stations, which consist of fish species abundance, representing more than
200000 fish belonging to 39 different freshwater species.The 26 most frequent fish spe
cies were used, and in addition, for each sampling site, from the 15 covariates describ
ing the habitat conditions, six were retained, which are stream order, river slope and
width, water quality, habitat quality, and ecoregion. The determination of the relation
ships between the habitat characteristics and the presence of fish species was performed
using a standard backpropagation algorithm. Such a task may serve to quantify the
importance of the environmental variables in the structuration of fish communities,
and then it should allow testing the impact of perturbations on fish species composi
tion. This research is of particular importance since there are currently very few pre
dictive models for aquatic ecosystems at the spatial scale of a whole drainage area. Boet
and Fuhs have made an interesting study, which has the same flavour as the results of
Chon, Park and Cha, and Scardi.

Recknagel and Wilson's article argues that ANNs can be considered as a new gen
eration of inductive models that has not only potential for ecosystem prediction but for
ecosystem elucidation as well.The authors of this chapter have chosen two distinct, but
aquatic, examples to demonstrate the superiority of neural networks over alternative
models (prediction and elucidation of phytoplankton abundance in lakes, and predic
tion of density of brown trout redds in streams). Both examples demonstrate that ANNs
are successful in terms of predictive accuracy and elucidative capacity compared to
alternative models in that they overcome previous constraints encountered with tradi
tional techniques and improve predictions. Recknagel and Wilson then present
some more interesting developments of these techniques, and they discuss newexcit
ing developments of machine-learning methods in ecological modelling such as ge
netic algorithms, either in combination with neural networks or as exclusive applica
tions.

In their chapter, Cisneros-Mata, Brey and [arre- Teichmann compare the perform
ance of regression and artificial neural network models to forecast one year in advance
the annual spawning biomass of Pacificsardine (Sardinops caeruleus) of the California
current. Small pelagic fish species like sardines and anchovies have complex popula
tion dynamics as a result of their close relationship to the environmental conditions,
short life span and variable recruitment which renders their prediction and manage
ment particularly difficult. Nevertheless, forecasting is extremely important for the
management of these harvested marine fish populations. First, Cisneros-Mata, Brey
and [arre- Teichmann clearly demonstrate on a 46-year series of sardine catches that
past sea temperature is a good indicator of Pacific sardine abundance. Then, the bulk
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of the discussion is devoted to a comparison of performance between regression and
ANN models for fish abundance prediction. The authors report that a crucial step to
wards using ANNs versus more conventional techniques in time-series analysis may
appear to be a threshold length of the series for good performance, which represents a
major and serious challenge in population dynamics.

Ball,Palmer-Brown and Mills' article which followson from Cisneros-Mata and col
laborators, concerns a comparative assessment of a range of statistical and ANN mod
elling techniques to predict the visible ozone injury, characterized by off white chlo
rotic lesions, in subterranean clover plants during experimental conditions. The data
set was generated by exposing plants in acrylic chambers to a range of ozone concen
trations and microclimatic conditions during 5years. The independent factors were
ozone dose, leaf age, photosynthetically active radiation, temperature, relative humid
ity and a random number which represents a variable that had no influence upon the
extent of visible injury. The conventional statistical techniques produced a poor per
formance when modelling the data and were unable to produce accurate predictions
on unseen data. On the contrary, ANN models produced the best performance. It is one
of the most conclusive of the chapters in the volume since it adopts a comparative view
of analyses to demonstrate the superiority of ANNs over more conventional statistical
methods.

Next, Giraudel, Aurelle, Berrebi and Lek introduce the following part on Artificial
Neural Networks in Genetics and Evolutionary Ecology. In this chapter, they discuss
more sophisticated techniques for generating Self-Organizing Maps (SOM)with Fuzzy
Clustering-Mean (FCM) analysis of genetic data in brown trout (Salmo trutta). The
SOM procedure, which represents a version of ANNs for visualisation of vectors in a
two-dimensional space, is applied to microsatellite loci of French river and domestic
fish populations belonging to supposedly different genetic strains. Then, Giraudel and
colleagues applying FCM,a procedure which does not assign the membership of one
element to exactly one cluster but which classifies the objects by a degree of member
ship, derive two-dimensional maps which illustrate the genetic structuration of brown
trout populations. Giraudel and collaborators' findings support the existence of several
wild forms of brown trout in southwestern France, and give some indications about the
impacts of fish stocking on natural populations of fish in French rivers. These results
show that unsupervised networks and fuzzy clustering algorithms can be successfully
applied to complex genetic data, such as microsatellites. Although these results are of
more technical nature than most of the other results in this volume, the authors give an
excellent illustration of some possible applications of ANNs and soft classifications in
population genetics and evolutionary research. A careful reading of this paper by ge
neticists and evolutionary ecologists will be well rewarded.

Most of Guegan, Thomas, de Meeus,Lekand Renaud's next article concerns the form
of the relationship between presence, or absence, of 15different infectious and parasitic
diseases on a largest scale and a suite of intrinsic and extrinsic factors potentially act
ing on disease occurrence and their respective spatial distribution. In their contribu
tion, the authors provide a thorough overview of patterns and processes of disease
occurrences. The goal of the chapter is to model the parasite species distribution on a
global scale using two multivariate models, Le. logistic regressions and ANNs, from a
set of different environmental, demographic and human characteristic descriptors
across 153countries. They discuss the performance of both methods in describing the



XII Preface

actual spatial distribution and occurrence of the different parasitic and infectious spe
cies at the global level. Indeed, most of the discussion requires some understanding of
coevolutionary patterns and processes in host-parasite associations, but the authors
have ensured that the chapter is accessible to non-experts.

Teriokhin and Budilova begin their chapter by introducing some of the basic tools
(optimal control and ANNs) and knowledge (evolutionary theory of human traits) re
quired in such an analysis. They then focus on fitting these two models to human
biodemographic data with a special attention paid to explaining sex distinctions in
their respective life histories. The bulk of Teriokhin and Budilova's chapter is devoted
to the demonstration that many differences in men's and women's life history traits
(later maturity, bigger body size, shorter mean life span, and absence of menopause in
men as opposed to women) may be explained as evolutionarily advantageous conse
quences if only one assumption is made about the difference between the physiology
of men and women, namely, if we assume that women, but not men, can accumulate
reproductive energy in their offspring. In addition, Teriokhin and Budilova'swork may
also help to describe the process of distribution of energy in a human organism among
its different needs. This area is of particular importance due to the current develop
ment of research in human evolutionary ecology.

It seemed appropriate to end this preface with a demonstration that ANNs are evolv
ing in step, and that the major limitation on their use, i.e. they require large amounts of
data for training, may be possibly alleviated. Silvert and Baptist begin the last part
(Perspectives) and the last chapter by exploring several ways of doing this. In most
situations the collection of field data is both time consuming and expensive. Since the
training and testing of neural networks is very data intensive, this poses serious obsta
cles to the development of neural network applications in ecology. Silvert and Baptist's
chapter is devoted to the topic of using benthic oceanographic data. Further, as the
authors discuss, the pre-processing (transformation) of data is a promising solution,
but any pre-processing of data in ANNs should be based on ecological knowledge of
the system.

Weare deeply indebted to many colleagues and friends who generously gave time to
the workshop and expert knowledge to review one or two contributions which form
this volume: Mr. or Mrs. - Ambroise, Angelibert, Arino, Auger, Auriol, Aussem, Balls,
Barbault, Bau, Beacham, Belaud, Bourret, Brabet, Brosse, Canu, Capblancq, Careaux,
Cereghino, Cever, Charles, Chau, Chon, Cisneros, Comrie, Cowan, Culverhouse,
Dimopoulos, Dreyfus, Dubois, Durand, Ehrman, Flanagan, Foody, Fuhs, Gabas, Galy,
Gan,Gascuel,Gedeon, Grandjean, Halls,Hanser, Huntingford, [arre- Teichman,Iergensen,
Kapetsky, Kaski, Kimes, Kok,Komatsu, Kropp, Lavendier, Lewis,Loot, Manel, Marzban,
Masson, Megrey,Meissen,Morimoto, Morlini, Murase, Oberdorff, O'Connor, Park, Pave,
Prasher, Puig, Sanchez Manes, Recknagel, Roush, Scardi, Schultz, Shamseldin, Starret,
Teriokhin, Thibault, Thiria, Tomasel, Tomassone, Touzet, Vila, Wang, Werner, William,
Wong,Yang.

Our special thanks go to the sponsoring agencies: C.N.R.S.-France (Sciences de la
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Chapter 1
---------------------------

Neuronal Networks: Algorithms and Architectures for
Ecologists and Evolutionary Ecologists

S.Lek . J.L. Giraudel . J.P. Guegan

1.1
Introduction

In ecological research, the processing and interpretation of data play an important role.
The ecologist disposes of many methods, ranging from numerical, mathematical, and
statistical methods to techniques originating from artificial intelligence (Ackley et al.
1985) like expert systems (Bradshaw et al. 1991; Recknagel et al.1994),genetic algorithms
(d'Angelo et al. 1995; Golikov et al. 1995) and artificial neuronal networks, i.e. ANN
(Colasanti 1991j Edwards and Morse 1995).

ANNs were initially developed as models of biological neurons. They are intelli
gent, thinking machines, working in the same way as the animal brain. They learn from
experience in a way that no conventional computer can, and they rapidly solve hard
computational problems. With the increasing use of computers, these models could
be simulated, and later research was also directed at exploring the possibilities of us
ing and improving these models for performing specific tasks. Research into ANNs
has led to the development of various types of neuronal networks, suitable for resolv
ing different types of problems including auto-associative memory, generalization,
optimization, data reduction, control and prediction tasks in various scenarios and
architectures. Chronologically, we can cite the Perceptron (Rosenblatt 1958),ADALINE,
i.e. ADAptive LiNear Element (Widrow and Hoff 1960), Hopfie1d network (Hopfield
1982), Kohonen network (Kohonen 1984),Boltzmann machine (Ackley et al.1985), and
multilayer feed-forward neuronal networks learned by back propagation algorithm
(Rume1hart et al. 1986).Descriptions of these methods can be found in various books
such as Freeman and Skapura (1992),Gallant (1993), Smith (1994),Bishop (1995), Ripley
(1996), etc. The choice of the type of network depends on the type of the problem to
be solved. At present, two popular ANNs are multilayer feed-forward neuronal net
works, both trained by back propagation algorithm, i.e. back propagation network
(BPN) and Kohonen self-organizing mapping, i.e. Kohonen network (SOM).The BPN
are the most often used, but other networks are also gaining in popularity nowadays
with the emergence of new techniques in various areas of the sciences.

In the last decade research into ANNs has shown explosive growth. They are often
applied in physics research like in speech recognition (Rahim et al. 1993; Chu and Bose
1998) or image recognition (Dekruger and Hunt 1994; Cosatto and Graf 1995; Kung
and Taur 1995) and in chemical research (Kvasnicka 1990j Wythoff et al. 1990j Smits
et al. 1992).In biology most applications of ANNs have been in medicine and molecu
lar biology (Lerner et al. 1994;Albiol et al. 1995; Faraggi and Simon 1995j Lo et al. 1995).
Nevertheless, a few applications of this method were reported in ecological and envi
ronmental sciences at the beginning of the J 9908 For jostanceJ.-Colasanti(1991) found
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similarities between ANNs and ecosystems and recommended the utilization of this
tool in ecological modelling. In a review of computer-aided research in biodiversity,
Edwards and Morse (1995) underlined that ANNs have an important potential. Rel
evant examples are found in very different fields in applied ecology, such as model
ling the greenhouse effect (Seginer et al. 1994),predicting various parameters in brown
trout management (Baran et al. 1996;Lek et al. 1996a,b), modelling spatial dynamics
of fish (Giske et al. 1998),predicting phytoplankton production (Scardi 1996; Recknagel
et al. 1997), predicting fish diversity (Guegan et al. 1998),predicting the productionl
biomass (P/B) ratio of animal populations (Brey et al. 1996), predicting farmer risk
preferences (Kastens and Featherstone 1996), etc. Most of these works showed that
ANNs performed better than more classical modelling methods.

This book contains working examples of ANN solutions to real ecological prob
lems in various areas. The tasks are as diverse as the neuronal architectures and algo
rithms themselves, although no attempt has been made to include an example of ev
ery shape and form of ANN.Wehave organized this book so every chapter deals with
an interesting example, in which an ANN has been shown to offer a good solution or
not. The present textbook is the result of the experiences of leading practitioners in
ANN ecological modelling, and we thank them all most warmly.

This book is organized in several chapters. In Chapter 1,two very popular ANN al
gorithms will be presented: a back propagation neuronal network (BPN) and a
Kohonen self-organizing mapping (SOM) network. This chapter offers the reader new
to ANN,an introduction with illustrative ecological examples and a comparison to the
more classical statistical methods. The following chapters are gathered by ecological
theme, from ecosystem studies to evolutionary ecology and even including topics such
as remote sensing. The papers show how to obtain solutions for each ecological prob
lem, often making reference to the more classical statistical or mathematical methods
like linear or logistic regressions, discriminant analysis, or models based on differen
tial equations, etc.

1.2
Back Propagation Neuronal Network (BPN)

The back propagation neuronal networks, also called multilayer feed-forward neuronal
networks or multilayer perceptron, are very popular and are used more than other
types of neuronal networks for a wide variety of problems. The BPN is based on the
supervised procedure, i.e. the network builds a model based on examples in data with
known outputs (Fig. 1.1). It has to extract the input-output relation solely from the
examples presented, which together are implicitly assumed to contain the informa
tion necessary for this relation. The relationship between problem (input) and solu
tion (output) may be quite general, e.g. the simulation of species richness (where the
problem is defined by the characteristic of environment and the solution by the value
of species richness) or the abundance of animal expressed by the quality of habitat. A
BPN is a powerful system, often capable of modelling complex relationships between
variables. It allows one to predict an output object for a given input object.
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Fig. 1.1. Diagram showing how
data are used to establish the
model calibration in the super
vised modelling procedure. The
goal of supervised learning is to
find a model, or mapping, that
will correctly associate the in
puts with the output (or target)
data

1.2.1
Structure of BPN

Input pattern
DATA

ERROR

Output estimation t---------~

Output pattern

The BPNarchitecture is a layered feed-forward neuronal network, in which the non
linear elements (neurons) are arranged in successive layers, and the information flows
unidirectionally, from input layer to output layer,through the hidden layer(s) (Fig. 1.2).
As can be seen in this figure, nodes from one layer are connected (using interconnec
tions or links) to all the nodes in the adjacent layer(s), but no lateral connection be
tween nodes within one layer, or feedback connection(s) are possible. This is in con
trast with recurrent networks where feedback connections are also permitted. The
number of input and output units depends on the representations of the input and
the output objects, respectively. The hidden layer(s) is (are) an important parameter
in the network. The BPN with an arbitrary number of hidden units has been shown to
be a universal approximate (Cybenko 1989; Hornick et al. 1989) for continuous maps
and can therefore be used to implement any function defined in these terms.

1.2.2
BPN Algorithm

BPN is one of the easiest networks to understand. Its learning and update procedure
is based on a relatively simple concept: if the network gives the wrong answer, then
the weights are corrected so that the error lessens, so future responses of the network
are more likely to be correct. The conceptual basis of the back propagation algorithm
was first presented in 1974 by Webos, then independently reinvented by Parker (1982),
and presented to a wide readership by Rumelhart et al. (1986).

In a training phase, a set of input/target pattern pairs is used for training, which is
presented to the network many times. After training is stopped, the performance of
the network is tested. The BPNlearning algorithm involves a forward -propagating step
followed by a backward-propagating step.
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Hidden
layer

Output
layer

Fig. 1.2. Schema tic illustr ation of a three- layered feed -forward neurona l network, wi th one inpu t layer.
one h idden layer and one ou tp ut layer

1.2.2.1
Forward-Propagating Step

In a natur al neuron, the dendrites receive signals from other neurons and send them
to the cell body, which elaborates a response. The axon receives response sig nals from
the cell bod y and carries them away th rough the synapse to the dendr ites of neig h
bouring neuro ns. In ANNs, the computational element, i.e. the processing element, is
called a neuron (some times referr ed to as nod e or unit) . Figure 1.3 shows the general
appearance of a neuron with its connection s. Each neuron is numbered ; the one in
the figur e is the jth. Like a real neuron, the artificial neuron has many inp uts, but only
a single output, which can stimu late many other neurons in the net work . The input
the j th neuron receives from the ith neurons is indicated as x. Each connectio n to the
jt h neu ron is associated to a quantity called weight or connec tion stre ng th. The weight
on the connec tion from the ith neuro n to thej th neur on is denoted Wji' An input connec
tion may be excitatory (positive weight) or inhibi tory (negative weight) . A ne t input
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Fig. 1.3. Basic processing ele
ment (neuron) in a network.
Each input connection value
(x;) is associated with a weight
(wp). The output value can fan
out to other units

(called activation) for each neuron is the sum of all its input values multiplied by their
corresponding connection weights, expressed by the formula:

a j = 2. WjiXi + 8j
i

where i is the total number of neurons in the previous layer, ~ is a bias term, which
influences the horizontal offset of the function. The bias ~ may be treated as the weight
from the supplementary input unit, which has a fixed output value of 1. Once the acti
vation of the neuron is calculated, we can determine the output value (i.e. the response)
by applying a transfer function:

(1.2)

Many transfer functions may be used, e.g. linear function, a threshold function, a
sigmoid function, etc. (Fig. 1.4). A sigmoid function is often used. Its formula is:

I
Xj = !(aj) = ----a-.

1+ e }

The weights play an important role in propagation of the signal in the network. They
establish a link between an input pattern and the associated output pattern, Le. they
contain the knowledge of the neuronal network about the problem/solution relation
ship.

The forward-propagating step begins with the presentation of an input pattern to
the input layer, and continues as activation level calculations propagate forward till
the output layer through the hidden layer(s). In each successive layer, every neuron
sums its inputs and then applies a transfer function to compute its output. The output
layer of the network then produces the final response, i.e. the estimated target value.
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Siqmoid
function

Fig. 1.4. Three types of transfer functions

1.2.2.2
Backward-Propagating Step

fla)

o

Treshold
function
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fla)

Linear
function

The backward-propagating step begins with the comparison of the network output
pattern to the target value, when the difference (or error) is calculated. The backward
propagating step then calculates error values and changes the incoming weights, start
ing with the output layer and moving backward through the successive hidden layers.

The error signal (8) associated with each processing unit indicates the amount of
error associated with that unit. This parameter is used during the weight-correction
procedure, while learning is taking place. A large value for 8 indicates that a large cor
rection should be made to the incoming weights; its sign reflects the direction in which
the weights should be changed.

If the output layer is designated by k, then its error signal is:

(1.4)

with tk: the target value of unit k, xi: the output value for unit k,f': the derivative of the
sigmoid function, ak: the weighted sum of the input to k, and (tk-Xk): the amount of
error. (The f' part of the term forces a stronger correction when the sum ak is near the
rapid rise in the sigmoid curve.)

For the hidden layer (j), the error signal is computed as:

The adjustment of the connection weights is done using the 8 values of the pro
cessing unit. Each weight is adjusted by taking into account the 8 value of the unit that
receives input from that interconnection. The connection weight is adjusted as follows:

(1.6)
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The adjustment of weight Wkj' which goes to unit k from unit j, depends on three
factors: 8k (error value of the target unit), Xj (output value for the source unit) and 1].

This weight adjustment equation is known as the generalized 8 rule (Rumelhart et aI.
1986).1] is a learning rate, commonly between 0 and 1, chosen by the user, and deter
mines the rate of learning of the network. A very large value of 1] can lead to instabil
ity in the network, and unsatisfactory learning. Too small values of 1] can lead to ex
cessively slow learning. Sometimes, the learning rate is varied to produce efficient learn
ing of the network during the training procedure. For example, to obtain the best learn
ing performance, the value of 11 can be high at the beginning of the procedure, and
decrease during the learning session.

1.2.3
Training the Network

Before training commences, the connection weights are set to small random values.
Values between -0.3 and 0.3 are often used. Next the input patterns are applied to the
network, which is allowed to run until an output is produced at each output node. The
differences between the output calculations and the targets expected, taken over the
entire set of patterns, are used to modify the weights. One complete calculation in the
network is called an epoch or iteration of training or learning procedure. This pro
cess (epoch) is repeated until a suitable level of error is achieved. The BPN algorithm
performs gradient descent on this error surface by modifying each weight in propor
tion to the gradient of the surface at its location (Fig. 1.5). It is known that gradient
descent can sometimes cause networks to get stuck in a depression in the error sur
face where such a depression exists. These are called "local minima" which correspond
to a partial solution for the network in response to the training data. Ideally, we seek a
global minimum (lowest error value possible); nevertheless, the local minima are sur
rounded and the network usually does not leave it by the standard BPN algorithm.
Special techniques should be used to get out of a local minimum: changing the learn
ing parameter or the number of hidden units, but notably by the use of momentum
term (a) in the algorithm. The momentum term is chosen generally between 0 and 1.
Taking this last term into account, the formula for weight modification at epoch t + 1

is given by:

(1.7)

Fig. 1.5. Error surface as func- Error I

tion of a weight showing gradi-
ent and local and global minima

Gradient

Minimum global
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The learning rate (1])and the momentum term (a) play important roles in the learn
ing process of BPN.If the values of these parameters are wrong, the network can os
cillate, or more seriously it can get stuck in a local minimum. In our example
(see Section 1.2.7), we obtained good convergence of the networks by initially making
a = 0.7 and 1]= 0.01; then they were modified according to the size of the error by the
following algorithm:

If presenterror > previous_error * 1.04
then 1] =1] * 0.75,

a=O,
else 1] = 1] * 1.05,

a=0.95,
Endlf

Atraining set must have enough examples of data to be representative for the overall
problem. However, the training phase can be time-consuming depending on the net
work structure (number of input and output variables, number of hidden layers and
number of nodes in each of them), the number of examples in the training set and the
number of iterations.

1.2.4
Testing the Network

Typically the use of a BPN requires both training and test sets. Both sets contain in
put/output pattern pairs taken from real data. The first is used to train the network,
and the second one serves to assess the performance of the network after training is
complete. In the testing phase, the input patterns are fed into the network and the
desired output patterns compared with those given by the neuronal network. The
agreement or the disagreement of these two sets gives an indication of the performance
of the neuronal network model.

Another decision that has to be made is the subdivision of the data set into differ
ent subsets which are used for training and testing the BPN. The best solution is to
have separate data bases, to be able use the first set for training and testing the model,
and the second independent set for validation of the model (Mastrorillo et al. 1998).
This situation is rarely observed in ecological studies, and partitioning the data set
may be applied for testing the validity of the model. We present here two partitioning
procedures: (i) if enough data sets are available, the data may be divided randomly in
two parts to give a training and a test set. The proportion may be 1: 1,2 : 1,3 : 1,etc. for
the two sets. However, the training set still has to be large enough to be representative
of the problem and the test set has to be large enough to allow correct validation of
the network. This procedure of partitioning the data is called k-fold cross-validation,
sometimes named the hold-out procedure (Utans and Moody 1991; Efron and
Tibshirani 1995; Kohavi and Wolpert 1996; Friedman 1997); (ii) if there are not enough
examples available to permit the data set to be split into a representative training and
test set, other strategies may be used, like cross-validation. In this case, the data set is
divided into n parts, usually small, i.e. containing few examples of data. The BPN may
now be trained with n - 1 parts, and tested with the last part. The same network struc-
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ture may be repeated to use every test set once in one of the n procedures. The result
of these tests together provide the performance of the model. Sometimes, in extreme
cases, the test set can have only one example, and this is called the leave-one-out pro
cedure (Efron 1983; Kohavi 1995). The case is often used in ecology when either we have
a small dat abase or each observation is a unique piece of information different from
the others.

1.2.5
Overtraining or Overfitting the Network

If a network is overfitted (or overtrained) , it has a good memory in the det ail of data.
In such cases , the network will not learn the general features inherently present in the
training set, but it will perfectly learn more and more of the specific det ails of the train
ing set. Thus the network loses its capacity to gen eralize . Several ru les have been de
veloped by many researchers regarding approximate determinations of the required
network parameters to avoid overfitt ing. Three par ameters are responsible for this
phenomenon: the number of epochs , the number of hidden layers and the number of
neurons in each hidden layer. The det ermination of the appropr iate numbers of these
elements is the most crucial parameter in BPN modelling. Previously, the optimum
size of epochs or hidden layers or hidden nodes were determined by tr ial and error
using tr aining and test sets o f data. A typical graph of training and gener alizat ion er
rors versus number of parameters is shown in Fig. 1.6.Wecan show th e errors decrease
rapidly as fun ction of parameter complexity. If th e error in the training set decreases
steadily, the error of the test set can increase after minimal values, i.e. the model is no
longer able to generalize. The tr aining procedure must be stopped when the error on
the test set is lowest , i.e. the zone correspond ing to the best compromise between bias

Fig.1.6. Criter ia of determina
tion of tra ining stop and selec 
tion the optimum network ar 
chit ecture

Error

Optimal
stopping zone

Testing

L :j:~t=====__JTraining

Number of iterations or hidden nodes
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and variance. For an excellent summary of the issues affecting generalization in neu
ronal networks see Geman et al. (1992).

1.2.6
Use Aspects

In ANN modelling, as mentioned above, many parameters are difficult to grasp and
their understanding by the model is often based to some extent on heuristics. We pro
pose to now illustrate this situation through an example taken from fish ecology, pre
diction of the food consumption by fish relative to their biomass (Q/B) (Palomares
and Pauly 1989; Palomares 1991; Lek et al. 1995). Palomares (1991) made a census of
and standardized 108direct evaluations of Q/B involving 65 species and 25families of
fish throughout the world (see data in Appendix). Using the multiple linear regres
sion (MLR) model, we can explain 51% of the variance of Q/B after log transforma
tion of some of the variables:

10g(Q/ B) =0.372- 0.20510g(W~) + 0.93610g(T) + 0.20910g(A) + 0.529h + 0.425d
- 0.019P - 0.165D - 0.477P

This model is built with 8 independent variables: the asymptotic weight of the spe
cies (W~), the morphological ratio A representing the motor activity of the fish, the
mean annual temperature (T), three discrete variables defining the diet, herbivorous
(h =1),detritivorous (d =1), farmed fish (p =1) and carnivorous (h =d =P=0), and
two morphological measurements: D = standard length / height of the body and
P = height of the tail / height of the body.

Aswe can see (Appendix), the variables have different ranges of values. For example,
W cc has relatively high values and it might dominate or paralyse the model. Scaling of
the input variables is then necessary. Different methods may be used, but the best re
sults are often obtained by autoscaling, i.e. centred and reduced variable by this for
mula:

X-x
Z=--

ax

(1.8)

where z is the scaled value, X is the unsealed value, x and ax are the mean and stan
dard deviation for the specific variable. The effect of the autoscaling of the variables
in the data set is shown in Fig. 1.7.

The output variable(s) also need to be scaled according to the transfer function used.
If the sigmoid function is used, the range of variables must be scaled into the interval
[0,1], as given by the formula:

x - min (. )z = . high - low + low
max-mm

where z is the scaled value, x the unsealed value, min and max: the minimum and
maximum of the unsealed values for the variable, high and low: lower bound and up-
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Fig. 1.7. Effect of autoscaling on a data set.The orders ofvariables (1 to 8) are the same in the table in
Appendix; a beforescaling,onlyone variable isdominant (W=); b afterscaling,all variables have more
or less the same reach

Table 1.1 . Values of thesynapticweights linkingdifferent independentvariables to thedependent vari-
able (Q/B) byusing a linear function as the transferfunction.The experimentation is repeated 5 times
(±SD: Standard deviation)

Experiment W= T A d p h P 0

-0.0131 00481 - 0.0172 0.0069 -0 .0056 0.0540 001 57 00613

2 -0.0096 0.0452 - 0.0133 00045 -0.0077 00538 0.0128 00611

3 -001 38 00487 - 0.Q1 79 0.0074 -00052 00540 0 0163 0.0614

4 - 0 0040 00405 - 0.0073 0.0007 - 0 0110 0.0536 0.008 1 0.0606

5 - 0 0039 0.0405 - 0 0073 00006 - 0.Q1 10 0.0536 0.0081 0 0606

Mean - 0.0089 0.0446 - 0.0126 0.0040 -0.0081 0.0538 0.0122 0.0610

±SD 0.0048 0.0040 0.0051 0.0033 0.0028 00002 0.0040 0.0004

per bound of the ran ge over which the data is scaled. Com monly, the bou nds used were
between 0 and 1, or between 0 . 1 and 0.9 . The latter choice can often speed the rate of
convergence.

1.2.7
BPN versus MLR

Our purpose in this section is to compa re BPN with MLR, which are lar gely used in
ecolog ical modell ing. Other meth od s are more scarcely applied to ecology and related
fields (e.g. General addi tive models (GAM), Alterna ting Condi tio na l Expe ctati on s
(ACE), etc. ), but we chose not to include the m in this compara tive ana lysis. So, we used
the simplest neuronal network and shall no w try to see whether any common poi nts
can be found with mul tipl e regre ssion.

First, we used a ne twork with no hidden layers and a linear transfer fun cti on. To
avoid overfitting, the learning procedure was stopped at 1 000 epoc hs.We repeated thi s
operation 5 times, with different synaptic weights randomly choosing them between
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Fig. 1.8. Performance of back
propagation neuronal network
without hidden layer after
1 000 epochs of learning proce
dure, by using linear function
as transfer function
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-0.3 and 0.3. In spite of the different starting weights, the final synaptic weights were
very close (very low standard deviation), in value and sign (Table 1.1).

Taking into account the mean of the 5 experiments, we can obtain the following
model:

Q I B == f(-0.0089 W~ + 0.0446T - 0.0126A + 0.0040d - 0.0081p + 0.0538h
+ 0.0122P + 0.061OD} (1.10)

This equation allows the value of Q/B to be computed with the values of other pa
rameters with f as linear function, in the same way as the MLR model. The correlation
coefficient between observed and estimated values is r == 0.57 (Fig. 1.8), i.e. the same
value obtained by the MLR model performed without transformation of variables.

Table 1.2. Values of the synaptic weights linking different independent variables to the dependent vari-
able (Q/B) by using a sigmoid function as the transfer function. The experimentation is repeated 5 times
(SD: Standard deviation)

Experiment W~ T A d P H P 0

1 -6.3935 0.4529 -0.0689 0.1912 -0.2671 0.3030 0.0364 0.4671

2 -6.7578 0.4442 -0.0561 0.1817 -0.2693 0.3091 0.0438 0.4182

3 -6.7647 0.4442 -0.0561 0.1818 -0.2693 0.3090 0.0437 0.4181

4 -6.3932 0.4529 -0.0689 0.1912 -0.2671 0.3030 0.0364 0.4671

5 -6.6569 0.4425 -0.057 0.1806 -0.2718 0.3114 0.0460 0.4068

Mean ~6.5932 0.4473 -0.0614 0.1853 -0.2689 0.3071 0.0413 0.4355

±5D 0.1874 0.0051 0.0069 0.0054 0.0019 0.0039 0.0045 0.0293
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In a second experiment, by applying the sigmoid function f, we obtained an im
provement of the model (r = 0.67), given by the following equation (see Table 11.2for
coefficients ):

Q I B = f( -6·5932W ee + 0.4473T - 0.0614A + 0.1853d - 0.2689P + 0.3071h
+ 0.0413P + 0.4355D) (1.11)

Fig. 1.9. Performance of back 120 -.-~-~~~~~~~~~~~~~~----"
propagation neuronal network
without hidden layer after
1000 epochs of learning proce- 100
dure, by using sigmoid function
as transfer function
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Fig. 1.10. Performance of back 120 -.-~~--~~~~~~-~~~~------"
propagation neuronal network
with 8 neurons in hidden layer,
after 1000 epochs oflearning 100
procedure, by using sigmoid
function as transfer function
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The predictive quality is better, but the errors are high compared to the perfect line
of prediction (Fig. 1.9). The synaptic weights are high and constant for W~ variable.

Using one hidden layer, we improved the quality of prediction (Fig. 1.10): practi
cally all observations are aligned on the perfect line (coordinate 1: 1). For more de
tails, see Lek et al. (1995).

1.3
Kohonen Self-Organizing Mapping (SOM)

1.3.1
Algorithm

The Kohonen SOM falls into the category of unsupervised competitive learning
(Fig. i.n) methodology, in which the relevant multivariate algorithms seek clusters in
the data (Everitt 1993). Conventionally, at least in ecology, the reduction of the multi
variate data is usually carried out using principal components analysis or hierarchi
cal clustering analysis (Jongman et al. 1995). Unsupervised learning allows the inves
tigator to group objects together on the basis of their perceived closeness in n-dimen
sional hyperspace (where n is the number of variables or observations made on each
object).

Formally, a Kohonen network consists of two types of units: an input layer and an
output layer. The array of input units operates simply as a flow-through layer for the
input vectors and has no further significance. In the output layer, SOMoften consists
of a two-dimensional network of neurons arranged on a square (or other geometrical
form) grid laid out in a lattice. A hexagonal lattice is preferred, because it does not
favour horizontal or vertical directions. Each neuron is connected to its nearest
neighbours on the grid (Fig. 1.12). The neurons store a set of weights (weight vector),
an n-dimensional vector if input data are n-dimensional.

Fig. 1.11. Diagram showing
how data are used to establish
the model calibration in the
unsupervised learning proce
dure. The goal of the unsuper
vised learning is to obtain a
cluster or mapping in order
that people can easily explain
the data

Input pattern

I------------+l Interpretations
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Fig. 1.12. A two dimensional
Kohonen self-organizing fea
ture map network

Output
layer

Kohonen map

Input units
Xi

Since the introduction of the Kohonen neuronal network (Kohonen 1982), several
training strategies have been proposed (see e.g, Hecht-Nielsen 1990; Freeman and
Skapura 1992) which deal with different aspects of use of the Kohonen network. In
this section, we will keep to the neuronal network proposed by Kohonen (1984). For
an input x, each neuron j (weights: wj ) calculates its activation level, defined as:

n i . )2L\wf -Xi
i=O

(1.12)

Thus, this is simply the Euclidean distance between the points represented by the
weight vector and the input in n-dimensional space. Anode whose weight vector closely
matches the input vector will have a small activation level, and a node whose weight
vector is very different from the input vector will have a large activation level.The node
in the network with the smallest activation level is deemed to be the winner for the
current input vector.

During the training process the network is presented with each input pattern, and
all the nodes calculate their activation levels as described above. The winning node
and some of the node around it are then allowed to adjust their weight vectors to match
the current input vector more closely.The nodes included in the set, which are allowed
to adjust their weights, are said to belong to the neighbourhood of the winner. The
size of the winner's neighbourhood is decreased linearly after each presentation of
the complete training set (all available data being analysed), until it includes only the
winner itself. The amount by which the nodes in the neighbourhood are allowed to
adjust their weights is also reduced linearly through the training period.
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The factor which governs the size of the weight variations is known as the learning
rate. The adjustments to each item in the weight vector are made in accordance with:

(1.13)

where a is the learning rate, 8w: the change in the weight. This is carried out for i =1

to i =n, the dimension of the data. The learning is decomposed into two phases. Dur
ing the first one (ordering phase), a shrinks linearly from 1 to the final value 0 and
the neighbourhood radius decreases in order to initially contain the whole map and
finally only the nearest neighbours of the winner. During the second phase, tuning
takes place: a attains small values (for example 0.02) during a long period and the
neighbourhood radius keeps the value 1.

The effect of the weight updating algorithm is to distribute the neurons evenly
throughout the region of n-dimensional space populated by the training set (Kohonen
1984; Hecht-Nielsen 1990). This effect is displayed and shows the distribution of a
square network over an evenly populated two-dimensional square input space, and a
more complex input space. The neuron with the weight vector closest to a given input
pattern will win for that pattern and for any other input patterns that it is closest to.
Input patterns which allow the same node to win are then judged to be in the same
cell, and when a map of their relationships is drawn, a line encloses them. Bytraining
with networks of increasing size, a map with several levels of groups or contours can
be drawn. These contours, however, may sometimes cross, which appears to be due to
a failure of the SOM to converge to an even distribution of the neuron over the input
space (Erwin et al. 1992). Construction of these maps allows close examination of the
relationships between the items in the training set.

1.3.2
Missing Data

In ecology, a difficult problem arises from missing data. For some data items, certain
components of the data vectors are unknown. SOMaccepts the fact that data may be
missing and two approaches can be used. Firstly, data items with too many missing
components are discarded during the learning process and are then mapped on the
organizing map (Kaski and Kohonen 1996). Secondly,if only fewcomponents of a data
vector are missing, a convenient solution consists in only using available components
in Eqs. 1.12and 1.13 (Samad and Harp 1992).

1.3.3
Outliers

Due to measurement errors or to values really different from the rest, outliers are of
ten present in ecological data. Classical methods of clustering are sensitive to the pres
ence of outliers in the data. And generally, it is useful to detect outliers before com
puting clusters. With SOM,the process is quite different. Each outlier takes its place in
one unit of the map, and only the weights of that neuron and its nearest neighbours
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are affected. There is no effect on the other neurons. Moreover, the observation of scat
tered data in an area of the map should suggest the presence of an outlier.

1.3.4
Use of Different Metrics

Measuring ecological likeness often leads to the use of various similarity or distance
coefficients. For example, the presence/absence measure or the computation of genetic
data cal1s for the choice of distances other than the classical Euclidean distance. De
scribing community structure (for plants or animals) often leads the ecologist to use
various distance measures between sample units (Ludwig and Reynolds 1988). These
problems can be solved with SOMbut it is necessary to pay attention. Not only should
the activation level of each neuron (Eq. 1.12) be computed with the appropriate dis
tance, but also a compatible metrics have to be used in the adjustment of the weights
(Eq. 1.13) (Kohonen 1995).

1.3.5
Aspects of Use

The iris data published by Fisher (1936) have been widely used for examples in dis
criminant and cluster analysis. Sepal length, sepal width, petal length and petal width
were measured in millimetres on 50 flower specimens from each of three species, Iris
setosa, I. virsicolor, and 1. virginica. The graphical representation of the two first peA
axes (Fig. 1.13)shows complete separation of the first class (I. setosa), and the two other
classes are very close to each other. Using discriminant analysis, we obtain 98% of good
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Fig. 1.13. Iris data projected linearly onto the two-dimensional subspace obtained with PCA.Variety:
1.setosa, _; 1.versicolor, 0; 1.virginica, '"
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classification (i.e. 3 misclassified observations, 21. virsicolor and 11. virginia speci
mens).

This data set was used to illustrate the SOM method. A Kohonen map with
8 x 10 neurons in a hexagonal lattice is trained with the 150 observations presented
randomly and iteratively.The components of the data items were scaled to mean 0 and
variance 1. The different varieties of iris, 1.setosa, 1. versicola, 1. virginica,are not used
during the learning (unsupervised learning). 2 000 iterations are made during the
ordering phase then 40000 iterations during the tuning phase. At the end, individu
als are set in the appropriate unit of the SOM (Fig. 1.14). SOMallows a first clustering:
individuals are present in only 61 hexagons. It is worth noting that only two hexagons
contain irises of different species and 1. setosaare present in the left lower part of the
map, 1. versicolor in the middle part and 1. virginica in the right lower part.

Then, it is necessary to represent the relative distances between their neighbouring
units. A scale of shades of grey is used (Iivarinen et al. 1994). Light shades indicate small
distances and dark shades, large distances between two neighbouring hexagons. In that
way, a "cluster landscape" is formed and clusters can be seen better (Fig. 1.15). Three
plains appear (light areas) separated by hills or mountains (dark areas): 1.setosaindi
viduals residing mainly in the left lower plain, 1.versicolor in the right upper plain and
some 1. virginica in a little plain area in the middle of the right side. The mountainous
area from the upper left to the lower right part of the map mainly groups 1. versicolor
and 1. virginica.

Another interesting representation with SOM is the distribution of each variable
on the map (Fig. 1.16). SOMis coloured for each component of weight vectors, namely

Fig. 1.14. Iris data mapped on the organizing map. Variety: 1. setosa, -; I. versicolor, 0; 1.virginica, •
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Fig. 1.15. Self-organizing map
for iris data with shades of grey
indicat ing the degree of cluster
ing

a

c

b

d

Fig. 1.16. Represe nta tion of the compo nents of the weigh t vectors fo r each neuron; a sepal leng th;
b sepal width; c petal leng th; d petal widt h. In each map, white colour indicates the smallest value and
black colour the largest ones
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sepal length, sepal width, petal length, petal width. In each display, two hexagons with
similar grey level contain individuals of the same kind for this variable. For example,
with sepallength,I. setosa individuals are in bright area (small values) and I. virginica
individuals in dark area (large values). With sepal width, bright areas correspond to
I. versicola individuals and dark areas to I. setosa.Then, well known characteristics of
the different species are visualised on the map which can be useful for interpretation.

1.4
Conclusion

In this introductory part, we have highlighted the potential use of artificial neuronal
networks in ecology. Using known examples (iris data or Q/B ratios, in annexe) we
showed that one can obtain better results with the ANN. During the last two decades
of the current century, the growing development of computer-aided analysis, which is
easily accessible to all researchers, has facilitated the use of ANNs in ecological mod
elling. To apply an ANN program, ecologists can obtain freeware or shareware from
various web sites in the world. Users interested can find these programs by filling in
"neuronal network" as a keyword in the search procedure of the web explorer. Thus,
they can obtain many computer ANN programs functioning with all operating sys
tems (Windows, Apple, Unix stations, etc.). Moreover, increasingly specialized ANN
packages are proposed at acceptable prices for personal computers and most profes
sional statistical software now includes proposes ANN procedures (e.g. SAS,S-Plus,
Matlab, etc.). The development of computers and ANN software must allow ecologists
to apply ANN methods more easily to resolve the complexity of relationships between
variables in ecological data. In the following chapters, readers will find papers which
illustrate the ecological application of ANNs in several fields, ranging from terrestrial
to aquatic ecosystems, remote sensing and evolutionary ecology.
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Appendix

TableA1.1. 108 records of Q/B ratio data (for variable symbols, see text)

W T A d p H P 0 Q/B

63 20 2.32 0.334 0.271 0 0 0 8.23

362 25 1.41 0.35 0.267 0 0 0 8.1

1216 18 1.89 0.326 0.263 0 0 31.4

28 15 1.31 0.161 0.486 0 0 0 9.13

7500 13 2.4 0.261 0.34 0 0 0 6.49

10541 13 2.4 0.261 0.34 0 0 0 4.08

100 10 2.06 0.25 0.324 0 0 7.41

230 15.5 2.21 0.217 0.417 0 0 0 8.63

605 9 2.21 0.217 0.417 0 0 0 5.22

1824 16 2.21 0.217 0.417 0 0 0 23.9

1206 16 2.21 0.217 0.417 0 0 0 25.1

13312 15 1.5 0.182 0.429 0 0 0 2.03

10925 15 1.5 0.182 0.429 0 0 0 6.43

6049 7 1.5 0.182 0.429 0 0 0 2.95

8810 7 1.5 0.182 0.429 0 0 0 1.61

3288 7 1.5 0.182 0.429 0 0 0 0.581

2 25 1.03 0.216 0.409 0 0 0 33.9

25 0.78 0.183 0.425 0 0 0 24.3

2 25 0.75 0.211 0.524 0 0 0 12.1

8 25 1.02 0.238 0.326 0 0 0 37.6

10 25 0.83 0.188 0.444 0 0 0 16.2

11 25 0.81 0.235 0.354 0 0 0 12

13 25 0.238 0.28 0 0 0 26.9

4 25 0.93 0.187 0.4 0 0 0 19.9

250 25.8 2.52 0.232 0.437 0 0 0 5.93

32 15.4 2.13 0.443 0.3 0 0 0 2.5

32000 24.5 2.37 0.489 0.231 0 0 1.61

615 31.7 1.94 0.378 0.364 0 0 4.24

808 30.8 1.51 0.221 0.524 0 0 5.58

883 308 1.98 0.289 0.436 0 0 6.26

60 14 1.41 0.273 0.39 0 0 0 15.9

316 9 1.49 0.303 0.357 0 0 13.6

766 14 1.49 0.303 0.357 0 0 2.68

1769 12.4 1.49 0.303 0.357 0 0 14.5

710 12.4 1.34 0.256 0.456 0 0 0 12.7

6650 25.5 1.44 0.247 0.352 0 0 0 22.1

21887 25 1.26 0.161 0.353 0 0 0 1.32
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TableA1.1. Continued

W T A d P H P 0 Q/B

6074 22.5 1.26 0.161 0.353 0 0 0 1.73

1688 22.5 1.01 0.178 0.595 0 0 0 1.33

12356 10 0.77 0.181 0.25 0 0 0 2.59

15714 12 0.77 0.181 0.25 0 0 0 2.26

2 10 1.69 0.3 0.166 0 0 0 3.85

3776 13 1.78 0.361 0.331 0 0 0 1.1

16595 25 1.09 0.365 0.357 0 0 0 4.26

1006 26 2.4 0.214 0.306 0 0 0 4.31

3067 15 1.76 0.25 0.4 0 0 0 10.2

3067 15 1.76 0.25 0.4 0 0 1.52

47000 19 0.69 0.275 0.395 0 0 0 4.02

12338 28 1.54 0.314 0.308 0 0 0 4.02

1880 28 1.07 0.312 0.302 0 0 0 2.77

17940 28 0.92 0.516 0.341 0 0 0 2.34

702 27 1.49 0.307 0.333 0 0 0 15.4

2296 27 1.69 0.307 0.388 0 0 0 6.22

3290 27 1.69 0.304 0.388 0 0 0 10.1

380 10 1.64 0.285 0.368 0 0 0 2.79

173 9 1.94 0.285 0.274 0 0 0 5.99

897 15.4 1.94 0.285 0.274 0 0 0 6.25

154 9 1.94 0.285 0.274 0 0 0 4.57

336 16.5 1.94 0.285 0.274 0 0 0 5.06

3036 27 2.21 0.292 0.123 0 0 0 10.6

147000 25 1.21 0.206 0.185 0 0 0 8.47

13000 20 1.28 0.412 0.309 0 0 0 5.26

3229 27 1.68 0.387 0.338 0 0 0 6.64

7400 24 1.19 0.369 0.292 0 0 0 2.34

9617 24 1.97 0.415 0.232 0 0 0 4.67

4000 16 1.97 0.415 0.232 0 0 0 1.61

3555 15 1.97 0.415 0.232 0 0 0 4.74

1093 27 0.91 0.267 0.267 0 0 0 13.9

16 30 0.76 0.361 0.331 0 0 17.5

153 20.5 1.32 0.381 0.367 0 0 29.6

479 25 1.2 0.454 0.367 0 1 0 7.5

1144 22.5 1.17 0.413 0.4 0 0 1 2.7

242 27 1.17 0.413 0.4 0 1 0 30.3

348 27 1.17 0.413 0.4 0 1 0 31.6
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TableAl.l. Continued

W T A d p H P D Q/B

1193 27 1.17 00413 004 0 0 2.24

996 27 1.17 00413 004 0 0 1 75.5

271 26 1.28 00457 0.337 0 1 0 28

2495 26 1.28 00457 0.337 0 1 0 3.56

95 26.5 1.28 00457 0.337 0 1 0 65.1

5700 28.5 1.28 00457 0.337 0 0 3.3

361 28.5 1.28 00457 0.337 0 0 24.8

2036 24.5 1.28 00457 0.337 1 0 0 49.9

1517 30 1.28 00457 0.337 0 0 12.8

2056 28.5 1.28 00457 0.337 0 1 0 2.21

545 28.5 1.28 00457 0.337 0 0 15.6

5700 20.5 1.28 00457 0.337 0 0 17.2

431 26 1.28 00457 0.337 0 0 61.8

95 27 1.28 00457 0.337 0 0 42.8

101 32 1.28 00457 0.337 0 0 15.3

145 32 1.28 00457 0.337 0 0 2804

145 27 1.28 00457 0.337 0 0 54

2495 27 1.28 00457 0.337 0 0 4.81

2495 32 1.28 00457 0.337 0 0 4.15

1396 25.8 1.56 00489 0041 0 0 15.7

215 27 1.21 00451 0.366 0 0 35.1

360 26 1048 00479 0.35 0 0 9.28

1265 26 1048 00479 0.35 0 1 0 4046

429 27.5 1.65 00458 0.344 0 0 1 113

5877 15 2.55 0.232 00417 0 0 1 4.74

787 23 2.55 0.232 00417 0 0 12.3

215 27 2.81 0.392 0.157 1 0 0 61.7

234 27 1.92 0.353 0.171 0 0 42

81920 24 5.8 0.26 0.088 0 0 0 11.6

622000 15 6.7 0.296 0.13 0 0 0 3.94

756 12 0.66 0.448 0.233 0 0 0 3.69

149 12.1 0.66 00448 0.233 0 0 0 7.04

910 12 1.01 0.511 0.183 0 0 0 3043

3430 12 1.01 0.511 0.183 0 0 0 2.12
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Chapter 2

Predicting Ecologically Important Vegetation
Variables from Remotely Sensed Optical/Radar Data
Using Neuronal Networks

D.S. Kimes . R.F. Nelson· S.T. Fifer

2.1
Introduction

The large data sets engendered during the EOSera will enhance the temporal, spatial,
and spectral coverage of the earth (Asrar and Greenstone 1995; Wharton and Myers
1997). The satellite digital data sets and ancillary data products will require the devel
opment of efficient algorithms that can incorporate and functionally utilize disparate
data types. Numerous vegetation variables, e.g. leaf area, height, canopy roughness, land
cover, stomatal resistance, latent and sensible heat flux, radiative properties, and
many others, are required for global and regional studies of ecosystem processes, bio
sphere/atmosphere interactions, and carbon dynamics (Asrar and Dozier 1994; Hall
et al. 1995). The success of efforts to extract vegetation variables such as these from
remotely sensed data and available ancillary data will determine the degree and scope
of vegetation-related science performed using EOS data.

In remote sensing missions of vegetation canopies, the problem is to accurately
extract vegetation variables from remotely sensed data. These variables are, for the most
part, continuous (e.g. biomass, leaf area index, fraction of vegetation cover,vegetation
height, vegetation age, spectral albedo, absorbed photosynthetic active radiation, pho
tosynthetic efficiency, etc.), and estimates may be made using remotely sensed data
(e.g. nadir and directional optical wavelengths, multifrequency radar backscatter) and
any other readily available ancillary data (e.g. topography, sun angle, ground data, etc.).
Inferring continuous variables implies that a functional relationship must be made
between the predicted variable(s), the remotely sensed data, and ancillary data. This
is opposed to classification studies where the goal is to produce discrete categories of
vegetation types as reviewed by Atkinson and Tatnall (1997).

Asignificant portion of the remote sensing community is active in developing tech
niques to accurately extract continuous vegetation properties. It is clear from the lit
erature that significant problems exist with the "traditional techniques" being used.
These are very topical and truly difficult problems that are being encountered in the
remote sensing community. Neuronal networks can provide solutions to many of these
problems. The intent of this paper is to raise the awareness of the ecological commu
nity to the advantages of using neuronal network techniques in this area of research.
The advantages and power of neuronal networks for extracting continuous vegetation
variables using optical/radar data and ancillary data are discussed and compared
to traditional techniques. Several specific examples of research in this area are dis
cussed.
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2.2
Traditional Extraction Techniques
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Several common approaches exist to extract continuous vegetation variables. These
are classified as linear, nonlinear and physically-based models and are discussed in
detail by Kimes et al. (1998). Abrief summary of these models are discussed along with
the respective advantages and problems of each. Classification studies where the goal
is to produce discrete categories of vegetation types are reviewed by Atkinson and
Tatnall (1997).

Ideally, there exists a functional relationship between the independent variables
(e.g, remotely sensed signals) and the estimated variables (e.g, biomass, leaf area in
dex, etc.). However even if a physical relationship exists, often it is not known. Conse
quently, one is often forced to make simplifying assumptions that allow one to develop
a predictive equation in the form of a general linear model. Many physical biological
processes are nonlinear. Therefore a general linear model often performs poorly in
predicting vegetation variables because the relations between scattered radiation above
vegetation canopies and vegetation variables may be nonlinear (e.g, Iakubauskas 1996).

More complicated linear models involve transformations on the independent
and/or dependent variables. Transformations allow one to reduce a more complex
model to a linear form. Many transformations used in the literature are some kind of
vegetation index. For example, in the optical region Myneni et al. (1995) reported that
there are more than 12 vegetation indices and they have been correlated with vegeta
tion amount, fraction of absorbed photosynthetically active radiation, unstressed veg
etation conductance and photosynthetic capacity, and seasonal atmospheric carbon
dioxide variations. Indices have been developed to enhance the spectral contribution
from green vegetation while minimizing those from soil background, sun angle, sen
sor view angle, senesced vegetation, and the atmosphere as reviewed by Kimes et al.
(1998). Although these models can be related to a crude physical principle, it does not
give the scientist any deep insight into the physical system. It is often difficult to de
cide what transformations to make, if any. Generally, the choice is made based on the
results of previous studies in similar study areas and on trial and error.

The linear models above are linear in the coefficients and can be solved using least
squares. In some studies, one has knowledge that a nonlinear form (nonlinear in the
coefficients) is the more realistic and potentially more accurate model. Specifically,
these models are intrinsically nonlinear in that it is impossible to convert them into a
linear form. Numerous numerical iterative techniques exist to solve these nonlinear
models. When using a nonlinear analysis, it is implied that the researcher knows the
proper nonlinear form to implement. Generally, only simple nonlinear forms can be
envisioned by the researcher. A few examples are described by Kimes et al. (1998).

Ideally, in the scientific community, one would like to develop accurate, physically
based models for the physical system being studied. This model serves as a hypoth
esis for our current understanding of the physical system and as a basis for extracting
desired vegetation variables from other readily known/measured variables. These
physically-based models are forced to address the entire radiative transfer problem
which includes a large number of variables. In remote sensing applications many of
these variables are not of interest. Physically-based models range in complexity from
simple nonlinear models to complex radiative transfer models in realistic three-di-
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mensional vegetation canopies. The optical and radar models are reviewed by Kimes
et al. (1998).

To actually use physically-based models for extracting vegetation variables, the
models must be inverted. In most cases these models are complex nonlinear systems
which must be solved using numerical methods. The traditional approach employs
numerical optimization techniques that, once initialised, search for the optimum pa
rameter set that minimizes the error. There are difficulties in using these techniques.
A stable and optimum inversion is not guaranteed and the technique can be
computationally intensive when using complex radiative transfer models of vegeta
tion. In addition, physical vegetation models have many parameters other than the
variable(s) that is (are) being estimated. If one is to invert the model using numerical
optimization techniques, many parameters have to be known and/or estimated using
other methods. Initial conditions must be set to deduce the desired variable(s). Many
studies have all or some of these problems.

Efforts to invert optical vegetation models are summarized by Privette et al. (1994,
1996), Pinty et al. (1990), Ross and Marshak (1989), and Goel (1987). An example of an
effort to invert a radar model is described by Polatin et al. (1994). Several approaches
have been adopted to overcome the difficulties in inverting a model with many pa
rameters. Goel (1987) noted that for a model to be successfully inverted, the number
of measurements must be greater than or equal to the number of canopy parameters
that need to be determined. Furthermore, to invert nonlinear relationships, there
should be many more measurements than unknown parameters to facilitate a numeri
cal solution.

Several approaches have been taken to achieve these parameters/measurements
criteria. Often physical constraints are imposed. For example, the number of physical
parameters to describe the geometric and scattering properties of vegetation compo
nents are limited (e.g. Kuusk 1994; Pinty et al. 1990; [acquernoud 1993; Moghaddam
1994; Saatchi and Moghaddam 1994). In addition, the radiative transfer functions are
often simplified (e.g. Pinty and Verstraete 1991; Prevot and Schmugge 1994; Govaerts
and Verstraete 1994). Most inversion strategies must consider some combination of
multiangle data and multispectral data. In addition, some optical studies have used
multiple sun angles. For inversions to be accurate, near optimal numbers of reflectance
samples, spectral regions, signal anisotropy, and model sensitivity are required (Myneni
et al. 1995). The amount of directionallmultispectral data required to obtain accurate
inversions is often appreciable and can not always be collected. Often, assumptions
must be made about unknown variables (e.g. leaf-angle distribution, leaf size, plant
spacing, reflectance and transmittance distributions of vegetation components, etc.).
Generally, only one-dimensional models have been successfully inverted against mea
sured data (Govaerts and Verstraete 1994).

There is a trade off between model accuracy and the number of model parameters
considered. The most accurate and robust models generally have the most canopy
parameters and are least appropriate for direct inversion. The models with few pa
rameters are easier to invert but are also the most inaccurate models.

Because direct inversion of models is computationally intensive, it generally is not
applied on a pixel by pixel basis over large regions. Generally, inversions in the litera
ture are carried out on only a few selected canopies rather than the entire range of
vegetation variations that would exist in real applications.
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2.3
Neuronal Networks
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In many areas of research an appropriate and accurate, physically-based model for the
purpose of extracting continuous vegetation variables does not exist. Consequently,
one is forced to adopt a linear or simple nonlinear form that must be explicitly de
signed by a researcher. Coefficients are then fitted by traditional regression or simple
numerical routines. If the researcher has not correctly envisioned all of the complex
functional relationships between the input and output data, this approach will not work
well. What is needed is a structure which adaptively develops its own basis functions
and their corresponding coefficients from data.

Neuronal networks have the ability to learn patterns or relationships given train
ing data, and to generalize or extract results from the data (Anderson and Rosenfeld
1988; Wasserman 1989; Zornetzer et al. 1990). The approximation capability of neu
ronal networks is based on connectionism (Fu 1994). After training, the network is a
machine that approximately maps inputs to the desired outputts). Kimes et al. (1998)
discuss the structure of neuronal networks, important approximation properties, train
ing algorithms and properties, and pruning strategies of network structures.

2.4
Uses of Neuronal Networks and Remote Sensing Data

Neuronal networks have several attributes which facilitate extraction of vegetation
variables from remotely sensed data. The advantages of neuronal networks as com
pared to traditional techniques are discussed and example studies are presented. These
studies, together with those cited by Kimes et al. (1998) and Atkinson and Tatnall (1997),
provide a comprehensive review of this area of research. Neuronal network approaches
have been shown to be equal or superior to conventional techniques, especially when
strong nonlinear components exist in the system being studied.

2.4.1
Neuronal Networks as Initial Models

In many areas of research, physically-based radiative scattering models do not exist
or are not accurate. In cases where models are lacking, neuronal networks can be used
as the initial model. If accuracy is the only concern, then a neuronal network may be
entirely adequate and desirable. Aneuronal network can model the system on the basis
of a set of encoded input/output examples of the system. The network maps inputs to
the desired output by learning the mathematical function underlying the system. With
this method, input and output variables can be related without any knowledge or as
sumptions about the underlying mathematical representation. Several examples fol
low.

Kimes et al. (1996) used an MLP(multilayer perceptron) network as an initial model
to extract forest age in a Pacific Northwest forest using Thematic Mapper and topo
graphic data. Understanding the changes of forest fragmentation through time are
important for assessing alterations in ecosystem processes (forest productivity, spe
cies diversity, nutrient cycling, carbon flux, hydrology, spread of pests, etc.) and wild-



CHAPTER 2 • Predicting Ecologically Important Vegetation Variables 35

life habitat and populations. The development of physically-based radiative scatter
ing models that incorporate forest growth and topography, and that can be used to
extract forest variables, is in its infancy. Consequently, accurate models that are invert
ible in this context are lacking.

The study area was the H.J.Andrews Experimental Forest on the Blue River Ranger
District of the Willamette National Forest in western Oregon. Timber has been har
vested from this forest for the past 45 years and the cutting and replanting history has
been recorded. The study area was extracted from a georeferenced TM scene acquired
on July 7,1991. A coincident digital terrain model (DTM) derived from digital topo
graphic elevation data was also acquired. Using this DTM and an image processing
software package, slope and aspect images were generated over the study area. Sites
were chosen to cover the entire range of forest stand age and slope and aspect. The
oldest recorded clear-cut stands were logged in 1950.A number of sites were chosen
as primary forest which had no recorded history of cutting. Various feed-forward neu
ronal networks trained with back propagation were tested to predict forest age from
TM data and topographic data.

The results demonstrated that neuronal networks can be used as an initial model
for inferring forest age. The best network was a 6~ 5~ 1structure with inputs of TM
bands 3,4, 5,elevation, slope and aspect. The RMSE (root mean squared errors) values
of the predicted forest age were on the order of 5 years (Fig. 2.1). TM bands 1,2,6, and
7 did not significantly add information to the network for learning forest age. Further
more, the results suggest that topographic information (elevation, slope and aspect)
can be effectively utilized by a neuronal network approach. The results of the network
approach were significantly better than corresponding linear systems. As discussed
in Section 2.2, many transformations (ratios, indices etc.) of optical and radar wave
lengths are used to infer vegetation variables of interest. The goal of these studies is to
find the transformation that produces the maximum degree of accuracy when applied
to a particular class of remote sensing problems. Researchers often use simple trans
formations (ratios, indices etc.) because they are fast and easy to apply and they are
well known in the literature. However, they provide little if any physical insights that
can be used effectively to increase the accuracy of inference. Consequently, we pro
pose that an adaptive learning technique such as neuronal networks would be supe
rior to these simple transformations in many applications. For example, Sader et al.
(1989) found that the NDVI (TM4 - TM3)/(TM4 + TM3) was not significantly corre
lated with forest regeneration age classes. Neuronal networks have the potential to learn
more accurate relationships because they are not confined to the fixed relationships
represented by the above simple transformations. The neuronal network approach is
free to learn complex relationships that could not be envisioned by researchers.

Kimes et al. (1999) employed neuronal nets in conjunction with SPOT multispec
tral data to discriminate secondary from primary forest in Rondonia, Brazil. Their work
demonstrated that neuronal networks consistently outperformed linear discriminant
functions with respect to forest classification. Neuronal nets differentiated primary
forest, non-forest, and secondary forest at an overall accuracy of 91.0% using 2 SPOT
bands, and at 95.2% using one SPOT band and two texture channels. The correspond
ing linear discriminant overall accuracies were 88.9% (3 SPOT bands) and 92.6%
(3 SPOT bands and 5 texture channels). Neuronal nets also estimated secondary for
est age more accurately than linear, parametric functions. Using 2 spectral and 2 tex-



D.S.Kimes . R.F.Nelson' S.T.Fifer

1989 r-------------------------------,

ii
;;-

=

-
I

=
:

•!!

=
i

i

•

True year logged

;;;

-=
-!!

ii=

1989

Fig. 2.1. Predicted year logged versus the true year logged for the testing data. The network structure
was the 6 --t 5 --t 1 (#inputs, #hidden nodes, #outputs). The inputs were TM bands 3,4, 5,elevation, slope
and aspect. The number of pixels/points shown are 3555for the testing data. The RMSE and R2 values
for the testing data were 5.6 and 0.69, respectively

ture channels, a 4~ 17~ 1 neuronal network predicted secondary forest age over a
9 year range with an RMSE of 2.0 years and R2

(actual vs. predicted) of 0.38. The correspond
ing multiple linear regression employing 3 SPOT bands and 4 texture channels had
an RMSE of 2.1years and an R2of 0.31. Though neither technique could be said to ac
curately estimate secondary forest age, neuronal networks consistently outperform
parametric, linear discriminant and regression procedures using fewer spectral and
textural bands.

Additional work by Nelson et al. (2000) near the same area in Rondonia using The
matic Mapper multispectral data verifies these findings. For instance, a linear discrimi
nant function using four spectralltextural measures differentiated primary forest, non
forest, and secondary forest with an overall accuracy of 96.6%. Using 3 channels
(3~ 3~ 3), the comparable neuronal net yielded an overall accuracy of 97.2%. The
TM spectral and textural data were also used to estimate secondary forest age. The
multiple linear predictive regression utilized 6 spectral-texture channels and yielded
an RMSE of 1.62 years and an R2

(actual vs. predicted) of 0.35. The comparable neuronal net,
using 4 channels, had an RMSE of 1.59 years and an R2 value of 0.37. The differences
between the linear and neuronal net results are small, but in this and the Kimes et al.
(1999) studies, they are consistent. In general, using fewer bands, utilizing automatic
variable selection procedures, and utilizing automatic weighting procedures, neuronal
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net results are, in general, comparable to or better than linear discriminant and linear
regression results.

Ultimately, the scientific community needs to develop physically-based radiative
scattering models for the above areas of research. These models need to be accurate
and invertible for the desired variables. In research areas where these activities are
immature, the neuronal network approach can provide an accurate initial model for
predicting vegetation variables.

2.4.2
Neuronal Networks as Baseline Control

A network can be used as a baseline control while developing adequate physically
based models (Fu 1994). Where adequate field and ground truth data sets exist, a neu
ronal network can be trained and tested on these data sets. These networks attempt to
find the optimum functional relationships that exist between the input variables and
the output variables of interest. The networks can be trained in the forward direction
on the field data (e.g. vegetation canopy variables are the inputs and radiative scatter
ing is the output).

Improvements to the physically-based model are indicated if it cannot surpass the
accuracy of a neuronal network. Specifically,model accuracies less than neuronal net
work accuracies indicate that the physical processes embedded in the model must be
improved (i.e. made more realistic). In this manner, neuronal networks provide a per
formance standard for evaluating current and future physically-based models (Fu
1994).

2.4.3
Neuronal Networks for Inverting Physically-Based Models

In Section 2.2, the difficulties in inverting physically-based models were discussed. In
summary, the following difficulties can occur when using numerical optimization tech
niques to invert models. These techniques can be time-consuming and generally can
not be applied on a pixel by pixel basis for large regions. From a practical standpoint,
often it is difficult to collect the measurements (multiple view angles and wavelengths)
needed for an accurate inversion. Often models must be simplified before a stable and
accurate inversion can be developed. The models are simplified by decreasing the
number of parameters and/or simplifying the radiative transfer function. Simplified
models tend to be more inaccurate than the full models. Neuronal network approaches
provide potential solutions to all or some of these problems.

Significant simplification of physical models are made so that direct inversion us
ing numerical techniques can be successfully applied. The disadvantage of this ap
proach is that underlying relationships may be deleted that may be useful in extract
ing the variables of interest. In contrast, the neuronal network approach can be ap
plied to the most sophisticated model without reducing the number of parameters or
simplifying the physical processes. The models that have many parameters and include
all physical processes tend to be the most accurate and robust models. Thus, the neu
ronal network approach applied to these models may, potentially, find more optimal
relationships between the desired input and output variables. This approach provides



D.S. Kimes . R.E Nelson· S.T.Fifer

a sound bench mark in terms of accuracy for extracting various variables. If direct
inversion techniques of simplified models do not equal the accuracy obtained using
the neuronal network approach on the full model, then important underlying rela
tionships are being ignored in the direct inversion approach.

A neuronal network approach can be used to accurately and efficiently invert physi
cally-based models. The approach is as follows. The physically-based model describes
the mathematical relationships between all the vegetation and radiative parameters.
The model is used to simulate a wide array of vegetation canopies (the range of all
canopies that would be encountered in the application space) in the forward direc
tion - that is, the vegetation canopy variables are the input and the radiative scatter
ing above the canopy is calculated. Using the model, a wide range of canopies and their
associated directional reflectances or backscatter values can be calculated. Using these
model-based data, training and testing data sets can be constructed and presented to
various neuronal networks. These data sets consist of pairs of data containing the de
sired network inputs (e.g. optical and/or radar) and the true outputs (e.g. vegetation
variables of interest). Embedded in these data are mathematical relationships between
the inputs and the outputs. In theory the neuronal network approximates the optimal
underlying mathematical relationships to map the inputs to the output. If only weak
mathematical relationships exist between the input and output values then the net
work results will be poor. Thus, using this approach a neuronal network can be used
to invert a model. This inversion scheme can be applied using input data that can be
practically obtained in remote sensing missions. Many studies have successfully used
this approach.

Kimes et al. (1997) used a neuronal network approach to invert a combined forest
growth model and a radar backscatter model. The forest growth model captures the
natural variations of forest stands (e.g, growth, regeneration, death, multiple species,
and competition for light). This model was used to produce vegetation structure data
typical of northern temperate forests in Maine. Forest parameters such as woody bio
mass, tree density, tree height and tree age are important for describing the function
and productivity of forest ecosystems. These data supplied inputs to the radar back
scatter model which simulated the polarimetric radar backscatter (C, L, P,X bands)
above the mixed conifer/hardwood forests. Using these simulated data, various neu
ronal networks were trained with inputs of different backscatter bands and output
variables of total biomass, total number of trees, mean tree height, and mean tree age.
Techniques utilized included transformation of input variables, variable selection with
a genetic algorithm, and a cascade network and are described in detail by Kimes et al.
(1997).

The accuracies (RMSE and R2 values) for inferring various variables from radar
backscatter were total biomass (1.6 kg m-2,0.94), number of trees (48 ha-I, 0.94), tree
height (0-47 m, 0.88),and tree age (24.0 yrs., 0.83). For example, Fig. 2.2shows the true
above ground biomass (kg m-2)versus the predicted above ground biomass for a neu
ronal network with a structure of 5 -t 15-t 1using frequencies CHH, Cvv, LHH, and PHH

(2 transformations were used for PHH) . The RMSE and R2 values were 1.6kg m m- 2and
0.94, respectively. These accuracies are considered good considering the complexity
of the combined model and the fact that only simulated radar backscatter data were
used without any other knowledge of the forest. Several networks were shown to be
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Fig.2.2. True above ground biomass (kg m-2) versus the predicted above ground biomass. The network
structure was 5~ 15~ 1(#inputs,#hidden nodes,#outputs). The inputs were frequencies CHH,Cyy,LHH'

and PHH• The RMSE and R2 values were 1.6 kg m-2 and 0.94, respectively

relatively insensitive to the addition of random noise to radar backscatter. The accu
racy of these networks were superior to traditional index techniques developed by
Ranson et al. (1997).

2.4.4
Neuronal Networks for Defining Relevant Variables

Networks can be used as a variable selection tool to determine a set of variables that
are relevant to the desired variable(s) to be inferred. If the mapping of a network is
not accurate, then perhaps some input variable(s) is (are) missing. Also an input vari
able is relevant to the problem only if it significantly increases the network's perfor
mance. Alternately, if there is an unacceptably large number of input variables, sev
eral types of algorithms can be used to find desirable subsets of input variables. Ge
netic algorithms (Koza 1993) may be used to select an optimal subset of input vari
ables. In this type of application, the genetic algorithm searches for a subset of input
variables that behave synergistically to produce the highest network accuracy. The
algorithm starts with a small subset of inputs of limited size and adds input variables

. according to network performance. This evolutionary process is detailed by Koza(1993)
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and a specific application relevant to this paper is described by Kimes et al. (1997). In
these ways, networks can be used to identify input variables which best predict the
variable(s) of interest. Several examples follow.

The network analysis in the forest age study discussed previously (Kimes et al.1996),
defined a set of variables that were relevant to modelling efforts designed to infer for
est age. Specifically it was discovered that the best inputs were TM bands 3,4,5, eleva
tion, slope and aspect. TM bands 1, 2, 6, and 7 did not significantly add information to
the network for learning forest age. Furthermore, the study suggests that topographic
information (elevation, slope and aspect) can be effectively utilized by a neuronal net
work approach. However, it was shown that this same topographic information was
not useful when used in a traditional linear approach and had RMSE values on the
order of 35-40% higher than the neuronal network approach.

Neuronal networks can also be applied to simulated data from physically-based
models to define a set of variables which may be used to infer variable(s) of interest.
As discussed previously, Kimes et al. (1997) used a neuronal network approach to de
velop accurate algorithms for inverting a complex forest backscatter model. Using these
simulated data, various neuronal networks were trained with inputs of different back
scatter bands and output variables of total biomass, total number of trees, mean tree
height, and mean tree age. The authors found that the networks that used only AIRSAR
bands (C, L, P) had a high degree of accuracy. The inclusion of the X band with the
AIRSAR bands did not seem to significantly increase the accuracy of the networks.
The networks that used only the C and L bands still had a relatively high degree of
accuracy for all forest variables (R2 values from 0.75 to 0.91). The significance of this
fact is that there is no current instrument or planned instrument that is collecting or
will collect P band data. However, there are planned instruments collecting C and L
band data. Modest accuracies (R2 values from 0.65 to 0.84) were obtained with net
works that used only the L band, and poor accuracies (R2 values from 0.36 to 0.46)
were obtained with networks that used only the C band.

2.4.5
Neuronal Networks as Adaptable Systems

Neuronal networks are readily adaptable. They can easily incorporate new ancillary
information that would be difficult or impossible to use with conventional techniques.
For example, Kimes et al. (1996) included topographic data (slope, aspect, elevation)
as ancillary information to infer forest age from TM data. They found that by intro
ducing this ancillary information the network accuracy improved significantly (from
8.0 to 5.1yrs. RMSE). It was not known how to incorporate topographic information
effectively using traditional techniques. However,neuronal networks are ideally suited
to learning new relationships between ancillary information, other input variables and
the desired output variable. Newinput variables can be introduced to the network and
tested with ease. This is especially useful when a researcher expects a new variable to
add information to the problem of interest but does not have any knowledge of the
functional form to use in introducing the new variable using traditional techniques.

Traditional numerical methods have difficulty in inverting multiple disconnected
models. For example, Ranson et al. (1997) used a forest growth model to simulate
growth and development of northern mixed coniferous hardwood forests. Output from
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this model were used as input to the canopy backscatter model that calculated radar
backscatter coefficients for simulated forest stands. Classic numerical inversion of such
a disconnected system (multiple models) is difficult when the functional connection
between the different models is not explicitly defined. In these situations, researchers
often adopt simple linear or nonlinear forms. For example, Ranson et al. (1997) choose
to develop a simple index relationship to infer forest biomass from the radar back
scatter coefficients. Neuronal networks are ideally suited for such problems. Networks
find the best nonlinear function based on the network's complexity without the con
straint of linearity or prespecified nonlinearity used in traditional techniques. No ex
plicit functional relationships between the disconnected models is required. Kimes
et al. (1997) found that networks were significantly more accurate than traditional tech
niques for inverting the disconnected models of Ranson et al. (1997). Specifically,us
ing the above neuronal network approach, the above ground biomass (kg m- 2

) was
extracted with RMSEand R2 accuracies of 1.6kg m-2 and 0.94, respectively as opposed
to 2.6 kg m-2 and 0.85, respectively, using the traditional index method of Ranson et al.
(1997).

2.5
Disadvantages of Using Neuronal Networks with
Remote Sensing Data

The main disadvantage of using neuronal network procedures with remotely sensed
data is that they have not been generalized to handle any arbitrary subset of direc
tional view data. Modern satellite-borne sensors (e.g. MODIS, MISR, POLDER,
SeaWiFS) allow for rich spectral and angular sampling of the radiation field retlected
by vegetation canopies. Airborne and satellite sensors that sample directional and
spectral data create new demands on the retrieval techniques for vegetation variables
of interest. It is highly desirable to develop methods for inferring vegetation variables
that are able to handle any arbitrary subset of directional viewing. This capability is
desirable because cloud cover, missing data, and the earth's curvature cause the sub
set of usable view angles from pixel to pixel to vary for global and regional data sets.
There are many neuronal network structures and techniques that may accomplish this
generalization; however, a single neuronal network structure designed to handle any
arbitrary subset of directional view data has not yet been demonstrated. This repre
sents a well defined and important area of future research.

In the literature, neuronal networks have been successfully developed using a fixed
directional combination. For example, Abuelgasim et al. (1997) used a MLP network
and directional data to invert the model of Li and Strahler (1992). This geometric op
tical model has been successful in predicting the bidirectional retlectance of canopies
as a function of the geometry and spatial distribution of trees/shrubs, the component
signatures of the canopy elements, and the illumination geometry. The model was used
to generate input and output data from a conifer forest, savannah, and shrubland. The
inputs to the network were 18 directional retlectances consisting of 9 views from the
principal plane of the sun and 9 views from across the principal plane of the sun. In
addition, 3 component signatures and solar illumination angle were inputs to the net
work. The output was the density of the canopy, crown shape of the trees/shrubs, and
canopy height. The R squared values between the predicted canopy variables and the
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true canopy variables were 0.85, 0.75 and 0.75, respectively, for density, crown shape
and height.

Using an MLP network, Chuah (1993) inverted a Monte Carlo radar backscatter
model to infer leaf moisture content and radius and thickness of a circular leaf. The
vegetation layer was modelled as a half-space of randomly oriented and randomly
distributed disks. The Monte Carlo model handles multiple scattering between the
scatterers (Chuah and Tan 1989). This model was used to simulate the radar backscat
ter coefficients given the vegetation variables. They trained two networks to invert the
model for leaf moisture content. One network used a single frequency (1 GHz) with
three view angles and three polarizations (HH, VV, HV) for a total of 9 inputs. This
network had an accuracy of leaf moisture content to within ±2%. With the introduc
tion of random noise to the inputs of ±0.5 dB and ±1 dB, the error in estimated leaf
moisture content was less than ±5% and ±8%, respectively. The second network used
multifrequencies (1-8 GHz with three view angles and three polarizations) and gave
similar accuracies. Finally,a network was trained to estimate three variables simulta
neously: leaf moisture content, and the radius and thickness of the circular disks us
ing the multifrequency data. The accuracy of this network for inferring plant mois
ture content and radius of the disks was approximately 8%, while the accuracy of in
ferring the thickness of the disks was within 10%.

Many other optical and radar studies using fixed directional data and neuronal
networks are reviewed by Kimes et al. (1998). However,a single neuronal network struc
ture designed to handle any arbitrary subset of data needs to be designed and tested
for many practical remote sensing missions.

2.6
Conclusions and Implications

Neuronal networks have attributes which facilitate extraction of vegetation variables.
Neuronal networks have significant advantages as compared to traditional techniques
when applied to both measurement and modelling studies.

In many areas of research physically-based radiative scattering models do not ex
ist or are not accurate. In cases where accurate models are lacking, neuronal networks
can be used as the initial model. Aneuronal network can model the system on the basis
of a set of encoded input/output examples of the systems.

Neuronal networks can provide a baseline against which the performance of physi
cally-based models can be compared. The networks can be trained on field data. Im
provements to the physically-based model are indicated if it cannot surpass the accu
racy of a neuronal network.

Aneuronal network approach can be used to accurately and efficiently invert physi
cally-based models. The neuronal network approach can be applied to the most so
phisticated model without reducing the number of parameters or simplifying the
physical processes. The models that have many parameters and include all physical
processes tend to be the most accurate and robust models. Thus, the application of
neuronal networks to invert these models has the potential of finding more optimal
relationships between the desired input and output variables.

Networks can be used as a variable selection tool to define a set of variables which
accurately predict variable(s) of interest. If the mapping of a network is not accurate,
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then perhaps some input variable(s) is(are) missing. Also an input variable is relevant
to the problem only if it significantly increases the network's performance. Thus, net
works can be used to identify relevant variables in complex nonlinear systems.

Neuronal networks are readily adaptable. They can easily incorporate new infor
mation that would be difficult or impossible to use with conventional techniques.
Neuronal networks are ideally suited to learning new relationships between ancillary
information, other input variables and the desired output variable. New input vari
ables can be introduced to the network and tested easily.This is especially useful when
a researcher expects a new variable to add information to the problem of interest but
does not have any knowledge of the functional form to use in introducing the new
variable using traditional techniques.
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Chapter 3

Soft Mapping of Coastal Vegetation from Remotely
Sensed Imagery with a Feed-Forward Neuronal
Network

G.M. Foody

3.1
Introduction

Data on the distribution of vegetation in space and time are required in a range of
studies. Such data are, however, typically unavailable or are of poor quality (Williams
1994; DeFries and Townshend 1994). Often the only practicable means of acquiring
data on vegetation distribution at appropriate spatial and temporal resolutions is
through remote sensing (Townshend et al. 1991; Skole 1994). The considerable poten
tial of remote sensing for mapping and monitoring vegetation has, however, frequently
not been fully realized. Of the many reasons for this, one major limitation has been
the reliance on conventional supervised image classification approaches as the tool
for mapping.

Supervised image classifications have essentially three stages. The first is the training
stage in which areas of known class membership in the image are identified and char
acterized statistically. These training statistics describe the appearance of each class
in the imagery and, together with the selected classification decision rule, are used in
the second, class allocation, stage to allocate each image pixel to the class with which
it has the greatest similarity. For example, one of the most widely used approaches in
thematic mapping from remotely sensed imagery is the maximum likelihood classifi
cation in which each pixel is allocated to the class with which it has the highest likeli
hood of membership. The third stage of the classification is the testing stage in which
the accuracy of the classification is assessed to indicate its quality. The final output of
the conventional supervised image classification is a classified image in which each
pixel has been allocated to the class with which it has the highest degree of member
ship. This type of classification is often referred to as being 'hard,' as a pixel may be
associated with only a single class and will have such an allocation forced upon it. Often
such an allocation is undesirable. The hard classification approach is, for instance, only
appropriate under a set of stringent conditions, which include the requirement for the
classes to be discrete and mutually exclusive. For mapping natural and seminatural
vegetation, this is often not the case, as the classes are continuous and intergrade (Trodd
et al. 1989; Foody et al. 1992; Kent et al. 1997). Hard classifications are, however, often
used to map such vegetation. Inevitably the adoption of such an approach will result
in the delineation of sharp boundaries between sites that, particularly near the bound
ary, differ only marginally and perhaps insignificantly resulting in a oversimplified
representation of reality (Campbell and Mortenson 1989; Foody et al. 1992; Sheppard
et al. 1995). The hard classifications are, therefore, particularly inappropriate for the
representation of continuous vegetation classes,especially in the inter-class transitional
areas where classes coexist. This is unfortunate as the transitional areas are often a
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focus of biogeographical interest (Kent et al. 1997). Moreover, many of the hard classi
fications used in remote sensing are based on conventional statistical techniques which
may have a range of often untenable assumptions or requirements. The maximum like
lihood classification, for example, assumes that the data have a unimodal and normal
distribution and that the training set is sufficiently large for a representative statisti
cal description of the classes, which is often not the case. Consequently, the conven
tional hard classification approaches are sometimes unsuitable for vegetation map
ping.

Soft or fuzzy classifications represent an attractive alternative to the conventional
hard classifications for thematic mapping. With these approaches, each image pixel is
allowed multiple and partial class membership and therefore can represent the full
range of class membership from pure stands of a particular class to complex mixtures
(Wang 1990; Foody 1996). The output of such an analysis is typically an image or
set of images displaying the spatial variation in the grade of membership to the se
lected classes. There are many methods for the production of such soft classifications
(Foody 1996), and these have been applied at scales ranging from the local (Foody 1996)
to the global (DeFries et al. 1995). Of the techniques used to derive a soft classifica
tion, neuronal networks are particularly attractive, given their independence of restric
tive assumptions that constrain the applicability of some other methods. Neuronal
networks, for instance, are free from the distribution assumptions which apply to
softened maximum likelihood classification. This paper aims to illustrate the use of
a neuronal network for the derivation of soft classifications of vegetation at a
coastal test site where the land cover exists as a mosaic of discrete and continuous
classes.

3.2
Test Site and Data

The vegetation of Whiteford Burrows in south Wales was the focus of this study. This
narrow strip of land contains a wide range of vegetation types, many of which are
continuous and intergrade gradually (e.g. dune communities) with some clumps of
relatively discrete classes (e.g, woodland), and lies adjacent to saltmarsh communi
ties. A Daedalus 1268 airborne thematic mapper (ATM) sensor was used to acquire
multispectral imagery of this site (Fig. 3.1). Within one year of the ATM image acqui
sition, a map of the vegetation at the site, based on a standard (hard) classification
scheme, was produced from field-based survey and this map was used as the ground
data in support of the analyses of the ATM imagery.

From the ground data, uland cover classes were selected for mapping. These ranged
from relatively discrete classes such as woodland, which were distributed in small
clumps over the site, to continuous classes such as those associated with dunes and
slacks. Moreover, some classes defined differed only slightly in composition (Table 3.1).

Sites of the 11 classes were identified in the ATMimagery and a total of 960 pixels drawn
from pure regions of each class extracted. The sample size varied significantly between
classes, ranging from 6 pixels for the slack woodland and bare soil classes, which only
occupied small areas that were often difficult to identify reliably, to 557 pixels of wa
ter. For each of these pixels, the image tone (DN) in all eleven wavebands of the ATM,
spanning the visible to thermal infrared spectral region (Wilson 1997), was extracted.
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Fig. 3.1. ATM image (band 9)
of the test site with the transect
highlighted. Note that the areas
of woodland (dark tone) con
tain small gaps which, while
visible in the imagery, were not
included in the ground data
map

As in other studies, there was a high degree of intercorrelation between the data ac
quired in the ATM wavebands. To reduce redundancy in the data and the size of the
data set, a feature selection was undertaken prior to the classifications (Campbell iccc).
The feature selection, based on an analysis of the pairwise correlations of the data
acquired in the ATMwavebands, was used to identify the most strongly intercorrelated
wavebands. On the basis of these analyses, the data in a set of wavebands that were
strongly correlated with data in the other wavebands were removed from the analy
ses. Seven ATM wavebands were selected for the analyses: these were wavebands 3
(0.52-0.60 um), 4 (0.60-0.63!lm), 6 (0.69-0.75 urn), 7 (0.7 6-0.90 um), 9 (1.55-1.75 urn),
10 (2.08-2.35 urn) and 11 (8.5-13.0 urn). The data acquired in the wavebands removed
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Table 3.1. The classes mapped and number of training samples extracted from the ATM data

Class Description and main species Number of samples

Woodland Pinus nigra/sy/vestris woodland. Evidenceof thinning 74
and removal.

Slackwoodland Anus qtutinosa, developed adjacent to salt marsh 6

Foredune Transitional areawith mixture of Elymus Iarctus, Festuca 15
rubra, AgfOStisstolonilera, Limonium binetvosum, Honkenya
pep/oides and Caki/e maritima and Atriplex postrata

Mobile dune Ammophi/a arenaria 22

Mobile dune Ammophi/a arenaria with Festuca rubra understory 7

Semi-fixed dune Ammophi/a arenatia, Festuca rubra, Ononis repens and 37
Tortu/a ruralis

Dune slack 5a/ix repens, Campy/ium stetlatum, Calliergon cuspidatum, 108
Carex nigra, Bryum pseudo triquetrum, and Aneura pinguis

Dune slack Sa/ix repens, Calliergon cuspidatum, Carex flacca and 14
Pulicaria dysenterica

Saltmarsh

Baresoil

Water

114

6

557

from the analyses were very strongly correlated with the data in the seven wavebands
selected (r > 0.92). However, to ensure that this reduction in the data volume did not
adversely affect the class separability, classifications with a discriminant analysis were
performed on the training data using the selected seven wavebands and using all eleven
wavebands. Although not applied to an independent testing set, both analyses revealed
a very high and constant level of separability, with 99.5% of the training pixels allo
cated correctly.No further preprocessing of the imagery was undertaken as the analyses
did not require radiometric calibration and there was no significant geometrical dis
tortion.

3.3
Methods

The data acquired in the seven selected ATM wavebands for the 960 pixels sampled
from the image were used to train the neuronal network. This was a basic feed-for
ward neuronal network, of the type widely used for supervised image classification.
This type of network can be envisaged as comprising a set of simple processing units
arranged in layers, with each unit in a layer connected by a weighted channel to every
unit in adjacent layers,and combined, these elements transform the remotely sensed input
data into a class allocation (Fig.3.2). The precise architecture of a neuronal network for
supervised classification is determined by a range of factors which relate, in part, to the
nature of the remotely sensed data and desired classification. There is usually, for in
stance, an input unit for every discriminating variable (e.g. the selected spectral
wavebands of the remotely sensed imagery) and an output unit associated with each
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Fig. 3.2. Land cover classification with a neuronal network. The network shown is that used in the re
search to der ive both soft and hard classifications

land cover class to be mapp ed. Th e number of hidden units and layers is typic ally de
fined subjectively on the basis of a ser ies of trial runs.

The training stage of a neuronal network classification is based on the iterative
application of a learning algorithm to the network in which the weights connecting
the units are initially set at random. Th e aim of the training stage of the classification
is to use a learning algorithm, such as back propagation, to adjust these weights unt il
the network is able to correctly character ize the class membership properties of the
training data set. On each iterat ion of the learning algorithm, the error in the net work's
output can be calculated, as the desired output is known for the training data se t. Thi s
error is then fed backward through the network to the input layer with the weights
connecting units changed in relat ion to the calculated error. The weight change on the
nth iteration is generally ach ieved by,

where Wjj is the weight connecting the unit j with the unit i in the previous layer, o, the
output from unit i, 8 is a computed err or, the derivation of which varies for hidden
and output units, TJ is the learning rate and a a parameter which, with the weight
change from the previous iteration, determines the momentum which facilitates net
work learning (Schalkoff 1992). After completion of each iteration, the training data
are then re-entered and the pr ocess repe ated until the error value is minimized. The
overall output error computed over all tr aining patterns is

where tj is the target output, known for tr aining data, and 0j is the network output.
When the overall output error ha s min im ized or declined to a subjectively determined
acceptable level , training ceases and the network may be used for the classification of
pre viou sly unseen cases of unknown class membership.
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For a conventional 'hard' classification, each pixel is allocated to the class associ
ated with the output unit with the highest activation level (i.e. largest Dj' measured
typically on a scale from 0 to 1) for that pixel. This conventional approach to classifi
cation with a neuronal network has been widely adopted in thematic mapping from
remotely sensed imagery. This basic approach to classification with a neuronal net
work may, however, be adjusted to accommodate fuzziness, such as that due to class
mixing in transitional areas, in any number of the three stages of the classification,
allowing a classification to be undertaken at any point along the continuum of classi
fication fuzziness (Foody 1999). The nature of the ground data (a conventional hard
classification) constrained the training and testing stages, however, such that they could
only be based upon pure pixels of the classes. A soft class allocation may, however, still
be derived from the neuronal network. For this, instead of simply allocating each case
to the class associated with the most activated output unit, the magnitude of the acti
vation level of each output unit may be used as a measure of the strength of member
ship to the class associated with the unit and mapped. With the activation level of ev
ery output unit derived for a pixel, it is possible to illustrate the manner in which
membership is partitioned between the classes and so indicate the class composition
of the pixel. A pure pixel, representing an area of a single class, would ideally display a
very high output unit activation level for the unit associated with the actual class of
membership, with negligible output unit activation levels to all other classes. How
ever, with a mixed pixel, perhaps in the inter-class transitional area, the relative mag
nitudes of the output unit activation levels over all classes would reflect the class com
position. Thus the activation level of each network output unit may be treated as a
measure of the strength of membership to the associated class and used as a surro
gate for the fractional cover of that class to form a soft classification (Foody 1996).
The spatial distribution of the class may be represented by fraction images in which
image tone is positively related to the class coverage as reflected in the magnitude of
the activation levels (e.g, Foody et al. 1997). Unlike some other approaches used for
the derivation of fraction images, the neuronal network is not constrained to provide
an output in which the activation levels sum to unity over all classes. The derived ac
tivation levels may, however, be rescaled to ensure that they do sum to unity. This
rescaling enables the values to be treated as indicating the proportional coverage of a
class from which entropy may be calculated to help describe the partitioning of the
total membership between the various classes. The entropy, H, may be derived for a
pixel from,

H= -~p(x) logzp(x)

where p(x) is the proportional coverage of class x; the choice of logarithm base is ar
bitrary but commonly base 2 is used (Klir and Folger 1988). Entropy is minimized when
the pixel is associated with a single class and maximized when membership is parti
tioned evenly between all of the classes. Entropy based measures have been used in
the evaluation of image classifications, both as a measure of classification accuracy
and as an indicator of the confidence that may be associated with a class allocation
(Maselli et al. 1994; Foody 1996).

The use of the output unit activation levels to indicate the class composition of pixels
is similar in nature to the softening of conventional classifications, such as the maxi-
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mum likelihood classification (Foody et al. 1992; Foody 1996). It is, however, achieved
without making the often untenable assumptions that underlie many conventional
classifications. The soft output derived from the neuronal network should also pro
vide a realistic representation of the spatial distribution of both continuous and dis
crete classes.

A series of trial runs was undertaken to define an appropriate network architec
ture and set of learning algorithm parameters for the analyses. The neuronal network
used comprised 7 input units (one to present the DN for each of the selected wavebands
of ATM imagery to the network), a single hidden layer containing 9 units and 11 out
put units (one associated with each class to be mapped). This network was trained for
up to 10 000 iterations with a stochastic back propagation algorithm with the param
eters for the momentum and learning rate set at 0.9 and 0.1 respectively. Training was
interrupted at various stages and the network used to classify the ATM imagery be
fore continuing the training process. In this way,outputs derived from networks trained
with a different number of iterations of the learning algorithm were derived. In each,
the output unit activation levelsderived were used to form a soft classification, in which
the magnitude of the activation level of the output unit associated with a class was
used as a surrogate for the fractional coverage of that class in the pixel.These soft clas
sification outputs could also be hardened, by giving each pixel the label of the class
associated with the most activated output unit, to yield standard hard classifications.
In evaluating the accuracy of the classifications, attention focused particularly on a
transect of 137 previously unseen pixels in length spanning a range of land cover classes
that could be confidently located in the ground data (Fig. 3.1). Since the ground data
set was a conventional hard classification derived from a field based survey, the accu
racy of the soft classifications for the pixels along this transect could not be rigorously
evaluated as the ground data did not adequately represent the continuous classes.
However, to gain a quantitative assessment of classification accuracy, an independent
sample of pixels drawn from the 'core areas' of the classes (i.e. away from boundaries/
transitional areas), which could be considered to be pure, was extracted and used to
form a conventional confusion matrix for accuracy assessment (Campbell icco).

3.4
Results and Discussion

As an initial step the conventional hard classification of the site was produced from
the neuronal network trained for 10 000 iterations of the learning algorithm. Using a
sample of 100 pure pixels not used in training the network, the classification was found
from the confusion matrix derived to have a very high accuracy, with 95% of these
testing pixels allocated to the correct class. Such results may appear highly satisfac
tory, but the hard classification derived may not be conveying all the information on
land cover contained in the imagery, and the accuracy assessment could be mislead
ing.

Although the accuracy statement indicated a very accurate classification, it is, for
instance, possible that accuracy has been exaggerated. Many factors can influence the
calculated or apparent accuracy of a classification. Leavingaside important issues such
as the sampling design used to acquire the test set, a major problem with the data used
here is that, like the pixels used in training the neuronal network, the testing pixels



52 G.M. Foody

were extracted from pure or exemplar sites of the classes. They are, therefore, only
representative of a small part of the test site. Consequently, the accuracy statement
derived is only really applicable to regions composed of homogeneous cover of a single
class, and excludes, for example, areas where classes intergrade. The real accuracy of
the classification may,therefore, be lower than the stated value,with error concentrated
around the boundaries of discrete classes and the transitional areas between continu
ous classes where mixing is most prevalent. The hard classification of the data also
provided an inappropriate representation of some classes, particularly the continu
ous classes.

The output unit activation levels used to derive the conventional hard class alloca
tion were also used to form a soft classification. In this soft classification the magni
tude of the activation level of an output unit reflected the fractional coverage of the
class associated with the unit. In the absence of an appropriate ground data set, the
value of the soft classification output can be illustrated with reference to some of the
classes encountered along the transect. For a relatively discrete class such as wood
land, the output unit activation levels for the class were generally either very high,
near 1.0,or very low,near 0.0, indicating complete coverage or absence of the class, in
agreement with the situation observed on the ground (Fig. 3.3a).For continuous classes,
however, a different pattern was observed. In the 'core areas' of the classes, the activa
tion levels were very high or very low,as for the discrete classes. However,less extreme
activation levelswere frequently observed in the inter-class transitional areas, reflecting
the intergradation of the classes (Fig. 3.3b).

Further information on the variation of class membership along the transect is
presented in Fig. 3.3C. This shows the total activation level for each pixel, summed over
all classes, and the entropy statistic as a guide to how membership was partitioned
between the classes. In general, there was a close correspondence between the varia
tions in the total activation level and entropy along the transect. For most pixels, the
total activation level was near 1.0with a low, near 0.0, entropy, indicating a relatively
hard class allocation. Since the magnitude of the activation level was not constrained
to sum to 1.0,these outputs may indicate membership of the class associated with the
most activated output unit with a relatively high degree of confidence. There were,
however, a number of zones along the transect that deviated from the general trend.
Four of these are particularly noteworthy. First, there was a zone characterized by
having a total activation level >1.0 and a high entropy value. This corresponded to the
location of a transition in the water body. This transition is visible in the imagery
(Fig. 3.1) and likely to arise due to a change in water depth and turbidity. Since the
total activation level exceeded 1.0, the maximum that can be derived from an output
unit, the total membership must be partitioned between two or more classes which
explains the relatively high entropy observed in this zone. Inspection of the output
unit activation levels revealed that the pixels in this zone had a very high level of acti
vation (>0.93), and so membership of the actual class, water, together with a smaller
degree of membership to the foredune communities. As before, the magnitude of the
activation level to a class relative to the total activation level derived with respect to
all classes may be used to indicate the confidence in a class allocation, which here in
dicated some uncertainty, but a high degree of membership to water. Second, there
were zones where the total activation level was -1.0 but the entropy >0. These results
indicate mixing of the communities, which is evident in Figs. ja and jb, Third, there
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Fig. 3.3. Var ia tio ns in class membership along the transect from th e neu ronal network tr ain ed for
10000 iterations of th e learning algorithm; a bar chart showing th e ac tivat ion level to th e woo d land
class, a d iscre te class; b compound bar chart showing the activat ion level to the dune s lack ( light tone)
an d sernifixed dune (dark tone) classes, continuous classe s; c tot al act ivation level (thick line) and en
tropy (thin line)

wer e zon es where the tot al ac tivation level was < 1.0 but the entro py low, nea r 0 .0. Th is
may indi cate that the pixels in thi s zone ar e essentially associa ted with a sing le class
but with a relat ively low degr ee of confidence. Four th, th ere were zon es wh er e the to
tal ac tiva tio n level was < 1. 0 and entropy > 0 . 0 . Since all the ac tivation levels were low
and the entropy was calculated from rescaled act ivati on levels, these outp uts are di ffi
cult to interp ret. However, some appear to correspond to observable cha nges in the
veget at ion cover. For exam ple, th e middle sec t ion of the tr an sect crosses throu gh a
region of woo dland, and withi n the region depi cted as woodl and in the gro und dat a,
the member ship to the woodland class is e ith er very h igh or low (Fig. Ba). This could
indica te ei the r th at the regions w ith low memb ersh ip to wo odla nd h ave bee n
misclassified or that the classification is revealin g the veget at ion m osaic differently to
the map . It is, for example, apparent that the woo dland co nta ins sm all ga ps .These gaps
in the for est can opy are not depicted on the vegetati on map used as ground dat a, pre
suma bly du e to their size in relation to the minimum mappi ng unit and for the pur
poses of gen er alization, but are visible in the im ager y (Fig. 3.1). This ma y indica te th at
the ground data are insufficiently detailed or not acc ura te eno ugh, as not ed in other
studies (e.g. Bauer et al. 1994; Bowers and Rowan 1996). Th e zone near th e end of the
transect also had total activation levels <1.0 and entro py > 0 .0 . Here the tot al activa-
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tion level may be low but the class associated with the most act ivated un it ag reed with
th e ground data. This may be used to indica te a relat ively low degree of confid ence
with the allocat ion that would be derived from a hard class ificat ion .

The sa me gene ra l tr end s were observe d in the outputs derived from the netwo rk
tra ined for differ ent learning intensities. For example, with the network trained for
300 iterations of th e learning algorithm, the gene ra l trends in the magnitud e of the
activation level s associated with discrete (Fig. 3.4a ) and continuous classes (Fig. 3.4b)
as well as for the tot al activation level and entropy (Fig. 3.4C) were similar to those
derived from the network trained for 10 000 iter at ions (Fig. 3.3). The main differ ences,
however, were a higher level of variation in the tot al act ivation level and entropy val
ues. In each of the classification outputs, the tot al ac tiva tio n level (i.e. the sum ac tiva
tion levels over all classes) for a pixel sometimes deviated mar kedly from 1.0 in tr an
si tio na l a reas and indica ted a possible mean s of locat ing and charac terizing such ar 
eas. When the network's outputs were rescaled to sum over all classes to 1.0 for each
pixel and the variations in entropy along the transect evalua ted, the same general tr end s
observed with th e networ k trained for 10 000 iter ation s were noted. Entropy was gen-
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Table3.2. Summary of the
Training Entropyentropy statistics for pixels

along the transect derived from Iterations Error Mean Maximum
the neuronal network trained
over a range of iterations of the 300 0.0311 0.296 1.647
learning algorithm

500 0.0241 0.257 1.534

1000 0.0207 0.196 1.262

2000 0.0157 0.135 1.510

5000 0.0011 0.080 1.159

10000 0.0004 0.064 0.946
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erally low in the 'core areas' of the classes (i.e, the pixel was associated mostly with a
single class), but higher in the transitional areas (i.e. membership was divided among
more than one class). This may also provide a basis for identifying and characterizing
transitional areas. It was, however, apparent that the distinctiveness of the transitional
areas varied with training intensity. The entropy values calculated for the pixels along
the transect, for instance, declined with training intensity over the range investigated
(Table 3.2). As training intensity increased, therefore, the class allocation generally
became crisper with membership increasingly associated with a single class, often
leading to a decrease in both the total activation level and entropy. The selection of an
appropriate training intensity for a classification must, therefore, be geared to suit the
needs of the particular investigation (e.g. the desired level of fuzziness) and, as with
the avoidance of the overtraining problem, cannot be based on the training error
(Table 3.2). The results do, however, highlight that a neuronal network may be used to
derive a soft classification that can represent both discrete and continuous vegetation.

3.5
Summary and Conclusions

Hard supervised image classification techniques are sometimes inappropriate for the
mapping of continuous vegetation classes from remotely sensed imagery. Furthermore,
the hard classification techniques commonly used generally make untenable assump
tions about the vegetation to be mapped as well as of both the remotely sensed and
ground data sets. The conventional approach to neuronal network classification may
be softened, allowing the derivation of a soft classification that models appropriately
the distribution of both discrete and continuous vegetation classes without making
unrealistic assumptions about the data. In the soft classification, transitional areas may
be identified and characterized conveying considerably more information on the veg
etation at the site than a conventional hard classification.
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Chapter 4

Ultrafast Estimation of Neotropical Forest
DBH Distributions from Ground Based Photographs
Using a Neuronal Network

M.A.Dubois . 1. Cournac . J. Chave . B.Riera

4.1
Introduction

There is no ecosystem model able to describe tropical forests in a comprehensive way,
and the complexity of the problem is even higher than climatic prediction. Tropical
forests have comparable spatial and temporal dynamics; moreover they exhibit an
other dimension of complexity, namely the high number of dynamic variables
(Oldeman 1990): instead of a few fluids as in climatology, theoretical ecologists have
to consider a high diversity of animal and vegetal species, with relevant and long
ranged interactions (Charles-Dominique 1995a).A drastic simplification is thus nec
essary if one wants to develop a manageable model, and for this it is essential to find
sets of easily measured synthetic macroscopic variables.

A rich information for forests is embodied in the distribution functions of tree di
ameters at breast height or DBH (e.g, Rollet 1974; Cusset 1980),which also constitute
reference data for forestry. But DBH inventory by tree counting in dense tropical for
ests represents a considerable effort and is almost impossible to achieve routinely on
large areas. We therefore investigated the possibility of getting part of this informa
tion, but in a much faster way.

In this paper, we propose to characterize vegetation transects with a sampling of
standardized photographs (fixed hour, azimuth, film, focal length, aperture). These
photos are digitised, then analysed with a neuronal network, in order to obtain a DBH
histogram. The network is trained on a set of photographs taken on 1ha plots where
DBH distributions have been obtained independently by traditional methods.

Neuronal networks have been chosen here for their ability to approximate a broad
range of relationships, without a priori knowledge of the function and without need
for linearity (Fu 1994).Indeed, we do not attempt a geometrical reconstruction of the
forest from image processing, but we rather conduct a spectral analysis of the photo
graph, which is considered as fuzzily and nonlinearily related to the subjacent geom
etry. The various components of the photograph (stem presence, light diffusion, in
terferences, etc.) are synthesized within a statistical vector which constitutes the raw
data given to the network. By analogy, the method can be compared to the "guess esti
mate" of an experienced forester. In this paper, we show the first results of implement
ing this procedure using the Nouragues research station database.
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4.2
Methods

4.2.1
Study Site

The Nouragues station, 4°5'N, 52°42'W, in French Guyana, was established in 1986
(Charles Dominique 1995b). The annual rainfall is about 3000 mm, and the average daily
temperature is 25°C,with a night minimum at 21 °C and a maximum at 34°C during the
day. The vegetation is characteristic of a dense humid evergreen tropical forest. Two
different geological zones are separated by a fault which is now occupied by the
Nouragues river: north of the river (on the inselberg side) granitic and crystalline rocks
of Caribbean series give a sandy clay soil; to the south, metamorphic rocks of the
"Paramaca" series (green rocks) bear a clay soil. This leads to several vegetation types:
a rocky savannah on the top of the inselberg, a transition forest in the inselberg pe
riphery, a high forest,then adisturbed zoneofsmaller forestwith bamboos ("cambrouzes")
or a gradient where the density of lianas increases so that they become leading types in
some places (low elevation points of "pinotieres" swamps and riparian forests).

4.2.2
Tree Inventory

Onto this site nearly 32km of trails were open. Part of them forms a 1000 m x 700 m
grid in which each plot is 100 m by 100 m. Trees within the plots were mapped and
measured on an overall surface of 100 hectares. Data include trees over 30 cm DBH
for the whole installation and over 10cm DBH on 22 ha. The histogram of diameter
classes (10 cm intervals) was constructed for each ha (Riera 1995). For this work, the
histograms were fitted by a single exponential. This was the most simple approxima
tion of the distributions of our data set, but it exhibits rather satisfactory properties:
the mean sum of square errors per distribution is 45 (that means average errors of 2
to 3 trees per diameter class, which is really low), and the estimated basal area (sum of
stems sections areas) per ha is well predicted: the linear regression between actual
and fitted basal area has a slope of 0.94, with R2 = 0.65.The two parameters of the ex
ponential fit are normalized and constitute the values which are to be predicted from
photograph analysis.

4.2.3
Photograph Sampling

In July 1995 a series of ground-based photographs was taken at each trail crossing (for
mat 24 x 36,focal length 35mm, aperture 8,shutter speed between 1/15 and 1s, camera
on a tripod at 1.3 m height, pointing north toward horizon line, slide colour film 100asa,
time: solar noon ±1h). A second series of pictures indexed with a '*' was taken 10m
before each intersection with north-south axes (Fig. 4.1).A leaf area index (LAI) mea
surement was performed simultaneously with each photograph using a Licor LAI2000
device. We decided then to investigate how the information contained in the photo
graphs, which essentially intercept stems, could be used to estimate DBH distributions.
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Fig. 4.1. Nomenclature of
photographs and plots in the
Nouragues study site. Plots are
referenced by the names of the
trails which cross at north cor
ner. Photographs (triangles) are
referenced by the name of the
plot from which they were taken,
not of the plot which is pointed
at. The presence of a "*" means
that the photo is used for the
test database, whereas it is not

We will not attempt to reconstruct DBH distribution through a geometrical infer
ence from the photographs. Indeed, such an attempt would be considerably difficult:
inclination from the trees need to be taken into account (necessity of shape recogni
tion); there is a problem of relative distance from the trees to interpret stem width
(apparent width vs real width), that could be experimentally overridden from stereo
scopic photographs, but it is not realistic in tropical forest conditions. On the other
side, the apparent stem widths on the pictures could be analysed without direct refer
ence to actual widths: a probability distribution of DBH results in a probability distri
bution of apparent stem widths, but this is not an unambiguous relationship. More
over the trees visible on the photo are only a part of the angular sector covered by the
field of view (shading of trees of the back plane by trees of the first plane): in this re
spect, getting the precise information of apparent stem widths would provide a par
tial and presumably not general view of the distribution of the trees, unless a huge
number of pictures are taken. This can be summarized by the French proverb "l'arbre
cache la foret' (the tree hides the forest) which can also be metaphorically interpreted
as: a large amount of sophisticated operations on a partial aspect of the signal hides
its statistical generality.

Other kinds of information which are also represented on the photograph prove to
be at least as important, as they reflect the ambient conditions which are conditioned
by "hidden trees": abundance of leafs, diffusion of light between the trunks, etc. To
synthesize these various aspects a statistical rather than geometrical image analysis
should be preferable.

4.2.4
Image Processing

Pictures are digitised and stored on CD-Rom. The chosen format is 768 x 512 8-bit
encoded Bitmap (Fig. 4.2). A 700 x 200 pixels window is imposed on the upper part
of each picture: we extract from each image a 700 x 200 matrix of integers from 0 to
255, and a colour map encoding the RGB (red, green, blue) intensities on the [0,255]
interval. We obtain then three intensity matrices: red, green and blue. It is necessary
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intensity gradients across the photo) of the signal. For this a jrd order polynomial fit
proved to be sufficient. After subtraction of the polynomial approximation, the residual
signal remarkably reflects the presence of the trees observed on the original picture
(Fig. 4.2), negative peaks being roughly correlated to the presence of trunks and posi
tive peaks to gaps. In forests with low stem diameters (liana forests, disturbed areas)
the deviation from zero of the residual signal is small, whereas in high stand forests
the presence of large trees creates broad peaks. Neither wavelet transforms nor Fou
rier transforms are adapted for analysis of these data due to the low number of com
ponents.

4.2.5
Extraction of the Input Vector

A simple way to synthesize the information contained in the residual signal consists
in building a histogram of the values it takes. Wefound that extracting a 19-bin histo
gram was sufficient to unequivocally separate all the different photos we had. This is
achieved by dividing the [-0.225,0.225] interval which covers the range of observed
residuals in 19equally spaced intervals and counting for each residual signal the num
ber of values which fall in each interval. This leads to a 19-component vector which
was called VH (for Vector Histogram) which reflects the vertical characteristics of the
image. Moreover, photos taken at 10 m (indexed "*", Fig. 4.1), in which the field of view
is almost completely separated from that of the photos taken at trail crossings, mainly
(but not systematically) produce histograms which are correlated with the latter: we
have then a good candidate to synthetically describe tree distribution. Diagrams in
Fig. 4.3 illustrate these correlations. The presence of "wings" on a histogram (high fre
quency of elevated values on the residual signal: on plots LlO and JlO for instance)
corresponds to distributions with a high frequency of large-diameter trunks. On the
other hand, plots with a low frequency of large trees result in peak or bell-shaped his
tograms (see plots M1B or 01B).Intermediate cases can be observed on plots (N19,K14).
Globally,the left part of the histograms is mainly determined by large apparent stems,
and the right part by large apparent gaps, the middle part resulting from the combi
nation of small trees/gaps and from transition zones. However,some of the plots show
unexpected shapes or discrepancies between the signals extracted from corner and
"*" photographs (LlB, J12). This especially occurs when the plot is strongly heteroge
neous and produces then very different photographs even from a single 10 m shift. We
decided to use the VH histograms as input values of the neuronal network.

4.2.6
Neuronal Network Design

Neuronal network design and training was achieved by using the SNNSsoftware pack
age (Stuttgart Neuronal Network Simulator V4.1, freely distributed by the Institute for
Parallel and Distributed High Performance Systems -IPVR-, Stuttgart University,
Germany, obtainable by anonymous ftp at ftp://ftp.informatik.uni-stuttgart.de/pub/
SNNS, Zell et al. 1991).

The training database contains 72 data sets resulting from the photos taken at trail
crossings. Each data set comprises the 19-component VH vector associated with the
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Fig. 4.3. Histograms of the 19-components VH vectors extracted from the photos of different plots in
the Nouragues station and corresponding DBH classes distribution. Each graph summarizes the data
collected for one plot. The name of the plot is given by the intersection of the trails at north corner,
filled circles represent in situ tree measurements, the two VH histograms extracted from the pictures
taken on each plot are inserted: black bars correspond to the photo taken at the south corner, white
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photo, which is the input of the neuronal network, and the two coefficients of the ex
ponential fit of the distribution of trees above 30 cm DBH in the photographed plot,
which are to be approximated by the output. The database used to test the generaliza
tion capacity of the network consists in 72 VH vectors extracted from 10 m-shifted
photographs, taken on the same area. During learning, evolution of the sum of square
errors (SSE) on training set and test set are computed simultaneously.

The structure of the network was chosen as a y-layer (sufficient for approximating
any continuous function, Fu 1994) feed-forward neuronal network: a 19-node input layer,
a hidden layer,and a 2-node output layer; the activation function used was the sigmoid.
Several trials have been done with varying the hidden layer size from 2 to 30 nodes: the
final design chosen was the one which showed the best performances for generaliza
tion (lowest SSE on test set during learning), that is 15 nodes. Weadopted a rather slow
learning rate: indeed, we found that learning was rather unstable until we decreased
the learning rate to around 0.05,a value at which the SSE did not show chaotic variations
during learning and consistently had the same evolution between independent learn
ings (i.e. independent initialisations of the network) performed on a given data set.

4.3
Results

First, after some epochs of learning, the network gives a hardly variable output which
corresponds to an average distribution which is the same in training and test sets and
is given by the mean values of the two output variables. Learning process is visualised
in Figs. 4.4 and 4.5 where tree counting, exponential fits, and neuronal network esti
mates are superimposed at various learning times. As learning proceeds, the training
set is more and more accurately described (Fig. 4.4), whereas test set description first
globally improves (Fig. 4.5, 80000 epochs), then is gradually separated between dis
tributions which are better fitted as the learning goes on and distributions which are
getting worse (Fig. 4.5,180000 epochs). Overlearning results in all distributions per
fectly fitted on the training set (Fig. 4.4,400000 epochs), and some distributions well
fitted on the test set, while many of them are not (Fig. 4.5,400000 epochs). Not sur
prisingly, well-correlated histograms between photos of the train set and of the test
set resulted in convergent learning, whereas decorrelations between the histograms
(more heterogeneous plots) resulted in divergence.

In our conditions, optimum learning (lowest SSE on test set) occurs at about
80000 epochs with the following parameters: learning rate 0.05,hidden layer 15 nodes.
At this stage, variability in the test set starts being well described, only extreme distri
butions being under or overestimated. The state of progression of learning is shown
on Fig. 4.6,which compares the two parameters of the exponential decay to their neu
ronal network-estimated counterparts. Correlations between actual and NN-predicted
parameters was significant in all cases (R2 = 0.57 for N35, R2 = 0.4 for k, P < 0.001 for
both in the training set, R2 = 0.15 for N35, R2 = 0.2 for k, P < 0.05 for both in the test
set). After this stage, overfitting occurs: points corresponding to estimated parameters
in the training set stack onto the 1: 1 line and R2 consequently tends to 1as the num
ber of learning epochs increases, whereas in the test set an increasing proportion of
outputs diverge (20% of outputs at 180000 epochs, and 85% at 400 000 epochs for in
stance are less well predicted than at 80000 epochs).



Fig. 4.4. Estimates of tree distribution given by the network on a representative subset of the training database (south corner photos), at two learning times, Dotted
lines represent the exponential fit of DBH distributions with a cIassicalleast squares method, the parameters of which were given for learning of the network; straight
lines represent the shape of the exponential distribution given by the parameters estimated by the neuronal network
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In order to better characterize the performances of the method toward its main
objective, we checked how the distributions and numbers of trees were approximated.
For this, we calculated the estimated trees distribution for each couple of predicted
parameters and compared it to the tree counts in each plot. The mean sum of square
errors (MSSE) of tree numbers estimation was 45for the original exponential fit. Con
sidering the parameters that were estimated by the network after 80000 learning ep
ochs, the MSSE was 173 with the training set, and 277 with the test set. This MSSE of
277 corresponds to an average of 30 trees per plot which are "badly classified" by the
network. This is to be compared to the average of 13 trees per plot badly classified with
the original exponential fit.

4.4
Discussion

Few data on structural parameters like DBH are available due to excessive difficulties
in obtaining them on large scales. The method presented in this paper shows a good
potential for estimating an exponential approximation of DBHdistributions, but it still
needs to be validated and improved. Using our limited database (72 plots), we showed
that we could obtain an estimation of DBH distributions with conservation of the av
erage, and a partial but significant description of the variability. The quality of the
prediction (around 20% of badly classified trees) is to be compared with the require
ments of the applications for which these estimates are provided. The use of a larger
database will increase the precision of the network and its ability to characterize other
forests. We will then have to check if the best strategy for extending the applications
of the method is to use a general purpose network, trained on very different types of
forests, or to divide the knowledge base into phytogeographic domains, each of these
being related to one particular network.
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The question of the sampling frequency is also crucial for optimizing network learn
ing. In fairly undisturbed places like the Nouragues research station, the distributions
of trees and the photograph sampling characteristics are rather homogeneous at the
ha scale, thus a frequency of 1 photo ha' seems to be sufficient to predict DBH distri
butions using the NN method, except in some locations (plot /12 for instance). But many
forests exhibit heterogeneity at a smaller scale, due for instance to anthropogenic per
turbations. In such cases, increasing sampling frequency and consequently adapting
the learning procedures will be necessary, as more parameters will be necessary to
correctly describe the distributions. In these cases, an exponential decay will no longer
be a good approximation, and more complex functions should be used. The choice of
the minimal but relevant functions (ideally functions in which the parameters are
related to the regeneration dynamics or the predation pressure) will be an important
task for the future developments of the method. Until now, higher sophistication at
tempts in image processing or in network design did not provide significantly better
learning efficiency, but this feature could change by incorporating new data sources
and new forest types. Improvement of the image processing could be obtained by
higher pixel density or by considering the two dimensions in spectral analysis.

Until now, two main kinds of applications of neuronal networks in forest research
can be found in the literature. First, they have been used in predictions-extrapolations
of vegetation growth response to the environment when these interactions are com
plex and difficult to calibrate from deterministic equations. This use of neuronal net
works as metamodels has been performed to simulate ecophysiological processes at
the stand scale (Huntingford and Cox 1997), or forest dynamics on landscape scale,
sometimes in conjunction with GIS (Gimblett and Ball 1995). The second major use
of neuronal networks in forest research has been the interpretation of teledetection
data (Pierce et al. 1994; Gopal and Woodcock 1996; Kimes et al. 1997). But one impor
tant point for the validation of remote sensing algorithms is the constitution of reli
able ground databases and this also stands for neuronal network approaches (Kimes
et al. 1998). The method that we propose to develop has the potential to produce sig
nificant amounts of ground data for remote sensing studies calibration.

4.5
Conclusion

The description of structural parameters in tropical forests remains an important
objective for the characterization of these environments. Automatic sampling from
ground-based photographs proves to be of real interest for studying these ecosystems
on larger scales than with traditional counting. The processing of these photos could
allow researchers to locate the various stages of the forests during sylvigenetic cycles
and the different vegetation types. Indeed, the distribution of individuals or of spe
cies is a dynamic mechanism highly depending on the perturbations (Riera 1995). The
characterization of perturbations, through their "footprints" in diameter class histo
grams, will give new insights in the understanding of biodiversity. An important di
versity of sylvigenetic stages and of plant communities in a given place favours the
installation, development and persistence of a greater number of species than in ho
mogeneous environments. The study of climate modifications is also possible through
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the perturbations that they have induced (e.g. drier periods associated or not to for
est fires). These perturbations together with climate modifications also constrain the
diversity.Acquisition of forest structural parameters on representative scales could help
us to unravel these relationships
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Chapter 5

Normalized Difference Vegetation Index Estimation
in Grasslands of Patagonia by ANN Analysis of
Satellite and Climatic Data

EG. Tomasel . J.M.Paruelo

5.1
Introduction

The Normalized Difference Vegetation Index (NDVI), derived from the red and infra
red bands of the AVHRR on-board sensor of NOAA satellites, shows a high correla
tion with biophysical rates of the target area, such as transpiration or primary pro
ductivity (Sellers et al. 1992).NDVI has been shown to be a linear estimator of the frac
tion of the photosynthetic active radiation (PAR)absorbed by the canopy (Potter et al.
1993; Ruimy et al. 1994). Monteith (1981) showed that the amount of PAR absorbed
throughout the growing season is the major control of net primary production. NDVI
data also allows the tracking of intra-annual changes in carbon gains (Lloyd 1990;
Paruelo and Lauenroth 1995).

NDVI has also been shown to be strongly correlated to the Aboveground Net Pri
mary Production (ANPP) in grassland and shrubland areas (Tucker et al.1985; Boxet al.
1989; Prince 1991a; Prince 1991b; Burke et al.1991; Paruelo et al.1997).ANPP, the rate of
carbon accumulation in plants, is a key attribute of the ecosystem. It represents the
amount of energy available to the upper trophic levels and integrates many important
functional characteristics such as nutrient cycling,secondary production (McNaughton
et al. 1989),and root biomass and soil organic carbon dynamics (Sala et al. 1997).The
importance of ANPP is also related to applied reasons. For example, ANPP is the ma
jor control of forage availability for both domestic and wild herbivores in grasslands,
savannahs and shrublands (Oesterheld et al.1992;MacNaughton et al.1993;Oesterheld
et al. 1998).The understanding of the environmental controls of ANPP and the pre
diction of future values is, therefore, a crucial issue for both theoretical and applied
ecologists. The development of predictive models of ANPP is clearly restricted by the
availability of long-term data sets. The reason behind the lack of extensive databases
is quite simple: estimation of ANPP is time-consuming, and therefore expensive
(Lauenroth et al. 1986;Sala et al. 1988).

NDVI has been proved to be a reliable alternative in cases where long records for
ANPP are unavailable (Paruelo et al. 1997). Several agencies have compiled and repro
cessed original data to produce global databases of NDVI images at a spatial resolution
of 8 x 8 km (Le.[ames and Kalluri 1994; Tucker and Newcomb 1994).The NOAA/NASA
EOSAVHRR Pathfinder data set include 36 images per year for the period 1981-1994.
This database is specially suited to analysing the temporal dynamics of ANPP.

Southern Argentina is dominated by temperate, arid and semiarid steppes and
semideserts (Soriano 1983; Lean et al. 1998).The design of sustainable systems for this
area clearly depends on a better understanding of the structure and functioning of
main ecosystems of the region (Soriano and Paruelo 1990).This area is characterized
by scarce and variable precipitation, ranging from 700 mm toward the western edge
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of the region, to 150 mm in the centre of the area (Jobbagy et al. 1995). Most of the re
gion is influenced by Pacific air masses (Prohaska 1976).The Pacific influence deter
mines a clear concentration of precipitation during winter months. The area domi
nated by Pacific air masses corresponds to the Patagonian Phytogeographical Prov
ince (Paruelo et al. 1991). The north-eastern part of the region is also influenced by
Atlantic air masses, which determine a more even distribution of precipitation (Paruelo
et al.1998).This area corresponds to the Monte Phytogeographical Province (Le6net al.,
1998) and is covered by steppes dominated by evergreen shrubs of the genus Larrea.

Desertification has been a major concern for the scientific community, federal agen
cies and environmental groups for more than two decades (Soriano and Movia 1987).
Sheep have grazed native vegetation since the beginning of the century (Soriano and
Paruelo 1990).Grazing is blamed as the major determinant of vegetation degradation
across the area (Leon and Aguiar 1985; Perelman et al. 1997).Aguiar et al. (1996) have
showed, using simulation models, the impact of the structural changes associated to
overgrazing on ecosystem functioning.

[obbagy et al. (1999) have analysed long-term NDVI data for the Patagonia steppes
using regression models. Even though regression models resulted in valuable tools to
understand the system, they showed a low predictive power. A better knowledge of
temporal dynamics of NDVI is advantageous in the management of natural resources.
Predictive models of NDVI may also provide the basis for the development of "warn
ing systems" for Patagonian rangelands. The objective of this paper is to investigate
the temporal dynamics of the NDVI and its internal and external controls across north
ern Patagonia by using ANNs.We also explore the use of ANNs as predictive tools of
the intra-annual dynamics of the NDVI.

S.2
Methodology

S.2.1
Artificial Neuronal Networks

Applications of ANNs to ecological and environmental problems have started early
this decade, mainly through the use of feed-forward multilayer networks. Some ex
amples are classification of remotely sensed data (Liu and Xiao 1991; Kanellopoulos
et al. 1992; Foody et al. 1995),resource management (Gimblett and Ball 1995),ecosys
tems modelling (Lek et al. 1996; Recknagel et al. 1997; Paruelo and TomaseI1997),
weather forecasting (McCann 1992;Derr and Slutz 1994),prediction of daily solar ra
diation (Elizondo et al. 1994),and many others. In particular, there has been a clear
interest in using ANNs for nonlinear prediction of time series. One of the most im
pressive results has been shown by Wan in the prediction of a chaotic time series
through the use of a finite-duration impulse response (FIR) multilayer perceptron (Wan
1994).Although many of these ANNs are able to make very good predictions, training
is in general based on availability of very long data sets. Unfortunately, this is not the
common case in ecological modelling where, for example, population time series for
terrestrial animals are usually composed of tens of samples (see, for example, Turchin
and Taylor (1992) for a compilation of some of the longest data sets available on verte
brate and insects).
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In this paper we use a feed-forward network, trained by a newly proposed learning
technique based on Information Theory (IT). This direct learning approach has been
shown to improve the performance of simple perceptrons, providing very good pre
dictions based on a rather small quantity of known data (Diambra et al. 1995; Diambra
and Plastino 1995). Wewill only outline the method here; the interested reader is encour
aged to read the original references for an in-depth description of the procedures involved.

Following Diambra, Fernandez, and Plastino, let us consider a simple perceptron
with N inputs I j connected to a single output unit 0 whose state is determined accord
ing to 0 =g(h), where g(x) is the activation function, h = ~Ij is the weighted sum of
the inputs I;, and repeated dummy indices imply a summation over those indices. In
the structures discussed herein, we have chosen g(x) = tanh(x). For each set of weights
W the perceptron maps I on O. The perceptron is trained with a set of P examples,
with input vectors I" and the corresponding outputs 0" == O(I"). From here we can write

where I" is an input patterns matrix and g-l( CY') is a vector of components g-l(0'), ... ,
g-l(d'), given by the output patterns, which constitute our available information. The
central idea in this approach is to use an Information Theory approach to determine
the weights Won the basis of an incomplete information supply (rank (I")<N, in gen
eral). In order to determine weights consistent with Eq. 5.1, it is assumed that each set
of weights W is realized with probability P(W). In other words, a normalized prob
ability distribution is introduced over the collection of possible sets W. The normal
ization condition is written as

jp(W)dW= 1

where dW =dWj , dW2, ••• , dWN' Expectation values <Wj> are defined as

<Wj> = jp( W) WjdW

The differential entropy associated with the probability density function P(W) is
written as

s =-jp(W) In(P(W) I Po(W))dW

where Po(W) is an appropriately chosen a priori distribution. The problem of deter
mining the set of weights W is now transformed into a constrained optimization prob
lem: we must now determine the form of the probability density function for the dif
ferential entropy of W to assume its largest value for the prescribed constraints of Eq. 5.1
and Eq. 5.2. The authors' central idea is to reinterpret Eq. 5.1 according to:

where explicit account is taken of the fact that one is dealing with many sets of weights,
each one being realized with a given probability, and borrowing from statistical me
chanics the idea that measured data are to be reproduced by theoretical averages.
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It can be shown that, after maximization of the differential entropy, the expecta
tion vector <W> can be expressed solely in terms of the training examples, and that it
can be written as

(5.6)

where IMP( 01') = (Ol')t[Ol'(Ol')tr 1 is the Moore-Penrose pseudoinverse. The most prob
able configuration of weights, compatible with the constraints of Eq, 5.1, is thus given
directly by the pseudoinverse matrix of 01',with no iterative processes associated with
the training of the network. IT-trained networks have been successfully applied to the
prediction of some classical chaotic time series, even when a small quantity of examples
was made available for the training process (Diambra and Plastino 1995).

5.2.2
The Data Set

As we mentioned earlier in the introduction, ANPP has been shown to be strongly
correlated with the NDVI. Therefore, an analysis of the NDVI cycles and their relation
ship with the climatic variables may translate into a better understanding of the envi
ronmental controls of ANPP and into a better predictive power. In this paper, we used
NDVI from 10 sites covering a broad range of climatic conditions across northern
Patagonia (Fig. 5.1, Table 5.1). These locations were selected based on the availability
of precipitation data. We obtained the NDVI data from the Pathfinder AVHRR Land
database (James and Kalluri 1994), from which data was available for a period of 11 years

Puesto
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•
Norquinco •

El M 'ten. Maquinchao
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700W

•

Argentina

42° 5

Atlantic
Ocean

46°5

62°W

Fig. 5.1. Location of the sites used for this study, The sites cover a broad range of climatic conditions
across northern Patagonia, with mean annual precipitation ranging from 130 mm in Fofo Cahuel to
420 mm in Leleque
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Table5.1. Characteristics of
the precipitation regime for the Site Mean annual Precipitation falling
sites selected for the present precipitation (mm) in summer(%)
study. Mean annual precipita-
tion ranges from 130mm in the Leleque 418 8
case of Fofo Cahuel to 420 mm
in the case of Leleque ElMaiten 356 9

Viedma 328 21

Esquel 268 9

San Antonio Oeste 268 22

Trelew 214 20

Sierra Colorada 205 24

Norquinco 196 9

Maquinchao 173 18

Puesto Martfnez 153 35

Fofo Cahuel 129 14

(1981-1991). For each year 36 images were available, each corresponding to a re-day
composite (Holben 1986).The spatial resolution of the images was 8 x 8 km., and ev
ery site was characterized by a single pixel (6400 ha).

5.3
Results and Discussion

Our first approach to the problem was to analyse the predictive power of ANNs trained
solely on k past values of the NDVI time series. In this case, the training data were of
the form

I
j={NDVI(tj), NDVI(tj- n, ...,NDVI(tj- kD} and

d= NDVI(tj+ mD, i= 1: P (5-7)

where P is the number of patterns used for training, T is the sampling period and m
denotes a suitable number of time steps. So given k past values of NDVI, the ANN was
asked to extrapolate the value of the NDVI m steps ahead.

On each site, an ANNwas trained by using 8 years of data and tested on the remain
ing three. The dynamics of the NDVI time series was best captured when 36 past val
ues (one year) of data were used as the input. Figure 5.2 shows the NDVI 9-step-ahead
(three months) extrapolation for the case of sites Esquel, Leleque and Fofo Cahuel.
Although the correlation between calculated and observed values of NDVI differed
among sites, the results show that in general the agreement is very good. To evaluate
the performance of our predictors, we calculate the mean square error,

where E is the expected value operator. For convenience in the comparison among sites,
we normalize this by the mean square deviation of the data, cl = E{(NDVI - E[NDVI))2},
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Fig. 5.2. Calculated (square
dots) and observed (solid line)
values of NDVI for the case of a
9-step-ahead extrapolation in
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forming the normalized mean square error NMSE =MSE I (12 (Farmer and Sidorowich
1987). In this way,smaller values of NMSE correspond to better predictions.

The NMSE values for the case of 9-step-ahead extrapolation ranged between 0.23
and 4.58(Table 5.2).For sites with relatively small values of NMSE,extrapolation could
be made up to 18steps in advance (six months) without significant degradation of the
forecasting error.

The results of calculating the NDVI from its internal dynamics highlight interest
ing aspects of the ecology of the different phytogeographical regions of Patagonia.
Figure 5.3shows that the NMSE strongly increases as the proportion of precipitation
falling during summer increases. Sites located in the southwestern portion of the area
analysed presented a better agreement between observed and calculated values than
those located in the north-eastern area (Fig. 5.1). These two areas differ on the sea
sonal pattern of the precipitation. The southwestern area corresponds to the Patagonian
Phytogeographical region. In this area, because of the strong influence of Pacific air
masses, precipitation is mainly concentrated during winter. In contrast, the north-east
ern portion of the region has a more evenly distributed precipitation regime. This area
corresponds to the Monte phytogeographical region.
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Table5.2. Normalized mean
square error for extrapolations Site NDVItrained NDVI+PPTtrained
based solely on NDVI data, and
predictions based both on past Leleque 0.46 0.47
values of NDVI and accumu-
lated precipitation El Maiten 0.45 0.46

Viedma 1.01 0.81

Esquel 0.23 0.24

San Antonio 4.58 1.39

Sierra Colorada 2.37 0.81

Norquinco 0.56 0.58

Maquinchao 0.94 0.94

Puesto Martfnez 4.12 1.93

Fofo Cahuel 1.06 0.49

20 40

Precipitation falling in summer (%)

Fig.5.3. Normalized mean 5.0
square error as a function of

4.5percentage of precipitation
falling in summer. Circles corre-

4.0spond to extrapolation based
solely on past values of NDVI 3.5
data, and trianglescorrespond
to predictions based both on 3.0
past NDVI data and accumu- L.u

lated precipitation Solid lines ~ 2.5
are exponential fits intended to
show the general trend of the 2.0

data
1.5

1.0

0.5

0
0

When ANNs are trained exclusively on past values of NDVI data, the NMSE pro
vides a measure of the intrinsic predictability of the system. Areas showing a lowNMSE
would display a similar phenological pattern every year. Predictability is a very im
portant attribute of the ecosystems. It would determine, for example, the kind of
evolutive pressure that organisms will experience. Opportunistic strategies will be
favoured in areas where the resources are not reliable in time or space. Predictability
is also important for applied reasons: to define the stocking density on a given range
land, the nutritional need of the flocks have to match as closely as possible the sea
sonal dynamics of forage availability. Given the same total production, the average
stocking density will be higher in an environment where the timing of maximum and
minimum forage availability is similar among years.

A winter concentration of precipitation seems to increase the predictability of the
systems. Areas with winter precipitation in Patagonia showed a decoupling between



EG. Tomasel . T.M. Paruelo

the growing season and the wet season (Paruelo and Sala 1995). During winter, water
is accumulated in the soil because transpiration losses are low.Soilwater is then trans
ferred from winter to spring. When temperature raises, this water becomes available
to plants. In areas not extremely dry, the amount of water available at the beginning
of the growing season is set by the holding capacity of the soil. Excess water is lost as
deep drainage and/or runoff (Paruelo et al. 1998). Consequently, in areas with winter
distribution of precipitation, a very stable component of the system (the soil) becomes
the main control of water availability.

Predictive power increases when precipitation data are used along with NDVI past
values as inputs. Precipitation was sampled in a to-day period, corresponding to the
sampling period of the NDVI data. Analysing the available data for precipitation, we
observed that accumulated values are more relevant as inputs than ten-day values.
When precipitation is accumulated by assigning to a given sampling period the pre
cipitation of the past k periods, it can be seen that for accumulations of 9-10 periods
(about three months) a very well defined structure appears which shows a temporal
correlation with the NDVI series (Fig. 5.4).The cross-correlation function shows a peak
for a lag of approximately 11-14 periods on the NDVI with respect to the accumulated
precipitation.
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Fig. 5.4. a 9-period accumu
lated precipitation as a function
of time for site Esquel. Values
are obtained by assigning to a
given sampling period the total
precipitation of the past 9 peri
ods; b NDVIdata for site Esquel.
Note the marked correspond
ence between the upper and
lower parts of this figure, char
acterized by a lag of about
11 periods on the NDVI series
respect to the accumulated pre
cipitation
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Augmenting the input vector with six past periods of accumulated precipitation
(taken with a lag of 9 periods with respect to the predicted date) significantly improves
the agreement between calculated and observed NDVI for most of the sites (Table 5.2,

Fig. 5.4).Figure 5.5 shows a 9-step-ahead prediction for the case of sites Esquel, Leleque
and FofoCahuel. In the case of site FofoCahuel,where the fraction of precipitation falling
in summer is comparatively higher, the NMSE has been reduced by approximately 50%.
Higher reductions in NMSE are observed in places with even lower summer precipitation,
as it is the case of sites San Antonio, Sierra Colorada and Puesto Martinez (Table5.2).

In summary, the study of the internal controls of the seasonal dynamics of the NDVI
through ANN analysis of satellite and climatic data identified important differences
between two phytogeographical areas (Patagonian and Monte steppes) and allowed
for a satisfactory prediction of the NDVI values up to six months ahead.

ANN analysis is likely to become a valuable tool to be added to the standard toolbox
of the researcher in ecological modelling. In particular, IT-trained ANNs appear as a
promising approach for the analysis of time series in ecology. Preliminary results from
a study we are presently undertaking also show promising results on the prediction
of population time series through the use of IT-trained ANNs.

Leleque

Fig. 5.5. 9-step-ahead predic
tion based on both past values
of NDVI and accumulated pre
cipitation for the case of sites
Esquel, Leleque and Fofo Cahuel.
Values for the NSME are indi
cated. Note that in Fofo Cahuel,
where precipitation in summer
is relatively higher, inclusion of
precipitation data significantly
improves the agreement be
tween observed and predicted
data respect to extrapolations
based solely on NDVI data
(see Fig. 5.2)
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ANNs and satellite data also provide a very promising alternative for the predic
tion of ANPP and forage availability over extensive rangelands. Forecast of forage avail
ability will provide to ranchers and natural resources managers a critical piece of in
formation to devise sustainable systems in arid and semiarid lands.
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Chapter 6

On the Probabilistic Interpretation of Area Based
Fuzzy Land Cover Mixing Proportions

J. Manslow . M. Brown . M.Nixon

6.1
Introduction

Techniques traditionally used to extract land cover information from remotely sensed
images have tended to produce crisp (or hard) classifications of image pixels. This
has been criticised, however, since the resulting maps of ground cover consist of
grids of pixels of homogeneous class membership, and are hence inherently dissimi
lar to the true ground cover which they intend to model (Fisher 1997; Foody 1997b;
Cracknell icos). Much effort has been made to increase the richness of such pixel
based classifications by, for example, relating the probability of class membership of
pixels in particular classes to the sub-pixel area occupied by those classes (Foody
1996a).

An alternative approach, which is discussed in this paper, is to represent the com
position of pixels by the proportions of the sub-pixel area occupied by each cover class,
a process sometimes referred to as fuzzy classification (Kent and Mardia 1988; Wang
1990). Such sub-pixel area proportion estimates are highly desirable, since not only
do they more accurately represent true ground cover than either crisp classifications
or probability estimates, but also that many applications have a specific interest in the
area of land cover types.

Although sub-pixel area proportion estimation is conventionally performed using
parametric and often linear models (Horwitz et al. 1971; Settle and Drake 1993),some
recent studies have used advanced semiparametric nonlinear models such as neuronal
networks (Foody 1997a). Despite the performance improvements resulting from the
application of such advanced methods, there is some confusion in the literature about
the relationship between crisp pixel classification and fuzzy pixel classification. This
paper introduces a probabilistic interpretation of sub-pixel area proportions and uses
it to show that the cross entropy function commonly used for crisp pixel classification
may also be used for obtaining maximum likelihood fuzzy classifications. In addition,
it is argued that the posterior probabilities of class membership used for crisp pixel
classifications are not, in general, optimal fuzzy classifications.

Section 6.2.1 describes the way in which sub-pixel area proportions can be given a
probabilistic interpretation. Some practical and theoretical implications of this inter
pretation are discussed in Section 6.2.2. In particular, notation for representing area
proportions which has a strong analogy to that used for probabilities is introduced
and used to describe the main properties of area proportions. The probabilistic inter
pretation is also used to show that maximum likelihood estimates of sub-pixel area
proportions over a set of exemplars minimize the cross entropy error function over
that set. A simple analysis of the relationship between posterior probabilities and op-
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timal sub-pixel area proportion estimates is presented and used to show that they are
not, in general, equal. The lower bound on the expected cross entropy error is described
and related to the problem of spectral confusion and the Bayes' error rate of tradi
tional classifiers. Section 6.3 presents the results of a series of experiments to com
pare the performance of networks trained using the traditional sum of squares error
function and the cross entropy error function at estimating sub-pixel area proportions
for a real world remotely sensed data set. Finally, the results of an experiment to as
sess the performance of a network trained to estimate posterior probabilities of class
membership is assessed for the sub-pixel area proportion estimation problem.

6.2
Conceptual Classification

In order to estimate the proportion of a pixel's area occupied by a class it must be
possible, in principle, to measure the area of the class given perfect information. Fig
ure 6.1 shows a single pixel consisting of two cover types, grass and water. When the
land area is remotely observed, a mixed pixel, shown at the bottom of the figure, is
generated which has spectral contributions from both of the sub-pixel classes. If per
fect information were available in the form of the true distribution of the two cover
types within the pixel area, each point within the pixel could be uniquely classified as
belonging to one of the cover types, and hence a sub-pixel map of true class member
ship could conceptually be constructed.

It has been argued that there are classes which, due to their tendency to continu
ously intergrade, prevent points within the sub-pixel map from being assigned unam
biguously to a single class (Wood and Foody 1989). Clearly,if this is accepted, no bound
ary can be defined around such classes which makes the division between the set of
points which are members of the class, and those which are not. It is thus not possible
to measure the area of such classes given perfect information and hence their area
must be treated as undefined.

6.2.1
The Probabilistic Interpretation of Sub-Pixel Area Proportions

If a point is chosen at random from a uniform distribution over the conceptual sub
pixel cover map described above, it will fall within a region occupied by one of the
sub-pixel classes. In the limit of an infinite number of such points being chosen, the
proportion of points falling within each class region will be equal to the proportion
of the sub-pixel area the region occupies, and also equal to the probability of an indi
vidual point falling within each region. This suggests that there is a direct equivalence
between these probabilities and the sub-pixel area proportions.

It is important to emphasise that this probabilistic model does not equate the pro
portion of the sub-pixel area occupied by a specific class with the posterior probabil
ity of class membership of the entire pixel in that class, as would be estimated by most
classical classification algorithms. Although estimates of these probabilities have been
used to model sub-pixel area proportions (see, for example, Foody 1996b;Masselli et al.
1996;Canters 1997; Gorte and Stein 1998),it can be shown that they are not, in general,
optimal estimates. This issue is discussed in greater detail in the Section 6.2.2.3.
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Fig. 6.1. The relationship be
tween the real world land cover,
the conceptual classification
and the mixed pixel
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6.2.2
Implications of the Probabilistic Interpretation

Mixedpixel

The following sections describe some of the implications of the probabilistic inter
pretation. Section 6.2.2.1 introduces notation for representing and manipulating sub
pixel area proportions which is analogous to the notation used to represent probabili
ties. This is then used to list the axioms governing sub-pixel area proportions that, once
again, are analogous to their probabilistic equivalents. Section 6.2.2.2 shows how the
probabilistic interpretation can be used to show that maximum likelihood sub-pixel
area proportion estimates for a set of exemplar pixels minimize the cross entropy er
ror over the set. Section 6.2.2.3 analyses the relationship between posterior probabili
ties of membership of pixels in classes and optimal sub-pixel area proportions and
argues that the two quantities are, in general, not equal. Finally, Section 6.2.2.4 dis
cusses the lower bound of the cross entropy error function and relates it to the phe
nomenon of spectral confusion.

6.2.2.1
Area Proportions: Notation and Properties

In order to describe the properties of area proportions, it is convenient to introduce a
compact notation: if the area of a pixel P is represented by fl(P) and the area of the
intersection of pixel P and class Cn by fl( Cn'P), then the proportion of P occupied by
Cn will be denoted by fl(CnIP). Here, the equivalence of area proportions and (condi
tional) probabilities is made explicit in the choice of notation. The proportion of P
occupied by class Cn is found using

(C Ip) =.u(Cn,P)
.u n .u(P)

(6.1)

From Eq, 6.1 the area proportion equivalent of Bayes' theorem may be derived. This
can be used to convert quantities of the form 'the proportion of class Cn occupied by
pixel P' to 'the proportion of pixel P occupied by class Cn'as follows:
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«: Ip) = .u(p!Cn) (C)
.u n .u(P) .u n
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Clearly, the total area occupied by any object or class is found by summing the ar
eas of its intersections with other classes. Thus, the total areas of a pixel P (where there
are N classes that form a closed world partition) and of a class Cn (where 'allP' is the
set of all pixels) are given by

N

.u(P)= I.u(Cn,P)
n=1

when classes and pixels are nonintersecting. For two classes, Cn and Cm with m,
n e [1,N] the area of their union may be computed from the sum of their individual
areas minus the area of their intersection. More concisely,

A set of classes Cn: 1 .,,;n .,,; N is considered to be closedworld upon the targetdomain D if

Such a set of classes may trivially be constructed by the addition of a class that
contains any sub-pixel region that is not assigned to any other class. Unless otherwise
stated, this condition will be assumed to be satisfied throughout this paper. Finally,
area proportions lie in the closed interval [0, I] as can be seen from Eq. 6.1. Thus,

All of these axioms are directly equivalent to those for manipulating probabilities
(as given in Cox 1946; DeGroot 1989).

6.2.2.2
Maximum LikelihoodSub-Pixel Area Proportion Estimatesand the CrossEntropy
Function

Data driven models such as neuronal networks typically contain a number of param
eters which may be found by minimizing some error function which quantifies the
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difference between the model's actual behaviour and its desired behaviour as given
by a set of exemplars (Haykin 1994; Bishop 1995). Although the cross entropy function
is the clear choice for pixel classification (and, in fact, classification in general,
see Bishop 1995), it is less obvious as to which error function should be used to de
velop sub-pixel area proportion estimation models. This section uses the probabilis
tic interpretation to show that the cross entropy function is appropriate for sub-pixe!
area proportion estimation as well as pixel classification.

Consider the set of N classes, Cn: 1 ~ n ~ N where Cn is the label of the nth class. If
this set is closed world and the classes are mutually exclusive, the probability distri
bution of class memberships obtained from random samplings of the conceptual sub
pixel map will be multinomial, as given below:

N
p(~lx,y) = ilp(Cnlx,y(n(x,y)

n=1

where ~ is a vector indicating the class membership of the sub-pixel point (x, y). For
example, if (x, y) E Cn then (~Ix,y) has a one in the nth position and zeros in all others.
p(Cnlx,y) is the posterior probability of membership of the sub-pixel point (x,y) in
class Cn' The probability of M such points having class membership .{;, where C is now
a matrix of M rows of vectors each indicating the class membership of one of the M
points is given by:

A neuronal network would typically be trained to classify such a set of points by
using the maximum likelihood procedure. That is, the network would model the dis
tribution parameters p( Cnlxm,Ym) so as to maximize the probability that the distri
bution would reproduce the set of training patterns. Using the probabilistic interpre
tation, the distribution parameters are equal to the sub-pixel area proportions such
that:

M N
p(~IM) = Il ilit(cnlp(n(xm,Ym)

m=!n=!
(6.2)

where the 11(CnIP) are the neuronal network estimates of the distribution parameters.
In other words, given a set of M sub-pixe! points of class membership Cn(xm,Ym), maxi
mum likelihood sub-pixel area proportion estimates may be obtained finding the area
proportions which maximize Eq. 6.2. It is, however, possible to go further than this by
taking the product over M inside the power, and letting M become infinitely large:
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This makes it possible to simulate the effect of training a neuronal network on an
infinitely large number of sub-pixel samples. To find the maximum likelihood sub
pixel area proportion estimates, it is convenient to minimize the negative logarithm
of the likelihood given in Eq. 6.3 rather than maximize the likelihood itself. The nega
tive log-likelihood is given by:

N

-lnlp(~IM)1 = - LM,u(CnIP)ln.u(CnIP)
n=1

The multiplicative constant M is independent of the distribution parameters and
hence does not change the set of parameters that maximize the likelihood. For this
reason the M term may be ignored when maximizing Eq. 6-4.The problem of finding
the sub-pixel area proportions that maximize the likelihood can therefore be summa
rized as finding the fl( CnlP) which minimize:

N

E = - L,u(Cn!P)ln.u(Cnlp)
n=1

which is clearly the same problem as minimizing the cross entropy error between the
true and estimated sub-pixel area proportions. Multiple exemplar pixels may be eas
ily accommodated by accumulating the expected error over the set of exemplars. Note
that although Foody (1995, 1996b) suggests that the cross entropy function may be
suitable for use in sub-pixel area proportion estimation, the discussions focus on the
interpretability of the resulting error measure and its relation to information theory
and do not derive the cross entropy function for the sub-pixel area estimation prob
lem from first principles as is done here.

The outputs of networks that estimate the parameters of a multinomial distribu
tion, should, due to the closed world assumption, be constrained by the softmax func
tion (Bishop 1995;Dunne and Campbell iccz). That is,

where the summation is over the N classes, and the Im and In are the pre-softmax out
put neuron activations. This has the dual benefits of incorporating a priori knowledge
about the normalization of the sub-pixel area proportions, and avoids the trivial mini
mum of the cross entropy function which occurs when:

.un = 1, Vn E [1,N]
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6.2.2.3
TheRelationship betweenPosterior Probabilities and OptimalSub-Pixel Area
Proportion Estimates

In Section 6.2.1 it was suggested that it was generally inappropriate to use the poste
rior probabilities of class membership of pixels as estimates of the proportions of sub
pixel areas occupied by classes. This section presents a more detailed discussion of
this issue and provides a simple illustration of the nonoptimality of posterior prob
abilities as sub-pixel area proportion estimates.

N

E(~) = - L (In.un}J J.lnP(J.ln 1~)dJ.ln
n=1

(6.5)

It can be shown that the vector of sub-pixel area proportion estimates Jl which mini
mizes the expected cross entropy error over some distribution of true proportions
p(J~.I~) for some spectral measurement ~ (as given in Eq. 6.5) is equal to the mean of
the p(#I~) distribution (given in Eq. 6.6) when the Jl vector is constrained to be of unit
length. For the purpose of the discussion that follows, the optimal sub-pixel area pro
portion estimates are defined in this way,i.e. as those that minimize Eq. 6.5.

(6.6)

When pixels are classified according to the proportions of sub-pixel cover, the clas
sification rule can be described using the vector of conditional probabilities p(.GI#)
where each element in the vector is the conditional probability of one of the target
classes. With this term, it is possible to decompose the posterior probability of class
membership of pixels of spectral signature ~ to explicitly represent its construction
from sub-pixel area proportions:

Equations 6.6 and 6.7 show that the optimal sub-pixel area proportion estimates
and the posterior probabilities of class membership of pixels of spectral signature ~

are only guaranteed to be equal for arbitrary choices of p(#I~) if,

(6.8)

If classification is based on sub-pixel area proportions, and is unambiguous given
those proportions, p(.GI#) will always have a one in the nth position where 1 ::; n ::; N
and zeros in all others, and hence cannot satisfy Eq. 6.8.This shows that the posterior
probability of the membership of pixels in classes where class membership can be
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determined unambiguously from sub-pixel area proportions cannot be guaranteed to
equal the optimal sub-pixel area proportion estimates for arbitrary choices of p(ul~).

It is interesting to note that the equivalence does hold for special forms of p(ul~).

One such form occurs when all pixels with spectral signature ~ are pure (consist of a
single sub-pixel cover class). Under these circumstances, p(ul~) is zero except when
Uhas a one in the nth position where 1 ~ n ~ N, and zeros in all others. In general, the
form of p(ul~) is determined by the properties of the target classes and their mixtures,
and is unlikely to satisfy Eq. 6.8.

6.2.2.4
Expected Generalization Performance: TheUpperBound

When a model produces the optimal sub-pixel area proportion estimates given in
Eq. 6.6, the expected cross entropy error of Eq. 6.5 is not zero, but is equal to the quan
tity given by Eq. 6.9. This is the lower limit of the cross entropy error function for sub
pixel area proportion estimators and is analogous to the Bayes' error rate of classifi
ers (which is discussed in Ripley 1996). It can be shown, for pixels of spectral signa
ture ~, to be a monotonically increasing function of the variance of the conditional
distribution of area proportions P(Jlnl~).

Emin(~) = - i (Inf J1nP(J1n 1~)dJ1n) f J1nP(J1n 1~)dJ1n
n=1

This limit, which is dependent upon the choice and definition of the target classes
and the set of measurements from which they are modelled, increases with the level
of spectral confusion, and is particularly important, since it indicates the maximum
performance that a sub-pixel area proportion estimation algorithm can achieve.

6.2.3
Summary

The practical implications of the results in the previous sections may be summa
rized as follows: in order to construct an empirical model for sub-pixel area propor
tion estimation, it is necessary to collect a set of exemplars consisting of the true sub
pixel area proportions of a closed world set of classes and their associated predictors
(usually pixel spectra). Note that if the set of exemplars consists entirely of pure pix
els, the model will estimate the posterior probabilities that pixels are pure rather than
sub-pixel area proportions. An empirical model should be chosen with outputs which
are constrained by the softmax function, and the model's parameters found by mini
mizing the cross entropy error function over the set of exemplars. The upper bound
on the performance of a sub-pixel area proportion estimator is given by the minimum
expected cross entropy error (given in Eq, 6.9) and is a monotonically increasing func
tion of the variance of the conditional distribution of sub-pixel area proportions p(ul~)

and hence also the level of spectral confusion.
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6.3
Sub-Pixel Area Proportion Estimation on the FLIERS Project

The FLIERS (Fuzzy Land Informati on from Environmental Remote Sens ing) project
is a European Union funded research project which aim s to develop novel techniques
for land cover mapping using remotely sensed imagery. The main emphasis of this
research is the investigation of the potential of advanced m odelling algorithms su ch
as neuron al net works to extract the relationship between pixel spectra and the asso
ciated sub-pixe l cover. For thi s pu rpose, neuronal networks are cons idered parti cu
larly promising s ince they make relat ively weak assumptions about the nature of th e
relat ion ship and require onl y examples of pixel spec tra and ass oci ated sub-pixel cover
proportion s from which the relat ionship may be inferred.

6.3.1
The Data

The dat a used in thi s paper was gene ra ted as part of the FLIERS project and covers
the Stoughton area (near Leicester, UK), which con sist s mainl y of large scale agricul 
ture, and is sho wn in Fig. 6. 2. Although the origin al da ta co ntained as ma ny as
26 classes, many were conflated to reduce this to onl y the four classes of 'built areas'
(class I), 'gras ses' (class 2), 'other' (class 3) and 'crops' (class 4) used in this p ap er. The
properties of the data set are summari zed in Table 6.1.

Of the four classes, 'built areas' (con sisting of asphalt, con crete and other con struc
tion materials) were the rarest , having an average sub -p ixel membership of only 0 .0 29 ,

and being comple tely absent from 2 0 244 of the 22000 pixels ava ilable. 'Crops' and
'grass es' on the o ther hand wer e com mo n, with average sub- pixel memberships of 0 .58
and 0.28 res pectively and a sig nifican t number of pure pixel s were present. Finally,

Fig. 6.2. The data se t
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Table6.1. Data set summary

J. Manslow . M. Brown· M. Nixon

Classname Mean pixel membership Pure exemplars Absent exemplars

Built areas 0.0286 66 20244

Grasses 0.2840 3631 11919

Other 0.0774 261 15496

Crops 0.5787 9482 7407

the 'other' class was present in all but 15496 of the pixels with an average sub-pixel
membership of 0.077. Since the 'other' class is a conflation of other relatively loosely
related cover classes, it is expected to show significant spectral variation, making the
sub-pixel area proportion estimation problem particularly difficult. Unfortunately, the
inclusion of the class is necessary to ensure that the sub-pixel proportions always sum
to unity - a prerequisite for the use of the cross entropy function.

6.3.2
The Neuronal Networks

In all experiments described in this paper, MLPs (multilayer perceptrons) were con
structed using specially written c++ code and trained using the stochastic back propa
gation algorithm. All hidden neurons had logistic activation functions and all output
neurons had softmax activation functions regardless of the error function used, so as
to isolate the effect of changing the error function. The available data was divided into
three sets: the training set, the test set and the validation set. The training set consti
tuted 60% of all the data and was used with the back propagation algorithm to di
rectly find the neuronal networks' weights. Since the neuronal network weights are
specifically tailored to minimize the training set error, the error provides a negatively
biased (overly optimistic) estimate of the true performance of the neuronal network.
Toovercome this, the networks' performances on a test set of 20% of the total data set
were periodically assessed and used to estimate the point during training when the
network offered maximum generalization performance. Once these 'optimal' networks
had been identified, their generalization performances were re-assessed using the
validation set which was also made up of 20% of the original data set. This final evalu
ation is necessary because the network weights are indirectly tailored specifically to
the test set through the use of that set to decide when to stop training.

6.3.3
The Experiments

The first set of experiments was designed to compare the performance of neuronal
networks trained using the cross entropy and sum of squares error functions on the
area proportion estimation problem. For this purpose, it was necessary to preprocess
the available data to remove all pure pixels, since it was found that the number of pure
pixels was so large that the networks could achieve low error rates by learning to iden-
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tify pure pixels even if sub-pixel area proportion estimates were poor for mixed pix
els.Once the networks were retrained on mixed pixels only, their overall sub-pixel area
proportion estimation performance improved in those pixels where significant mix
ing occurred. Note that this is only acceptable because of the specific interest in
the performance of the models at estimating sub-pixel area proportions in mixed pix
els.

The correlation between the validation set targets (the true sub-pixel cover pro
portions) and the proportions predicted by the neuronal networks was chosen as the
measure of the networks' performances. This choice was motivated by the relatively
widespread of the use of this measure in the remote sensing literature. Although many
other measures could have been used, the appropriate performance measure is highly
application dependent, and each network will always outperform the other on some
of the measures. For this reason, the relative performance of the models was not evalu
ated on a large suite of alternative measures. The second set of experiments was de
signed to compare the relative performances of networks trained on pure pixels (which
estimate the posterior probabilities that pixels are exemplars of pure pixels of each
class) with networks trained only on mixed pixels. Once again, the performance of the
models was assessed by measuring the correlation between the networks' predictions
and the true sub-pixel area proportions.

6.3.4
Results

Initially, ten networks, five with each of the two error functions and two hidden neu
rons, were trained on data consisting of mixed pixels only. The typical correlation
between the sub-pixel area proportions predicted by the networks and the true sub
pixel area proportions for an unseen validation set are shown in Fig. 6.3. Generally,
the cross entropy trained networks offered higher performance on the built and other
classes, slightly poorer performance on the grass class and essentially the same per
formance as the sum of squares trained networks on the crops class. The reason for
this is that the built and other classes form very small sub-pixel areas in many pixels,
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resulting in a tendency for networks to predict small values for the sub-pixel mem
bership of these classes in all pixels.The derivatives of the cross entropy function with
respect to the model predictions are equal to jl(C!P) I ~(ClP) (where jl(C!P) is the true
sub-pixel area proportion and ~(C!P) is the neuronal network estimate) as compared
to jl( CnlP) - ~(ClP) for the sum of squares error. Thus, training patterns where the train
ing target is large, but the model prediction is very small (which tend to be relatively
common for the built and other classes) dominate learning in gradient based algo
rithms which use the cross entropy error function. More computational resources in
the cross entropy trained networks are therefore dedicated to predicting the sub-pixel
area proportions of the built and other classes than in the sum of squares trained net
works, resulting in better performance on these classes. Since the computational re
sources of a network are fixed, this focusing of resources on the built and other classes
would be expected to degrade performance on other classes, and this is indeed what
is observed with the grass class.

A further ten networks (again, five with each of the error functions) with ten hid
den neurons were trained to see how the increased flexibility of the networks changed
the effect of the choice of error function. Once again, the correlation between the pre
dicted and true sub-pixel area proportions were used to assess the models' perfor
mances and a typical set of results is shown in Fig. 6-4.The most obvious feature of
this figure is that the apparent performance advantage of the cross entropy function
trained networks over the sum of squares trained networks on the built and other
classes has all but disappeared. It can be shown theoretically that infinitely flexible
networks trained using the cross entropy and sum of squares functions produce the
same models and would hence have identical performance (Bishop 1995). It would
therefore be expected that increasing a network's complexity would reduce the per
formance advantage observed in using the cross entropy function for training. Over
all, the networks consisting of ten hidden neurons tended to produce better perfor
mance on both the training data and the independent validation data than the net
works with only two hidden neurons.

In the final experiment, ten neuronal networks (fivewith each error function) with
ten hidden neurons each were trained on only pure pixels and applied to mixed pixels

Fig. 6.4. Correlation between
estimated and true proportions
for 10 hidden neurons
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in an attempt to predict the sub-pixel area proportions. Typical correlation of the sub
pixel area proportion estimates produced by networks trained on only pure pixels with
the true sub-pixel area proportions (shown in Fig. 6.5for a cross entropy network with
ten hidden neurons) were, as expected, consistently lower than those achieved by net
works trained on mixed pixels, ranging from between 0.67 and 0.40 as compared with
0.82 and 0.52.Note that some positive correlation is expected since any network which
achieved high correlation on the training set of pure pixels should also achieve high
correlation on similar pixels in the independent validation set.

A scatter plot of the network predictions against true sub-pixel proportions (as
shown in Fig. 6.6) reveals a phenomenon noted by other authors (Foody 1996a;Bastin
1997).Specifically, the predicted sub-pixel area proportions tend to cluster around the
extremes of zero and one, lending the scatter plot almost a noisy sigmoidal shape. This
phenomenon is caused by the relative positions of the clusters of pure pixels in the
network's input space. Clearly for this data set, the clusters of pure pixels are well sepa-
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rated in the regions where mixing occurs and hence most mixed pixels in these re
gions are classified as pure exemplars of one of the target classes with high probabil
ity. This may not be so with other data sets: if there is significant spectral confusion
between pure exemplars, networks trained on those exemplars will estimate lower
posterior probabilities for each of the target classes for much of the input space, and
hence produce mixture estimates less tightly clustered around zero and one. Using less
flexible networks would produce a similar effect.

6.4
Conclusion

This paper describes the equivalence of sub-pixel area proportions of classes and the
posterior probabilities that a sub-pixel point chosen at random from a uniform dis
tribution over the pixel area belongs to each class. This equivalence is used to estab
lish notation and axioms for representing and manipulating sub-pixel area propor
tions by analogy with the axioms of probability theory, and to show that maximum
likelihood estimates of sub-pixel area proportions are, given a set of exemplars, ob
tained by minimizing the cross entropy function over the set. It is also shown that
posterior probabilities of class membership of pixels are not, in general, equal to the
optimal estimates of sub-pixel class area proportions if it is assumed that class mem
bership may unambiguously be determined from sub-pixel area proportions. The lower
bound of the expected cross entropy error function for sub-pixel area proportion es
timators can be shown to be a mono tonically increasing function of the variance of
the distribution of sub-pixel areas for each spectral signature. This lower bound may
be considered to be equivalent to the Bayes' error rate of classifiers, and is related to
the phenomenon of spectral confusion.

Experiments were performed to compare the performance of neuronal networks
trained using the sum of squares and cross entropy error functions on the sub-pixel
area estimation problem. It was found that the measure of correlation between each
network's predictions and the true sub-pixel area proportions showed only limited
sensitivity to the choice of error function when flexible networks (with ten hidden
neurons) were used. However,when less flexible networks (with only two hidden neu
rons) were used, the cross entropy function produced networks which made sub-pixel
area proportion predictions which were more highly correlated with the true propor
tions than those of the sum of squares trained networks. This effect was particularly
pronounced for those classes that formed only a small proportion of the sub-pixel area
in a large number of pixels. Networks trained on pure pixels were shown to produce
sub-pixel area proportion estimates which, while positively correlated with the true
sub-pixel cover proportions, were more weakly correlated than predictions made by
networks trained directly on mixed pixels. The distribution of the sub-pixel area pro
portion predictions on the validation set is related to the relative positions of the clus
ters of pure pixels in the space of spectral measurements. Specifically,the tendency to
over estimate the proportion of nearly pure pixels in the validation set was the result
of the high seperability of the pure clusters in the training set with respect to the net
works used.
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Chapter7

Patterning of Community Changes in Benthic
Macroinvertebrates Collected from Urbanized
Streams for the Short Time Prediction by Temporal
Artificial Neuronal Networks

T.-S.Chon . Y.-S. Park- E.Y. Cha

7.1
Introduction

Patterning temporal development of community is an important topic in ecosystem
management as of late. Especially in aquatic ecosystems, where communities are eas
ily affected by disturbances caused by various natural and anthropogenic agents, it is
important to know how communities would develop in response to changes in water
quality. They would develop either progressively with further disturbances, or regres
sively in recovery from pollution (Sladecek 1979;Hellawell iose). Methods for charac
terizing 'changes' in communities are needed in terms of predicting the future devel
opment of the community, detecting mechanism of community differentiation, and
assessing ecological status of the target ecosystem.

Data for community dynamics, however, are complex and difficult to analyse since
they consist of many species, varying in nonlinear fashion in spatio-temporal domain.
Although there have been numerous accounts on community classification through
conventional multivariate analyses in ecology (e.g, Bunn et al. 1986; Legendre and
Legendre 1987;Ludwig and Reynolds 1988; Quinn et al. 1991),not many studies have
been conducted on patterning community dynamics. Legendre et al. (1985) and
Legendre (1987) discussed classifying communities in temporal domains, including
ordination and segmentation techniques in multivariate data series, and Turchin and
Taylor (1992) reviewed time series analysis in analysing dynamic data for populations.
Recently, attention has been focused on dynamic neuronal networks for patterning
spatio-temporal data in electronics and computer sciences (Kung 1993; Giles et aI.1994).
In ecology, artificial neuronal networks have been mainly applied in classifying groups
(e.g, Chon et a1.1996;Levine et aI.1996), or patterning complex relationships (e.g, Lek
et al. 1996; Huntingford and Cox 1996; Tuma et al. 1996).

In temporal patterning in ecology, artificial neuronal networks were mostly imple
mented in estimating time development of populations such as the flowering and
maturity of soybeans (Elizondo et al. 1994), algal bloom (Recknagel et al. 1997) and
changes in the size of animal population (Stankovski et al. 1998). Regarding commu
nities, grassland community changes were predicted by Tan and Smeins (1996). How
ever, these models were essentially applied in static terms; the time of input and out
put were the same, although the aim of the study was to predict the size of popula
tions or communities. They were mostly based on the back propagation algorithm for
patterning the relational effects with environmental factors.

Direct revealing of dynamics of ecological data was conducted by Boudjema and
Chau (1996). Sets of univariate time-series data, such as tree ring thickness, were
analysed by artificial neuronal network after preprocessing of the data with moving
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average and linear generation of sequential data. Time-delay effect was considered in
training; the previous data were used for predicting future data. It was successful in
extracting inherent information of the longitudinal series of complex data, which had
been generally short for the time-series analysis and had relatively a high level of noise.

The aim of this study was to pattern and predict multivariate date even in a shorter
period. Benthic communities change rapidly in response to natural and anthropogenic
agents and show a wide range in response to different pollution impacts. This short
term prediction is important in monitoring water quality and setting up strategies for
aquatic ecosystem management. After training the multivariate data we would like to
test the feasibility of temporal artificial neuronal networks in forecasting community
changes in a short time period.

7.2
Methods

7.2.1
Multilayer Perceptron with Time Delay

To pattern relationships between different time events of community changes in this
study, initially a simple multilayer perceptron with the back propagation algorithm
was used as a nonlinear predictor (Wray and Green 1994; Haykin 1994) (Fig. 7.la). The
architecture consists of the well-known static multilayers; however, input and output
data were provided with time delay. The input vector is defined in terms of the past
samples, X(t - I), X(t - 2), ... , X(t - q), where q, prediction order, is the number of the
total delays. The current data,X(t), was given as matching output. In our cases, densi
ties of selected 5 genera in sampled communities were provided as data sets for in
puts with 1-5 time delays, i.e. q =I, 2, ... ,5. With each delay, input nodes were corre-
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Fig. 7.1. a The architecture of the multilayer perceptron with time delay; b the Elman type recurrent
neuronal network for patterning community changes
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spondingly added. For example, if 5 genera were introduced with 2 time delays,
5x 2 = 10 nodes were assigned for each input.

The input layer was subsequently interconnected to the hidden layer.Eight to thirty
nodes were used in the hidden layer. The number of nodes in the hidden layer was
determined based on experiences on obtaining convergence in training. The number
of output nodes was 5, equal to the number of selected genera. The internal state of
the network, NETp,j' was obtained by linear summation of products of weights and
output values of nodes in the hidden layer over time. Subsequently, these values were
adjusted in a nonlinear fashion, logistic function in this case, to produce outputs,
Y{t)p,j' as follows (Wasserman 1989;Zurada 1992):

1
Y·=------

P,} 1+ exp{-ANETp,j)

where Yp,j is activation of neuron j for pattern p,xp,j is output value of the neuron i of
the previous layer for pattern p,Wp,ji is weight of the connection between the neuron i
of the previous layer and the neuron j of the current layer for pattern p,and le is acti
vation function coefficient (e.g. 1.0 in this study).

The output Y(t) of the multilayer perceptron was produced in response to the in
put vector, and was equivalent to the one-step prediction for the future development.
Subsequently actual data at time t, X(t), were provided as the target and the difference
between Y(t) and X(t) was measured and propagated backward for adjusting weights
in the usual manner of the back propagation algorithm (Rumelhart et aI.1986).Weights
at output neurons were updated as follows (Wasserman 1989):

where dp,j is desired output of node j for pattern p, TJ is training rate coefficient, and a
is momentum coefficient. Weight updating at the hidden layers is similar to processes
at the neurons of the output layer. Detailed procedures of the learning rules could be
referred to Rumelhart et al. (1986) and Zurada (1992).

7.2.2
Recurrent Neuronal Network

An Elman type network (Elman 1990),one of the most well-known dynamic models
in artificial neuronal networks, was applied in this study as a recurrent neuronal net-
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work. We used one hidden layer for simplicity of the network structure. The architec
ture of the network is basically similar to the multilayer perceptron, except in the com
position of the hidden layer (Fig. 7.1b). Hidden layer embodies another context layer
for implementing recurrence. Recurrence implies that the state of network depends
on current input and its own internal state on the previous cycle. In this case, the
hidden layer has recurrence and its own internal state is represented through the
context hidden layer. Similar to the multilayer perceptron, the number of nodes at the
input and output layers was 5, and 30 neurons were used for the hidden and context
layers.

In the input layer, community data for selected genera, x/(t - 1),were given as ex
ternal inputs. Concurrently, output values from the hidden layer for the previous cycle
are also provided as internal inputs to the hidden layer as C/(t - 1).Initially, some small
random numbers are used for the internal inputs. The group of x/(t - 1) and C/(t - 1)
consist of the total input for the hidden layer, z/(t). The sum of linear combination of
weights and inputs, I/t - 1), is subsequently adjusted in a nonlinear function such as
C/(t - 1)=fUP- 1)).The input process could be summarized as follows (Hecht-Nielsen
1990 ):

where 1=1,2, ... , L, L =N (number of input nodes) + M (number of hidden nodes),
x(t) is external input, and C(t) is context input.

L

Ij(t) =I wjlz/(t)
/=1

1fU ·(t)) = ----
} 1+ exp(-Al)t))

The net output in the output layer is determined by the summation of the linear
combination of weights and values produced from the hidden layer. As a usual pro
cess in artificial neuronal networks, this is subsequently adjusted with a nonlinear
function, logistic equation in this case, to produce output values for t as Yk(t). These
output values are in turn compared with actual field data, x/(t). Weight adjustment is
conducted in the same way as it is determined in the back propagation algorithm.
The difference between desired output and internal output was calculated, and subse
quently was backpropagated through the hidden layer down to the context and input
layers.
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7.2.3
Field Data
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Assessm ent of water quality and prediction of community dy namics in aquat ic eco
systems are important in rapidly developing countries in Asia such as Korea, Chi na,
ete. For field data, benthic macroinvertebrate communities monthly collec ted from
urbanized streams were used. The streams in the Suyong River, located in th e Pusa n
metropolitan area, on the southern part of the Korean Penins ula, have been urban
ized with a wide range of organic pollution mainly from dom est ic sewage (Fig . 7.2).
We selec ted the sites of Suyong and Soktae streams that formed the Suyo ng River. The
sample sites in the Soktae Stream in the Suyong River sho wed a wide ran ge of water
qua lity fro m ,B-meso-saprobity to iso -saprobity as th e water flows down from TSD,
TKC to THP. Community compositions generally reflected the water quali ty sta tus of
strea ms (Kwon and Chon 1993; Kang et al. 1995). Trent Biotic Index (Woodiwiss 1964),

a biological ind ex for indicating water qu ality,correspondin gly showed the water qua l
ity from seve n to two, and BOD also increa sed down stream (Fig. 7.2b).

In the Suyong Stream, in contrast , all the sites were in slight po llution of ,B -m eso 
sap rob ity. In this state of slight pollut ion , species richness is relat ively h igh and com 
muni ties co uld resp ond se nsi tively to environment al di stu rban ces (Hellawell iose).
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Fig. 7.2 a. Location of streams for collecting benthic ma croinvert eb rates in the Suyong and Han rivers ;
b water qu ality of sample sites with saprobity, TB! and BOO in the Suyong an d Soktae st reams in the
Suyong River
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The site TCL,where the Suyong and Soktae streams joined, showed poly-saprobity. The
sites in the Suyong River were selected such that it would cover a wide range of pollu
tion with an emphasis on slight pollution. Species richness was exceptionally high at
relatively clean sites, while only a few species appeared at polluted sites (Kwon and
Chon 1993, Kang et al. 1995; Yoon and Chon 1996). This is a typical response of com
munity to pollution (Hellawell icse). One of the objectives for this study was to inves
tigate how these diverse changes in community could be effectively patterned by the
temporal network. Samples collected from March 1992 to March 1995 were used for
the learning process in this study in the Soktae Stream, while those from January 1993
to March 1995 were selected in the Suyong Stream. Among these, samples from TKC,
THP,YCK, and YSC from September 1994to March 1995 were set aside for recognition,
and the rest were used for training (Table 7.1).

Another set of community data came from relatively homogenous environments.
Samples were collected in a relatively short distance within 200 meters in the Yangjae
Stream, a tributary of the Han River. The Yangjae Stream is located in the Seoul met
ropolitan area, on the middle part of the Korean Peninsula (Fig. 7.2a), and is highly
polluted with poly-saprobity. This stream, however, is partly in a recovery phase due
to the restoration efforts by the city government (Fig. 7.3). The number of species and
the water quality indices such as Shannon diversity gradually increased and the spe
cies less tolerant to heavy organic pollution reappeared as water quality was slightly
improved. Ecological status and water quality in the Yangjae Stream will be reported
elsewhere. We attempted to see if the prediction of community change could be pos
sible in this transitional recovery phase of the stream. Data collected from March 1996
to March 1998were used for the learning process, and a portion of the samples were
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Fig. 7.3. Changes in the number of species and Shannon diversity indices in recovery of water quality
in the Yangjae Stream in the Han River from March 1996 for two years
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set aside for recognition, similar to the case of the streams in the Suyong River
(Table 7.1).

Figure 7.4 shows examples of input data for the selected genera in the streams in
the Suyong and Han rivers. In selecting data, attention was given to taxa more fre
quently and abundantly collected while the data for rare species were not included
for training. For the Suyong and Soktae streams, genera such as Chironomus sp.,
Conchapelopia sp., Orthocladius sp., Tanytarsus sp., and Limnodrilus sp. were selected.
The first four species belong to Chironomidae, an important indicator family in fresh
water (Hellawell icse), while the last one is an Oligochaeta. In communities of the
YangjaeStream, Chironomus sp., Orthocladius sp., Cricotopus sp., Limnodrilus sp. and
Erpobdella sp. were chosen. The first three species are Chironomidae, while the fourth
and fifth species belong to Oligochaeta and Hirudinea, respectively. These selected
genera occurred consistently at the study sites during the survey period. The input
values with greatly different numerical values in densities were avoided for training.
The data were transformed by natural logarithm in order to emphasize the differences
in low densities. Subsequently the transformed data were proportionally normalized
between 0.01 and 0.99 in the range of the maximum and minimum density for each
species collected during the survey period.
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Fig. 7.4. Examples of community dynamics of selected genera in Ihe Soktae (left) and Yangjae (right)
streams as inputs for the training of community changes in artificial neuronal networks
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7.3
Training and Recognition

7.3.1
Multilayer Perceptron with Time Delay
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When communities were given as inputs to the simple multilayer perceptron with the
time delay between one and five months, the convergence was generally reached in
the iteration of 20 000-30 000 under the mean error term of 0.05, which is the sum of
square terms of difference in output and target values divided by the number of input
patterns (Table 7.1). The learning and momentum coefficients were 0.5 and 0.9, respec
tively.Trained data sets were accordingly matched to the original input data. It appeared
that convergence was more easily achieved as time delay of input data was longer. In
one month delay, it was generally difficult to obtain a convergence. At the same itera
tion number of 30000 except for the one-month delay, the mean error term consis
tently decreased as the time delay was increased, both in the Han and Suyong rivers
(Table 7.1).

When new data were given to the trained network for recognition as mentioned
before, the network was able to make one-step predictions for the following commu
nity in time. Figure 7.5 shows examples of predicted community data after recogni
tion by the trained multilayer perceptron. In general it appeared that the predicted
and actual field data were in accord, although some discrepancies were locally ob
served. It was relatively difficult to match precisely the density level for each selected
taxon. Based on the training experiences with available data (Table 7.1), it appeared
that the prediction of community development was slightly more effective in the
YangjaeStream than in streams in the Suyong River.

7.3.2
Recurrent Neuronal Network

When communities were trained with the more sophisticated Elman type recurrent
network, convergence was also achieved and its learning efficiency generally appeared
to be higher than that by the simple multilayer perceptron. Convergence was usually
reached in the 20 oooth iteration, and the mean error terms were less than 0.006 in
the case of Suyong and Soktae streams and 0.0006 in the YangjaeStream. These were
distinctively lower than the mean error term shown in the training by the previous
multilayer perceptron (Table 7.1). The efficiency of learning was also reflected in the
frequency of the different size of the error term (Fig. 7.6).When the density differ
ence in each genus in each input community between the predicted and field data was
considered individually, there was a higher frequency in the low range of difference
in the training by the recurrent neuronal network than by the multilayer perceptron
with time delay.

When new data were given to the trained network for recognition, the network was
able to predict the status of communities for the next month (Fig. 7.7). It appeared that
the predicted and actual field data were generally in accord, better than in the case of
the training with the multilayer perceptron. The predicted data from the recurrent
network appeared to be in a better accordance in the Yangjae Stream than in the
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Fig. 7.5 a. Examples of field data and predictions in densities of selected Genera after recognition by
the trained multilayer perceptron with time delay (two and four months) when new data for commu
nity development were given as inputs in the Soktae and Suyong streams

streams in the Suyong River.This was consistent to the case of training with the mul
tilayer perceptron.

7.4
Discussion and Conclusion

Byelaborating the feasibility of temporal artificial neuronal networks for community
changes, this study showed that community development could be patterned and fore-
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Fig.7.5 b. Examples of field data and predictions in densities of selected Genera after recognition by
the trained multilayer perceptron with time delay (two and four months) when new data for commu
nity development were given as inputs in the Yangjae Stream

casted by the temporal artificial neuronal networks in a short period. Boudjema and
Chau (1996) effectively utilized artificial neuronal networks to pattern univariate data
sets in a relatively short period, to which time series analyses may not be applicable
due to the shortness of data. This study demonstrated that artificial neuronal networks
could pattern multivariate data sets even in a shorter period.

In general, the trained results correspondingly reflected the expected development
of communities under the influence of various degrees of organic pollution in urban
ized streams in a certain time span. However, there were occasions that the degree of
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correspondences between the actual and predicted data was not high. It was difficult
to obtain precise matching in densities between the two data sets. This is understand
able that predicting density in each taxa of communities in field conditions are gen
erally not easy.Correlation coefficients between the predicted and field data were 0.439
(P < 0.0001) and 0.481 (P < 0.0001) respectively for the two and four month delays in
the Suyong River (Fig. 7.5a), while they were 0.556 (P < 0.0001) and 0.489 (P < 0.0001)
respectively for the two and four month delays in the Yangae Stream (Fig. 7.5b).

As expected, correlation coefficients in the data from recurrent neuronal networks
were higher than those from the multilayer perceptron with time delay, by showing
0.548 (P < 0.0001) in the streams in the Suyong River and 0.675 (P < 0.0001) in the
Yangjae Stream. This demonstrated that the training by recurrent network is more
efficient than in the training by the simple multilayer perceptron in their implemen
tation to changes in diverse community data. However, it is far too early to generalize
that the recurrent network is better than the time delay network. There are more so
phisticated time delay artificial neuronal networks with multiple-delay lines (e.g. Wai
bel et al. 1989),and other types of recurrent neuronal networks (see Haykin 1994; Giles
et a1.1994). More tests are required in the future to test the feasibility of temporal net
works in the community data.

The efficiency of prediction was generally better in the YangjaeStream than in the
streams of the Suyong River. It is difficult to verify why prediction efficiency is differ
ent in the two rivers. One possible reason is that, since the sites in the Suyong River
came from a wide range of pollution levels (Fig. 7.2), the selected taxa used for input
data did not cover fully all the communities at different sites. One taxon may abun
dantly appear at one site, while it may not appear at the other site. For example,
Tanytarsus sp. mainly appeared in relatively clean sites, but not much at the polluted
sites. In contrast Chironomus flaviplumus, an indicator species of organic pollution,
abundantly appeared at polluted sites. In the Yangjae Stream, however, all five taxa
appeared consistently. As shown in Fig. 7.3, the Yangjae Stream has been in a recover
ing phase along with the increase in species richness. This study showed that, even in
this transition period, the network made it possible to forecast a short-time commu
nity change.

Another advantage with the specific forecasting for each taxon is that it could as
sist to characterize community changes. Even if the predicted data were not in accord
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Fig. 7.7 a. Examples of field data and predictions in densities of selected genera in communities of
benthic macroinvertebrates after recognition by recurrent neuronal network (RNN) when new data for
community change were given as inputs in the Soktae and Suyong streams

with field data, for example, it would still give information to investigate the status of
communities. Since the neuronal network represent average effects, more frequently
appearing taxa would have more chance to be patterned in the training. Then the
mismatching between the actual and predicted data may suggest occurrence of some
disturbances in communities of new data. In communities sampled at TKC from De
cember 1994 to March 1995 in Fig. 7.7a, for example, Limnodrilus sp., an indicator spe
cies of pollution, appeared in field data while there was no density forecasted by the
recurrent network. In contrast, Orthocladius sp., which generally appears in recovery
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Fig. 7.7 b. Examples of field data and predictions in densities of selected genera in communities of
benthic macroinvertebrates after recognition by recurrent neuronal network (RNN) when new data for
community change were given as inputs in the YangjaeStream

state, was collected in a high density in this period. In the original data for training, in
contrast, the former appeared in a high level while the latter was rarely collected. Since
the recognition period lies in the last part of the survey, this suggested that the water
quality be improved. This demonstrated that the forecast of ,changes- in-density' could
effectively pinpoint the shifting of ecological status in communities.

In the simple multilayer perceptron with time delay, the increase in the number of
nodes in the hidden layer consistently enhanced training efficiency. The number of
hidden nodes required were unusually high. Initially, we started with 8 hidden nodes,
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however,convergence was not satisfactory; the error term was not effectively decreased.
As the number of hidden nodes was increased up to 30 nodes, the learning efficiency
was accordingly increased (Table 7.1). In contrast it required usually a lower number
of hidden nodes (8-10) in the case of training without time delay. This requirement of
additional nodes in the hidden layer may be due to complexity of data implementa
tion in time delay. Further study may be required in assessing the role of hidden nodes
in the comparative study with a more elaborated time-delayed neuronal network
(TDNN) (Waibel et al. 1989) and other related temporal networks.

In conclusion this study demonstrated that temporal artificial neuronal networks could
be utilized to forecast and analyse short-period changes in multivariate data sets. The re
current neuronal network appeared to be effectivein patterning development of benthic
communities in streams responding in a diverse manner to a wide range of pollution.

Acknowledgements

This paper was supported by Non Directed Research Fund, Korea Research Founda
tion, 1996.

References

Boudjema G, Chau NP (1996) Revealing dynamics of ecological systems from natural recordings. Ecol
Model 91:15-23

Bunn, SE, Edward DH, Loneragan NR (1986) Spatial and temporal variation in the macroinvertebrate
fauna of streams of the northern jarrah forest, Western Australia: Community structure. Freshwat
Bioi 16:67-91

Chon T-S, Park YS,Moon KH, Cha EY (1996) Pallernizing communities by using an artificial neuronal
network. Ecol Model 90:69-78

Elizondo DA, McClendon RW,Hoongenboom G (1994) Neuronal network models for predicting flow
ering and physiological maturity of soybean. Transactions of the ASAE37(3):981-988

Elman JL (1990) Finding structure in time. Cognitive Science 14:179-211
Giles CL,Kuhn GM,Williams RJ (1994) Dynamic recurrent neuronal networks: Theory and applications.

IEEE Transactions on Neuronal Networks 5=153-156
Haykin S (1994) Neuronal networks. Macmillian College Publishing Company, New York
Hecht-Nielsen R (1990) Neurocomputing. Addison-Wesley,New York
Hellawell JM (1986) Biological indicators of freshwater pollution and environmental management.

Elsevier, London
Huntingford C, Cox PM (1996) Use of statistical and neuronal network techniques to detect how sto

matal conductance responds to changes in the local environment. Ecol Model 97:217-246
Kang DH, Chon T-S,Park YS(1995)Monthly changes in benthic macroinvertebrate communities in dif

ferent saprobities in the Suyong and Soktae streams of the Suyong River. Kor J EcoI18:157-177
Kung SY(1993) Digital neuronal networks. Prentice Hall, Englewood Cliffs, New Jersey
Kwon T-S, Chon T-S (1993) Ecological studies on benthic macroinvertebrates in the Suyong River. Ill.

Water quality estimations using chemical and biological indices. Kor J Lim 26:105-128
Legendre P (1987)Constrained clustering. In: Legendre P,Legendre L (eds) Developments in numerical

ecology. Springer-Verlag, Berlin, pp 289-307
Legendre P,Legendre L (eds) (1987) Developments in Numerical Ecology. Springer-Verlag, Berlin
Legendre P,Dallot S, Legendre L (1985)Succession of species within a community: Chronological clus

tering, with applications to marine and freshwater zooplankton. Am NatI25:257-288
Lek S,Delacoste M, Baran P,Dimopoulos I,Lauga J,Aulagnier S (1996) Application of neuronal networks

to modelling nonlinear relationships in ecology. Ecol Model 90:39-52
Levine ER,Kimes DS,Sigillito VG (1996) Classifying soil structure using neuronal networks. Ecol Model

92:101-108
Ludwig JA,Reynolds JF (1988) Statistical ecology: A primer of methods and computing. John Wiley and

Sons, New York
Quinn MA, Halbert SE, Williams III L (1991) Spatial and temporal changes in aphid (Homoptera:

Aphididae) species assemblages collected with suction traps in Idaho. J Econ EntomoI84:171O-1716



114 T.-S.Chon . Y.-S.Park· E.Y. Cha

Recknagel F, French M, Harkonen, P,Yabunaka K-l (1997) Artificial neuronal network approach for
modelling and prediction of algal blooms. Eco Model 96:11-28

Rumelhart DE, Hinton GE,Williams R) (1986) Learning internal representations by error propagation.
In: Rumelhart DE, McCelland )L (eds) Parallel distributed processing: Explorations in the micro
structure of cognition, vol I: Foundations. MIT Press, Cambridge, pp 318-362

Sladecek V (1979) Continental systems for the assessment of river water quality. In: lames A, Evison L
(eds) Biological indicators of water quality. John Wiley & Sons, Chichester, pp 31-32

Stankovski V,Debeljak M, Bratko I, Adamic M (1998) Modelling the population dynamics of red deer
(Cervus elaphus L.) with regard to forest development. Ecol Model 108:143-153

Tan SS,Smeins FE (1996) Predicting grassland community changes with an artificial neuronal network
model. Ecol Model 84:91-97

Tuma A,Haasis H-D,Rentz 0 (1996) Acomparison of fuzzy expert systems, neuronal networks and neuro
fuzzy approaches controlling energy and material flows. Ecol Model 85:93-98

Turchin P,Taylor AD (1992) Complex dynamics in ecological time series. Ecology 73(1):289-305
Waibel,A.,Hanazawa, T.,Hinton, G.,Shikano, K.G.and Lang, K.).(1989) Phoneme recognition using time

delay neuronal networks. IEEE Trans Acoustics, Speech and Signal Process 37:328-339
Wasserman PD (1989) Neuronal computing: Theory and practice. Van Nostrand Reinhold, New York
Woodiwiss FS (1964) The biological systems of stream classification used by the Trent River Board.

Chemistry and Industry 14:443-447
Wray ), Green GGR (1994) Calculation of the Volterra kernels of non-linear dynamic systems using an

artificial neuronal network. BioICybern 71:187-195
YoonB),Chon TS (1996) Community analysis in chironomids and biological assessment of water quali

ties in the Suyong and Soktae streams of the Suyong River. Kor I Lim 29(4):275-289
Zurada )M (1992) Introduction to artificial neuronal systems. West Publishing Company, New York



Chapter 8

Neuronal Network Models of Phytoplankton
Primary Production

M. Scardi

8.1
Introduction

Empirical models of phytoplankton primary productivity have always played an im
portant role in oceanographic research, mainly because direct measurements of this
process are difficult, expensive and time-consuming. Moreover, these models are
needed to estimate primary production from the large phytoplankton biomass data
sets that are obtained by remote sensing. They are also necessary to carry out instru
mental estimates of primary production (e.g. by pump and probe fluorometers) and,
in general, to post-process phytoplankton biomass data. Many different empirical
models have been developed during the last 40 years and several of them have pro
vided very useful results. The most common formulations among these models are
based on simple linear relationships, where depth-integrated phytoplankton primary
production depends on phytoplankton biomass within the upper layer of the water
column (i.e. the upper attenuation length). For instance:

'I,PP = 1.254 + 0.72810g(Ck ) (Smith and Baker 1978) (8.1)

More complex linear relationships have also been used, taking into account simul
taneously phytoplankton biomass, surface irradiance and water transparency (repre
sented by the inverse of the light attenuation coefficient or by the euphotic zone depth)
as composite variables:

(Cole and Cloern 1987) (8.2)

or by means of multiple linear regression (e.g, Eppleyet al. 1985). Of course, more com
plex models have also been developed, taking into account other variables, such as,
for instance, day length or photosynthetic rates, but the actual significance of the im
provement in accuracy that they provided is still to be fully evaluated.

A typical example of an advanced empirical model of phytoplankton primary pro
duction is the vertically generalized production model (VGPM) that was developed
by Behrenfeld and Falkowski (1997) to estimate annual global primary production in
the oceans from remotely sensed biomass data. The VGPM can be summarized as:

"" B 10
~PP = 0.66125 Popt --ChloZpDl

10 + 4.1
(8.3)
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where r,pp is the phytoplankton primary production integrated over the euphotic zone
(mg C m-2 day'"), P~PI is a photoadaptive variable [maximum carbon fixation rate
within the water column, mg C (mg Chirl h- l

] , 10 is the surface irradiance (E m-2day-l),

Chl., is the surface phytoplankton biomass (rng ChI m-3), Zp is the euphotic zone depth
(m) and Dl is the day length (decimal hours). For practical model applications P~PI is
approximated by a 7th order polynomial function of the sea surface temperature and
Zp is assessed by means of power functions of the surface phytoplankton biomass.

Even though modern empirical models may provide adequate estimates of phy
toplankton primary production on the basis of widely available variables and good
generalization capabilities, a further improvement in accuracy can be achieved by
means of artificial neuronal networks (Scardi 1996).Even though in the first applica
tions only very simple error back propagation neuronal networks were used, they pro
vided very good results and alwaysperformed better than conventional empirical mod
els.

This was not a surprising evidence, since neuronal networks are inherently more
flexible than conventional empirical models, as they are able to approximate vir
tually every multivariable function, provided that enough data are available for
their training and that their structure is adequate (see, for instance, Hornik et al.
1989). However, this knowledge is restricted to the connectionist community, while
ecologists and oceanographers are still not acquainted with these tools, even
though their potentialities in ecological applications have been recently pointed
out (Lek et al. 1996).As far as phytoplankton studies are concerned, Recknagel et al.
(1996) and Recknagel (1997) used neuronal networks to predict species abundance
of blue-green algae.

In this paper a general scheme of neuronal network for modelling phytoplankton
primary production is outlined as well as its further development and optimization
for small and large spatial scale applications.

8.2
Materials and Methods

The neuronal networks that are presented in this paper were trained using the most
common algorithm, i.e. the error back propagation (Rumelhart et al. 1986).A constant
unit learning rate and no momentum were used for all the training procedures, since
the optimization of these parameters is not critical in primary production modelling,
as the shape of the error surfaces is usually very simple.

Conversely, in order to avoid overfitting and to optimize the generalization capa
bilities of the neuronal networks, which are of paramount importance in ecological
applications, several techniques were applied simultaneously. First of all, only a sub
set of the whole training set was randomly selected for each training epoch. This so
lution was also needed because a "learning per pattern" strategy had been chosen for
the neuronal network training, which required the training patterns to be submitted
in a different order at each learning epoch. Moreover, the training procedures were
carried out according to an "early stopping" strategy, i.e. the training was stopped as
soon as the validation set error started to increase. Finally,a small random amount of
gaussian noise (p =0 and eT= 0.01in all the cases) was added to input patterns at each
epoch (Gyorgyi 1990).This procedure, also known as jittering, contributed to the NN
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regularization by producing an unlimited number of "artificial" training patterns that
were similar, but not identical, to the original ones.

The optimal structure of the neuronal networks was defined after empirical tests,
which were carried out by varying the number of hidden layer neurons from one half
to the double of the number of input neurons. This range was heuristically set, but the
rationale that supports this choice is that the "shape" of the relationships that had to
be modelled was not very complex, so that it could be reproduced by a limited num
ber of hidden layer neurons. The optimal structure was the one that provided the
smallest mean square error of the phytoplankton primary production estimates. The
error distribution was also checked, even though it was not considered as the primary
criterion.

All the neuronal network inputs were scaled into the [0,1] interval, as well as the
output (i.e, primary production). All the neurons had sigmoid activation functions,
namely:

1
!(a) =--

1+ e-a

Twodifferent data sets were used for the applications that are presented in this paper.
The first one is a global data set, which consists of 2 218 phytoplankton biomass, irra
diance, temperature and primary production data. The latter variable was integrated
within the euphotic zone depth (i.e. within the depth where irradiance is 1% of the
surface value), whereas the predictive variables took into account surface measure
ments only (so that they could be easily substituted by remote sensing data in model
applications). The geographical coordinates of the sampling station and the sampling
date were also known for every training pattern. The sampling date was "split" into
two new variables in order to use it as a neuronal network input. In particular, the
day of the year was univocally described by means of two variables ranging from
o to 1, which correspond to the cartesian coordinates of a point onto a unit diameter
circle:

1[. (21r' day) ]date-. =2sin~ + 1 (8.5)

The second data set was located at the opposite end of the spatial scale, as it was
collected at a single sampling station in the Gulf of Napoli (Italy) during a y-year cycle
of fortnight measurements. It consisted of 825 phytoplankton biomass (both as chlo
rophyll and phaeophytin concentrations) and primary production observations that
were collected at different depths, from surface to 60 m, as well as 116 surface irradi
ance and temperature values. Sampling dates were converted according to the same
procedure that has been described for the previous data set. The sampling site is lo
cated in the inner part of the Gulf of Napoli, but it is not directly influenced by terres
trial runoff.
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8.3
Results

M. Scardi

8.3.1

Basic Primary ProductionModelling: Neuronal Networksvs.Linear Regressions

Assuming that a phytoplankton species assemblage does not change significantly its
composition, the primary production is obviously proportional to the photosyntheti
cally active biomass and is mainly limited by nutrient availability. Light is also an im
portant factor, even though adaptation of phytoplankton cells to different intensities
plays a major role in determining the light requirements for optimal primary produc
tion. Water temperature also influences primary production, even though to a lesser
extent.

Therefore, on a small spatial scale, if a well-defined pelagic ecosystem is taken into
account, it is not very difficult to describe and empirically model the relationships
between these variables and primary production. This is the reason why simple linear
models are quite effective when these conditions are met.

A comparison between a linear model (crosses) and a neuronal network model
(circles) of surface phytoplankton primary production in the Gulf of Napoli is shown
in Fig. 8.1. The linear model was based on a composite variable that included surface
biomass (Bo,mg ChI m-3

) , irradiance (Io, E m-2 day'") and water temperature (To, QC):

(8.6)

These variables were also used as inputs of a 3-4-1 neuronal network, that was
trained on one half of the data set (n =58) and tested on the second half (n =58).The
linear model was almost as accurate as the neuronal network (R2 = 0.696 and R2 = 0.862
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on log-log scale, respectively) because of the simplicity of the relationship between
predictive variables and primary production within the observed range. However,
primary production varied according to depth as shown in Fig. 8.2 (only primary pro
duction is log-transformed), both because of light attenuation and nutrient availabil
ity.The shape of the vertical profiles of primary production that were recorded in the
Gulf of Napoli did not vary substantially, even though their magnitude was far from
constant. If the integral of the primary production over a 0-60 m interval was taken
into account (Fig. 8.3), a 3-4-1 neuronal network model (circles, R2 =0.894) clearly
outperformed the linear model based on the aforementioned composite variable
(crosses, R2 =0.002), i.e.:

It is evident that the poor performance of the linear model was due to the extinc
tion of the primary production with depth, which is strongly nonlinear especially in
summer conditions, when high surface phytoplankton biomass is usually observed.

1000
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Fig. 8.2. Vertical profiles of phy
toplankton primary production
in the Gulf of Napoli (n = 16,
from July 26, 1984 to November
15,1988)
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8.3.2
A Depth-Resolved Primary Production Model

The whole Gulf of Napoli data set (n = 825) was used to train a more complex neu
ronal network and to push the connectionist approach beyond the limit of the con
ventional empirical models. Other predictive variables were added to the basic set
in order to obtain primary production estimates at different depths: day of the
year (mapped onto a circle as already explained), mean phytoplankton biomass in the
upper water column (mg CW m-\ daily variability of the surface irradiance (see Appen
dix) and, of course, depth (m). Two pigment concentrations were used to define phy
toplankton biomass at the selected depth, namely chlorophyll and phaeophytin (mg m-3

in both cases).These concentrations, as well as primary production data, were log-trans
formed to correctly evaluate the behaviour of the model over a wide range of values.

The neuronal network model was trained on 412 patterns, which were randomly
selected out of the 825 available ones (but only 3/4 of the training patterns were ran
domly submitted at each training epoch). The remaining patterns were used for test
ing purposes. A 9-7-1 structure of the neuronal network provided the best results and
was used in subsequent applications.

The neuronal network estimates were compared to the observed primary produc
tion values in the log-log scatter plot in Fig. 8.4. The overall accuracy of these esti
mates was very good (R2 = 0.810, after transformation to raw data units). A further,
although minimal, improvement (R2 = 0.822) could be achieved by means of a linear
correction (PP' =1.43843PP). It has to be stressed that this correction, which corre
sponds to a small vertical shift of all the points in the log-log plot in Fig. 8-4,was needed
after the data back-transformation from log to raw units. In particular, it compensates
the different role that very large and very small values play with or without log trans
formation.
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The distribution of the output error, which is shown in Fig. 8.5,provides a further
evidence of the good quality of the neuronal network estimates. In fact, 80.6% of
the errors were smaller than 10 mg C m-3 day' in absolute value (see bars 0 and 10,

i.e. -10 < error S 0 and 0 < error s 10, in Fig. 8.5).
An application of this depth-resolved neuronal network model is summarized in

Fig. 8.6, where vertical profiles of primary production were estimated (solid line,
step = 1 m) and compared to discrete observed data (black circles). It is evident that
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different distributions of the primary production in the water column, that correspond
to different seasonal conditions, were accurately reproduced by the neuronal network
model using surface data for all the predictive (input) variables but for pigment con
centrations.

8.3.3
Modelling Primary Production in the Oceans

The role of phytoplankton productivity in the oceans is crucial in driving the global
carbon cycle, and its assessment is a major ecological problem. Several empirical
models were developed to obtain estimates of the global phytoplankton primary pro
duction on the basis of remotely sensed data and their results are (probably) accurate
enough. However,in some geographic areas (e.g. Southern Ocean, Mediterranean Sea,
etc.) conventional global models are not able to effectively reproduce the local func
tioning of the water column, because they were poorly calibrated or because they lack
the necessary degree of flexibility. The first problem obviously depends on the scar
city of data, but a neuronal network approach may be very effective in solving the sec
ond one.

Two neuronal network models were trained on 1 109 patterns (i.e. one half of the
available global data set), using only 554 (i.e, one half of the training set) at each ep
och. The first one was a very simple 3-4-1 model, which used only surface biomass (Chlo,
mg ChI m"), irradiance (Io,E m-2 day') and water temperature (To, DC) as predictive
variables. The second one was a 7-7-1 model and used the same predictive variables,
but also considered geographical coordinates (latitude and longitude) and day of the
year.The latter variable was mapped onto a circle as previously described. Even though
log-transformation of biomass and primary production data was tested, the best re-
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sults were obtained using raw data in the training patterns and computing the mean
square error on log-transformed output and target data.

In order to reduce the effect of outIiers on the training procedure, the mean square
error was computed only on 90% of the training patterns, excluding the larger errors.
The rationale for this choice is that primary production measurements may be affected
by severe errors, and that the training data are not to be taken for granted.

The results of the simpler model are shown in Fig. 8.7a. It is evident that they are
not satisfactory, especially with respect to low primary production values. The second
model successfully exploited the information contained in the additional input
(co)variables and performed considerably better, as shown in Fig. 8.7b (R2 = 0.573 with
untransformed data).

The output error distribution was almost symmetrical, and 3 out of 4 output val
ues were within 500 mg C m-2 day' ' from the observed value (Fig. 8.8). This is not a
negligible error in the framework of a small spatial scale application, but it is almost
insignificant at global scale, when, for instance, equatorial regions are modelled to
gether with polar regions.

8.3.4
Neuronal Network Models vs. Conventional Models

These neuronal network models compared favourably to conventional models in sev
eral applications, providing better results not only with respect to data fitting, but also
when the meaning of the "shape" of the modelled relationships was taken into account.

The primary production estimates obtained from a very simple 3-4-1 neuronal net
work model trained on Mediterranean Sea data (a subset of the global data set, n = 97)
under different combinations of surface irradiance and biomass values are shown in
Fig. 8.9a.These estimates refer to a Western Mediterranean station (430 N,80 E) in mid-
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Fig. 8.7. Global neuronal network models of phytoplankton primary production; a estimates were based
on surface biornass, irradiance and temperature only; b estimates were based on the whole set of pre
dictive variables
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June surface temperature conditions (18.94QC). The primary production estimates
obtained from the VGPM (Behrenfeld and Falkowski 1997) under the same conditions
are shown in Fig. 8.9b.

The neuronal network model shows a more complex behaviour than the VGPM
model, and includes features that are not represented in the latter. For instance, the
neuronal network model correctly reproduces the effectof self-shading on phytoplank
ton productivity, as the primary production estimates do not increase monotonically
with surface chlorophyll concentration.

The neuronal network model also mimics photoinhibition that occurs when high
surface irradiance conditions are observed, except in case of very high phytoplank
ton biomass. It also describes only mono tonic relationships and is much too sensitive
to very low irradiance values, as the primary production gradient in the [0, 101 irradi
ance interval is unrealistically steep.

Even the neuronal network approach, however,is not perfect. For instance, the pri
mary production estimate for null biomass values is quite small, but it is not null, as
expected. The same applies to null irradiance conditions.

Of course, these are minor problems in real world applications, but they clearly show
that neuronal network models completely depend on training data, even on those data
that are unlikely to be actually measured (as, for instance, a null biomass values). In
other words, neuronal networks are modelled after the "shape" of the training data
sets, so they tend to retain all (and only) the features that are found in them. When
small training data sets are used, the need for good generalization is particularly im
portant.

The surface in Fig. 8.9c shows the primary production estimates provided by a
3-4-1neuronal network similar to the one presented in Fig. 8.8a, but for the lack of
adequate generalization. In this case the neuronal network was overtrained and acted
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Fig8.9. Primary production estimates (PP) obtained from different combinations of surface irradiance
(Io) and phytoplankton biomass (Chlo). The primary production surfaces were obtained for a Western
Mediterranean station (43° N, 8° E) in mid-Iune surface temperature conditions (18.94°C); a from a
3-4-1 Mediterranean Sea neuronal network model; b from the VGPM (Behrenfeld and Falkowski 1997);
c from an overtrained 3-4-1 neuronal network

as a memory rather than as a model. It accurately reproduces the training data, even
though its shape does not make sense from a more general point of view.High values
are attained, for instance, in the rightmost corner of the primary production surface,
even when irradiance is null or very low.

This problem, of course, cannot affect conventional models, but can seriously hinder
neuronal network models if it is not carefully taken into account.

8.3.5
Sensitivity Analysis

A better understanding of the modelled processes can be achieved by means of sensi
tivity analysis, which can provide very useful information about the role of the pre
dictive variables in determining the neuronal network outputs. Of course, only first-
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order interactions can be easily considered and therefore the sensitivity analysis re
sults are to be carefully interpreted.

The results of a sensitivity analysis procedure are shown in Fig. 8.IO.A random value
from a [-0.5,0.5] uniform distribution was added to each input of the 3-4-1 global
neuronal network model that was previously described (see Fig. 8.7a). Ten different
random values were added to each input value of the three predictive variables, taken
one at a time, and the ranges of the primary production estimates were plotted against
observed values. The effects of this noise addition are shown for temperature
(Fig. s.ioa), irradiance (Fig. s.iob) and phytoplankton biomass (Fig. 8.IOC). Accord
ing to the expectation, it is evident that the latter variable is the most sensitive to per
turbation, and that it is the most important predictive variable in determining the
primary production values.
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Fig. 8.10. Sensitivity analysis of the 3-4-1 global neuronal network model. A random value in the
[-0.5,0.5] range was added to each input variable, one at a time. The range of the primary production
estimates obtained after perturbation of 10 input values are shown for; a surface temperature (To);
b surface irradiance (Io); c surface phytoplankton biornass (Chlo)
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Fig. 8.11. Mean square error variation caused by different levels of random perturbation of the input
variables in the 3-4-1 global neuronal network model

It can be also interesting to try how much noise can be added to each input with no
significant modification of the neuronal network output. The results of this test on
the same 3-4-1 global model are shown in Fig. 8.11. It can be noticed that a [-0.05,0.051
random noise addition did not cause perceivable effects on the mean square errors.
This evidence implies that this neuronal network model is very robust with respect to
small errors in predictive variables (e.g. sampling errors).

When greater amounts of white noise are added to the neuronal network inputs,
the changes in output values become more evident. It is not surprising that phytoplank
ton biomass is the most sensitive predictive variable, but it is interesting to notice that
irradiance was the least sensitive one. This result probably depends on the fact that
temperature, which is usually the least sensitive variable at small spatial scale, is
strongly related to latitude at global scale.

8.4
Discussion

Neuronal networks can be very effectivetools in ecological modelling. Asdemonstrated
by the sample applications that have been briefly presented in this paper, they are able
to reproduce complex nonlinear relationships and to provide better accuracy than con
ventional models do. They are also very flexible tools, which can be applied to a num
ber of different problems.
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As far as primary production is concerned, there is certainly space for an enhance
ment of the results that have been already presented. Remotely sensed radiances, for
instance, could be directly used as predictive variables, or fluorometric data can be
used in the depth-resolved model of the Gulf of Napoli or in other similar models.

In general, neuronal network models provide estimates that are usually accurate
(low mean square error) and unbiased (small deviation from a null mean error). How
ever, one of the main problems in the application of neuronal networks to ecological
modelling is their tendency to overfit the training data patterns. This problem is par
ticularly relevant in an ecological context, where data sets are usually scanty. Several
strategies can be applied in order to obtain a good generalization, but none can re
place adequate data sets for training and testing procedures.

A major advantage of neuronal network models, not only for phytoplankton pri
mary production modelling, is their capability of incorporating information that is
difficult to manage with conventional models (e.g. geographical coordinates, binary
or nominal data, etc.), but that tends to co-vary with the modelled (i.e. output) vari
ables. The covariation does not have to be linear, because neuronal networks can deal
with nonlinear relationships more easily than other empirical models.

Finally,sensitivity analysis makes it possible to assess the strength of the relation
ships between predictivevariablesand phytoplankton primary production as they emerge
from the observed data rather than as they appear in the framework of an a priori simpli
fied theoretical model. Therefore, sensitivity analysis can provide a deeper insight into
the dynamics of phytoplankton primary production under real world conditions.
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Appendix

The daily variability of the surface irradiance caused by cloudiness was considered as
a neuronal network input to account for the effect of photoadaptation of phytoplank
ton cells on primary production.

Assuming that under constant weather conditions the surface irradiance may be
heuristically described by a gaussian curve, the differences between log-transformed
irradiance values at time t and t + 1 should be placed along a straight line. The deter
mination coefficient (R2

) of the linear regression of these differences against time in
dicates how much variance is explained by the linear regression (i.e. by the gaussian
curve). Therefore, 1 - R2 is a measure of the unexplained variance due to deviations
from the gaussian model because of cloudiness. Only data from 8:00 A.M. to 4:00 P.M.,

i.e. from hours with daylight conditions during the whole year,were taken into account.
Sincehigh variability of the irradiance is likelyto stress phytoplankton cells more se

verelyunder high irradiance conditions than under lowirradiance conditions (e.g, during
winter), the 1 - R2term wasmultipliedbythe totaldaily irradiancescaledintothe [0,I] interval.

The resulting index varies within the [0, I] range and summarizes the variability
of the irradiance during the day. Small values indicate constant conditions, whereas
large values indicate variable cloudiness. An example of the index calculations for a
sunny day, with small deviations from maximum irradiance, is shown in Fig. A8.I.
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Fig. A8.1. An example of calculation of the cloudiness variability index that was used as an input vari
able in the depth-resolved primary production neuronal network model of the Gulf of Napoli (see text)





Chapter 9

Predicting Presence of Fish Species in the SeineRiver
Basin Using Artificial Neuronal Networks

P. Boet . T.Fuhs

9.1
Introduction

Fish communities are the expression of fundamental biological processes (reproduc
tion, feeding, and shelter) at different scales in time and space. They can be consid
ered to be good indicators of the health of aquatic ecosystems (Fausch et al.1990). This
paradigm is the basis for using biological monitoring of fish to assess environmental
degradation (Karr 1987).

Such a community-based approach for monitoring aquatic ecosystems, however,
requires a sound understanding of the nature of the major factors that cause, or at least
explain, the patterns of a fish community's structure and composition among water
bodies (Lyons1996).The identification of these factors, their evaluation, and their rank
ing according to a hierarchical system, would be therefore an essential tool for the
conservation, or the restoration, of both the populations and the aquatic environments.

In the Seine River basin, an initial study has evidenced the main factors that con
tribute to the current organization of the fish assemblages on the scale of the entire
hydrographic network (Belliard 1994).The characteristics of the environment associ
ated with the longitudinal and regional organization of the basin proved to be deter
mining factors (Belliard et al. 1997).

This work is based on the results of in situ fish sampling made by electrofishing.These
data are by nature extremely heterogeneous. The reasons are twofold: on the one hand,
they come from sampling aimed at various objectives, and, on the other hand, the catch
technique presents unavoidable biases, especially in the case of large watercourses.

The determination of the relationships between the habitat characteristics and the
presence of the fish species would be of great interest. First, they would quantify the
comparative importance of the environmental variables in the structuring mechanisms
of the fish communities. Second, they would allow researchers to test the impact of
perturbations of those variables.

For these reasons we attempted to use connectionist networks, capable of solving
nonlinear problems, with robustness with respect to noised or incomplete data, to
predict the composition of a fish community according to the environmental charac
teristics.

9.2
Description and Selection of Data

Our work is based on the exploitation of a large database covering the whole Seine
River basin. These data include the results of over 700 fish catches at 583 sampling sta-
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t ioris (Fig. 9.1). Th ey consist of fish species abunda nce . repr esenting m o re th an
200000 fish belongin g to 39 species.

In add it ion, for each statio n, abo ut 15 covariates descr ibe the characte rist ics of th e
river reach and its nearby environmen t. Among them. we select th e mo st relevant in
put data on the basis of th e results of our previous stud ies (Belliard 1994; BelIiard et aI.
1997) . We keep six of them.

• The stream order (Strah ler 1957) is a parameter of the pos ition of the fish ing sta tion
with in an upst ream-downstream gra dient in th e hydr ograph ic netwo rk. Given its
summa ry na ture, it accounts for nu merous physical and func tional variab les in the
waterway. Th e lower stretches of th e Seine River are order eight.

• Th e ecoregion is the natur al region based on homogeneous environmental charac
ter istics to which the station belongs. We used the first two hierarchical levels of the
ma p of the phytoecological zone s of France (Dupias an d Rey 1985). which are deter
mine d by climatic d ifferen ces and by the geological natu re of the subs tra te. This
yielded seven regio ns for the whole basin (BeIIiard et aI. 1997).

• The slope and width are classic morphological descriptors in hydro biology (Hue t
1949; Illies and Botosanea nu 1963; Schlosser 1982; Zalewski and Naiman 1985; Rahel
and Hubert 1991).
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• The quality of the water is a score provided by the Seine-Normandy Water Agency
(AREA 1992). It ranges from 1 to 5 according to the degradation of the water quality.
This index uses 5 qualitative values (excellent, good, fair, mediocre, bad) to integrate
12variables (temperature, dissolved oxygen,pH, % oxygen saturation, y-days biologi
cal demand, nitrates, phosphates, ammonia, heavy metals, turbidity, chlorophyll, and
faecal coliforms).

• The quality of the habitat is a summary index taking into account the degree of deg
radation of five components of the physical habitat: the major and the minor bed,
the nature of the banks and of the substrate, and the degree of regulation of the flow
(Souchon and Trocherie 1990). It ranges from 0 to 3 with the increase of the artifici
alisation of the habitat.

Each component is graded 0, 1 or 2, according to its situation, i.e. pseudonatural,
influenced or artificial. The global quality of the habitat is equal to the worst note
obtained by one of components. When several components obtain the poorest grade,
the final grade is decreased by 1. Finally,4 classes of habitat quality are distinguished:

o. very good, all components are pseudonatural (0) ;
1. good, only one component is influenced (1) ;
2. mediocre, at least two components are influenced (1), or one is artificial (2) ;
3. bad, at least two components are artificial (2).

As the values of the descriptors have not always been collected at the time of the
fishing investigations, we reduced our database to the 507 more recent fish catches,
i.e. since 1980.

Finally, we considered as output the only 26 most representative fish species (fre
quency >9%, Table 9.1) out of the 39 species present over the basin. Since the ANN
method is known to be sensitive to greatly unbalanced samples, it could not yield an
accurate prediction for rare species despite of their likely biological significance.

9.3
Methodology

9.3.1
Choice of Implementation and Tuning of Parameters

The objective of our study is therefore to predict the presence or absence of fish based
on the environmental characteristics of the river. The problem is one of classification,
in which the use of multilayer connectionist networks has revealed its value in a broad
field of studies (Rumelhart et al. 1986).

Wechose the so-called MASS implementation of ANN,provided by Ripley and de
scribed in Ripley (1996) and Venables and Ripley (1997). This implementation is freely
available as an add-on library package for S-PLUS and R software packages. It is based
on the BFGS method, a quasi-Newton optimizer which estimates iteratively the Hes
sian matrix. As a second-order estimation method, it is free of any rule-of-thumb tun
ing parameters, like learning rate or momentum, contrary to the classical back propa
gation algorithm (Dennis and Schnabel icsj).
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Table 9.1. List of the 26 most frequent fish species in the database

Family Species Common name Species code

Petromyzonidae Lampetraplaneri Brook lamprey Lap

Anguillidae Anguifla anguifla Eel Ana

Cyprinidae Alburnusalburnus Bleak Ala

Barbus batbus Barbel Bab

Abromisbromo Common bream Abb

Blicea bjoerkna White bream Bib

Cyprinus earpio European carp Cyc

Chondrostoma nasus Nase Chn

Gobiogobio Gudgeon Gog

Leuciscus cepbalus Chub Lec

ieuciscus ieuciscus Dace Lie

Phoxinus phoxinus Common minnow Php

Rutilus rutilus Roach Rur

Seardinius erythrophtafmus Rudd Sce

Tinea tinea Tench Tit

Cobitidae Barbatulabarbatula Stone loach Baa

Esocidae Esox iucius Pike Esl

Salmonidae Oncorhynchus mykiss Rainbow trout Onm

Salmotrutta fario Brown trout Sat

Gadidae Lota Iota Burbot Lol

Gasterosteidae Gasterosteus aculeatus Three-spined stickleback Gaa

Pungitius pungitius Nine-spined stickleback Pup

Cottidae Cottusgobio Sculpin Cog

Percidae Gymnocephalus cernua Ruffe, pope Gyc

Perca fluviatilis Perch Pef

Stizostedion lucioperca Pike-perch Stl

The parameters to be tuned are then restricted to (i) the maximum number of it
erations, (ii) the tolerance for the error criterion and (iii) the weight decay parameter.
For the first one, we decided to always wait for the convergence of the algorithm, in
creasing the maximum number of iterations if needed. The second one equals 0.0001,

which is a sensible value for our data. We finally followed Ripley's recommendations
for the weight decay, choosing it to be 0.005.

However,the effective use of this technique is nonetheless a delicate operation, since
it still requires a correct sizing of the network, for which there is no straightforward
methodology.
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9.3.2
Architecture of the Network and Error Criterion

135

The inputs of the network are closely related to the predictive variables we selected.
Only one of them, the Ecoregion, is purely qualitative, and must be split in as many binary
variables as its different values (6 in this case) minus 1. The quantitative variables being 5,
the input layer includes 10 units. In order for the weight decay regularization to make
sense, Ripley's implementation normalizes the continuous variables between 0 and 1.

Our first idea was to build a network able to predict in one shot each of the 26 spe
cies we selected. Doing so, we hoped to take into account the correlation between spe
cies. However, this would have required a 26 units output layer. If N is the number of
hidden units, the total number of parameters would have raised 37N + 26. This num
ber has a questionable statistical relevance as soon as N is moderately high (say 6-8)
in regard to our 507 catches. We have eventually chosen in this first attempt to focus
on the hidden layer size and consequently we trained a different network for each of
the 26 species. Together with the need to train 26 different networks instead of one,
the major drawback of this approach is to neglect the possible interactions between
species despite of their biological evidence.

Since our problem is a binary classification, we need a sole output unit whose value
is the probability of presence of the studied species. This implies that each unit has a
logistic transfer mode, and allows the use of a maximum likelihood error criterion,
i.e. the entropy fit criterion (Ripley 1996).

9.3.3
Weighting of Data

ANN models, like many classification methods, are biased towards the majority class.
This may yield unsound prediction quality for unbalanced data. For example, initial
experiments on the common carp (10% of the catches show this species) often give a
o-valued response network, unable to predict any presence. Even if such a network
shows a "good" prediction ratio, it is totally useless! This is the reason why we chose to
weight the minority class to get a balanced sample. We uniformly assigned the ratio
of the two class sizes to any observation belonging to the minority class.

9.3.4
Prediction Error Assessment

As any statistical inference model, ANN are subject to a bias-variance dilemma (Geman
et al. 1992). This dilemma stems from the finiteness of the catch sample we own. The
bigger ANN model we select, the lower the bias, but the higher the between-sample
variability and vice versa. The degrees of freedom of ANN model are the size of the
hidden layer, i.e. the number of its units. Then, selecting a good ANN model is closely
related to the choice of this number.

A standard method to select this number consists of separating the available data
in a training set and a validation set. The prediction error rate is then computed over
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the validation set for each different number of hidden units. Eventually, the network
with the lowest generalization error is kept. Although the method is applicable in our
case, the rather small number of observations of data (507 catches) led us to prefer a
computer intensive but statistically better founded method, the cross-validation in
troduced by Stone (1977).

For each number of hidden units, we performed a s-fold cross-validation to assess
an unbiased prediction error rate. Because of the known high variability of cross-vali
dation, we conducted the experiment at least ten times for each combination of a spe
cies and a number of hidden units. We finally kept the mean and standard deviation
of these (at least ten) experiments. Obviously,each experiment sawa complete redrawal
of the 5 data folds to be used in cross-validation.

Tosum up, for each species and for each hidden layer size between 1 and 10 (or more),
we developed the following protocol.

I. Repeat 10 times
- S-fold breakdown of the weighted sample
- Train ANN for each 4/5 fold
- Build confusion matrix by adding the errors on each corresponding 115 valida-

tion fold
- Compute the total classification error, and the differentiated error ratio for pres

ence and absence
2. Compute mean and standard deviation of the prediction errors
3. Select the "best" hidden layer size

9.4
Results

As stated in the previous section, our aim was to select the best network architecture
with respect to the cross-validation prediction error. This proved to be a more diffi
cult task than we expected. We plotted on Fig. 9.2 the error curve against the number
of hidden units for 8 different species. Each graph shows the three errors (also appear
ing on Table 9.2 for s-unit hidden layers): (i) bad prediction of absence ratio, (ii) bad
prediction of presence ratio, (iii) overall bad prediction ratio. The problem is that none
of the curves appeared to be J-shaped, as is classical in ANN prediction. They rather
involve an initial decrease followed by a plateau behaviour. It is then not straightfor
ward to select the number of units realizing the minimum of the curve, since the er
ror decrease between successive number of hidden units has a magnitude similar to
the standard deviation of the error. To achieve a mode unquestionable choice of the
ANN architecture, we plan for future work the use of penalization criteria such as
Akaike andlor Bayesian information criteria (Schwarz 1978; Sakamoto et al. 1986).
These criteria amount to selecting a model with not too many parameters (e.g. the
number of weights in an ANN), but achieving a satisfactory accuracy.

However,our results are rather good in general as it appears in Table 9.2, where we
summarized the results for s-unit hidden layer networks. This number appears to be
a good trade-off between the network size and the quality of the prediction errors.
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Table 9.2. Prediction error ratios by species. Column 3 shows the prediction of absence error ratio, while
Column 4 shows the prediction of presence error ratio. Column 5 presents the global prediction error
ratio. Parenthesised numbers are the related standard deviations

Common name Species code err0 (std. dev.) err 1 (std. dev.) err Tot (std. dev.)

Common bream Abb 0.324 (0.028) 0.107 (0.015) 0.267 (0.012)

Bleak Ala 0.247 (0.016) 0.097 (0.014) 0.190 (0.008)

Eel Ana 0.297 (0.036) 0.256 (0.027) 0.279 (0.016)

Barbel Bab 0.189 (0.027) 0.147 (0.019) 0.181 (0.012)

White bream Bib 0.227 (0.040) 0.165 (0.030) 0.214(0.017)

Nase Chn 0.229 (0.030) 0.162 (0.024) 0.217 (0.018)

Sculpin Cog 0.132 (0.013) 0.123 (0.009) 0.128 (0.006)

European carp Cyc 0.173 (0.030) 0.182 (0.016) 0.174 (0.013)

Pike Esl 0.126 (0.046) 0.364 (0.019) 0.224 (0.011)

Three-spined stickleback Gaa 0.227 (0.050) 0.247 (0.027) 0.230 (0.018)

Gudgeon Gog 0.448 (0.047) 0.214 (0.056) 0.324 (0.016)

Ruffe,pope Gyc 0.226 (0.058) 0.266 (0.025) 0.230 (0.020)

Brook lamprey Lap 0.221 (0.048) 0.254 (0.027) 0.225 (0.022)

Chub Lec 0.231 (0.021) 0.195 (0.038) 0.207 (0.016)

Dace Lie 0.194(0.031) 0.206 (0.017) 0.198 (0.014)

Burbot Lol 0.167 (0.027) 0.115 (0.017) 0.157 (0.013)

Stone loach Baa 0.131 (0.039) 0,166 (0.026) 0.145 (0.008)

Rainbow trout Onm 0.189 (0.071) 0.224 (0.022) 0.192 (0.017)

Perch Pef 0.196 (0.027) 0.213 (0.050) 0.207 (0.018)

Common minnow Php 0.164 (0.041) 0.156 (0.026) 0.162 (0.017)

Nine-spined stickleback Pup 0.175 (0.060) 0.137 (0.017) 0.167 (0.011)

Roach Rur 0.146 (0.026) 0.202 (0.041) 0.189 (0.014)

Brown trout Sat 0.135 (0.024) 0.123 (0.015) 0.130 (0.010)

Rudd Sce 0.245 (0.029) 0.134 (0.022) 0.211 (0.012)

Pike-perch Stl 0.189 (0.026) 0.144(0.012) 0.185 (0.010)

Tench Tit 0.328 (0.037) 0.252 (0.040) 0.308 (0.023)

The global prediction accuracy ranges from about 13%for the sculpin and the brown
trout, till 32.4% for the gudgeon. When prediction of absence is concerned, the results
range from 12.6% for the pike to 44.8% still for the gudgeon. And when prediction of
presence is concerned, the best ratio is achieved by the bleak with less than 10% and
the worst one by the pike with 36.4%. The protocol we have adopted (at least ten re
peats of experiment, but generally twenty) provide the standard deviation of each ra
tios. These deviations show a rather good behaviour: less than 3% for the global pre
diction errors, whereas the mean for all species is about 1.5.But they are a little larger
for the by-class prediction: from above 1 to iYo for the absence prediction while from
1 to less than 6% for the presence prediction. This means that the different networks
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obtained after training show similar prediction accuracy, even if this accuracy is esti
mated by cross-validation which is known to be variable.

According to the error ratios, the studied species may be classified in four subsets:

• Species with good prediction ratios «19%), and with presence and absence predic
tion errors of the same magnitude. This group includes barbel, sculpin, carp, burbot,
stone loach, minnow, nine-spined stickleback, brown trout and pike-perch.

• Species with average prediction ratios «25%), still with equivalent presence and
absence prediction ratios. This subset is made of white bream, nase, three-spined
stickleback, ruffe, lamprey, chub, dace, rainbow trout, perch and roach.

• Specieswith not so bad global prediction ratio «23%), but with a dissymmetry be
tween presence and absence prediction. This consists of bleak, pike and rudd.

• Specieswith at least a bad prediction ratio (>25%), often combined with the dissym
metry mentioned above. This group is made of common bream, eel, gudgeon and
tench.

We must notice that this hierarchy does not change with the increase of the num
ber of units in the hidden layer. This reinforces the usefulness of raising ecological
reasons to the observed differences among species. The Section 9.5.1 of the following
discussion is devoted to this attempt.

9.5
Discussion

Prediction of a species in terms of presence or absence using connectionist multilayer
neuronal networks, tried and tested on the scale of the Seine River basin, and accord
ing to very global descriptors of the quality of the aquatic medium (six input sum
mary variables) proves to be relevant.

Whereas the input data suffer from considerable noise, the success rates in gener
alization vary from 67.6 to over 8iYo according to the species. That represents a highly
appreciable performance, as a measurement error in the order of 10 to 20% is com
mon in this type of data.

These results confirm the capacity of neuronal networks to accurately predict fish
communities as already shown by Mastrorillo et al. (1998) or Guegan et al. (1998), who
dealt with species richness at a large scale according to few physical variables, and
Mastrorillo et al. (1997),who studied three species of small-bodied fish at the river scale.

9.5.1
Ecological Soundness

The best levels of success were obtained for four species: the trout Salmo trutta fario,
the sculpin Cottus gobio, the stone loach Barbatula barbatula, and the minnow Phoxinus
phoxinus. These are headwater fish species, where stream habitats still remain rela
tively preserved from human disturbances, and whose ecological profiles are clear,
shown, for example, in Fig. 9.3.

On the other hand, the poorest result is observed for the gudgeon Gobio gobio and
may be explained by its ecological particularities. Indeed, in the Seine River basin, the
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Fig. 9.3. Ecological profile of the trout (Salmo trutta fario), the sculpin (Cottus gobio), the stone loach
(Barbatula barbatula), and the minnow (Phoxinus phoxinus) according to the stream order in the Seine
River (from Belliard, 1994). The profile value Vj =Fj - Ftot, where F, is the relative frequency of the spe
cies in the sets of class i, and Ftot is the relative frequency of the species over the whole data sets. All
these profiles are statistically significant X2 test; P< 0.001)

distribution of this species exhibits two distinct groups (Fig. 9.4). In the upstream part,
populations composed of small individuals are commonly linked to good quality run
ning water flowing over sand or gravel substrates. On the contrary, downstream, in
areas richer in organic matter, are found large gudgeons sometimes measuring up to
25cm long. Obviously, it will be wise to carefully separate these two subsets to drive
the networks better and to improve the quality of prediction.

Likewise, the ecology of the eel Anguilla anguilla may explain the poor results ob
served. Because of the heavy pollution of the river in the sixties, this species tends to
decline from the basin. Now,with the general improvement of the water quality due to
the wastewater treatment plants, this migratory species is coming back again, but its
spread in the upper reaches of the river is restricted by the navigation locks. Its distri
bution on the river basin depends therefore on other factors.

The in-depth examination of the results is also interesting. For example, in the case
of the pike Esox lueius (Table 9.2), the total error appears relatively low,but in fact the
prediction of the presence of this fish is bad. In most cases, the network predicts the
absence of the species where it is present (see also Fig. 9.2). This species is involved in
numerous restocking operations, and therefore we believe that its presence is partly
independent of the aquatic environment characteristics.

Conversely, in the case of the common bream Abramis brama, the total error ap
pears high, but it is essentially due to the prediction of the presence of this fish by the
network, whereas in fact it is not included in the catch record (Table 9.2 and Fig. 9.2).
Because of its morphology and its deep water behaviour, this species is difficult to catch
efficiently by electrical fishing, even when the bream is present in the environment.
The situation is similar with the tench Tinea tinea. This illustrates the importance of
the representativeness of the sampling, which raises the problem, already widely dis
cussed, of the ecological significance of the absence of a species in the fauna records.
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Obviously, these poorly predicted species might also be influenced by other ecologi
cal variables than the ones we kept in our model.

9.5.2
On Methodology

Finally, these results focus on the prediction of the presence or absence of a given spe
cies,whereas our initial aim was to consider directly the entire community. Asthis could
not be done with all the species at the same time, we think that the catch data would
have to be reprocessed to identify the different types of fish stock in place. Then, mul
tilayer networks could be driven, output of which would no longer be a particular
species but a given type of fish community.

Nonetheless, given the nature of the data processed and the very summary charac
ter of the input variables, these exploratory results prove to be satisfactory. Indeed, they
are already very close to those obtained using discriminant analyses or multiple re
gressions (Pouilly 1994; Capra 1995). But these authors, working at the scale of the
microhabitat, have obviously obtained extremely reliable data on the description of
the habitat and the sampling of the in situ fauna.

Oberdorff et al. (1998) modelled statistically the occurrence of the 34 most com
mon fish species of France using logistic regression models applied to presence/ab
sence data, in relation to regional and local environmental factors in order to adapt
and calibrate a multimetric index which could serve as a practical technical reference
for conducting biological assessments of lotic systems.

Our initial trials are therefore encouraging, considering that tilere are currently very
fewpredictive models of fish on tile scaleof a whole river basin (Huet 1959;Verneaux 1977;
Oberdorff et al. 1998). In future work, we plan to extend this initial study to tile compari
son with other non linear classification methods like generalized additive models
(McCullaghand Nelder 1989), and decision trees (Breiman et al. 1984). Our long term ob
jective is to simulate the consequences of naturalor human disturbanceson tilecomposition
of a fishcommunityat the scaleof the hydrographicbasin,thanks to such predictivemodels.
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Chapter 10

Elucidation and Prediction of Aquatic Ecosystems by
Artificial Neuronal Networks

F.Recknagel . H. Wilson

10.1
Introduction

Models in aquatic ecology are needed for hypothesis testing (elucidation) and man
agement (predictions) of changing properties in estuaries, lakes, wetlands, and rivers.
Two modelling approaches are distinguished to achieve these aims: inductive and
deductive modelling. Inductive modelling is considered to be the result of structur
ing, aggregation, or pattern extraction of ecological data (see Fig. 10.1). The most com
mon techniques available for inductive modelling are regression analysis and neuronal
network training. Deductive modelling goes much further towards integration of struc
tured and aggregated ecological data into relevant ecological theory (see Fig. 10.1).
Deductive modelling is normally based on physical mass balances for food webs and
nutrient cycles, or heuristic rule sets.

While both inductive and deductive models are supposed to be suitable for predic
tions of ecosystems (Peters 1986; Rigler and Peters 1995; Livingstone and Imboden
1996), there is a dispute about the potential of inductive models for elucidation.
Livingstone and Imboden (1996) conclude that only deductive models based on all
available information, including knowledge of relevant processes obtained in other
contexts, are likely to be elucidative.

The aim of this paper is to introduce artificial neuronal networks as a new genera
tion of inductive models that have potential for ecosystem elucidation as well as for
ecosystem prediction. Two examples are chosen to demonstrate the superiority of
neuronal networks over alternative models: prediction and elucidation of phytoplank
ton abundance, and prediction of density of brown trout redds.

10.2
Phytoplankton Abundance in Lakes and Rivers

10.2.1
Prediction

Blooms of toxic cyanobacteria and dinoflagellates are considered globally a threat to
drinking water supply, aquaculture, fishery and tourism. Predictions of phytoplank
ton abundance with high resolution in time and species composition are therefore of
a high concern for water quality management (NRA1990). Even though there is a broad
variety of phytoplankton models in the literature, there are big differences in the pre
dictive validity and capacity of these models.
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Fig. 10.1. Paradigm on induc
tive and deductive modelling of
aqua-tic ecosystems

F.Recknagel . H. Wilson

Aquatic ecosystems

~

Ecological
data and theory

.>
Data structuring,
aggregation and Theory integration

pattern extraction

Inductive model Deductive model

C><.,
'---- Ecosystem prediction Ecosystem elucidation f--/

for management by hypothesis testing

In Figs. 10.2and 10.3, six prototypes of inductive and deductive models for phy
toplankton are represented. Regression models (see Fig. 1O.2a) can predict steady-state
abundance of chlorophyll a for seasons or years but fail to predict dynamics in abun
dance. Long-term predictions by regression models are widely applied for the trophic
status classification and eutrophication management of lakes (Sakamoto 1966; Vollen
weider 1976; Dillon and Rigler 1975). Time series models (see Fig. 1O.2b) can predict
weekly abundance of chlorophyll a but fail to predict species abundance and succes
sion. It was successfully implemented for short-term predictions of water quality in
the River Thames (Whitehead and Hornberger 1984).

Artificial neuronal networks trained by time series of physical, chemical and bio
logical water quality data proved to be predictive for dynamics of the most abundant
algae species in lakes (French and Recknagel ieca: Recknagel et al. 1997), and rivers
(Meier et al. 1998). Recknagel (1997) and Recknagel et al. (1998) have trained the neu
ronal network model ANNA with eight years of limnological data from Lake
Kasumigaura, Japan. In this model, cell numbers of 5 blue-green algae species had been
chosen as model outputs, and light, temperature, nutrient and zooplankton data were
used as inputs. The authors used the trained model ANNA to predict abundance and
succession of the algae species for two independent years not used for training. The
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model achieved reasonable accuracy in timing and magnitudes (see Fig. 1O.2C). These
results are encouraging in that short-term forecasting, and control of algae species
abundance is achievable in the near future using artificial neuronal networks.

Deterministic ecosystem models (see Fig. 1O.3a) predict daily abundance and suc
cession of functional algal groups but fail to predict varieties of algal species. This type
of model is widely used for scenario analyses to predict efficiency of measures for lake
eutrophication control in medium- or long-term modes (Recknagel icso, Recknagel
et al.1995).Deterministic population models (see Fig. 1O.3b) predict vertical abundance
of a single algal population on a daily basis but do not predict species succession. Okada
and Aiba (1983) and Kromkamp and Walsby (1990) developed population models for
Microcystis which can be used to predict horizons of low concentrations of algal cells
for optimum withdrawal of raw water or for simulation of the effects of artificial mix
ing on algal growth. Heuristic models (see Fig. 1O.3C) predict seasonal succession of
algal species but fail to predict species abundance. Reynolds (1984) constructed a heu
ristic model to qualitatively predict seasonal succession of 49 algal species in temper
ate lakes of different trophic states. It is used as a rapid assessment guide for likely
occurrence of certain algae species in lakes.

It can be summarized that currently only artificial neuronal network models en
able us to predict timing and magnitudes of species dynamics and therefore species
succession in lakes (Fig. 1O.2C).

10.2.2
Elucidation

Underwater light. limiting nutrients, zooplankton grazing, and mixing conditions
are known as environmental factors which drive phytoplankton dynamics in aquatic
ecosystems (Reynolds 1984; Harris 1986). But little is known about temporal and
spatial interconnections of these factors causing constellations for instantaneous
abundance and succession of algae species. In an attempt to gain insight into these
questions, the neuronal network model ANNA(Recknagel iccz: Recknagel et al. 1998)
has been applied to scenario and sensitivity analyses. The model ANNA explicitly
considers all these environmental factors driving phytoplankton dynamics mentioned
above as input variables and the five dominating phytoplankton species as output
variables.

10.2.2.1
Scenario Analys;s: Succession ofM;crocyst;s by Oscillator;a

A succession from Microcystis dominance to Oscillatoria dominance was observed in
Lake Kasumigaura in 1987. Takamura et al. (1992) measured a significant increase in
the TN (total nitrogen)/TP (total phosphorus) ratio from 10 to approximatly 20 at the
time of the species succession. Even though Microcystis is considered as a non Nz-fix
ing Cyanophyceae, it occurred as abundantly as Nj-fixing Cyanophyceae during times
of nitrate deficiency and P04-P sufficiency in Lake Kasumigaura before 1986
(Takamura et al. 1987).Therefore, Takamura et al. (1992) proposed the consideration
of the changed nutrient conditions as the possible reason for the species succession.
They concluded that Microcystis tolerates nitrate deficiency at phosphorus sufficiency



F.Recknagel . H. Wilson

as observed in Lake Kasumigaura before 1987, while Oscillatoria depends on nitrate
sufficiency as observed from 1987 afterwards.

A scenario analysis was carried out with the neuronal network model ANNA
(Recknagel iccy) to test which limiting factor for algal growth may have triggered
species succession in Lake Kasumigaura. The following four scenarios have been de
fined and tested: (1) swap of phosphorus and nitrogen data between 1986 and 1993 ,
(2) swap of zooplankton data between 1986 and 1993, (3) swap of light, temperature
and Secchi depth data between 1986 and 1993, (4) swap of chlorophyll a data between
1986 and 1993.

Figure 10.4 shows the results of the scenario analysis. While the swap of the nutri
ent conditions between 1986 and 1993 did not influence the behaviour of Microcystis,
Oscillatoria experienced a shift of its maximum peak from 1993 to 1986. The swap of
zooplankton data in scenario two produced similar effects on the behaviour of
Microcystis and Oscillatoria as scenario one. The only case where the maximum peak
of Microcystis was shifted from 1986 to 1993 was in scenario three, where light, tem
perature and Secchi depth data were swapped between 1986 and 1993. But these con
ditions in scenario three caused significant decreases of peaks of Oscillatoria in both
years. Finally, scenario four shows that chlorophyll a is obviously the most sensitive
forcing function of the model for Oscillatoria by strengthening maximum peaks in
1993, while chlorophyll a did not affect significantly the behaviour of Microcystis.

The scenario analysis allows one to conclude that Microcystis seems less to be af
fected by the change in nitrate conditions between 1986 and 1993 but by the change in
light, transparency and temperature conditions. By contrast, Oscillatoria seems to be
sensitive to changes in nitrate conditions as well as to changes in zooplankton condi
tions.

10.2.2.2
Sensitivity Analysis: Input Sensitivity of PhytoplanktonSpecies

Asensitivity analysis was carried out with the artificial neuronal network model ANNA
to further clarify findings from the scenario analysis. The trained and validated neu
ronal network was again fed with independent input data for the years 1986 and 1993
of Lake Kasumigaura. Each input variable was separately changed once by +20% and
once by -20% in independent experiments. These experiments were repeated for all
8 input variables, where absolute values of the resulting daily outputs for the blue-green
algae species Microcystis, Anabaena and Oscillatoria from the two experiments were
averaged between 1986 and 1993. As both years 1986 and 1993 appeared to be signifi
cantly different as indicated by the abundances of Microcystis and Oscillatoria, this
approach of sensitivity analysis allowed the investigation of a reasonable spectrum of
diverse conditions.

Results in Fig. io.sa show that changes in global solar radiation by ±20% influence
significantly seasonal dynamics of Oscillatoria, especially in winter and early and
mid summer. At the same time Oscillatoria appears to be relatively insensitive against
changes in water transparency (Fig. 1O.Sb) and water temperature (Fig. 1O.SC).
These results correspond with findings of Takamura et al. (1992), who observed
several Oscillatoria peaks under winter conditions at low temperatures obviously
mainly driven by light and nutrients. Its insensitivity against water transparency
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Fig. 10.4. Scenario analysis on succession of Microcystis by Oscillatoria at the time of the species suc
cession

(see Fig. io.sb) can be explained by its ability to perform buoyancy. Microcystis and
some taxa of Anabaena are known as buoyant algae as well, and therefore are almost
insensitive against water transparency under calm conditions in summer (Fig. io.sb).
Anabaena behaves differently under mixed conditions in spring by showing high sen
sitivity against water transparency. This may be correlated with the timing of the log
growth phase of Anabaena that is indicated by its high temperature sensitivity in spring
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too. Microcystis' known preference of hi gh water temperatu re is confi rmed by the high
temperatu re sensitivity in ea rly summer (Fig . 1O.SC).
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changing P04-P concentrations, as discussed in the context of scenario analysis, but
shows a relatively high sensitivity against nitrate in summer and autumn.

Results in Fig. 10.7show a high sensitivity of blue-green algae against crustacean
copepods in spring and early summer (see Fig. 1O.7a). Although copepods are known
as raptorial feeders, allowing them to feed on large particles of organic matter or zoop
lankton in summer and autumn, only juvenile live stages of copepods can be expected
in spring and early summer which feed on smaller particles such as single algae cells.
Single blue-green algae cells are mainly available in spring and early summer before
they build large colonies (Microcystis) or filaments (Anabaena and Oscillatoria) in
summer. Therefore, the high sensitivity, especially of Microcystis and Anabaena,against
changes in copepods in spring and early summer (Fig. 1O.7a) may be explained by
grazing pressure from nauplius and copepodite larvae. Crustacean Cladocera tend to
be abundant in summer and autumn and are known as filtration feeders utilizing small
organic particles and algae cells. As Microcystis tends to build large cell colonies in
summer, little grazing is expected by Cladocera as proven by the low sensitivity in
Fig. 1O.7b. But much higher sensitivity was calculated for Anabaena and Oscillatoria
against Cladocera in summer and autumn (Fig. 1O.7b). These results indicate that
Cladocera might cope quiet well with filamentous algae for grazing. Results in Fig. 1O.7C
show that rotifera as suspension feeders influence Anabaena abundance mainly in
spring.

Even though the present documentation of the sensitivity results may have limited
the analysis of specific effects by using only absolute values and averaging them be
tween 1986 and 1993, it can be concluded that artificial neuronal network models en
able us to study interconnections and sensitivities of species dynamics and environ
mental control factors.

10.3
Prediction of Density of Brown Trout Redds in Streams

The understanding of organism-habitat relationships becomes increasingly important
for the design of sustainable landscape use practices. The investigation of relation
ships between physical characteristics of streams and the abundance of trout is one
interesting research area in this context where numerous modelling efforts have been
applied. Commonly used techniques include multiple regression analysis, principal
component analysis, and discriminant analysis. Most of these techniques failed to over
come statistical constraints and to cope with distinct nonlinearities in ecological data.

Only recently, genetic algorithms (d'Angelo et al.1995) and artificial neuronal net
works (Leket al.1996)were successfully applied to predict abundance of trout depend
ing on physical characteristics of streams. Both applications have demonstrated the
ability of so-called machine learning methods to overcome previous constraints and
improve predictions.

In Fig. 10.8 results of a multiple regression model and a neuronal network model
are compared by means of data from six mountain streams in France (Lek et al. 1996).
Both models predicted the density of brown trout redds per linear meter of stream
bed using stream habitat characteristics as input variables, such as: wetted width, area
with suitable spawning gravel for trout per linear meter of river, surface velocity, bot
tom velocity, flow, water gradient, and mean depth. The results in Fig. 1O.8a and 1O.8b
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Fig. 10.8. Prediction of density of brown trout redds; a,b by a multiple regression model; c,d by an ar
tificial neuronal network model

show that the multiple regression model performs better after linearisation of the data
by transformation, where the determination coefficient is R2 = 0.643 instead of
R2 = 0.444. But both applications can not overcome a distinct overestimation of low
values and underestimation of high values. Bycontrast, the neuronal network does not
require linearisation of data for optimum performance with a determination coeffi
cient of R2 =0.96 (Fig. ro.sd).

10.4
Conclusions

Prediction and elucidation in aquatic ecology requires models which can cope with
the distinct complexity, nonlinearity and interconnectance of ecosystems. Artificial
neuronal networks appear to suit these purposes very well. The phytoplankton abun
dance and trout abundance examples have shown that artificial neuronal network
models show up well in terms of predictive accuracy and elucidative capacity com
pared to alternative models. There seems to be great potential in exploring further
machine learning techniques for ecological modelling, such as genetic algorithms, ei
ther in combination with neuronal networks or as exclusive applications.
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Chapter 11

Performance Comparison between Regression
and Neuronal Network Models for Forecasting
Pacific Sardine (Sardinops caeruleus) Biomass

M.A.Cisneros-Mata . T.Brey . A.[arre- Teichmann

11.1
Introduction

Forecasting is particularly important for the management of harvested marine fish popu
lations.Unfortunately, random and deterministic factorsare pervasivecharacteristicswhich
can undermine one's ability to conduct accurate forecasts.In some casesthe span or reso
lution of availabledata can limit development or use of a particular kind of model.

Examples of such situations are fisheries management of small pelagics like sar
dines and anchovies, the most important group of aquatic species in volume captured.
Despite vast work on variability experienced by these populations, regulation of their
fisheries continues to be particularly difficult. The population dynamics of small
pelagics have been investigated using statistical, empirical and mechanistic model
ling approaches. Studies indicate that variability in these species results from a
combination of intrinsic factors such as density-dependence, and environmental forc
ing of survival rates (Huato-Soberanis and Lluch-Belda 1987; Jacobson and MacCall
1995; Iarre-Teichmann et al. 1995; Cisneros-Mata et al. 1996), although no clear-cut
explanation has been provided. Again, however, when dealing with management of
these resources, one needs to explore alternative research approaches, and use avail
able data/resources to come up with prescriptions.

The Pacific sardine population (Sardinops caeruleus),an inhabitant of the Califor
nia current, has experienced high variability in abundance over the past several de
cades (Butler et aI.1993).Maximum spawning biomass (fish of age 2 yr. and older) was
about 3.6 x 10

6 metric tons (t) in 1932, declined to 6 000 t in 1975, then increased to about
353000 tin 1995 (Table 11.1). Scaledeposition in anaerobic sediments revealed that this
population's abundance also underwent oscillations of several orders of magnitude
in the past 20 centuries (Baumgartner et al. 1992). Byvirtue of being closely related to
the environment as primary and secondary consumers, annual recruitment of the
Pacific sardine is highly variable. Temperature is of foremost importance for this spe
cies; for example, incubation period of their pelagic eggs, as well as maturation time
due to high temperatures, might result in decreased mortality rates of the vulnerable
first life stages, with a consequent increase in population biomass (Smith 1995).

In the present work, we develop models to forecast one year in advance the spawn
ing biomass of Pacific sardine of the California current. For management purposes,
one year would be a minimum necessary time to take provisions in the fishery, both
administrators and fishers as well. We use regression and artificial neuronal network
models and compare results. Our goal is to increase our understanding of the dynam
ics of Pacificsardine to develop appropriate management schemes, using available time
series which have meant years of effort and resources.
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Table 11.1. Pacific sardine spawning biomass and sea surface temperature index (.1.n. Biomass (met-
ric tons) corresponds to the year indicated. .1.Tindicates a deviation of average temperature over the
3years immediately before the year indicated, as compared to the overall mean of the time period con-
sidered

Year Biomass .1.TCC) Year Biomass .1.T(°C)

1932 3524000 0.71 1960 88000 0.82

1933 3415000 0.15 1961 54000 0.41

1934 3625000 -0.36 1962 27000 -0.21

1935 2845000 -0.46 1963 21000 -0.56

1936 1688000 -0.15 1964 11000 -0.45

1937 1207000 0.13 1965 3000 -0.39

1938 1201000 0.15 1983 8024 0.27

1939 1608000 0.01 1984 19609 0.59

1940 1760000 0.17 1985 21107 0.81

1941 2458000 0.32 1986 31117 0.88

1942 2065000 0.52 1987 54047 0.72

1943 1677000 0.23 1988 68807 0.57

1944 1260000 -0.04 1989 90364 0.26

1945 720000 -0.27 1990 101628 0.21

1946 566000 -0.34 1991 204686 0.36

1947 405000 -0.26 1992 191544 0.63

1948 740000 -0.22 1993 166532 0.86

1949 793000 -0.47 1994 238127 0.98

1950 780000 -0.67 1995 353000 not used

1951 277000 -0.57

1952 136000 -0.43

1953 202000 -0.56

1954 239000 -0.59

1955 170000 -0.57

1956 108000 -0.48

1957 90000 -0.33

1958 177000 0.05

1959 122000 0.63

1102
Materials

We used annual spawning biomass data of the Pacific sardine stock off the coasts of
California, USAand Baja California, Mexico. Biornass data up to 1987 were taken from
Jacobson and MacCall (1995) and the rest were provided by 1. Jacobson and T.Barnes
(SWFSC,La Iolla, CA, pers. comm.). The 46-year series used runs from 1932 to 1965,
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and from 1983 to 1995, with data from 1966 to 1982 missing due to unavailability of
reliable estimates (Barnes et al. 1992).

As an indicator of the environment for sardine, in our models we used tempera
ture data (QC) recorded at Scripps Pier, in Southern California. We averaged tempera
ture for the 3 years prior to a given year, then for each year we computed deviations
from the overall mean over the time period considered (e.g. Hilborn and Walters 1992).
Jacobson and MacCall (1995) found a significant relation between annual recruitment
of Pacific sardine as a function of past temperature and spawning biomass. That study
also used temperature measured at Scripps Pier and recruits were number of adult
sardines of age 2 yr. that enter the fishery every year.

11.3
Methods

We performed three kinds of analyses comparing results from regressions and artifi
cial neuronal network (ANN) models. ANNs are computer programs, which, by means
of massive parallel computations, can identify patterns within and between series of
data. This modelling approach is starting to find application in ecology (e.g. Tan and
Smeins 1996) and fisheries research (e.g. Komatsu et al. 1994).

First, we investigated the possibility of forecasting biomass using only past biom
ass and tested models with the last data points of the series. Then we added tempera
ture and tested performance of models using randomly selected southsets of data.
Finally,we incorporated results of the two previous analyses and conducted biomass
forecasts for the last three years of the series, which represent a particular challenge
(see below).

A preliminary analysis showed high positive auto-correlation (r2~ 0.92) of spawn
ing biomass at lag 1 yr. Such auto-correlation is likely to result from the age-structure
and even survival rates of adult sardines in the spawning population. Thus we tested
how next year's biomass can be forecasted using the simplest model possible, based
on this year's biomass only.

The regression models were of the form:

(11.1)

where B, is biomass at year t, lI' and fl are parameters of the linear model, and e is an
error term. The general ANN models constructed for this first analysis followed:

(11.2)

This notation indicates that biomass this year is "related:' or is a function of only
biomass last year. Using the two modelling approaches, biomass was forecasted for the
years 1990, 1992, 1994 and 1995, and results were compared. We chose those years for
no other reason than to test forecasted values for every other year (1990, 1992,and 1994),
plus for the last year of the series, when an important increase in biomass occurred.
Weanalysed our forecasted values in 15bootstrap trials, using the same data southsets
for both regressions and ANNs.We caution that although 15bootstrap trials sufficed
for our comparison purposes, such low number may not be adequate for management
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models. Southsets used for bootstrapping included data from 1932 up to the year pre
vious to that for which the forecast was made; for example, up to 1992 to forecast bio
mass in 1993.

In the second analysis, we used mean annual temperature deviations (anomalies)
over the past three years with respect to the overall mean, in addition to current bio
mass, to predict next year's sardine biomass level. We chose temperature over three
years because such time span will cover recruitment variability due to environmental
changes. Recruitment in this species may cause annual biomass to fluctuate widely,
and three years will suffice to represent environmental influence on this species
(Jacobson and MacCalll995; Cisneros-Mata et al. 1996).

To test how well the models performed, the three series: Bt , f"TI _3• i-': I-I and Bt+ l'

were randomly ordered, and a southset of data from 10 years was left of both regres
sions and ANNs. Then the 10 expected values of B t+ 1 were compared to values fore
casted by the models. This procedure of randomly selecting southsets of data to fit
and test models was repeated 10 times to compute statistics for analysis and compari
son of approaches.

The general regression models used in this instance were of the form:

B t+ I = a + ee, + Xf"T t - 3• t-2, t-1 + e

where a, f3 and X are parameters of the linear model, B, is biomass at year t, and
f"TI _3• t-2. I-I is annual temperature anomaly corresponding to the j-year mean prior
to year t. This series was computed as follows: to the overall mean of the series, we
subtracted the j-year running average over the three years prior to the year of inter
est.

The ANN models in this analysis were of the form:

In other words, biomass level relates to temperature anomalies over the average of
the previous three years, and biomass level the previous year. In the formal ANN ar
got, this means there were two input (temperature and biomass), and one-output (bio
mass) nodes, respectively. Our third analysis was similar to the previous one just de
scribed, except that the three last years in the series were forecasted, following the same
boots trapping procedure as in the first analysis. The same general models, as expressed
in Eqs. 11.3 and 11.4, were tested in this last instance.

Regression models were fit using the Simplex algorithm in SYSTAT 5 and, due to
the exploratory nature of this work, we did not try alternative fitting techniques. ANNs
were constructed using the Professional Works 11+software by NeuronalWare. All
ANNs were constructed using the commonly used back propagation algorithm
(Dayhoff 1990), using the sigmoid transfer function; all networks were trained for
10 000 cycles, and had one intermediate layer. Criteria used to decide on performance
of models were coefficients of determination (r 2

) , root mean square (RMS) and, for
comparison purposes only, approximate 95% confidence intervals (ACI) for the mean
biomass values.

To construct the ACI we computed the bootstrap standard error (SE) of biomass as
described in Efron and Tibshirani (1993). We then obtained the ACI as (0 ± 1.96SE),
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where 0 is the mean of the bootstrap values of predicted biomass. To determine per
formance of a given kind of model in our second analysis, we compared the ratios
RMStestlRMSfit within both modelling approaches. Here, RMS fit and RMStest are the
RMSs between expected data southsets used to fit the regression models or train the
ANNs,and the corresponding forecasted values. Given that a good model fit is observed,
then RMStest should be equal or smaller than RMS fit and, consequently, RMS ratios
should be ~1, and otherwise would indicate the inability to extrapolate (forecast) us
ing the models developed.

In the third analysis we computed the ratio RMStestANNIRMStest regression to determine
the relative performance of ANN and regression models. A value near or equal to 1

would indicate even performance. A ratio »1 would indicate better performance of
regression than ANN models, and vice versa.

11.4
Results and Discussion

Our results showed that past sea temperature is a good indicator of Pacific sardine
abundance. Also, with the database we used, performance of regressions was in gen
eral better than that of artificial neuronal networks. We elaborate on these results be
low and make an effort to interpret them. Two potential problems were considered in
our analyses: extrapolating and over-parameterisation of models. The former was
explicitly tested and the latter was implicit when we kept the number of parameters
as low as possible.

The very high positive auto-correlation at one-year lag in the biomass series of sar
dine suggested that good extrapolations could be made by means of simple linear re
gression and ANN models using only past biomass. Our first analysis showed this to
be true, except that after 1992, both types of models underestimated the expected val
·ues. Using ANNs the mean forecasted values were lower and the 95% ACI were wider,
hence less precise and more biased low as compared to those from regression models
(Table 11.2). The lowbias shown by both types of models could be explained by a change

Table11.2. Performance of regression models and ANNs in the first analysis. Expected is the actual
sardine biomass in the indicated year; LL and ULare the lower and upper limit of a 95% approximate
confidence interval; Mean is the average value of 15 bootstrap trials

Year Expected LL Mean VL

Regression models 1990 101628 72979 96493 120006

1992 191544 169698 198030 226362

1994 238127 113406 150546 187687

1995 353000 99089 224545 350000

ANNs 1990 101628 27466 100213 172960

1992 191544 54357 138789 223222

1994 238127 46258 123894 201530

1995 353000 146646 179750 212855
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in the dynamics of Pacific sardine in recent years related to a change in its coastal
pelagic habitat. Studies indicate that an extended warming period in the California
current system could have boosted the currently increasing abundance trend of Pa
cific sardine (Smith 1995). Such sudden changes in the trends of abundance of small
pelagics have been termed the regime problem (Lluch-Belda et al. 1989). It is there
fore not surprising that inclusion of temperature improved performance of all mod
els for the last years of the series.

In the second analysis, both regression and ANN models yielded good forecasts of
data values left out for testing (Table 11.3). The mean ratio RMStestlRMSfit of ANNs was
not different from 1 (0.05 <P< 0.10), but that of regression models was smaller than 1
(0.001 < P< 0.01). Paired t-tests did not reveal significant differences between both
modelling approaches in terms of? (p =0.37), although the ratio RMStestlRMSfit was
greater (p =0.014) for ANNs than for regression models. This suggests a potential bias
of extrapolations using ANNs. Previous results indicated the possibility that ANNs
underestimate biomass when expected values are very high (Jarre- Teichmann et al.
1995), but this topic needs further exploration.

The third analysis showed how inclusion of sea temperature improved the forecast
ing performance for the critical last years of the series, by both modelling approaches.
For all three years, 95% ACI contained the expected biomass; for 1993, ANNs perfor
med well, although forecasts deteriorated for 1994 and 1995 (Table 11.4). The ratio
RMStestANNIRMStest regression were 0.53, 1.83and 2.52 for 1993,1994 and 1995; that is,ANNs
performed better for 1993,yet regression models worked better than ANNs in the sub
sequent years (Table 11.4).

The reasons why ANNs were outperformed by regression models are not clear. One
possibility is that the time series used were not long enough for the networks to learn
possibly existing patterns. Consequences of the shortness of the series became evi-

Table11.3. Performance of ANN and regression models in the second analysis. r{es = coefficient of de
termination between expected and forecasted values; Ratio = RMS'esl RMSfil, where tes refers to test of
forecasted values and fit to values used to build the models

ANNs Regression models

Trial 2 Ratio ,2 Ratior 'os tes

0.96 1.21 0.95 0.78

2 0.97 1.75 0.99 0.72

3 0.94 0.62 0.74 0.74

4 0.98 0.70 0.97 0.67

5 0.80 1.51 0.98 0.88

6 0.83 1.03 0.96 0.46

7 0.94 1.11 0.92 0.60

8 0.94 1.54 0.98 0.62

9 0.94 1.22 0.97 1.25

10 0.79 2.39 0.96 0.41
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Table11.4. Performance of regression models and ANNs in the third analysis. Expected is actual sar
dine biomass (metric tons) in the year indicated; LL and VL are the lower and upper limit of a 95%
approximate confidence interval; Mean is the average value of 15bootstrap trials

Year Expected LL Mean UL

Regression models 1993 166532 119001 285945 452889

1994 238127 178864 253951 329038

1995 353000 235019 319351 403684

ANNs 1993 166532 63505 201832 340159

1994 238127 75464 220374 365284

1995 353000 59039 263481 467923

dent in some instances when we considered more series of parameters that were judged
pertinent. For example, when we included an index of annual zooplankton abundance,
or annual wind speed cube for the California current, we observed overtraining of the
networks. In these instances the trained networks yielded nonsensical forecasts even
if they had low RMS and high r, computed with data used for training and the corre
sponding values predicted by the networks. This indicates that there is a minimum, or
threshold, length of the series to be used by networks in order to obtain reasonably
good forecasts, yet this investigation was beyond our present goal. Future work with
enough data points (e.g. Iarre-Teichmann et al. 1995) might address this issue by
analysing performance of ANNs with increasing length of data series.
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Chapter 12

A Comparison of Artificial Neuronal Network and
Conventional Statistical Techniques for Analysing
Environmental Data

G.R. Ball- D. Palmer-Brown . G.E. Mills

12.1
Introduction

The use of artificial neuronal networks (ANNs) to model environmental problems is
increasing. They have been used to model systems as diverse as algal distributions in
oceans (Simpson et a1. 1992), grassland community changes (Tan and Smeins 1996),
and in the recognition of birdsong (McIlraith and Card 1997). They are well suited to
modelling complex nonlinear systems which are inherently 'noisy: a characteristic that
makes them suited to modelling environmental systems. They have been used in studies
in this and related papers, to model environmental influences on the impact of tropo
spheric ozone pollution on plants (Balls et a1. 1995; Balls et a1. 1996; Roadknight et a1.
1997; Ball et a1. 1998).

It is important that statistical or ANN approaches should be able to produce accu
rate generalized predictions which are applicable to real world systems. If this is the
case, the model can then be interpreted in a wider sense. One of the main criticisms
of ANNs is that they are black boxes which give no indication of the processes involved
in the modelled system (Benitez et a1. 1997). This criticism is waning as techniques for
the analysis of the mechanism of trained ANN models are being developed. In par
ticular, methods for the identification of the importance of input variables are valu
able in the development of simplified models of complex environmental systems. Us
ing methods developed by the authors and others, the importance of variables can be
identified by analysis of the performance of models or by analysis of the weights of
the trained ANN model (Balls et a1. 1995; Roadknight et a1. 1997).

Linear regression, linear regression using exponential, logarithmic and power trans
formations, and multiple regression can be used to create mathematical models of data.
These models may be of a predictive form that combines multiple factors in the equa
tion to predict an effect, using a mathematical equation. In the case of simple linear
regression and linear regression using transformations, the importance of individual
influences upon a measured parameter may be determined by regressing each of the
influences against the measured parameter and determining the r 2 value of each. This
method was employed by Coils et a1. (1993) to determine the most appropriate ozone
dose parameter for use in the yield response of beans to ozone. When using multiple
regression the strength of influences are determined from the regression equation and
from probability values produced within the analysis, for each independent variable.

Principal components analysis is known as a method of data reduction because it
reduces the data into a number of principal components based on the eigenvectors.
The principal components produced are linear combinations of the original variables
(Fry 1993). They are found by multiplying by the eigenvectors which are established
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during the PCA. The eigenvectors are the principal directions in the data. Principal
components analysis can be combined with a least squares regression method to cre
ate a predictive model. As principal components analysis acts as a data reduction
method, the least squares method employed will work efficiently on relatively com
plex data which has been previously converted into principal components.

A number of studies have compared the performance of back propagation ANNs
with conventional statistical methods (Urquidimacdonald and Macdonald 1994; Wise
et al. 1995; Timofei et al. 1997). Although relatively few have compared them for analy
sis of nonlinear environmental data. For example, Lek et al. (1996), Comrie (1997) and
Paruelo and Tomasel (1997) all found that ANNs showed superior performance to con
ventional statistical techniques. There has been little comparison of the ability of both
methods to identify the importance of influences.

The database used in this study is from the exposure of plants to controlled ozone
levels. Visible injury (off white chlorotic flecking) is thought to occur in response ac
cumulated ozone doses above a concentration of 40 ppb (a dose parameter known as
AOT40), as low as 200 ppb.h. depending on the conditions at the time of exposure
(Sanders et al. 1995). The sensitivity of the plant is strongly influenced by microcli
matic conditions at the time of exposure both singly and in combination (Grantz and
Meinzer 1990; Aphalo and Iarvis 1991; Leuning 1995). These act primarily on the sto
mata, the main route of ozone entry to the plant (Kerstiens et al. 1992). When mea
sured under controlled conditions, humidity (vapour pressure deficit) is one of the
primary influences on stomatal conductance and thus ozone flux into the plant (Weiser
and Havranek 1995; Leuning 1995). Other influences from photosynthetically active
radiation (PAR) and temperature have also been identified when measured singly
(Aphalo and [arvis 1991; Herbst 1995). Gutierrez et al. (1994) concluded that interac
tions between these variables could mask the ozone dose response of the plant, mak
ing simple analysis using ozone as a single parameter inappropriate. Clearly the in
teractions between microclimatic conditions and ozone uptake by the plant are com
plex, and include variables that interact with each other as well as influencing ozone
uptake. These will ultimately determine the extent of visible ozone injury on the plant.

The aims of the work were to assess the ability of a range of statistical methods to
analyse and model an environmental data set; to compare the accuracy and perfor
mance of these techniques with those of a back propagation ANN model; and to as
sess the ability of conventional and ANN techniques to indicate the importance of
parameters in the data.

12.2
Methods

12.2.1
Database Development

The data set used for analysis in this chapter was produced from the exposure of sub
terranean clover plants to controlled ozone doses under eo-varying ambient environ
mental conditions in acrylic chambers (Balls et al. 1995). Ozone was produced by ul
tra-violet light from oxygen (Light-Oj-clean AS,Denmark). During exposure to ozone
concentration, temperature, relative humidity and photosynthetically active radiation
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(PAR) were measured and logged to a PC (Viglen, UK), producing 30-minute mean
values for each parameter. One week after exposure, visible ozone injury (character
ized by off white chlorotic lesions) was assessed using a visible injury score key, rep
resenting 6 injury classes between 0 and 5.Mean ozone and climatic conditions were
calculated for the exposure period and the mean visible injury score for 20 plants was
determined. Exposures were repeated on a regular basis to create a data set contain
ing 256points.

A random number variable was inserted into the database to represent a factor that
had no influence upon the extent of visible injury. This helps to assess the performance
of the various modelling and analysis approaches since ideally a low importance should
be identified for this 'dummy' variable. In all cases the performance of the various
statistical approaches were compared to the performance of the ANN approach.

12.2.2
Development and Analysis of ANN Models

12.2.2.1
Training

Prior to training, validation and test data southsets, each comprising 20% of the data,
were extracted randomly from the database. The remaining data was used to train an
ANN model, within the Neuroshell 2 package (Ward Systems Group Ltd), using all of
the available input variables. These were ozone dose (AOT40), leaf age (leaj), photo
synthetically active radiation (PAR), temperature (temp), relative humidity (RH) and
the random number (Rand). The model was retrained and tested using a range of
numbers of hidden nodes, a momentum of 0.9 and a learning rate of 0.05. Training
was finished when the error of the validation data failed to improve for 20000 epochs.
The trained models were then tested by presenting them with the validation data
southset and the training data. The optimum model was the one with the best perfor
mance on validation data. The ability of this model to make generalized predictions
was then tested by presenting it with the test data subset.

12.2.2.2
Weightings Analysis of the ANNModel

The weights of the trained optimized ANN model were determined. The relative im
portance of the input variables to the best model were then determined by taking the
sum of the products of absolute weight values leading from each input.

12.2.2.3
ANNModelling Using Combinations of Input Variables

Another approach used to determine the importance of input variables was to train
multiple ANN models using all possible input combinations. The modelling methods
described earlier were used to train each model. The performance of each combina
tion was assessed (optimized using a number of hidden nodes). Comparison of the
performance for selected combinations gave an indication of their importance and of



168 G.R. Ball· D. Palmer-Brown . G.E. Mills

the importance of inputs singly and in combination. In this paper results for the input
combinations not significantly different from the best model, all of the single input
models, and a model with all inputs with the exception of AOT40 are presented.

12.2.3
Conventional Statistical Methods

A number of statistical methods were used to analyse the same database as used in
the development of the ANN models.

12.2.3.1
Simple LinearRegression Analysis

Simple linear regression analysis was carried out on all of the data using the Microsoft
Excel package (version 5.0). Regression analysis was carried out for AOT40,PAR, temp,
RH and Rand, against the visible injury score for each leaf using standardized values
to prevent the magnitude of the values having an influence. The regression coefficients
for each of these variables were calculated, giving a measure of the strength of their
influence on the visible injury score.

12.2.3.2
LinearRegression Analysis Using Exponential, Logarithmic and Power
Transformations

Regression analysis was carried out in a similar way to the simple linear regression
analysis using the logarithmic, exponential and power transformations within the
Microsoft Excel package and the training data set. Ozone dose AOT40, PAR, tempera
ture, relative humidity and the random number were regressed against the visible in
jury score. This was repeated for each of the three leafs, using logarithmic, power and
exponential functions. The regression analysis produced ,2 values for each parameter
(based on the Pearson correlation coefficient), for each leaf using each function. Aver
age ,2 values were calculated for each parameter for all of the leafs. These average val
ues were used to indicate the linear strength of the correlations produced between each
parameter and as a comparison of the linear strength of correlation using different
transformation functions.

12.2.3.3
Multiple Regression

Multiple regression analysis (Fry 1993) was carried out on the training data, using the
Statmost (Datamost corporation) statistical analysis package. The independent vari
ables used were the same as those used as inputs to the ANN model. After analysis,
the equation produced was applied to the validation data subset and the complete data
set. The actual injury score was then plotted against predictions made for the valida
tion data. This produced an ,2 value for the predictions of the multiple regression analy
sis equation based on the validation data, and allowed comparison of the performance
of the multiple linear regression analysis with the ANN analysis.
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12.2.3.4
Stepwise Multiple Regression

Stepwise multiple regression serves to determine the variables for inclusion into mul
tiple regression. Forward and backward stepwise multiple regression was carried out
on the whole data set using the Unistat data analysis package (version 1.12).Consecu
tive multiple regression analyses were run to determine the variables, which influenced
ozone injury formation. Variables were included or discarded based upon the strength
of their correlation with the visible injury score. The output from the analysis indi
cated which variables should be included within the regression equation and the r 2

value when each variable was included. The r2 values produced were compared with
the performance of ANNs and other modelling methods for the whole data set, and
the ranking of variables was compared with the ranking obtained from other meth
ods.

12.2.3.5
Principal Components Analysis (PCA)

PCA (Fry 1993) was carried out in the Unistat package. Again the training data set was
used in the analysis having been transformed within Unistat. Each value was multi
plied by the mean value for the variable involved and divided by its standard devia
tion. This served to put each parameter into the same range, producing values which
were given an equal bias and which were not affected by exceptionally large or small
units. Once transformation was complete the PCA was run, and eigenvalues, eigen
vectors and principal components generated. The output produced was saved as a
Microsoft Excelworksheet. Regression analysis was carried out between the actual data
for individual variables and the principal components to identify the source of the
principal components. The regression that produced the highest r2 value for a princi
pal component indicated its most likely source.

12.2.4
Combination of PCA with Other Techniques

12.2.4.1
Combination ofPCA with LeastSquares Regression (LSR)

The principal components of the training data generated by PCAwere regressed with
their corresponding visible injury scores. This regression was carried out using a back
propagation program written in C. The model was trained with no hidden nodes to
simulate a multiple least squares regression using an iterative process. The method
could only model linear functions within the data, because the network had no hid
den nodes. Analysis was carried out using a momentum of 0.9 and a learning rate of
0.05, for 1000,5000 and 10 000 epochs. Learning was convergent in this case, the net
work having reached a minimum error by 10 000 epochs.

After the regression was complete, the principal components of the validation data
set used in earlier analysis methods were generated from the eigenvectors of the PCA.
These validation principal components were used to test the principal components
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least squares model to generate predicted injury scores. The predicted and actual val
ues produced were then plotted within Microsoft Excel to determine the accuracy of
the PCA combined with LSRapproach, an r 2 value was generated for the approach by
linear regression.

12.2.4.2
Combination of PCA with ANNs

To assess the performance of ANNs combined with PCA, the C program was used to
retrain an ANN model with the principal components of the data. A range of hidden
nodes between 2 and 10 was used, simulating an ANNapproach rather than LSR.Again
training was carried out for 1000,5000, and 10 000 epochs, with a learning rate of 0.05

and momentum rates of 0.9 and 0.5. The same procedure was used to test the predic
tions of the model, on the validation data set, as for the PCAcombined with LSRanaly
sis, i.e. by regression of actual and predicted values. The performance of PCAand ANNs
was compared with PCA combined with LSR.

12.3
Results

12.3.1
ANN Analysis and Testing

12.3.1.1
ANN Optimization

Results of the optimization of the ANN model using all inputs, within the Neuro
shell 2 package, indicated that the best performance was produced when the model
was trained using 10 hidden nodes, a momentum of 0.9 and a learning rate of 0.05.

This training resulted in a r2 value of 0.742 for training data, an r 2 of 0.84 for the vali
dation data set and an r 2 of 0.68 for the test data set. Actual versus predicted values
were plotted for the validation data (Fig. 12.1). The line of best fit for this data had an
equation:

Actual =0.82 Predicted - 0.07

This equation shows that the network tends to slightly underestimate low levels of
injury, and slightly overestimate high levels of injury.

12.3.1.2
Analysis of Weightings

Analysis of the weightings of the trained model using all inputs (Table 12.1) indicated
that the input variables could be ranked in the order AOT40 > RH> leaf> Rand =
temp> PAR.Temperature and Rand were of similar importance.



CHAPTER 12 • AComparison of Artificial Neuronal Network and Conventional StatisticalTechniques 171

Actual = ,., S3 Predicted - 0.' '4
,2= 0.843••

•

•

O__H.-==-------tll--r--------,----------,----------,--------,

o 2 3
Predicted visible injury

4 S

Fig. 12.1. Actual versus predicted plot for validation data applied to the ANN model using all inputs.
indicating the equation of the line of best fit and the ,2 of the line

Table 12.1. Resultsof weightings
analysis of the ANN model Input variable Relative importance I Arbitrary units

AOT40

RH

Leaf

Rand

Temp

PAR

0.412

0.214

0.187

0.075

0.072

0.039

12.3.1.3
Analysis of Input Combinations

Analyses of the performance of multiple models using different combinations of in
put variables are presented in Table 12.2. The model with the best performance for
validation data (,2 = 0.850) used the input combination leaf, AOT40, temp and RH. This
model had an ,2 of 0.7894 for training data and an ,2 of 0.668 for test data. These in
puts could be ranked in the order AOT40 > leaf> RH> temp based on changes in the
performance of models using combinations of these inputs.

The next 14 models produced ,2 values that were not significantly different from
the above result, having ,2 values from 0.850 to 0.831.

Of the single input models only AOT40 produced a good performance (,2 = 0.655
for validation data and 0.436 for test data), All other single input models produced a
performance of less than 0.071 for validation data and 0.108 for test data. This indi
cated that these other inputs were secondary influences to the ozone response. This
was also confirmed by the poor performance of the model using all inputs apart from
the AOT40 input (,2 = 0.304 for validation data and 0.179 for test data).
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Table 12.2. Results of trainingmultiplemodels using all combinations of input variables

Combination Trn r Valid r Test r Combination Trn r Valid r Test r Combination Trn r Valid r Test r

PAR 0.044 0.001 0.031 Leaf, PAR, RH 0.154 0.114 0.149 Rand, AOT40, Temp, RH 0.628 0.723 0508

Rand 0.000 0.004 0.002 Rand, PAR, RH 0.148 0.124 0.039 AOT40, Temp 0.634 0.726 0533

Temp 0.038 0018 0.088 Rand, Leaf PAR 0.185 0.132 0.170 Rand, AOT40, RH 0.627 0.727 0.485

PAR, Temp 0.096 0.034 0.094 Rand, Leaf, Temp 0.164 0.136 0070 AOT40, Temp, RH 0.643 0.736 0.570

Rand, Temp 0.044 0.042 0067 Leaf, Temp, PAR, RH 0170 0.146 0.055 AOT40, PAR, Temp, RH 0.651 0.753 0587

Rand, RH 0.000 0047 0.007 Rand, AOT40, Temp 0.172 0148 0.254 Leaf, AOT40, Temp 0.661 0.779 0.602

RH 0.000 0.049 0.006 Rand, Leaf, PAR, RH 0.257 0.153 0.056 Leaf,AOT40 0.657 0.788 0.599

Rand, PAR, Temp 0.082 0.067 0.053 Rand, Leaf, Temp, RH 0.082 0.158 0.217 Rand, Leaf, AOT40, PAR, RH 0.767 0831 0657

PAR, RH 0.076 0.068 0.157 Rand, Leaf, RH 0.090 0.159 0.080 Leaf, AOT40, PAR, RH 0.809 0.832 0.676

Leaf 0.D75 0.071 0108 Leaf, Temp, RH 0.138 0.161 0.147 Rand, Leaf, AOT40, RH 0.730 0.834 0.670

Leaf, RH 0.084 0.079 0.069 Rand, Leaf, PAR, Temp, RH 0.179 0187 0012 Rand, Leaf, AOT40 0.739 0.836 0.573

Rand, PAR, Temp, RH 0.074 0.087 0.155 Leaf, PAR, Temp, RH 0.375 0.304 0.178 Rand, Leaf, AOT40, Temp 0728 0837 0549 Cl

10
Leaf, Temp 0.121 0.092 0.139 AOT40 0576 0.655 0.436 Leaf, AOT40, PAR 0.680 0838 0.648 O:l

Leaf, PAR 0.145 0.093 0.177 AOT40, PAR, Temp 0576 0.683 0.443 Rand, Leaf, AOT40, PAR 0.685 0.839 0620
~

PAR, Temp, RH 0.066 0.094 0.151 AOT40, PAR 0.576 0.687 0.449 All 0.742 0.843 0.683 P
."

Leaf, AOT40, PAR, Temp
.,

Temp, RH 0.041 0.098 0.139 Rand, AOT40, PAR, Temp, RH 0.627 0.704 0500 0.771 0.845 0640 3"
"Leaf, PAR, Temp 0.162 0.101 0.176 AOT40, RH 0.617 0.704 0.405 Rand, Leaf, AOT40, PAR, Temp 0.703 0.845 0.613 ...
Cc...

Rand, Leaf 0.084 0.106 0.082 Rand, AOT40, PAR, Temp 0597 0.706 0.420 Rand, Leaf, AOT40, Temp, RH 0.736 0.846 0645 0
~

Rand, Temp, RH 0.048 0.107 0.073 AOT40, PAR, RH 0.616 Ol06 0517 Leaf, AOT40, PAR, Temp, RH 0.747 0.847 0.673
;:l

Rand, PAR 0163 0.114 0069 Rand, AOT40, PAR, RH 0.624 Ol07 0.506 Leaf, AOT40, RH 0760 0.850 0.683
Cl
~
s::s
'"
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Overall the analysis indicated the inputs could be ranked in the order AOT40 > leaf>
RH> temp = PAR = Rand, the same ordering as indicated by the weightings analysis.

12.3.2
Conventional Statistical Analysis

12.3.2.1
Simple LinearRegression Analysis

Results of the simple linear regression analysis (Table 12.3) indicated that plotting in
jury against AOT40 produced the best fit (Fig. 12.2). This analysis produced a mean r2

value of 0.55 (all data) for the 3leafs. The second best performance was produced us
ing PARwhere the mean r2 value dropped to 0.046. Temp was slightly below this hav
ing an r 2 value of 0.044. The remaining input variables could be ranked in the order
Rand> RH with r2 values of 0.010 and 0.007 respectively. This analysis indicated that
the main linear influence on the injury formation process was AOT40 and that the
remaining variables had very little influence.

Table 12.3. Results of simple regression analysis

Influence ,2 value for leaf

Spade First

AOT40 0.709 0.659

PAR 0.017 0.014

Temp 0.036 0.016

Rand 0.0003 0.028

RH 0.00002 0.021

Second Mean

0.264 0.544

0.106 0.046

0.080 0.044

0.0001 0.010

0.001 0.007
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Fig. 12.2. Results of simple linear regression analysis of visible injury against AOT40 for the spade (+),
first (e) and second leafs (.A.). Lines of best fit indicated as follows: spade (dashed line), first (black line)
and second(dotted line)
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12.3.2.2
LinearRegression Using Exponential, Logarithmic and PowerTransformations

Regression results indicated that generally the best fit was produced using regression
with a logarithmic transformation (Table 12.4). The average values for allleafs showed
that the logarithmic function consistently had the strongest correlation for all of the
parameters. The strongest correlation was produced with AOT40 using a logarithmic
transformation having an average ,2 value of 0.322. This was followed by the power
transformation for AOT40 with an average ,2 value of 0.261, then the exponential func
tion which produced an average ,2 value of 0.255.

The next strongest correlation was produced for temperature using the logarith
mic transformation which had an average ,2 value of 0.19, followed by the exponen
tial transformation using the same variable having an average ,2 value of 0.14. The
remaining variables could be ranked in the order PAR> RH >Rand. All of these vari
ables had average ,2 values less than 0.14. Finally the ,2 values for AOT40 produced by
regression using transformations never exceeded those produced by the simple lin
ear regression analysis. A higher ,2 was however produced for PAR, temp, RH and Rand
than in the simple linear regression analysis.

12.3.2.3
Multiple Regression Analysis

Further analysis of the data using multiple linear regression produced a model with
an ,2 of 0.591 for the training data, only a slight improvement on the simple linear re
gression method.

Table 12.4. Results of nonlinear regression analysis showing r 2 values

Leaf

Spade

First

Second

Average

Regression Parameter

AOT40 PAR Temp RH Rand

Logarithmic 0459 0.012 0.116 0.004 0.0003

Power 0402 0.007 0.128 0.001 0007

Exponential 0.385 0.020 0.135 0.0005 0.023

Logarithmic 0.276 0.002 0.009 0.150 0.010

Power 0.207 0.015 0000006 0.173 0003

Exponential 0.199 0.003 0002 0.166 0.000007

Logarithmic 0.230 0.383 0.446 0.040 0.099

Power 0.175 0.282 0.264 0.018 0.062

Exponential 0.181 0.345 0.283 0.027 0.079

Logarithmic 0.322 0.132 0.190 0.065 0.036

Power 0.261 0.101 0.131 0064 0.024

Exponential 0.255 0.123 0.140 0.048 0.034
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The ranking of the variables based on probability values generated by multiple re
gression analysis (Table 12.5) indicated that AOT40, leaf and RH had an important in
fluence, whereas the influences of PAR,Rand and temp were weaker. These probabil
ity values indicated the probability of the hypothesis that the partial regression coef
ficient of the parameter was equal to zero. The regression coefficient from the mul
tiple regression was 0.591, and the following equation was produced:

Injury =-0.9 - (0.07 x Rand) - (0.36 x leaf) + (0.0024 x AOT40) + (0.001 x PAR)
- (0.0045 x temp) + (0,023 x RH)

When this equation was applied to the validation data, an r2 value of 0.651 was pro
duced for actual versus predicted data (Fig. 12.3). When this equation was applied to
the test data, an r2 value of 0.553 was produced. Clearly the method was less able to
predict the mean visible injury score for the validation data and was not as good at

Table12.5. Results of multiple
regression analysis Variable

AOT40

Leaf

RH

PAR

Rand

Temp

5

p-Value

0.000

0.000

0.002

0.169

0.538

0.807

••

-1

4

o

-1

-2

•
•• •

•

2 3
Predicted injury

,2= 0.591

4 5

Fig. 12.3. Actual versus predicted graph for validation data applied to the multiple linear regression
equation



Table 12.6. Results from for
ward stepwise multiple regres
sion analysis

Variable

AOT40

Leaf

RH

Temp

Rand

PAR
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,2 when included Tolerance"

0605 0.999

0650 0998

0.660 0.993

not included 0.910

not included 0.735

not included 0.668

a Acceptable tolerance =0.99 or greater.

Table 12.7. Results from back- ,2 when included a
ward stepwise multiple regres- Variable Tolerance

sion analysis
AOT40 0605 0.999

Leaf 0.650 0.998

RH 0.660 0.993

Temp not included 0.910

Rand not included 0.735

PAR not included 0.668

a Acceptable tolerance =0.99 or greater.

generalizing as the ANN model. This was indicated by a large number of cases
where the actual injury score was 0 but the equation predicted values from -0.49 to
0·91.

12.3.2.4
Stepwise Regression

The same results were seen from both forward and backward stepwise multiple re
gression analysis (Tables 12.6 and 12.7 respectively). Both methods indicated that AOT40
had the strongest correlation, followed by leaf, then RH. The remaining variables were
removed or not added to the regression analysis as their influence was not considered
significant (they did not fall within the tolerance limits set within the analysis, set at
0.99). Tolerance is defined as 1- R where R is the multiple correlation between the
variable and all variables that are in the regression equation. The regression model
had an overall r2 value of 0.66 for the whole data set for both forward and backward
stepwise regression.

12.3.2.5
PrincipalComponents Analysis (PCA)

Eigenvalues produced from peA and percentage variance indicated that there was a
strong source from one component, which had an eigenvalue of 2.25. and a percentage
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variance of 37.4 in the direction of the eigenvector. Three components then had a simi
lar, but lesser influence, with eigenvalues of 1.09, 1.00 and 0.87, and percentage vari
ances of 18.2, 16.7 and 14.6 respectively. The next two components had little influence
with eigenvalues of 0.58 and 0.2 with percentage variances of 9.7 and 3.3 respectively.
So, from PCA of this data set the majority of variation arises from 4 or 5 principallin
ear combinations of the input variables accounting for 87 to 97 percent of the vari
ance.

12.3.3
Combination of PCA with least Squares Regression (LSR) and ANNs

Testing the PCA/LSR and PCAIANN methods, using a number of different epochs,
produced a range of r 2 values for the validation data (Fig. 12.4). When no hidden nodes
were used, i.e. LSRwith PCA, the best performance was produced within 1000 epochs
when the r 2 value for the validation data reached 0.712 (Fig. 12.5). This approach ap
peared to produce generalized predictions for all of the validation data that were close
to the actual data. Training for 5000 and 10000 epochs failed to increase the r 2 value.
This analysis also indicates that a low number of hidden nodes were required for op
timum performance. The best performance was produced using 2 hidden nodes. How
ever, with training for more than 1000 epochs, a decline in performance was seen,
indicating a level of overtraining. This did not occur with 1 hidden node, although the
performance was lower. This would indicate that for the PCAIANN model, between 1

and 2 hidden nodes would produce the optimum performance without overtraining.
Although this is impossible, it does indicate a partial redundancy in some connections
of the ANN model.

When two hidden nodes were used r2 increased to a value of 0.834 (Fig. 12.6). This
plot indicated the approach produced generalized predictions for all of the validation
data that were close to the actual data. The best predictions were produced when the
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Fig. 12.4. Optimization of the model which combined PCA and ANNs based on validation data per
formance after 1000,5000 and 10000 epochs. Results of the models which combined PCA and LSRare
also indicated by the points with no hidden nodes
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Fig. 12.5. Actual versus predicted graph for validation data applied to principal components analysis
(PCA) combined with least squares regression (LSR)
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Fig. 12.6. Actual versus predicted graph for validation data applied to principal components analysis
(PCA) combined with artificial neuronal networks (ANNs)

training was carried out for 1000 epochs. When training was carried out for more
epochs or using a greater number of hidden nodes the r 2 was consistently lower. Thus
the optimum performance of the ANN model trained on principal components was
produced after 1 000 epochs using two hidden nodes.

12.3.4
Summary of Results

The predictive performance based on the training data, validation data and test data
set (where applicable) of the various methods are summarized in Table 12.8.



CHAPTER 12 • AComparison ofArtificial Neuronal Network andConventional Statistical Techniques 179

Table 12.8. Summary of analysis results

Method ,2 for predictions on ,2 for predictions on ,2 for predictions on
the training data the validation data the test data

The ANN model using all
available inputs

The optimised ANN model

Simple linear regression

Stepwise regression (forward
and backward)

Multiple linear regression

Non-linear regression

PCAwith LSR (all inputs)

PCAwith ANN (all inputs)

0.742

0.790

0.544'

0.660

0.591

0.459'

0.754

0.805

0.843

0.850

0.651

0.712

0.834

0683

0.668

0.553

0.597

0.616

a Basedon the mean value of the parameter with the best performance.

12.4
Discussion

12.4.1
Comparison of Modelling Performance

Analysis of the ANN model showed that an ,2 of 0.850 was produced for validation
data (Table 12.6) and 0.79 for training data. Results of the simple linear regression of
the training data produced ,2 values that were much lower than those produced by
the ANN model. The highest ,2 produced using simple linear regression analysis was
0.513 for ozone dose AOT40, whereas the ANN model produced an ,2 value of 0.79.
Thus, the simple linear regression analysis of this data set compare poorly with analysis
using ANNs, as it can only cope with single parameters and it has no ability to model
nonlinear functions.

As expected, multiple linear regression of the data produced a slightly better
performance than simple linear regression, achieving an ,2 value of 0.591. When
the equation produced from the analysis was applied to the validation data,
an ,2 of 0.651 was produced. This result shows that the regression has successfully
generalized, but only to the most general features of the injury response. As with
single variable linear regression, nonlinearities are not being modelled success
fully.

However,regression using transformations produced the lowest performance of all,
having an ,2 value of 0.459 for AOT40 and the spade leaf The other variables had higher
,2 values than those in the simple linear regression analysis, indicating that their in
fluence may be less linear. The problem with regression using transformations may
be that the choice of a particular transformation function is arbitrary. The multilayer
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ANN approach has a greater ability to model the data in a piecewise fashion, giving a
variety of gradients at different points.

PCAindicated that four main components accounted for 87% of the variation within
the data. Thus, this analysis indicated that four of the linear combinations of param
eters had a strong influence on visible injury. PCA is a useful tool for indicating the
parameters, which act as the source of variance within the data. However, it cannot be
used to produce a predictive model or a 'fit' to the data unless it is combined with an
other analysis method.

In this case, the PCA was combined with a least squares regression method. PCA
served as a data reduction method so that the influence of variables on visible injury,
and the extent to which they accounted for variation within the data, were organized
into a number of principal components for the data. The PCAlLSR model produced
an r2 of 0.754 when actual results were plotted against predicted values. This was a
substantial improvement on the previous conventional analysis techniques and closely
matched the accuracy of the ANN approach. One possible reason for this was that the
PCApart of the analysis reduced the amount of variation within the data, simplifying
the modelling process, so the LSRpart of the analysis can produce a more accurate
model of the data.

Since PCA combined with LSR was a linear method, the high performance of the
approach suggests that the data being modelled is substantially linear. However,some
evidence for nonlinearity in the data is provided by the further improvement of the
accuracy of the predictions was produced when ANNs were combined with the PCA,
this approach having an r 2 of 0.834. The simplification of the data was indicated by a
reduction in the number of hidden nodes required for optimum performance from
10 in ANN model to 2 in the PCA/ANN model. Hidden nodes detect features within
the data; the data reduction by the PCA meant fewer hidden nodes were needed to
detect fewer features. Also, as the ANN plus PCA approach produced a better perfor
mance than the PCA plus LSRapproach, it could be deduced that the data set had a
small number of nonlinear functions associated with it. Modelling of these nonlinear
functions requires hidden nodes to detect and incorporate them into the model.

Clearly ANN models are better at producing accurate predictions for the data used
in this study than all conventional statistical techniques examined. The performance
of ANNs has been compared to conventional statistical methods and, as in the major
ity of cases (Wise et al. 1995; Lek et al. 1996; Timofei et al. 1997; Paruelo and Tomasel
1997), ANNs show a better performance when modelling nonlinear data.

12.4.2
Determination of the Importance of Input Variables

Analysis of the weightings of the ANN model (with random number) indicated that,
as in all previous models, AOT40 had the strongest influence on the extent of visible
ozone injury, followed by leaf and RH. Analysis of the importance of selected input
combinations indicated that the inputs were ranked in the same order as in the
weightings analysis. This method also indicated that AOT40 was the primary influ
ence, and that all of the other input variables were secondary influences on the AOT40
dose response. Analysis of input combinations is more dependable than direct analy
sis of the weightings of the ANN model, which is essentially a linearisation of the non-
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linear ANNmodel. Byretraining, after the removal of combinations of inputs in groups,
the importance of inputs which are partially hi-linearly or collinearly related can be
determined. In this case, all possible combinations of inputs are used to indicate the
effect (importance) of input combinations, by their simultaneous absence, as well as
single variables. But in general, removals need only include groupings of variables
which are removable in smaller groups or individually. In this way, it is possible to
establish the key variables that are able to substitute for the ones that have been re
moved.

Analysis of the r2 values for each of the influences on the visible injury score using
simple linear regression indicated that as in the ANN model, AOT40 had the strongest
influence. The next strongest influences were found to be in the order of PAR>
temp> Rand> RH. Leaf could not be analysed by this method, as it was an integer.
Clearly with the exception of AOT40, there was no similarity between the ranking of
parameters using simple linear regression and the ANN methods. In the analysis all
of the parameters, other than AOT40, had very low r2 values, indicating that they had
little or no influence on the extent of visible injury.

Multiple regression analysis indicated that the influences on visible injury could
be ranked in the order of AOT40 > leaf> RH> PAR> Rand> temp. This agreed with
the findings of weightings analysis of the ANN model with the exception that PAR and
temp swapped positions in the ranking around the random number. Stepwise regres
sion indicated that three variables should be included. These were AOT40, leafand RH.
The remaining variables were not ranked in the same order as ANN analysis and
multiple regression, the random number having a very high tolerance value (low im
portance) and temperature having the lowest.

Analysis of the importance of input variables from simple regression using trans
formations indicated the input variables could be ranked in the order AOT40 >
temp> PAR> RH> Rand. As in simple linear regression, this differed greatly from the
ANN model with the exception that AOT40 was the most important variable.

PCA indicated that four components were influential in the data. This would ap
pear to back up the findings of the ANN model which indicate the strongest influences
came from AOT40, leaf, temp and RH. PAR and the random number had little or no
influence.

Mechanistic studies have indicated the importance of the air humidity in the form
of VPD and temperature as influences on the flux of ozone into the plant (Leuning
1995; Emberson 1996). This has also been confirmed by analysis of field measurements
(Gutierrez et al. 1994; Herbst 1995; Kallarackal and Somen 1997). Both of these com
ponents are contained in the relative humidity variable. Analysis also indicated leaf
age was of high importance. Paakkonen et al. (1995) also found this to be the case for
beech leafs.

12.5
Conclusion

ANN models produced the best performance. The conventional statistical techniques
produced a poor performance when modelling the data and were unable to produce
accurate predictions on unseen data. The best non-ANN method of modelling was
achieved by combining PCA with LSR. This approach could be improved by inclusion
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of the peA with ANN techniques. In general the input combination approach is the
most reliable means of determining input variable importance and the importance of
input combinations. However, findings from weightings analysis and multiple linear
regression indicated the same ordering of importance of input variables. Stepwise
regression predicted the same variables for the three most important variables but did
not put the remaining variables in the same order. Simple linear regression and re
gression using transformations only predicted the most important variable, which was
AOT40. The ranking of variables produced by the ANN methods and by multiple re
gression was confirmed by surveys of the literature.
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Chapter 13

Application of the Self-Organizing Mapping and
Fuzzy Clustering to Microsatellite Data:
How to Detect Genetic Structure in Brown Trout
(5almo trutta) Populations

J.L. Giraudel . D.Aurelle . P.Berrebi . s. Lek

13.1
Introduction

Artificial Neuronal Networks (ANNs) are now currently used for various purposes,
from physical and chemical studies to biological ones. Even if they are less used in
ecology and populations genetics, recent studies have shown that they can be very
efficient for such problems (Cornuet et al. 1996; Foody 1997; Mastrorillo et al. 1997;
Guegan et al. 1998). ANNs have several advantages: they can be applied to various
data, from environmental variables to genotypes, and are usually more efficient than
classical statistical techniques (FDA,for example; see Cornuet et al. 1996). In order to
classify biological objects (individuals or populations, for example) using ANNs, two
main types of methods can be applied: supervised and unsupervised learning. Su
pervised learning can be applied to the classification of individuals of unknown ori
gin among already well-defined groups: the network will be trained to recognize
these categories by using reference samples. This has been successfully applied to ge
netic data on bees (Cornuet et al.1996,with some phylogeneticallywell separated lin
eages), and on trout (Aurelle et al. 1998, but with some less clearly differentiated
groups).

With unsupervised learning, on the other hand, no groups are a priori defined, and
the network will try to find an organization itself (and then classify individuals) in
the global data set. This can be useful when the categories are previously unknown or
when no pure reference samples are available for a supervised learning. The genetic
analysis of French trout populations corresponds to this last situation. In southwest
France, several genetic entities coexist in the same basins, or even in the same river
(Aurelle and Berrebi 1998).Some so-called wild modern (according to Hamilton et al.
1989) Atlantic trout can be separated from ancestral Atlantic trout (also wild) using
allozymes. Both are naturally present in southwest France. Moreover, stocking prac
tices have led to the introduction of modern trout, born in hatcheries. These fish, which
usually do not originate from the river where they are released, will be called domes
tic modern Atlantic trout; they cannot be separated from wild modern trout using
allozymes. The main usefulness of the analysis of these populations is to classify the
three types of individuals that one river can contain. In order to describe the genetic
composition of the different populations belonging to these rivers, we decided to use
microsatellites; they were hoped to better separate modern and ancestral trout and,
within modern fish, to separate wild and domestic trout. Nevertheless, because of their
high variability and particular properties (homoplasy, ancestral polymorphism, etc.),
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numerous alleles were shared between the different forms (Aurelle and Berrebi 1998).
As each locus separately brought little information, a multilocus analysis was neces
sary. Indeed, the simultaneous presence of particular alleles from different loci in the
same fish is a better indicator of the genetic origin of this individual than what is shown
at each locus. That is why multilocus analysis was necessary to classify the sampled
trout and to answer several questions:

• Is the separation between modern and ancestral trout discovered using allozymes
also supported by microsatellites?

• What is the origin of sampled modern individuals: wild or domestic?
• What is the structure of the river populations: are they homogeneous or heteroge

neous (because of natural or artificial propagation)?

Despite all the problems already mentioned and as shown by the study of Cornuet
et al. (1996), ANNs seemed well suited to answer to such questions because of their
ability to analyse microsatellites. We first used supervised learning associated with a
back propagation algorithm (Aurelle et al. 1998) which gave some good results. Nev
ertheless, some populations or individuals were not easily classified. Several phenom
ena could explain this: some of these populations were probably genetically quite simi
lar, and some samples used as references (and so assumed to be homogeneous) may
in fact be heterogeneous (they could contain several different forms, domestic and wild
modern Atlantic for example), which would prevent efficient learning. In order to verify
the conclusions of the supervised approach, we decided to use an unsupervised net
work in order to get an objective image of the genetic relationships between and within
our samples. The results should then not be influenced by our knowledge of the sam
pling points and the allozymic characteristics of the individuals; for example, a so
called modern individual sampled in a river used as a reference for wild modern type
during supervised learning could in fact be a domestic fish. Moreover, unsupervised
analysis is an efficient tool to reveal the genetic structure of the different populations
analysed.

For this purpose we decided to use a technique which aims at representing indi
viduals positioned in multidimensional space of the variables on a 2D map, with a
minimum of distortion. Graphical representation of high-dimensional data is a diffi
cult problem when the number of dimensions rises above three. In this work we used
the Kohonen Self-Organizing Map (SOM) (Kohonen 1995), a model of Artificial Neu
ronal Network (ANN) for visualisation of vectors in a two-dimensional space. Through
an unsupervised learning process, the SOM algorithm performs a topology-preserv
ing projection of the data space onto a regular two-dimensional grid (topographic
map). Unlike the commonly used approaches such as Principal Components Analysis
(PCA), SOMis a nonlinear approach, and so formal proofs of convergence are almost
impossible (Blayo and Demartines 1991). SOM has already been used successfully in
ecological study (Chon et al. 1996). In our study, this analysis aims at representing the
different individuals on a map. Then a cluster analysis based on fuzzy sets (Zadeh 1965;
Foody 1996) is used to define the different groups which can be recognized among
them; this partition into genetic groups is discussed and compared to what we already
know about these samples.



CHAPTER 13 • Application ofSelf-Organizing Mapping and Fuuy Clustering to Microsatellite Data 189

13.2
Material and Methods

13.2.1
Biological Samples

Four river populations and 3 hatchery strains were analysed. The different sample
origins and their sizes are given in Table 13.1. Numbers (map) in Table 13.1 refer to
Fig. 13.1, and the percentages of LDH5*90 allele give information about the genetic
composition of the populations. The ancestral form is characterized by allele 100 at

Table 13.1. Origin and characteristics of the samples

No. (map) Locality River Basin Sample size LDH5*90(%)

La Canourgue hatchery 50 95

Brassac hatchery 30 100

Suech hatchery 36 99

Sare Beherekobentako Nivelle 24 0

2 Dancharia Nivelle Nivelle 30 2

3 Bidarray Bastan Adour 29 4

4 Argeles Luz Adour 88 95

Atlantic
Ocean

Spain

Fig. 13.1. Location of the sampling points

France
1 Beherekobentako
2 Dancharia
3 Bastan
4 Luz

N

i
30km
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this locus, whereas the two modern forms possess allele 90. A population with 100%
LDHS*90 is then considered as modern, but we do not know whether these fish are
wild or domestic.

Some river samples were mainly composed of modern fish (Luz),while others were
almost completely ancestral (Dancharia, Beherekobentako, Bastan). According to lo
cal managers, these populations have not been stocked for several years. Moreover,
morphological characteristics would tend to show that Luz fish are mainly wild. Three
hatchery strains used in southern France for stocking have also been analysed: Brassac,
Canourgue and Suech.

13.2.2
Microsatellites

Among the four microsatellite loci used, two were highly variable: Strutta 58 and
MSU4,with 37and 16alleles respectively. The first has been cloned by Poteaux (199S).
MSU4 has been published in Genbank, under accession number U43694; it was
directly submitted by O'Reilly et al. (1996) and has been identified in salmon (Salmo
salar).

Twoother loci presented only a few alleles compared with usual microsatellite vari
ability: MST73 (6 alleles) and MST IS (7 alleles). Both have been published by Estoup
et al. (1993).

PCR and analysis procedures are described in Aurelle and Berrebi (1998).

13.2.3
Artificial Neuronal Networks

13.2.3.1
Transformation of the Genetic Data

The components of a vector in the input data set are alleles of a trout coded as follows:
for each allele, each individual was noted 0 if it did not possess it, O.S if the fish was a
heterozygote for this allele, and 1if it was a homozygote.

In this way,a vector of the input data set (Table 13.2) can be seen as a vector in:

where n» is the hyper-surface of Rnj defined by:

n·

Vi E {1; ... ;4};Vj E {l;... ;nJ; x~ ~ 0 and ix~ = 1
k~l

where nj corresponds to the number of alleles of locus i; 4 loci have been used.
In order to choose the closest neuron to a particular genotype (see the SOM algo

rithm below), we define a distance in (L) as follows:
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Table 13.2. Components of a vector in the input data set

Individual

x,

Locus 1 Locus 2 Locus 3 Locus 4

4
X 1n4

Letbe X and Y, 2 vectors in (L)

1
4 (ni ~JD(X;Y) = 1- - L Lvxjyj

4'=1 J=I

This distance is derived from Nei distance DA (Takezaki and Nei 1996), initially
defined to estimate genetic distances between populations using allelic frequencies.
Here it is used as an inter-individual distance which gives 0 when 2 individuals present
the same genotype, and 1 when they share no alleles.

In this study, we had 245 individuals (p = 245); the number of alleles for each locus
is: nl = 37; nz= 6 ; n3= 7,n4= 16 and 66 was the total number of alleles.

13.2.3.2
The Kohonen Self-Organizing Map (SOM)

13.2.3.2.1
Presentation
The Kohonen neuronal network consists of two layers:the first (input) layer is connected
to a vector of the input data set (alleles coded as already explained); the second (out
put) layer forms a map: a rectangular grid laid out on an hexagonal lattice (Fig. 13.2).

Wehave n neurons (n =nl + nz+ n3+ n4=66) in the input layer and S (S=80) neu
rons in the output layer. The different parameters of the SOM algorithm were deter
mined by experiment. An input vector X(t) is connected to each neuron j in the out
put layer through an n-dimensional weight vector m;
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Input layer
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Output layer
(Kohonen map)

Fig. 13.2. An example of a Kohonen self-organizing map

The distribution of the weights should reflect the probability density p(x) of the
input data set in (L). Moreover, neurons which are neighbours on the grid are
also expected to represent neighbouring clusters of objects. Neurons on the grid
having a large distance to each other, in terms of distance in (L), are expected to
be distant in feature space. Therefore, the SOM can be used to visualise data separa
bility.

13.2.3.2.2
The SOM Algorithm
The SOM algorithm is unsupervised learning and can be summarized as follows:

For each neuron u, a neighbourhood Nu(t) is defined. Nu(t) is a decreasing func
tion of t (Fig. 13.3); this means that as the time t (the number of iterations) increases,
the neighbourhood of u, that is the number of neurons which will be modified with u
(see step 5), will decrease.

Let a(t) be a decreasing function of time t.
During the learning phase, a data vector is randomly presented, the weights mi(t)

are modified according to the algorithm below:

Step 1: t =0, the weight vectors mi( 0) contained in all the nodes are initialised with
random samples drawn from the input data set;

Step 2: An input vector X(t) is randomly selected from the input set.
Step 3: The distances between X(t) and each weight vector mj(t) are computed:

di(t) = D(X(t)j mj(t)), where D is defined in Eq, 13.1.
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Fig.13.3. Example of neighbour- 0 0 0 0 0 0 0
hood for neuron u (t\ < I)< IJ)

0 0 0 0 0 0

0 0 0 0 ~. ".
0 0

.................

u Nu(13)

0 0 0 • 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0 0

Nui(2)

Nuil,)

Step 4: The Best Matching Unit (BMU) u is chosen as the winning neuron for the input
vector X(t): u = argminj{D(X(t);mj(t))}. This chooses the neuron with the small
est distance to the input vector, or in other words, the neuron which responds
maximally to this input.

Step 5: The neighbouring neurons to the winning node are updated with the rule as
follows:
- If i E Nu(t), mi(t + 1) = mj(t) + a(t)[x(t) - mj(t)), and then in order to obtain

a vector in (1.), the components of mj(t + 1) are computed as follows:

P,q· (I + 1)
v« E {1, ... ,4};Vj E {1; ... ,n,};p~(t+ 1) = --,--'}--

/ "I

I p';r(t + 1)
r=1

this ensures that the sum of the new weights will be equal to I, and so the
matching and updating laws are mutually compatible with respect to the
same metric (Kohonen 1995). These corrections on the winning neuron and
its neighbourhood allow their weights to change in order to further reduce
the distance between the weight and the input vector.

- If i eo Nu(t), mj(t + 1) = mj(t)
Step 6: Increase time to t + 1.

If t < tmax' go to step 2 or else end or stop the training.

In Step 1, the grid was chosen with 80 hexagonal lattices, so we can say that SOM is
robust regarding the initialisation of the weights mj. The choice made here acceler
ates algorithm convergence.

In Step 3, we consider the distance D defined in Eq. 13.1.
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In Step 5, the training is decomposed into two periods:

• During the first one (ordering phase: 0 0:; to:; 2000), a starts with the value 0.9 then
decreases: a(t) = 0.9(1 - t I 2000). Let INu(t) Ibe the radius of the neighbourhood.
INu(t)1 starts with the radius of the network and

like this, during the ordering phase INu(t) Idecreases to one unit.
• During the second period (tuning phase: 2001 0:; to:; tmax) , a decreases very slowly

a(t) = 0.02(1 - _t_) + 0.00001
t m ax

and the neighbourhood Nu(t) contains only the neurons closest to the BMU.

So, when time increases, and the distance between the winner nodes and the cor
responding inputs decreases, the amplitude of the correction decreases.

In Step 6, t max does not depend on the number of vectors in the input data set; it
has been fixed at 40000, i.e. 500 times the number of neurons in the Kohonen map.

When the training is finished, the BMU is determined for each vector of the input
data set, and each sampling unit is set in the corresponding hexagon of the Kohonen map.

13.2.3.2.3
Map Measures
As the training is unsupervised, it is not easy to measure the map quality. Several cri
teria have been suggested (Kraaijveld et al. 1995; Der et aI.1994;Zupan et aI.1993; Harna
lainen 1994).In our work, we have computed the topographic error e which gives the
proportion of sample vectors for which the two best matching vectors are not in adja
cent hexagons in the map (Kiviluoto 1996):

1 245

e=-Ix(Xi )
245i=1

where, if Xi is a sample vector, X(X;) = 1 if the first and the second BMUsof Xj are not
adjacent units, otherwise zero.

Once the SOM had been created, we tried to classify the individuals into different
groups according to this map.
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13.2.3.3
Clustering

The goal of cluster analysis was to subdivide a data set into different groups accord
ing to similar characteristics. For example, in our case, individuals with similar geno
types were assigned to the same clusters. The quality of the grouping would be appar
ent if the distances between the elements of a cluster were small and the distances
between the clusters were large. For clustering, we can use SOM algorithm results as
input data. Several methods have been described (Kraaijved et aI.1995; Tsao et aI.1994).
In this work, we have chosen to combine SOM algorithm and Fuzzy Clustering Mean
(FCM). Preprocessing data with Artificial Neuronal Network makes fuzzy clustering
easier (Foody 1997).

13.2.3.3.1
The FCMAlgorithm
In contrast to a hard classification (where individuals are classified to one strictly de
fined group), fuzzy clustering does not assign every data element to exactly one
cluster; this is well suited to genetic data. Indeed, genetic data given locus by
locus can be different in terms of origin. A given trout can bear ancestral alleles
at one locus and modern genes at another. This method, proposed by Bezdek et aI.
(1984), is founded on the use of fuzzy sets. Fuzzy sets (Zadeh 1965) differ from
"classical" sets in that each sample can belong to multiple sets to different degrees. The
membership to a fuzzy set is characterized by a "degree of membership" which takes
a value between 0 and 1(whereas in hard classification, this function would take only
two values, 0 or 1: an individual belonging to a group or not). Let M ={m1; ••• ; msl be a
set of S individuals (here, the S neurons in the Kohonen map: S = 80). A fuzzy c-parti
tion of M is represented by a real c x S matrix U =(Uij) [1:S; i:S; c and 1:s; j :s; Sj such that:

s
Vi,l:S;i:s;c,LUij >0

j~l

c
Vj,l:S;j:S;S,LUij =1

i~l

(I).2C)

Consequently, for each fuzzy set, the membership value of at least one individual is
not 0 and for each individual, the sum of its membership values is 1. A membership
value of 0 would indicate that it does not belong to the fuzzy set, while a membership
value of 1denotes that it fully belonging to the fuzzy set.

The FCM algorithm is based on the minimization of a generalized least-squares
objective function
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where ej is the centre of cluster i.
The determination of the exponent v, and of the number of clusters c (cluster va

lidity) is a difficult problem. Experimental strategy was used to select v and, follow
ing Bezdek et al. (1984), we chose c which optimizes the normalized entropy:

s c u··ln(u··)
Hc(U) = - I I IJ lJ

j=ji=l S

13.2.3.3.2
The FCM Algorithm Applied to the Kohonen Map
We consider the set M={m,; ... ; msl where m, are the weight vectors computed at the
end of the SOM training. We determine the c-fuzzy clusters in M. The distance used
will be D (defined in Eq, 13.1). The FCM algorithm is applied with

Moreover, the centres of the clusters have to be in (~) and are modified at each it
eration as follows:

After which, a surface motif is chosen for each hexagon according to the clus
ter to which it belongs (Fig. 13.5). We used mixed surface for weakly separated hexa
gons.

13.3
Results and Discussion

13.3.1
The Self-Organizing Map

After the end of training, in order to evaluate the quality of the SOM, the topographic
error E was calculated and we found E = 0.0041. According to this result, for only one
sample vector, the first and the second BMUsare not adjacent hexagons. So, the smooth
ness of the Kohonen map is can be considered as good.



CHAPTER 13 • Application ofSelf-Organizing Mapping and FuuyClustering to Microsatellite Data 197

The results of the distribution of the individuals belonging to the different popula
tions on the Kohonen map is given in Fig. 13.4.On the 80 hexagons, the size of the la
bel is proportional to the number of individuals of each population in the cluster. To
interpret of this map, it should be noted that two neighbouring hexagons contain more
closely related individuals than distant hexagons, but the relationship is not regular.
For example, two contiguous hexagons can in fact contain more distant individuals
than another pair of hexagons; This is related to the fact that it is a two-dimensional
representation of a multidimensional space, and there are some distortions: two close
hexagons can in fact be separated by a kind of "valley" indicating that going from one
to another, there is some great distance.

Nevertheless, inspection of this map shows several interesting groupings. The in
dividuals coming from ancestral populations (according to allozymes: Behereko
bentako (Be), Dancharia (Da) and Bastan (Ba)) are mainly in the right side of the map
and among them, Dancharia individuals are mainly on the upper part and Bastan and
Beherekobentako individuals in the lower part. Nevertheless, these distributions over
lap and a few hatchery individuals are found on this part of the map. On the contrary,

Xx= , Individual in population Xx

Xx = 20 Individuals in population Xx

Xx= , 0 Individuals in population Xx

Fig.13.4. Distribution of individuals on the Kohonen map. Ba:Bastan, Be:Beherekobentako, Br:Brassac,
Ca:Canourgue, Da: Dancharia, Lu: Luz,Su: Suech. In each hexagon, the size of the print is proportional
to the number of individuals in each locality
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only very few individuals from ancestral populations can be found on the left part of
the map (see hexagons 41 and 4).

The left and middle parts correspond to modern populations, with assumed wild
modern individuals (Luz river, Lu) on the left upper part and domestic ones (hatch
ery samples: Brassac (Br), Canourgue (Ca), and Suech (Su)) on the left lower and the
middle part of the map. Luz individuals seem to be well grouped and separated from
other modern individuals. The distribution of the different hatchery strains is less clear
and several hexagons contain individuals of various origins.

These observations can be interpreted from a biological point of view. First, they
confirm the separation between ancestral and modern individuals using a new kind
of marker (microsatellites) and without predefining some samples or populations. In
the same way,among modern individuals we can see a separation between river indi
viduals (assumed to be predominantly wild) and domestic individuals; This agrees
well with the morphological characteristics of these fish and with the preliminary
results obtained with classical population genetics analyses (Aurelle et al. 1998). These
distinctions show that unsupervised artificial neuronal networks can be successfully
applied to genetic data, and even to microsatellite data where there is quite a lot of
"noise" (due to homoplasy and ancestral polymorphism; see [arne and Lagoda (1996)
for a review). Nevertheless, the distributions of the individuals from the different
samples are not separated. They overlap, and this can have several origins, like the
microsatellite properties (previously mentioned) or exchanges between the different
samples. For example, in some hexagons mainly composed of hatchery samples, some
river individuals can be found which could result from stocking. These could either
be recently released fish, or the result of introgression of domestic alleles into river
populations (which could be detected several years after the last stocks were added;
see for example Poteaux et al. (1998)). On the other hand, some hatchery individuals
can be found among river ones. This can be the consequence of the introduction of
wild fish into hatcheries: this is a new kind of hatchery management using generally
male fish from the wild to renew the genetic composition of the hatchery.

But, in order to better analyse the distribution of the different individuals on
the map, a clustering procedure can be useful: it could give a simpler and clearer im
age.

13.3.2
The Fuzzy Clustering

When the FCMalgorithm is applied to Kohonen's map, 6 clusters can be defined. They
are presented in Fig. 13.5 where each cluster shows a different surface (from left to right,
up and down): vertical lines, horizontal lines, light grey, hachured, white, dark grey.
Hexagons with several surfaces correspond to "mixed classifications.twith some mem
bership functions less than 0.8. These "mixed" hexagons are not numerous, and, for
example, there is no mixing between the white and dark grey clusters. Mixing is only
encountered between vertical line and horizontal line clusters, light grey and horizontal
line, light grey and hachured. One hexagon is the result of mixing between light grey,
vertical line and horizontal line clusters.

For each of these clusters, we can relate the composition to the origin of the fish.
The distribution of the samples among the clusters is given in Table 13.3. It should be
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Fig. 13.5. Clustering of trout deduced from Fuzzy Clustering Mean. Each of the 6 clusters has a differ
ent surface. The mixed-surface hexago ns correspo nd to values of membershi p fun cti on s of less
than 0.8

Table 13.3. Proporti ons of individuals of the different samples found among the 6 cluster s created by
the FCM algorithm

Samples Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6
(dark grey) (vertical lines) (horizontal (white) (hachured) (light grey)

lines)

Cano urgue 0 0.17 0.32 0 1 0.05 0.36

Brassac 0 0.14 0.1 4 0.72 0 0

Suech 0 0.22 0.5 0.19 0.06 0.03

Behereko. 0.29 0.08 0 0 0.59 0.04

Dancharia 0.04 0 0 0.04 085 0.07

Bastan 0.74 0 0 0 0.26 0

Luz 0 0.98 001 0.01 0 0

noted that in order to ca lc ula te the p ercentages of individual s of a given populat ion

found in one cluster, we ass igned ea ch individual to a cluster, whereas in a fuzzy logic

analysis, there is no such hard cla ssification. Nevertheless, these percentages can give

an es t im at io n of the cluster composition.
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The vertical line cluster (2) mainly comprises Luz individuals with a few hatchery
fish; this may correspond to the wild modern genetic type. White cluster (4) comprises
some hatchery fish, mainly originating from Brassac and also, with fewer individuals,
Canourgue with a few river and Suech individuals. The horizontal line cluster (3) is
composed of domestic individuals coming from the Suech strain with other hatchery
fish. The light grey cluster (6) corresponds to Canourgue domestic individuals. The
dark grey and hachured (1 and 5) clusters are representative of the ancestral genetic
type, with the pink comprising more Beherekobentako and Dancharia fish and the
second one more Bastan individuals. It should be noted that there is only one mixed
hexagon between modern and ancestral clusters, whereas the other mixed hexagons
can be found between modern clusters.

These separations agree well with the already mentioned ancestral/modern sepa
ration, which has already been analysed with a supervised network (Aurelle et al. 1998).

This distinction would be clearer (and maybe correspond to a more ancient separa
tion) than the distinction among modern fish, between wild and domestic strains.
Among ancestral fish, the procedure found two clusters, one corresponding to
Dancharia and Beherekobentako (hachured),and the other one mainly to Bastan (dark
grey). But this separation is not clear, and certain individuals of all three populations
can be found in the two clusters. The important genetic differentiation observed
between natural brown trout populations (Estoup et al. 1998) could explain why
these three populations cannot be kept in a single cluster. This differentiation prob
ably indicates quite a long divergence time among these populations and/or strong
genetic modifications because of recurrent bottlenecks or colonization events for ex
ample.

For the three hatchery strains three clusters have been defined, and they can be
attributed to the three strains. Brassac is the only hatchery mainly belonging to one
cluster (72% in Cluster 4,whereas Suech and Canourgue are more equally distributed).
This can be related to the characteristics of this hatchery which comprises only one
strain and is small compared to the others, and would then look genetically more "par
ticular." But in each of the three clusters some individuals can be found originating
from the three different domestic samples, and this "overlap" is greater than between
the two ancestral clusters. This can be related to the management practices of domes
tic strains, with a lot of exchanges between hatcheries which reduces the genetic di
versity between them, but increases the diversity inside each strain (Guyomard 1989).
But despite this, the FCM algorithm found three clusters among the strains: the ge
netic diversity within these samples is probably high enough to identify several ten
dencies in each one; and because of the low inter-sample differences, these tendencies
could also be related in other strains. Nevertheless, Clusters 3, 4 and 6 probably corre
spond to domestic fish different from the river ones.

The last cluster, corresponding to Luz (vertical line) is easy to interpret: it corre
sponds to an apparently wild modern sample well separated from hatchery clusters,
with little overlapping (the meaning of these overlaps has already been discussed for
the SOM interpretation). It should be noted that the overlap between the river popu
lations (modern or ancestral) and the domestic ones is low,which confirms the clear
genetic separation of these forms and also indicates low impact of stocking for these
populations (as already noted for Mediterranean rivers: Poteaux and Berrebi 1997).
Further analyses with several different modern samples will be interesting in order to
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analyze the natural genetic differentiation within this group and compare it to ances
tral populations.

13.4
Conclusion

These results show that unsupervised network and fuzzy clustering algorithms can
be successfully applied to complex genetic data, such as microsatellites which have been
used for the description of at least 3 groups and a lot of subgroups of trout. These tech
niques can give an image of the genetic structure of populations without using a priori
knowledge about their composition. In our case, this gave us some useful information
in different ways. From a theoretical point of view, it confirmed the existence of sev
eral wild forms in southwest France. From a more practical point of view, it allowed
us to evaluate the genetic impact of stocking on several river populations, which is
useful for the management of genetic diversity of this species. This new approach can
then be considered as complementary to more classical techniques.
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Chapter 14

The Macroepidemiology of Parasitic and Infectious
Diseases:A Comparative Study Using Artificial
Neuronal Nets and Logistic Regressions

l.F.Guegan . F. Thomas· T.de Meeiis . S. Lek . F.Renaud

14.1
Introduction

Of the about 270 species of helminths, protozoa and arthropods which may perma
nently or occasionally infect human populations, less than 45 species, or about 16 per
cent, are strictly dependent on humans for their survival (Ashford 1991; Petney and
Andrews 1998). For the few West European countries providing reasonably reliable
demographic data before the nineteenth century, epidemics, famines and wars are
favoured as the three critical controlling mechanisms in human demographic crisis
(Jones 1990). For instance, bubonic plague, one of the most dreadful epidemic killers,
dominated the pattern of mortality variation from 1340 to its disappearance after 1670
in Europe, when smallpox epidemics may well have assumed a similar determining
effect. Undoubtedly, mankind has experienced such disease effects along its evolution,
leaving each time relatively resistant populations (Anderson and May1991;Ewald1994).
Adopting a wider perspective, the "health" of man is determined essentially by his
behaviour, his food and the nature of the world around him, and as such he is directly
or indirectly influenced by different forms of parasitic and infectious diseases (Combes
1995). It may appear obvious that human conditions represent foci for a wide range of
diseases (Anderson and May 1991). Unfortunately, the intimate interactions between
different forms of diseases and human life-history traits have been virtually neglected
(Immerman 1986). Life-history theory predicts that faced with virulent parasites, hosts
should adjust their reproductive biology by increasing reproductive output and/or
reducing age at maturity (Steams 1992; Michalakis and Hochberg 1994; McNamara and
Houston 1996; Sorci et a1. 1996; Reeson et a1. 1998; Kris and Lively 1998; Brooke et a1.
1998). Intuitively, variation in parasite species composition across countries might be
sensitive to human life-history traits, and vice versa as predicted by theory. In such a
perspective, the determination of the exact relationships between abiotic and biotic
characteristics and both presence/absence and spatial occupancy of diseases may
appear crucial in that they might probably help to improve our understanding of the
underlying processes that generate them. However, the nature of factors affecting the
presence/absence of a given disease and its spatial distribution has been derived from
a combination of expert opinion, limited data and the use of geographical and climate
descriptors. This is largely due to a traditional individual-centred medical preoccu
pation in understanding these diseases (Jones 1990), and the disciplinary gap that exists
between biomedical scientists, ecologists and evolutionary biologists (Petney and
Andrews 1998). As recently pointed out by Craig et a1. (1999), none has a clear and re
producible numerical definition of Malaria distribution in Africa, for instance; conse
quently, its comparative valueis rather limited. Interestingly,large global data sets in-
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eluding environmental and human population data are now availablewhich make them
suitable for comparative studies.

Given these above remarks, our primary focus in this contribution was to model,
and then to predict the spatial representation of different human infectious and para
sitic diseases, some of which with very deleterious effects on populations across coun
tries. The traditional method for depicting distribution and temporal patterns of major
diseases used by epidemiologists and geographers has been to map rates of change in
spatial distribution, or to provide a series of static "snapshot" maps (Pedersen 1995).
In practice, this facilitates a form of prediction in which we can calculate declines in
site occupancy or colonizations of new sites by diseases. Even though these models
are entirely relevant since they permit one to present the results to a wide audience
(Martin 1996), they do not authorise crude predictions for risk assessment of disease
re-emergence or colonization of new sites. Here, we conduct a comparative analysis
on a global scale using two multivariate methods, i.e. logistic regressions and artifi
cial neuronal networks, to precisely predict the spatial distribution of diseases. Wethen
compare the performance of both logistic and artificial neuronal network models in
predicting the actual spatial distribution of the infectious and parasitic diseases un
der study. Finally, we explore the utility of such predictive models in epidemiology,
and notably how variations in time, say climate change, may affect the actual disease
distribution.

14.2
Materials and Methods

14.2.1
Materials

We compiled data for a total set of 168 different countries located all over the world
and for which all population, geographical and epidemiological information was avail
able. Large global data sets are now available which make the modelling of disease
spatial distribution entirely relevant. In doing so, one should make the maximum use
of the available data, as accurate as possible, and be able to appreciate the potential
inaccuracy in the results. Epidemiological data were obtained from two main sources,
the World Health Organization (W.H.O.) and the Center for Disease Control and Pre
vention (C.D.C.),a quick and convenient method entirely reliable for such a purpose.
Our models assume that all variables, e.g, presence of a given disease, have a homoge
neous distribution across each source country. From the total data set of 168 countries,
we considered a subset of 153countries for a phylogeny-based comparison analysis
(see below).

14.2.1.1
Spatial Patterns

Since geographical and ecological factors might strongly influence the variation of
parasite species distribution across countries, we considered five ecogeographical
variables for each country. These spatial descriptors are those which are probably the
most usually invoked for explaining free-living species occupancy and distribution
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on largest scale (Brown 1995; Rosenzweig 1995; Whittaker 1975). They are: (1) total sur
face area of a given country (in km/), since larger land masses may harbour higher
species diversity than smaller masses do, and thus the likelihood it incorporates a given
parasite species is higher; (2) mean latitude (in degree and minutes which refers to
the value taken at the geographical centre of each country), since higher species di
versity is generally found under tropical areas, and many human infectious diseases
are primarily concentrated in those regions, when compared to more septentrional
provinces; (3) mean longitude (in degree and minutes, measured as previously) which
takes into account the fact that parasite species might have dispersed along an east
west gradient from their centre of dispersion. These three environmental parameters
were log-transformed in logistic regression models in order to minimize effects of
nonnormality on statistics (Zar 1996). They have been kept unchanged in artificial
neuronal net procedures. Furthermore, we considered whether or not a country was
located (4) on the northern or southern hemisphere, since countries are more numer
ous in the northern part of the world which represents a statistical artefact, and (5) on
a land mass or an island since island populations may present frequent fade-outs of
infection (Rhodes and Anderson 1996) or a given disease may be extinguished there
(Esch et al. 1990). These two variables were coded as categorical variables (0/1). Ini
tially, the three continuous variables were incorporated into principal component
analysis to reduce dimensionality and eliminate collinearity between these source
variables (Sheldon and Meffe 1995; Oberdorff et al. 1998). Only one synthetic output
principal component (PCGE01, eigenvalue =2107.91) explained 99.58% of the total
inertia, 89.98% of which depending on the latitudinal effect. Because of no effect of
multicollinearity on final models, we decided to use raw variables. All this spatial in
formation can be accepted as synthetic as possible reflecting other potential physical
variables influencing parasite species distribution, e.g. temperature or ecosystem pro
ductivity as well. All this available data may contribute to the actual distribution of
environmentally determined diseases. Spatial data were compiled from World Atlas
v. 2.1.0 ©, on a Macintosh personal computer.

14.2.1.2
Economic, Socialand Demographic Patterns

Because the human disease characteristics might differ so much across countries hav
ing more or fewer inhabitants, more or less urbanization, or more or fewer financial
supports for health care campaigns, we also compiled demographic and economic data
for the 153countries. Data for population geography were essentially obtained from
the 1992 world population data sheet (Jones 1990). Five demographic or economic
parameters were retained for each country: (1) total population (in number of people
per country), which represents the potential colonizing pool for any disease; (2) total
population growth (per 1000 people), which gives an estimate of the reproductive
ability in growing populations; (3) population density (number of people per km'},
which permits one to separate countries on a continuum of populations with high
aggregate behaviour (as for high urbanization areas) to lower level (in rural areas),
which can strongly influence the likelihood of disease successful transmission; (4)
death rate (per 1000 people), which gives an estimate of differential mortality in the
area, and which can be attributed in part to the deleterious effect some diseases may
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actually have on human health; (5) per capita gross national product (GNP in US$ a
year) to evaluate the resource, or income effect, on disease spatial distribution through
financial supports granted by local politicians and governments in health care cam
paigns. The three variables, i.e. total population, population density and GNP,were log
transformed and the two parameters, i.e. total population growth and death rate, were
arcsine-transforrned to deal with nonlinearity before introduction into logistic regres
sion models (Zar 1996).These variables were kept unchanged into artificial neuronal
net methods. To avoid multicollinearity between all these variables, we proceeded as
previously in using principal components analysis. Since final models did not change
between using raw variables or principal components, we kept predictive variables
unchanged. Conceptually, all these factors may reflect the probability of transmission
occurring or not occurring from high (e.g. countries with high population density and
low incomes) to low transmission intensity (e.g. countries with low population den
sity and large incomes).

14.2.1.3
Historical Patterns

Generally, closely related taxa are more likely to exhibit similar traits than distant taxa
since they have been subject to similar evolutionary constraints inherited from a com
mon ancestor (Harvey and PageI1991). Intuitively, two groups of relative human eth
nic groups might share similar traits. For instance, they might harbour the same in
fectious disease, or group of eo-occurring diseases, which both represent a result of
phylogenetic history. Immunodeficiency and reduced antibody levels to both related
tribes may be invoked to explain this historical component, but such assumptions have
seldom been elucidated completely. Although such aspects remain to be investigated,
there is evidence indicating that two populations cannot be treated as statistically in
dependent points (Martins 1996;Martins and Hansen 1997).Todeal with the confound
ing effect of common history on parasitism, we used the human group phylogeny based
on the findings of Cavalli-Sforza (1997). Unfortunately, it was impossible to directly
use the entire phylogeny, mainly due to the difficulty of crossing this phylogenetic
information based on the existence of more or less well-recognized ethnological groups
with our data concerning political nations. From the entire database of 168countries,
we retained a subset of 153 countries for performing a phylogeny-based correction
analysis. We decided to consider only the eight large divisions of ethnological groups
as defined hereafter. Then, we used only countries for which at least 50% of inhabit
ants belong to one majority ethnological group. Weomitted some countries, e.g. Brazil,
JSU, South Africa, Chile, with a high human polymorphism. To control for the con
fundant effect exerted by common history on calculation, different comparative meth
ods have been developed to take this non independence into account (see Martins 1996
for review). For the purpose of this work, we used a General Least-Square Model, which
permits one to remove the variance due to common history using categorical codes
(Grafen 1992).The choice of this phylogenetic method was based on its better robust
ness toward misspecification of our models (Martins and Hansen 1997).Phylogenetic
coding variables, coded 0 or 1,were introduced into predictive models as dummy cat
egorical variables. The eight main divisions of human groups considered in this work
are:
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I. Africans and Nilotics (except native people from the Maghreb);
11. Europeans (including people from the Middle-East);
Ill. Indians;
IV. Mongoloids, Japanese and Koreans;
V. Amerindians;
VI. New Guineans-Papous;
VII. Melanesians;
VIII. Mhongs, Khmers, Thais, Filipinos, Indonesians and related tribes.
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The first coding variable separates the tribe division I from all other tribes, and it
removes the differences between the means of these two hierarchical groups. Next, and
nested within it, we separate the group formed by tribes 11 to V from the group in
cluding tribes VI to VIII, and so on down to the last bifurcating branch of the phylog
eny.

14.2.1.4
Human Life-History Trait Patterns

Life-history theory assumes that reproduction is costly, and that strategic decisions
should be selected by organisms over their lifetime in contrasting ecological and so
cial environments (Alexander 1987; Shykoffet al. 1996; Lively1987; Hochberg et al. 1992;
Forbes 1993; Lafferty 1993). Parasitism may be such an underlying environmental con
dition, which could interfere with survival and reproduction capabilities in humans
across distinct regions of the world. Since parasites use resources from their human
hosts for their maintenance and own reproduction, costs of reproduction in humans
can be predicted to increase in the presence of parasitism (see Meller 1997; Teriokhin
1998 for a theoretical viewpoint). In addition, differences in male and female life his
tories such as life span variability across sexes, i.e. constant shorter life span for man
than for his congener world-wide (Teriokhin and Budilova 2000), may possibly inter
fere with varying levels of parasitism. In this study, three different human traits, sus
ceptible to interfere with infection, were available for predicting disease spatial dis
tribution: (1) fertility rate, which indicates the number of children that would be born
to 1000 women during their lifetime passing through the child-bearing ages; (2) fe
male life expectancy at birth (in years); and (3)male life expectancy at birth (in years).
Lifeexpectancies at birth are substantially higher for females than males, and thus sex
ratios are directly affected, and in turn both sexes may represent differential hosts for
parasites. This refers to the three most current parameters used in evolutionary ecol
ogy to estimate the degree of organism fitness (see Teriokhin and Budilova 2000).

14.2.1.5
ParasitePatterns

Disease occurrences in the 153different countries were compiled from information
available on mainly two different web sites, the World Health Organization (Geneva,
Switzerland at http://www.WHO.intl) and the Center for Disease Control and Preven
tion (Atlanta, USA at http://www.CDC.govl) sites. Many of the investigations of hu
man parasites have been based on the microscopic examination of the patients' stool
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Fig. 14.1. Actual distribution of malaria in the world. A total of III different countries (66.1%) on 168
present in our total database are affected by paludism (after W.H.O./C.T.D. 1997)

for helminth eggs. Thus, the estimates of the overall human parasitofauna are certainly
underevaluated. Therefore, we were able to collect data on presence/absence for a set
of 15 categories of human diseases known to have a more or less large impact on hu
man health. When information at the species level was not available, we decided to
pool these data by category of diseases. Disease categories are as follows: Hepatitis A,
Hepatitis B,Malaria (see Fig. 14.1for illustration), Schistosomiasis, Filariosis, Meningo
coccosis, Yellowfever, Dengue fever, Cholera, Trypanosomiasis, Dracunculosis, Chagas,
Lyme, cutaneous Leishmaniosis and visceral Leishmaniosis. Other diseases were avail
able, e.g. Typhoid fever, but they were widespread species with a range size of 153coun
tries. We are absolutely conscious that these values are subject to some sources of er
ror, e.g. some parasite species may have been recently introduced into countries and
thus they do not yet appear into the available check-lists, or they have been annihi
lated for a couple of decades, but their potential effect on human populations is still
effective, or the presence/absence of diseases have not been declared to the two inter
national organizations, or this refers to only a sub-sample of what really exists, but
these data are what is really available to us today! In many ways, many of these infec
tious and parasitic diseases represent the actual most dreadful killers occurring on
earth.

14.2.2
Methods

From the variety of multivariate statistics that can be used to predict a presence/ab
sence event, we opted for two distinct techniques for estimating the probability that
an event of presence (or absence) of a parasitic or infectious disease occurs across
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countries. There are logistic regressions (Jongman et al. 1995; Norusis 1997) and arti
ficial neuronal networks (Rumelhart et al. 1986; Edwards and Morse 1995). A third
potential method, i.e. multiple discriminant analysis, was not relevant here since the
data incorporate categorical variables as independent parameters (Jongman et al. 1995).

14.2.2.1
Logistic Regression Models

Presence, or absence, of a given infectious disease across the 153countries was fitted
to the 20 independent variables listed above (see Section 14.2.1) using logistic regres
sion procedure. The general linear model can be written as follows:

prob(o) =1 - prob(l)

with e is the base of the natural logarithms, prob(l) the associated probability that a
given disease occurs in a country, prob(0) the associated probability that a given dis
ease does not occur, and z the linear combination of the independent variables of the
form

z =bo+ b, (surface area) + b2(mean latitude) + ... + b2o(ethnyVIII)

The logistic model in terms of the log of odds, or logit, can be written as follows:

log it [prob(I) ! prob(0)] =z or prob(l) ! prob(0) =eZ

The parameters of the logistic regression model were estimated using the maxi
mum likelihood method. The nine categorical variables, i.e. hemisphere, landmass!
island, and the seven ethnic groups, were entered into regressions as indicator-vari
able coding. The other variables were considered as continuous variables. The Wald's
statistic and its associative significance level were used to detect significant indepen
dent variables within the logistic model, using a significance level of 0.10. R statistics
were used for determination of partial correlation between the disease occurrence
dependent variable and each of the independent parameters. Accuracy of fit of the
logistic models was tested using -2 times of the likelihood (-2LL) with a model per
fectly fitting data having a score of o. The proportion of total explained variation in
logistic regression was given by the Nagelkerke R-square statistics.

We then compare predictions obtained from logistic models to the observed out
comes using contingency tables with cut values of 0.50. In the case of a cut value of
0.50, this indicates whether the estimated probability is greater or less than one-half.

All the independent variables were first entered into logistic regression models
which permits one to control for the effect of other independent variables on a given
descriptor variable (general model). Second, we proceeded to backward elimination
procedure in order to identify minimal models with a subset of independent variables
as good predictors as the total set of independent variables entered into general mod
els.
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14.2.2.2
Artificial Neuronal Networks
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Artificial neuronal nets are known for th eir capacity to process nonlinear relation
sh ips (Rumelhart et al. 1986; Freeman and Ska p ura 1992). In the present work, we
used one of the general principles of artificial nets, i.e, the back propagation al go
rithm (Gallant 1993) for training the database with a typical three-layer feed-forward
20 -3-2 network (Fig. 14.2), that is, 20 input neurons cor respond ing to the 20 indepen
dent parameters introduced into the model, 3 hidden neurons determined as the op 
timal configu rat ion to obtain a best compromise between bias and variance and 2 out
put neurons for di sease occurrence, i.e. one for presence of the disease and one for its
absence. The performance of the artificial neuronal net s was an alysed using two dif
ferent techniques of partitioning the total data set into a firs t subset for train ing the
neuronal model and a second set for test ing its real predictive power. Since there is

Input layer

•
•
•
•
•
•
•
•

Hidden layer

Output layer

Fig. 14 .2. Schema tic represent ation of a three-layered feed -forw ard neuron al network, with one input
layer, on e hidden layer and one output layer as used in the present work . The left side shows the input
parameters used in back propaga tion network models, and the right side il1 ustr ates the outp ut param
ete rs, i.e. pr esen ce or absen ce of a given disease



CHAPTER 14 • The Macroepidemiology of Parasitic and Infectious Diseases 211

actually a large debate on the adequacy of partitioning methods and its effect on model
error rates (Fielding and Bell 1997) without any special consensus, we opted to develop
both"leave-one-out" (Efron 1983;Kohavi 1995) and "hold-out" (Efron 1983;Kohavi 1995;
Friedman 1997) cross-validations for our data-set.

The "leave-one-out", or jack-knife procedure, leaves out a test set (one country x
20 inputs) from the training set (152countries x 20 inputs), and this is repeated for each
country. Then, the model run with the training set may be used to predict the pres
ence/absence of a given disease in the test set. This was repeated with a maximum of
1 000 iterations for each country.

In the "hold-out" procedure also called k-fold cross-validation, two random sets are
extracted from the total data set: a trained set (%, i.e. 115 countries) and a test set (lA,
i.e. 38 countries). Similar to the jack-knife procedure, the model is first adjusted with
the training set, and then it is used for prediction of presence/absence in the remain
ing test set (Kohavi 1995; Friedman 1997). This procedure was repeated 10 times to
provide a better compromise prediction on the random test sets.

As for logistic regressions, we compared predictions obtained from neuronal net
models to the observed outcomes using classification tables with cut values of 0.50.

Readers will be able to find further details on the different neuronal network pro
cedures in the first chapter of this book.

All statistical analyses were performed with SPSS7.5and MatLab 5.0 for a personal
computer

14.2.2.3
Comparative Analysis

We evaluated the efficacy of both multivariate models for classifying the presence, or
absence, of the 15infectious and parasitic diseases by plotting the ratios of sensibility
values (i.e. the true positive fraction) versus i-specificity values (i.e. false positive frac
tion) against the different levels of occurrence frequency, i.e. prevalence observed
across the total set of diseases. In fact, as pointed out by Fielding and Bell (1997) and
more recently by Manel et al. (1999), a decreasing frequency of occurrence may be
responsible for an exaggerated inflation of positive prediction errors. It is well accepted
that logistic regressions are sensitive to such biases (Norusis 1997), but unfortunately
we do not have any specific ideas how neuronal networks may be affected by the fre
quency of events occurring.

Additionally, the use of an arbitrary threshold probability, or cut-off value, which
discriminates between predicted probabilities, of saying 0.50 and greater to be classi
fied as having positive nodes, and of 0.50 and smaller as having negative ones, may be
strongly influenced by prevalence values, i.e. the number of positive occurrences in
the total data-set. To deal with the effect of selecting a specific cut-off value on predic
tion error, we compared the predictive performance of both logistic regression and
artificial neuronal net models using ROC (Received Operating Characteristics) curves
across different levels of threshold probabilities as recognized by Zweig and Camp bell
(1993) and Manel et al. (1999).
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14.3
Results
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14.3.1
Logistic Regressions and Artificial Neuronal Networks Face to Face

14.3.1.1
Logistic Regressions

Table 14.1 illustrates the classification results obtained for the IS infectious diseases
using logistic regression methods. The percentages of good classification for the IS dis
eases were strongly high, varying from 90.2 to 100% (mean 97.3%, SD=±3.S) of coun
tries well classified when all independent variables were kept in regressions. True ab
sence scores, which determine the negative predictive power of data, varied from 90.6
to 100% (mean 91.9%, SD = ±2.9), and true presence scores, which represent the posi
tive predictive power, ranged from 8S.2 to 100% (mean 9S.8%, SD=±S.2). Interestingly,
these results show that there is no substantial difference between classification per
formance of positive and negative cases.

In a backward stepwise selection procedure generating a minimal logistic model
for each disease, we obtained comparable scores of classification for countries (data
not illustrated for clarity of the manuscript): overall good classification between 49.4
and 100% (mean 90.8%, SD =±13.8); true absence scores between 46.9 and 100%
(mean 86.7%, SD=±27.3); true presence scores between 33.3 and 99% (mean 71.6%,
SD=±33.7). Two diseases, Chagas and Hepatitis A, strongly affected overall perfor
mance through lower scores obtained for these diseases, i.e. 49.4 and 6S.S% respec
tively,which contributed to the relatively high standard deviations observed across
all different minimal models. For illustration, Table 14.2 shows the results of both gen
eral and minimal logistic models for Schistosomiasis with the contribution of the dif
ferent significant factors for explaining the presence or absence of this disease across
countries.

14.3.1.2
ArtificialNeuronalNets

Table 14.1 shows results obtained from artificial neuronal networks with the total set
of 20 inputs for the IS diseases using jack-knife procedure. As previously observed for
logistic regression (see above), the percentages of good classification scores were very
high, ranging from 88.9 to 100% (mean 96.3%,SD =±3.6) when all input variables were
kept in models. True absence and true presence scores varied from 0 to 100% (mean
90.3%, SD=±2S.3) and from 0 to 100% (mean 80.6%, SD=±29.7), respectively. Three
diseases (Cutaneous and Visceral Leishmaniosis and Hepatitis A) strongly affected
classification scores in that true positive performances for the two Leishmaniosis,
i.e. 20% and 0% respectively, and true negative performances for Hepatitis A, i.e. 0%,
were extremely low.Moreover, predictions obtained with minimal neuronal networks
formed with only 3 input parameters, i.e. the 3 human life-history traits, performed
nearly as well as global nets to model the disease occupancy per country: 79.2 to 98.2%
(mean 92.7%, SD=±S.S) of total good prediction scores, 0 to 100% (mean 82.8%,
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Table14.1. Results obtained from both logistic regressions and neuronal nets for predicting the presence/absence of 15infectious and parasitic diseases across a set :l:

>
of 153countries when all independent parameters are kept into models. True positive and true negative estimates with their res pective percentage values and overall

-e...,
'"good classification percentage values were derived from leave-one-out procedure. Data show that both methods converge in efficiently predicting the occurrence of '"

the different diseases across countries, with a slight higher performance of good achievement of prediction for logistic regression procedure (but see Tables 14.2 and z:
14.3).See text for further explanation on statistics. C. Leishmaniosis refers to Cutaneous Leishmaniosis and V.Leishmaniosis to Visceral Leishmaniosis. -tzr

t!>

Model Logistic Neuronal Net IfDisease True % True % Overall -2LL R P True % True % Overall
Negatives Positives Performance Negatives Positives Performance

c:
t!>

Chagas 136 100 17 100 100 0.0 1.00 <0.0001 136 100 16 94.1 99.3 3
cS"

Cholera 87 90.6 51 89.5 90.2 77.6 0.762 <0.0001 87 90.6 49 85.9 88.9 0"
IQ

C.Leishmaniosis 148 100 5 100 100 >100 1.00 <0.0001 148 100 1 20.0 97.4 '<
0....

Dengue fever 87 94.6 52 85.2 90.8 57.1 0.840 <0.0001 86 93.5 51 83.6 89.5 ."...
Dracunculosis 133 99.2 18 94.7 98.7 13.5 0.917 <0.0001 134 100 17 80.5 98.7 a:

'".,..
Filariosis 90 94.7 53 91.4 93.5 58.6 0.832 <0.0001 90 94.7 53 91.4 93.5 n'...
Hepatitis A 1 100 152 100 100 0.0 1.00 0 0.0 152 100 99.3

;:,
ns Q.

Hepatitis B 3 100 150 100 100 0.0 1.00 3 100 150 100 100 5"ns iil"
n

Lyme 142 100 11 100 100 0.0 1.00 <0.0001 142 100 9 81.8 98.7 ...
cS"

Malaria
c:::

49 96.1 101 99.0 98.0 26.4 0.927 <0.0001 49 96.1 99 97.1 96.7 '"0
Meningococcosis 107 98.2 39 88.6 95.4 31.3 0.902 <0.0001 106 97.2 37 84.1 93.5 ;;:i'

t!>...
Schistosomiasis 91 95.8 53 91.4 94.1 43.2 0.882 <0.0001 92 96.8 54 93.0 94.1 '"t!>

'"Trypanosomiasis 81 100 72 100 100 0.0 1.00 <0.0001 78 96.3 72 100 98.0

V. Leishmaniosis 150 100 3 100 100 0.0 1.00 ns 150 100 0 0.0 98.1

Yellowfever 114 99.1 37 97.4 98.7 20.5 0.931 <0.0001 114 99.1 37 97.4 98.7

Mean 91.9 95.8 97.3 90.3 80.6 96.3

SO 2.9 5.2 3.5 25.3 29.7 3.6
I
~

""'
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Table14.2. Results of logistic regression procedure for modelling the effect of continuous and discrete
independent variables on one discrete dependent variable such as the Schistosomiasis occurrence (pres
ence or absence) across the 153countries. Table illustrates the results obtained in a global linear model
(a) and after a backward stepwise elimination procedure (b). Both models converge in that the same
set of explanatory variables is retained. Estimation parameters for both models are highly significant
(Model a: -2LL = 43.169, Goodness of fit = 49.917, Nagelkerke R2 = 0.882, Chi-square model = 159.897,
d.f. = 20, P = 0.0000, Overall classification = 94.12%, true negative score = 95.79%, true positive
score = 91.38% with a cut-off value of 0.50; Model b: -2LL = 52.007, Goodness of fit = 70.815, Nagelkerke
R2 = 0.854, Chi-square model = 151.059,d.f. = 7,P= 0.0000, Overall classification = 93.46%, true negative
score =96.84%, true positive score =87.83% with a cut-off value of 0.50). Details on statistics are given
in the text

a Independent factors B Wald's d.f. p R

Spatial characteristics

Surface area <0.0001 1.3049 ns 0.0000

Mean latitude -0.1447 3.8996 0.0483 -0.0967

Mean longitude -0.0590 2.8664 0.0904 -0.0653

Land mass vs. island -0.2281 0.0162 ns 0.0000

North/South 1.2638 0.6156 ns 0.0000

Human traits

Fertility rate 0.8045 3.0667 0.0799 0.0725

Female life span 0.6544 2.8330 0.0923 0.0640

Male life span -0.8534 3.2046 0.0734 -0.0770

Demographic characteristics

Population growth 0.3337 0.9190 ns 0.0000

Population density -0.0005 0.0725 ns 0.0000

Death rate -2.1056 0.7520 ns 0.0000

GNP -0.0003 1.5130 ns 0.0000

Total population <0.0001 0.0234 ns 0.0000

Historical patterns

Dummy Group I -0.8507 0.2568 ns 0.0000

Dummy Group II 0.0389 0.0002 ns 0.0000

Dummy Group III 8.0851 0.0009 ns 0.0000

Dummy Group IV 5.8435 0.0044 ns 0.0000

Dummy Group V 7.1893 0.0071 ns 0.0000

Dummy Group VI 13.8095 0.0141 ns 0.0000

Dummy Group VII 12.2174 0.0308 ns 0.0000

Constant -34.3221 0.0110 ns

SD =±30.5) of true negative scores and 16.7 to 100% (mean 73.1%,SD =±28.8) of true
positive scores (Table 14.3). Except for the lowest negative scores obtained for the two
Hepatitis A and B,and the lowest positive scores obtained for the Chagas disease and
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Table 14.2. Continued

b Variables in the equation B Wald's d.f. p R

Spatial characteristics

Surface area <0.0001 4.5876 0.0322 0.1129

Mean latitude -0.1917 14.1435 0.0002 -0.2445

Mean longitude -0.0547 11.4365 0.0007 -0.2156

Human traits

Fertility rate 0.5692 5.2436 0.0220 0.1264

Demographic characteristics

Population growth 0.6483 7.3891 0.0066 0.1629

Historical patterns

Dummy Group VI 11.9461 0.0257 ns 0.0000

DummyGroup VII 11.3130 0.0756 ns 0.0000

Constant -26.5672 0.0972 ns

Model if constant removed Log likelihood 2 log LR d.t. p

Spatial characteristics

Surface area 28.316 4.625 0.0315

Mean latitude 41.055 30.103 0.0000

Mean longitude 38.099 24.191 0.0000

Human traits

Fertility rate -29.077 6.148 0.0132

Demographic characteristics

Population growth -31.112 10.216 0.0014

Historical patterns

Dummy Group VI 30.977 9.947 0.0016

Dummy Group VII 34.949 17.890 0.0000

the two Cutaneous and Visceral Leishmaniosis, we obtained similar prediction scores
compared to neuronal net models with the 20 input parameters (see Table 14.1). These
findings particularly demonstrate that minimal neuronal nets perform as well as gen
eral models to predict and model the distribution of those infectious diseases. In ad
dition, all these results corroborate those obtained using logistic regressions. Again,
artificial neuronal nets, as well as logistic regressions, were not influenced, or slightly
perturbed, by a presence/absence effect for prediction of true negative plots versus
true positive plots.
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Table 14.3. Results obtained with artificial neuronal network modelling for predicting the presencel
absence of the 15infectious and parasitic diseases across the total set of 168 countries with only the three
human-life history traits, i.e. fertility and life spans for both sexes. Since historical information was ex
cluded from this analysis, it was possible to use the total number of countries available in our database.
True positive and negative scores with their respective percentage values and overall good classifica
tion percentage values were derived from leave-one-out procedure (see text). Data show that modelling
efficiently predicts the occurrence of most of diseases solely using human characteristics as input pa
rameters

Disease True negatives (%) True positives (%) Prediction performance

Chagas 147 100 5 23.8 94.4

Cholera 97 91.5 48 77.4 86.3

Cut. Leishmaniosis 162 100 1 16.7 97.0

Dengue fever 90 90.9 60 87.0 89.3

Dracunculosis 149 100 16 84.2 98.2

Filariosis 90 91.5 46 74.2 79.2

Hepatitis A 0 0.0 165 100 98.2

Hepatitis B 1 20.0 163 100 97.6

Lyme 153 98.1 7 58.3 95.2

Malaria 43 75.4 107 96.4 89.3

Meningococcosis 120 97.6 35 77.8 92.3

Schistosomiasis 102 95.3 51 83.6 91.1

Trypanosomiasis 128 96.2 33 94.3 95.8

Visc.Leishmaniosis 164 100 1 25.0 98.2

Yellow fever 107 84.9 41 97.6 88.1

Mean 82.8 73.1 92.7

±SO 30.5 28.8 5.5

Hold-out modelling gave similar results of good recognition patterns. Table 14-4
shows results of the ten tests for two diseases, Schistosomiasis and Yellow fever.Scores
of overall correctly classified countries were between 81.6 and 94.iYo (mean 87.6%,
SD =±3.73) for Yellow fever disease, and 78.9 to 92.1% (mean 85.3%, SD =±4.86) for
Schistosomiasis.

14.3.2
Occurrence and ThresholdEffects

14.3.2.1
Occurrence Effects

As illustrated in Fig. 14.3, we did not observe any occurrence effect (range values from
25 to 93% for the 15 parasite species across the 153 countries) on sensitivity/I-speci
ficity ratios for both neuronal network models (Fig. 14.3a) and logistic regressions
(Fig. 14.3b).This means that, at least in this study, infectious and parasitic diseases
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Table 14.4. Results of artificial neuronal network modelling after the partitioning of the data set into a
training set (% of countries) and a test set (1,4 of countries), or hold-out procedure. Table shows results
of the ten tests for two diseases, Le. Schistosomiasis (a) and Yellow fever (b). Also given are mean values
of the ten trials and their corresponding standard deviations

a True negatives (%) True positives (%) Prediction performance

Trial 1 17 80.9 15 88.2 84.2

Trial 2 21 91.3 10 66.7 81.6

Trial 3 20 87.0 10 66.7 78.9

Trial 4 22 91.7 13 92.8 92.1

TrialS 21 87.5 12 85.7 86.8

Tria/6 19 86.3 14 875 86.8

Trial 7 22 95.6 13 86.7 92.1

Trial 8 18 78.3 12 80.0 78.9

Trial 9 19 86.4 15 93.7 89.5

Trial 10 21 87.5 11 78.6 842

Mean 20 87.3 12 82.7 85.3

SD 1.70 503 1.84 9.65 4.86

b True negatives (%) True positives (%) Prediction performance

Trial 1 21 87.5 11 78.6 84.2

Trial 2 19 79.2 12 85.7 81.6

Trial 3 21 87.5 12 85.7 86.8

Trial 4 23 92.0 11 84.6 89.5

TrialS 20 83.3 13 92.9 86.8

Trial 6 22 91.7 12 85.7 89.5

Trial 7 23 95.8 13 92.9 94.7

Trial 8 19 82.6 13 86.7 84.2

Trial 9 20 90.9 14 87.5 89.5

Trial 10 22 88.0 12 92.3 89.5

Mean 21 879 12 87.3 87.6

SD 1.49 5.03 0.95 4.46 3.73

having a very low spatial occupancy on earth, i.e. endemic species with a very limited
area (e.g. Chagas disease restricted to some countries of Southern America), may be
as best predicted as widespread diseases since the occurrence effect plays a poor or a
very slight role when considering all the predictive variables (inputs) into modelling.
Nevertheless, minimal models built with the 3 human life-history traits only were more
sensitive to variation in prevalence values (see Table 14.3). Considering minimal mod
els, both logistic regressions and neuronal nets were affected by those variations in
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Fig.14.3. Sensitivity/r-specifi
city ratios against occurrence
values for the 15infectious and
parasitic diseases: a scatter
diagram obtained using artifi
cial neuronal network proce
dure; b scatter diagram ob
tained after logistic regression
method. Both statistical tech
niques converge
in that sensitivitylI-specificity
profiles are not or very slightly
influenced by occurrence effect
(see text for further details)
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prevalence values, and we found both low prevalence and high prevalence effects on
classification scores. This can be observed in Table 14.3 for the 5 diseases, i.e. the Hepa
titis A and B (high prevalence effect observed on true negative scores), the Cutaneous
and Visceral Leishmaniosis and the Lyme disease (low prevalence effect on true posi
tive scores). However, the lowest sensitivityh-specificity ratios were observed for the
average values of prevalence, Le. diseases having a prevalence value of around 35-40%,
i.e, the Cholera and Dengue fevers and the two helminthic Schistosomiasis and Filari
osis diseases. We did not find any special explanations to these findings. These results
conflict in part with previous studies showing low prevalence values of an event which
might be responsible for better prediction of true absences than true presences
(see Manel et al. 1999).

14.3.2.2
Threshold Effects

Figure 14.4plots the relationship between sensitivity values (Le. the true positive frac
tion) against 1-specificityvalues (i.e. the false positive fraction) across different thresh
olds of cut-off-values obtained by jack-knife procedures for both classifying meth
ods. The procedure was repeated for each of the 15 infectious diseases. These results
show that a sufficiently high rate of true positives and a low rate of false positives may
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Fig. 14.4. Received operating characteristic curves; a artificial neuronal networks; b logistic regressions
illustrating the relationship between sensitivity values (i.e. the true positive fraction) against I-specificity
values (i.e. the false positive fraction) across different thresholds of cutoff-values obtained by jack-knife
procedures. These results show that a sufficiently high rate of true positives and a low rate of false posi
tives may be achieved at a threshold probability of 0.5 for both logistic regression and neuronal net
methods. Curve behaviours illustrate the general tendency observed across the 15different diseases. The
dotted line corresponds to x equals y

be achieved by both neuronal net (Fig. 14.4a)and logistic regression (Fig. 14.4b)meth
ods. However,sensitivity estimates increase sharply to larger values for logistic regres
sion than for neuronal nets, which means that the former method more correctly clas
sifies new cases irrespective of the threshold value of probability to accept presence
when compared to the latter. Artificial neuronal network procedure was more sensi
tive in that it classified false presence with a high probability of event. Our present
findings correspond to those obtained by Mane! et al. (1999) in that we observed a
general but slight tendency for better performance in logistic regressions for classify
ing countries across distinct threshold probabilities than neuronal nets did.

14.4
Discussion

There have been very scarce comparison studies of the ability of logistic regressions
and neuronal networks to discriminate between the presence and the absence of an
event (de Garine-Wichatitsky et al. 1999).Weprovide in this work an attempt to com
pare the ability of these two methods to make accurate predictions of the spatial oc
cupancy and occurrence for 15 human diseases, some of which can be considered as
endemic on a continent, e.g. Chagas disease, and some others have a widespread dis
tribution world-wide, e.g. Hepatitis Aand B.Logistic regressions have been widely used
and proposed for several applications relevant to ecological and evolutionary investi
gations (Schoener and Adler 1991; Trexler and Travis 1993; Veltman et al. 1996;Gaston
1998;Sorci et al. 1998).Several texts provide informative discussions on logistic regres
sions (McCullagh and Nelder 1989;Norusis 1997).Unfortunately, very little attention
has been paid to comparing the efficiency of these two methods, and we wish to aid
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in this present investigation the development of a comparative analysis of statistical
techniques when an event is expected to occur or not.

First, defining the precise spatial distribution of parasitic and infectious diseases
is of prime interest, but it remains difficult. On smallest spatial scales ecological vari
ability and temporal changes make disease distributions not easily definable in space
(Sutherst 1998). Many infectious diseases have their distribution in time, which waxes
or wanes with the natural periodicity of events. This is particularly true for Malaria
distribution in Sub-Saharan Africa, for instance (Craig et al. 1999).

Wehave demonstrated in this work that simple models may be used to predict the
actual distribution of different diseases on a global scale. The data sets and the two
methodological approaches we used are entirely relevant at this largest scale, but they
do not consider small-scale anomalies that evidently affect distribution, such as local
extinction of vectors, arid zones, deforestation, etc. Aspreconised by Craig et al. (1999),
the modelling of disease distribution may be viewed as a four-tier approach: (1) the
first level, at a large scale, defines the broad distribution of diseases (this work); (2)
the second level, at a southcontinental scale, takes into account differences between
ecological zones; (3) the third level, at a regional or national scale, defines the trans
mission intensity within a given zone of transmission ecology, such as perennial, sea
sonal or bi-seasonal transmission; (4) the fourth level, at a local scale of say several
km-squares, which allows more detailed precisions. On largest scales, prediction of a
disease in terms of presence according to very global environmental and biological
descriptors is highly appreciable. Interestingly, such models are entirely relevant at
smallest scales, since the inclusion of other smaller-scale data sets should permit more
detailed predictions.

Second, logistic regression procedure tends to be the method of choice for classi
fying an event of presence or absence, simply because it is used widely and is gener
ally understood. It is worth noting here that logistic regressions gave similar results
to artificial neuronal nets. In addition, logistic regressions were less time-consuming
than neuronal nets. On the practical side, logistic regressions generally provide an
information about the importance of predicting factors on the likelihood of an event.
Astonishingly, we did not find any major effect of occurrence, i.e. the proportion
of absence scores on presence scores, on classification using general models. Con
trastingly, minimal models for both methods were more sensitive to the occurrence
effect. One possible explanation is that in both statistical techniques, data are assumed
to implicitly contain the information necessary to establish the relation, an assump
tion more probable when performing a general model than in a minimal model. The
very high scores of classification across the 15 infectious and parasitic diseases on a
global scale we obtained with general models probably reveal the fact that there is good
reason for using these factors to indicate the probable presence of a given disease, at
least at this scale of investigation. In addition, the examples we show confirm that
human life-history traits allow very good predictive scores of presence of a disease.
This may be particularly true when faced with virulent parasites, hosts should adjust
their reproductive biology by increasing reproductive output and/or reducing age at
maturity as suggested by theory. Thus, these findings would tend to show that some
diseases, e.g. schistosomiasis, responsible for high incidences of morbidity and mor
tality in human populations, might be associated with their host life history charac
ters, and vice versa. Although it is well known that some diseases cause severe impacts
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on human populations, they do not necessary imply a subtle response in the adjust
ment of human life-history traits. Prediction does not demonstrate causation between
the presence of a given disease and shifts in life-history parameters. According to
Meller (1998), parasites should impose stronger selection pressures on their hosts in
the tropics compared to nontropical climatic zones, and thus parasite constraints on
man should be stronger around the Equator line. Three alternative hypotheses could
explain our findings: (1) both parasite species occurrence and human characteristics
may be related to a third surrogate variable, or group of surrogate variables, not en
countered into our models, which would act simultaneously on both these parameters,
(2) parasite impacts should select for optimal human responses, or (3) the presence of
one disease, or one group of eo-occurring diseases, might be determined by human
kind. As of present, we cannot evaluate the relative importance of these three mecha
nisms, but just apprehend them by modelling. Nevertheless, we demonstrate that hu
man-parasite biological systems are probably characterized by nonlinear spatially
extended relationships, which might reflect the connectedness that would exist in real
communities between man and his infectious and parasitic diseases.

14.5
Conclusion

It is remarkable to see how such simple predictive models approximate the actual dis
tribution of the different infectious and parasitic diseases across the world so well.
Adopting a wider perspective, i.e. macro epidemiology, we show here that this model
ling can be easily repeated and manipulated in combination with other new available
data sets and combining data from multiple sources. Collations of data for infectious
and parasitic diseases on the field are numerous, but the modelling of diseases is still
in its infancy. Probably, more global data sets including various abiotic and biotic pa
rameters are needed in conjunction with geographical information systems. Thus, we
view the modelling of infectious and parasitic diseases as a promising avenue of re
search.

Our results suggest the existence of nonlinear laws for the spatial distribution of
some diseases and human life-history traits. Many factors determine why an area in a
particular region harbours a disease (or not). Classical theories of biogeographers
explain the spatial distribution of diseases by cultural, geographical and socio-eco
nomical factors, with southtropical areas harbouring the bulk of parasitic and infec
tious diseases on earth (Anderson and May 1991). Because a wide array of factors may
contribute to the actual variation in space of human diseases, it is actually difficult to
disentangle the respective effect of the different variables involved. However,our find
ings tend to show the existence of a correlation between diseases and human charac
teristics, with fertility being the most important factor.

In free-living organisms, there is evidence of rare-common species differences
(see Kunin and Gaston 1993; Gaston et al. 1998; Blackburn et al. 1998). Widespread spe
cies tend, on average, to be locally more abundant than rare restricted species at large
spatial scales. A positive interspecific (in space) and intraspecific (in time) relation
ship arises because common species are abundant at some sites, whereas rare species
are rare at all sites. Unfortunately, little is known about parasitic and infectious dis
eases. Restricted parasite endemics, e.g. Chagas disease, may probably differ in its eco-
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logical interactions with hosts, and/or in its population genetics to a more similar
widespread disease. Such differences might result from evolved adaptations to the
condition of rarity, or, on the contrary, not all species might be equally armed to be
come rare. Extensive data sets are now available on parasitic and infectious diseases
to be analysed in this way.Combining different information about genetics, physiol
ogy,life history, epidemiology etc., may allow us to address some unresolved issues in
public health. We are developing in our laboratory such methodological approaches
to integrate a vast amount of data (see Rapport et al. 1998) on some core research
projects, i.e, Chagas disease, trypanosomiasis, paludism and liver-fluke.

Changes in attribute data entered into models are very easy to deal with. In some
ways, it is possible to modify a variable, or a group of values within a variable, allow
ing comparison of trends before and after modification, and to observe effects on pre
diction of disease occurrences across countries. For instance, this would be possible
with population density, death rate, GNP data or fertility rate values to detect declines
in site occupancy for a disease, synchronous declines for a group of eo-occurring dis
eases, or on the contrary dispersion of some others. In addition, climate change, de
forestation and desertification scenarios, which are highly probable in the near future,
may provide an immediate response on some spatial disease occupancies. Lattice il
lustrations using Kohonen (1984) mapping may be ideal for representing human dis
ease distributions in space and time, for detecting regions or areas at risk of new in
vasions by infective agents (work in progress). We feel that such analysis methods are
not yet particularly well developed, and they are completely general to answer some
urgent problems the earth is facing within the very near future, such as emerging and
resurging diseases (Gratz 1999)!
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Chapter 15

Evolutionarily Optimal Networks for Controlling
Energy Allocation to Growth, Reproduction and
Repair in Men and Women

A.T.Teriokhin . E.V. Budilova

15.1
Introduction

This paper may be considered as a continuation of the approach of some recent works
(Abrams and Ludwig 1995; Cichon 1997; Teriokhin 1998) which treat quantitatively,
using an evolutionary optimization approach, the so-called disposable soma theory
of ageing (Kirkwood 1981).This theory affirms that the senescence of an organism with
age is due to insufficient repair caused by evolutionarily profitable diversion of en
ergy to the organism's other needs, mainly to reproduction.

Evolutionary optimization methodology is based on the assumption that during
the evolution of a species some criterion of Darwinian fitness is maximized. Usually,
the Malthusian parameter, which is defined implicitly by the Euler-Lotka equation, is
used as such a criterion.

This equation relates the Malthusian parameter, p, which characterizes the rate

ee

1 = Je-pt ftltdt
o

of increase of a population, to individual characteristics such as ft, fertility at age t,
and It,probability to survive to age t. If the population number is stationary then the
maximization of p is equivalent to the maximization of F,

the life time reproductive success of individual (Taylor et al. 1974).
It is evident that in the absence of any constraints the problem of evolutionary op

timization becomes trivial: the greater it and Itthe greater F. It is therefore necessary
to add some constraints is to make the problem meaningful. We recognize three levels
of introducing constraints in the evolutionary optimization problem statement.

The first is the level of the so-called trade-off curves (e.g, Steams 1992). In this case
It and Itare directly related by some equation in a sort that it decreases with increas
ing It, and vice versa.

The second level (e.g, Perrin and Sibly 1993) is when it and It are related implicitly
by a model for allocation of an organism's resources (energy, for brevity) among its
different needs (growth, reproduction, repair, maintenance etc.). This approach can
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be adequately formulated in terms of the theory of optimal control (e.g. Bellman 1957;
Pontryagin et al. 1962). The main concepts of this theory include a criterion of
optimality (F, in our case), control variables (e.g. fractions of energy allocated to dif
ferent organism's needs), state variables (variables characterizing the physiological state
of organism and the state of environment), and state equations (differential equations
describing the dynamics of state variables). The final goal of the theory is to find an
optimal strategy, i.e. a rule optimally matching a set of admissible values of control
variables to any set of admissible values of state variables.

The third level (e.g. Mange11990; Budilova et al.1995) is characterized by a still more
detailed consideration of the physiology. In this case, one tries not simply to find an
optimal strategy of energy allocation but also to define the structure and parameters
of the system which realizes such a strategy. The neuronal network approach
(e.g, Rumelhart and McClelland 1986) provides an adequate mean to pose and solve
this problem. State and control variables of the optimal control approach become here
input and output nodes of a cognitive control network, and the rules describing inter
actions between the nodes play the role of state equations.

In this paper we consider, on the second and third levels, a particular problem of
modelling the evolution of life histories of men and women. Special attention is paid
to explaining sex distinctions in their life histories. For example, it is well known from
demographic data that men, as compared with women, have later age of maturity,
greater body size, shorter life span, and have no menopause. Wewill show that all these
distinctions immediately emerge in evolutionarily optimal life histories if only one
assumption is made about the difference between the physiology of men and women,
namely, if we assume that women, but not men, can accumulate reproductive energy
in their offspring.

15.2
Optimal Control Model

Let us specify the assumptions of the model of evolutionary optimization of men's and
women's life histories. Wewill consider the problem of allocating energy to only three
needs of the organism: growth, repair, and reproduction. Correspondingly, three age
dependent control variables, Uwt, uql>and u., (with Uwt + Uqt + Urt=I), denoting the frac
tions of energy allocated to growth, repair, and reproduction are considered. Our state
variables are WI> body size, qt, organism vulnerability, and r., energy accumulated in
offspring (only for women).

The state equation for the size is

where et is the rate of energy production at age t which itself depends on the body
size, W t , in the following way
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so that for not very great sizes et is proportional to W t to the power d. The constants
Me' Mw, c, and din Eq.15.4 are unknown parameters to be fitted to demographic data
(Me and Mw denote maximum possible values of et and wt) .

The state equation for vulnerability (which at the population level is better inter
preted as mortality rate) is

That means that the vulnerability does not increase with age if all the energy is spent
on repair (u qt =1),and increases with infinite rate if no energy is allocated for repair
(u qt =0), a and b being parameters which should be fitted to demographic data. The
vulnerability normally grows with age, according to such a state equation, because the
organism cannot spent all its energy on repair. Knowing qt,we can find the survival It,
i.e, the probability of surviving to age t, using the equation

t

-Jq,ds
l, = e 0

We assume in addition that the reproductive effect depends nonlinearly on the
energy invested in reproduction

where g, h, Mp Mfare parameters to be fitted to demographic data (M, and Mfdenote
maximum possible values of Tt and ft), and Tt is the energy invested in offspring since
the moment of previous offspring releasing. We,however, suppose that only women,
but not men, can accumulate energy according to the state equation

where to is the beginning of a recurrent period of offspring carrying and bringing up.
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15.3
Computing Optimal Strategies

A.T.Teriokhin . E.V. Budilova

We use the dynamic programming method (Bellman 1957; Mangel and Clark 1988) to
compute evolutionarily optimal strategies of energy allocation. For this, we set lower
and upper limits for the lifetime and state variables and divide these intervals into
sufficiently small parts.

Namely,we set all the lower limits for t, w, q, T equal to 0, the upper limits to T, Mw,
Mq, M" and the numbers of division to NI> Nw, Nq, Nr • Wealso divide the interval from
o to 1 for energy fractions Uwt' Uqt , and u., into Nuparts and assume that energy can be
allocated either to growth or reproduction, but not to both. In addition, we introduce
a control variable Uft which is allowed to take only three values: 0 for growing, 1 for
accumulating reproductive energy, and 2 for releasing offspring (uft cannot be 1 for
men).

The dynamic programming computes the lifetime reproductive success of

F(wt'qt'Tt' t) = max ([F(Wt+l,qt+l,Tt+pt + 1)+ it]exp(-qt)}
u wt ,U qt IUrt ,U ft

individual F starting with F( Wt> qt> Tt> t) = 0 at t = T and proceeding backwards
up to t=o according to recurrent equation where (assuming that dt = TINt = 1), we
set

it = 0, if Uft "# 2

As a result of this backward procedure we obtain, for all sets of state variables, val
ues at each time step, optimal values of control variables. That allows us, now proceed
ing forward from some initial values of state variables, to find the optimal life history
strategy of investing energy to growth, reproduction, and repair and corresponding
dependencies of size, offspring, and vulnerability on age.
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15.4
Fitting the Optimal Control Model

The above dynamic programming procedure can be performed only if all the param
eters qo, Wo, a, b, c, d, g, hLMe, Mw' M" and Mfjn the model are defined. We do not
know these parameters, but we can try to choose them in such a way that the resulting
optimal life history characteristics (age and size at maturity, mean life span for men
and women, age of menopause for women) should be close to real demographic data,
and, in particular, demonstrate differences in men's and women's life histories. Wehave
tried a number of sets of parameters and found that the following set of parameter
values (the same for men and women) satisfies, to some extent, these requirements:
qo = 0.005, Wo = 3, a = 0.003, b = 2, C = 0.5, d = 0.5, g = 0.2, h = 1.7, Me= 45, Mw= 80,

M r = 30, Mf =35·
Figures 15.1 and 15.2 illustrate the dependencies of et on W t and It on Tt defined by

Eqs. 15.4 and 15.7 for these parameter values. The dependence of et on W t shows an
approximate proportionality of et to W t to the power 0.5, and that agrees with widely
accepted approximations for this dependence (e.g. Bertalanffy 1957). As regards the
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dependence of ft on r., it can be seen from Fig. 15.2 that it is sigmoidal. This implies
that it is advantageous to invest more (to some extent) energy into offspring and this
can be done in two ways. First, an individual can accumulate energy in offspring be
fore releasing this energy (we will see that this is the women's strategy) and, second,
an individual can release a great amount of energy instantaneously if it has a big body
size (it is the life strategy of men).

Using the above set of parameter values (with N, =140,Nw=Nq =Nu =20, N, =5),
we computed the evolutionarily optimal (i.e. maximizing lifetime reproductive suc
cess) strategies for men and women (the only difference between men and women was
that uft could not take the value 1for men, i.e. men could not accumulate reproductive
energy).

Figures 15.3 and 15-4 present, for men and women correspondingly, the dependen
cies of the control variable Uft(taking values 0 and 2 for men and 0,1,and 2 for women)
on state variables (on Wt and qt for men and on Wt, qt, and r, for women).

In Fig. 15.3 we see that it is evolutionarily optimal for men to grow (uft= 0) when
Wt and qt are not very large and to reproduce (uft =2)when Wt or qt become sufficiently
great. In Fig. 15.4 we see also that it is optimal for women to grow (uft= 0) for lesser
values of Wt, qt' and Tt and to reproduce (Ut=1 or 2) for greater values of these state
variables. In addition, we observe that it is optimal to accumulate energy in offspring
(uft =1) for lesser values of r, and qt and to release offspring (uft =2) for greater values
of these state variables. In our computations we assumed in advance that growing
abruptly and irreversibly changes to reproducing, for it may be shown that this is so
because of linear dependence of the Hamiltonian for our model on U wt (Ziolko and
Kozlowski 1983).

Applying the described optimal rules allows us to compute optimal dependencies
of state and control variables on age. In Fig. 15.5a and 15.5b we show the dependencies
of uft on t for men and women. The dependence for women differs from that for men
in the presence of a period, from age of maturity tmat =14to age of menopause tmp =50,
when carrying and bringing up children lasts more than one time step (2 years, to be
exact). After the menopause our model predicts for women cessation of accumulat
ing energy in offspring during more than one time step. Assuming that it is physiologi-
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Fig. 15.4. Dependence of opti
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cally impossible to reproduce full-value human offspring during only one year, we may
suppose that women, during their evolution, changed carrying and bringing up their
own children in older age to, say,bringing up grandchildren.

In Fig. IS.6 we show the optimal dependencies of size wt on age t for men and
women. We see that the size of maturity for men, Wm.! = 16, is greater than that for
women, Wm.! =14 (we put, both for men and women, Wo =3).

In Fig. IS.7 are shown, again for men and women, the optimal dependencies of frac
tion of energy allocated to repair, Uqt, on age.Wesee that with age this fraction steadily
decreases both for men and women, though for women this decreasing is slower. As a
consequence, the vulnerability, q" grows with age at an increasing rate as can be seen
in Fig. IS.8. Again, this growing is slower for women as compared with men, which
results in greater mean life span for women, tmls =61, as compared with that for men,
tml s =S4·

Thus we do see that the only assumption about impossibility for men, as opposed
to women, to accumulate energy in offspring leads to well known distinctions in
men's evolutionarily optimal life histories: later maturation, bigger size, shorter
life span, absence of menopause. Note that an analogous assumption (higher promis
cuity in men as opposed to women) was already successfully used, though in a differ
ent model, for an evolutionary explanation of slower ageing in women (Rossler et al.
1995).



23 2 A.T. Teriokhin . E.V.Budilova

Fig. 15.5. Life history dynamics
of optimal decision making;
a men; b women
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15.5
Network Control Model

So far, we have not touched on physiological mechanisms capable of realizing evolu
tionarily optimal age-dependent strategies of energy allocation. Now we will try to
do this, partly relying on the results of previous paragraphs.

In Fig. 15.9 we present a network scheme for simulating the processes of allocating
energy in a human organism during its life history. Liketraditional neuronal networks
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Fig. 15.7. Optimal life history
dynamics of the fraction of
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(e.g. Rumelhart and McClelland 1986), our network, at least partly, consists of units
joined by weighted links. However, there are essential distinctions. Not all the units
are as simple as classical formal neurons (e.g. Hopfield 1982). And not all links and
units deal with information: some of them operate with energy flows.We would bet
ter describe this network not as truly neuronal but rather as somatoneuroendocrine.

The network proceeds as follows.At each time step t unit E produces some amount
of energy et defined by the size of individual, W t, in accordance with Eq. 15.4. This
amount of energy is divided between growth (unit W), repair (unit Q), and reproduc
tion (unit R) proportionally to the values of control signals u w" uqt,and UTt.The changes
in size, W t, vulnerability, qt, and reproductive energy, r" depend on the fractions of
energy directed to growth, repair, and reproduction in the same way as in the above
optimal control model, i.e. according to Eqs. 15.3,15.5, and 15.8. One more control vari
able, uft, taking only two values (1 or 2) prevents (uft =1) or stimulates (uft =2) releas
ing accumulated reproductive energy r.. Reproductive output It (directed to output F),
depends on accumulated reproductive energy, rt, as it stated above by Eq. 15.7.

In their turn, the values of control signals Uwt' Uqt, UT(> and uft themselves depend on
the values of state signals w" q" and r; This dependence is realized through units
Q-WR, W-R, and R-E Unit Q-WR gets as input the values of state signals with weights
5\,52' and 53 and generates two output signals: Uqt and 1 - Uqt• The first output is used
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to control the fraction of energy allocated to repair, and the second signal is sent to
unit W-R which redirects it either to growth or reproduction, that is, generates either
Uwt =1 - uql and U rt =0 or U wt =0 and Urt =1 - Uq t• The choice is defined by the values
of state signals weighted by 54' Ss,and 56' The value of control signal Uft (1 or 2) is gen
erated by unit R-F, which functions as a simple formal neuron: the output is 2 if the
weighted (with weights 57' Ss,and 59) sum of state signals is greater than a threshold,
and 1 otherwise.

It isassumed that the network can die at any time (age) step with probability
exp(-q t) and the amount of reproductive output, accumulated in F by this time, de
fines the lifetime reproductive success of this network.

15.6
Optimizing the Network Model

The network described above contains two sets of unknown parameters. The first set
of unknown parameters consists of the weights of links: 51,52,53,54' Ss, 56' 57' Ss' and 59'

To find them we will use the so called genetic optimization algorithm (e.g, Bounds
1987). Finding weights SI-59 in the neuronal network model corresponds to finding
optimal strategies in the optimal control problem statement. The second set consists
of parameters already used in the optimal control model for describing processes of
energy transformation: qo, Wo, a, b, c,d, g, h, Me' Mw, Mr,and Mf Wewill simplify our
task and use for these parameters the values already found when fitting the optimal
control model.

The genetic algorithm proceeds in our case as follows.Wegenerate randomly N sets
of weights and simulate the life history of each of N corresponding networks. Depend
ing on the obtained random values of weights and on randomness of death age, dif
ferent networks will have different lifetime reproductive successes. After the death of
all individuals, we form a new generation that consists of copies of networks from the
previous generation, the number of copies being proportional to the lifetime repro-
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ductive successes of prototypes. Additionally, the weights in the new generation net
works are subject to mutating and crossing. The procedure is repeated to produce
newer and newer generations, and as a result, a greater and greater fraction of net
works in newer generations will have higher lifetime reproductive success. When the
average increase in reproductive success becomes too slow,we stop the procedure and
take the values of weights for the best networks in the last generation as optimal.

Performing genetic optimization, we have made some additional simplifications to
reduce computer time. Taking into account some properties of optimal strategies, cal
culated by the method of dynamic programming, we set several weights, namely 51,53'

56,57' and 59' equal to o.
Finally, the operations performed by units Q-WR, W-R, and R-F are summarized

as follows. Unit Q-WR generates a control signal according to a sigmoid formula
Uqt =A 1[1 + 51(qt)Bj (A and B are additional optimized parameters). Unit W-R allo
cates the fraction 1 - Uqt of energy to growth if 5sWt + 54qt < 1, and to reproduction oth
erwise. Unit R-F stimulates accumulation energy in offspring (i.e. generates uft=1) if
s-q,« 1, and stimulates releasing offspring (i.e. generates Utt = 2) otherwise (note that
Utt is always 2 for men).

The genetic optimization with N = 1500 and number of generations equal to 500
resulted in the following values for the unknown parameters: A =0.76, 51 =29863,

B =4.4, 55 =0.013, 54 =7.1 for men and A =0.78, 51 =46563, B =4.8, 55 =0.015, 54 =14,
57 =40 for women.

In Fig. 15.10 we present (for women) the resulting optimal strategy. As we see, it
roughly approximates that in Fig. 15.4 obtained with dynamic programming. Fig
ure 15.11 shows the dependence of Uqt on q.Wesee that the fraction of energy allocated
to repair decreases when vulnerability increases (faster for men than for women), and
this tendency especially accelerates for higher values of vulnerability (q =0.05 and
greater). The main life history characteristics of networks are: tmal =15, tml s =67,
Wmal =77 for men and tmal =13, tmls =77, Wmal =62, t mp =60 for women. They are close
to the optimal ones found by dynamic programming and, in particular, also demon
strate differences between men's and women's life history traits.

Sowe may conclude that indeed the network presented in Fig. 15.9exhibits a roughly
optimal life history strategy of energy allocation for growth, repair, and reproduction
after having been subject to genetic optimization.

Fig. 15.10. Dependence of de
cision rule uf on size (w) and
vulnerability (q) for women
(for r = 0 at the beginning of
time step) obtained for a ge
netically optimized network
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Fig. 1S.11. Dependence of the
fraction of energy allocated for
repair (u,) on vulnerability (q)
for men tm) and women (f)
obtained for a genetically opti
mized network
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Thus we have shown that many differences in men's and women's life histories may be
explained as evolutionarily advantageous consequences of the only distinction in
women's physiology: the necessity of carrying and bringing up their children over a
rather prolonged period of time. We also have shown that a simple evolutionarily op
timal network scheme can describe the process of distribution of energy in a human
organism among its different needs.

We deliberately did not refine the structure of the network. This should be done in
parallel with indication of at least hypothetical body prototypes of each unit of the
model, but this much more complicated task is out of the scope of the present work.
Nevertheless, we can formulate some principal points, following from our approach,
which should be first of all taken into account when relating the model to a real or
ganism. Both in the optimal control and network models the decisions concerning
energy allocation are made on the basis of information about the state variables. Hence
the system must know the size and vulnerability of the organism as well as the stage
of development of offspring (for women). That is, some sensors for the state variables
(size, vulnerability, offspring status) must exist in the organism and we should look
for such sensors.

Another problem concerns the signals controlling the process of allocating energy.
We might suppose that these signals are realized in form of concentrations of hor
mones. The hormones which modify growth and sexual behaviour are well known.
We are obliged to suppose that there exist also hormones which stimulate repair, say,
endorphins.

Surely,a more realistic model should include, as a minimum, the hostility of envi
ronment. It was supposed in our model to be a constant (qo) during the entire life as
well as during the evolution, but in reality it changes. Supposedly, the level of concen
tration of stress hormones reflects the influence of environment and this should be
taken into account in more elaborate models.



CHAPTER 15 . Controlling Energy Allocation to Growth, Reproduction and Repair

Acknowledgements

237

The authors are grateful to P.Abrams, M. Cichon, and P.Kloeden for their helpful com
ments. This paper was funded by the Russian Foundation for Basic Research, grant
no. 98-04-49140.

References

Abrams PA, Ludwig D (1995) Optimality theory, Gompertz law, and the disposable soma theory of se
nescence. Evolution 49:1055-1066

Bellman R (1957) Dynamic programming. Princeton Univ. Press, Princeton
Bertalanffy L (1957) Quantitative laws in metabolism and growth. The Quarterly Review of Biology

32:217-231
Bounds DG (1987) New optimization methods from physics and biology. Nature 329:215-219
Budilova EV,Kozlowski J, Teriokhin AT (1995) Neuronal network models of life history energy alloca

tion. In: Proc. of the First Nat. Conf. on Application of Mathematics to Biology and Medicine, Univ.
of Mines and Jagiellonean Univ., Krakov, pp 13-18

Cichon M (1997) Evolution of longevity through optima! resource allocation.Proc R Soc Land B49:1383-1388
Hopfield JJ (1982) Neuronal networks and physical systems with emergent collective computational

abilities. Proc Nat Acad Sci USA 79:2554-3558
Kirkwood TBL (1981) Repair and its evolution: Survival versus reproduction. In: Townsend CR, Calow P

(eds) An evolutionary approach to resource use. BlackwellScientific Publications, Oxford, pp 165-189
Mangel M (1990) Evolutionary optimization and neuronal network models of behavior. J Math BioI

28:237-256
Mangel M, Clark C (1988) Dynamical modeling in behavioral ecology. Princeton Univ.Press, Princeton
Perrin N, Sibly RM (1993) Dynamic models of energy allocation and investment. Ann Rev of Ecology

and Systematics 24:379-410
Pontryagin LS,Boltyanskii VG,Gamkrelidze RV, Mishchenko EF (1962) Mathematical theory of optimal

processes. WHey, New York
Rossler R, Kloeden PE, Rossler OE (1995) Slower aging in women: A proposed evolutionary explana-

tion. BioSystems 36:179-185
Rumelhart DE, McClelland JL (eds) (1986) Parallel distributed processing. MIT Press, Cambridge
Steams SC (1992) The evolution of life histories. Oxford Univ.Press, Oxford
Taylor HM, Gourley RS, Lawrence CE, Kaplan RS (1974) Natural selection of life history attributes: An

analytical approach. Theor Pop BioI 5:104-122
Teriokhin AT (1998) Evolutionarily optimal age schedule of repair: Computer modelling of energy par

tition between current and future survival and repair. Evolutionary Ecology 12:291-307
Ziolko M, Kozlowski J (1983) Evolution of body size: An optimization model. Math Biosci 64:127-143





Part V

Perspectives





Chapter 16

Can Neuronal Networks be Used in Data-Poor
Situations?

W.Silvert . M. Baptist

16.1
Introduction

Perhaps the greatest problem that is faced in most attempts to use artificial neuronal
networks for ecological applications is that the quantity of data is often very limited.
Although there are a few cases where large amounts of data are available, as in the case
of remote sensing or observations based on automatic telemetry, it is far more com
mon to have to deal with limited and irregularly spaced data, and the data may not
always be strictly comparable due to variations in environmental conditions between
sampling periods. In most situations the collection of field data is both time-consum
ing and expensive. Since the training and testing of neuronal networks is very data
intensive, this poses serious obstacles to the development of neuronal network appli
cations in ecology.

The field of marine benthic ecology is one in which data are difficult to obtain, and
large databases are almost unknown. Most benthic data are obtained by laborious
analysis of individual samples, usually cores or grabs, although automated sediment
traps and other computerised instrumentation are beginning to be used. Because of
these data restrictions, the prospects for using artificial neuronal networks in the analy
sis of benthic data are not promising. On the other hand, analysis of benthic data of
ten requires highly specialised expertise that is not commonly available, so the incen
tive to use artificial neuronal networks is strong.

The material in this paper is based on an effort to facilitate the analysis of geochemi
cal cores by developing an artificial neuronal network with a very limited data set. After
careful review of the data and elimination of unreliable samples, we were left with a
very small number of cores, and the prospects for development of a neuronal network
seemed very dubious. Still, we feel that we made substantial progress by suitable pre
processing of the data, and we feel that this approach may be useful to other applica
tions in ecology and similar data-poor fields.

16.2
Neuronal Network Training and its Limitations

The most common neuronal networks are feed-forward neuronal networks that are
trained using error back propagation. This is a training method in which the network
is supplied with input values and also with the desired output values. The weights in
the network are adjusted based upon the error between the expected output and the
computed network output until this error is minimized. In a reasonably complex net
work the number of weights is large and, unless there are many data pairs, the mini-
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mization process may not give meaningful results. For this reason, the application of
neuronal networks to ecological data does not always lead to reliable models.

As with most empirical (e.g, statistical) modelling approaches, one divides the to
tal data set into two parts, one of which is used for fitting the model (which is referred
to as "training" in the terminology of artificial neuronal networks), and the other of
which is used for testing it. When the data set is very large, typically involving thou
sands or even tens of thousands of data pairs, this is relatively straightforward. With
smaller data sets it can be difficult to decide how much of the data can be used for
training the model while still leaving enough data to test it adequately. One approach
is to repeat the process several times, selecting a training set at random, then fitting
the model and testing it with the remaining data.

One must, however, be careful not to "overtrain" the network, meaning that after
too many iterations one stumbles upon a model which fits the training data almost
perfectly, without actually providing a good representation of reality. If the test set is
too small, the network may give adequate test results, leading to acceptance of a model
which is not very good. This is especially true if the model has too many degrees of
freedom, which is the result of including too many hidden neurons - this is analogous
to the statistical problem of fitting a model with too many parameters, such as a poly
nomial of too high order.

Another issue related to the overtraining problem is the bias-variance dilemma
(Geman et al. 1992). It can be demonstrated that the mean square value of the estima
tion error between the function to be modelled and the neuronal network consists of
the sum of the (squared) bias and variance. With a neuronal network using a training
set of fixed size, a small bias can only be achieved with a large variance (Haykin 1994).
This dilemma can be circumvented if the training set is made very large, but if the
total amount of data is limited, this may not be possible.

As pointed out in the introduction, ecological data sets are usually small. Unfortu
nately ecological processes are often nonlinear and poorly understood, and the lim
ited data sets are barely adequate. Since the processes may not be adequately under
stood, the use of neuronal networks to generate empirical models of complex behaviour
seems a promising technique for a better replication and understanding of ecosystem
behaviour. On the other hand, the small size of the data sets makes it very difficult to
train and test these models well enough to have confidence in the results.

The situation is not as hopeless as it may appear. The field of artificial neuronal
networks is developing very rapidly, and new approaches resolve many formerly in
tractable problems. For example, general regression neuronal networks (Specht 1991)
offer a promising way to deal with small data sets, and have been used successfully to
construct a neuronal network for a data set not much larger than the one used in this
project. There are some other neuronal network configurations that are capable of
handling smaller data sets, such as Kohonen networks, but the use of sophisticated
second-generation approaches is not the issue we are trying to address in this paper.
Instead we have tried to explore ways of dealing with small data sets when one uses
the most popular configuration of neuronal networks, feed-forward error back propa
gation networks.

When only a relatively small data set is available for the application of a neuronal
network, a number of drawbacks arise. First, one has to split the already small data set
into a training set and a testing set. Second, overtraining is more likely to occur with
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small data sets, because the degrees of freedom in the network rapidly increase with
the number of neurons. For a good model, the number of data pairs should exceed the
number of weights in the neuronal network.

16.3
The Geochemical Data Problem

Geochemical profiles sampled underneath fish farms provide valuable data on the
benthic impacts of these farms, but the interpretation of these data is a complex pro
cess requiring scientific sophistication and understanding of benthic processes. It is
difficult to avoid a degree of ambiguity and subjectivity in the interpretations, although
this is a more general problem in the analysis of scientific data than is commonly ad
mitted (Silvert 1997).Some typical geochemical profiles are shown in Fig. 16.1. These
types of profiles are commonly found for organic carbon and organic matter, and, in
the case of hyperenriched sediments, porewater concentrations of nutrients and hy
drogen sulphide. The first profile, Fig. 16.1a, shows a continuous decrease in carbon
levels, presumably reflecting constant deposition and degradation. The second pro
file, Fig. 16.1b, shows a flat plateau suggesting that the sediments have been mixed by
bioturbation. Since bioturbation is indicative of a viable benthic community, the sec
ond of these profiles would normally be interpreted as showing less of an environ
mental impact than the first.

Angel et al. (1998) used data from dive logs to classify environmental impacts of a
fish farm in the Red Sea in terms of four fuzzy sets: Nil,Moderate, Severe and Extreme
impact. This paper used only visual data recorded by divers, but on some of the sam
pling dates the divers also took sediment cores, and these can also be used as indica-
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Fig. 16.1. Two typical sediment profiles; a simple deposition and degradation; b probable bioturbation
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tors of environmental impact. The number of useful cores is substantially less than
the number of dive logs, but because it is widely felt that chemical analysis of such
cores provides a more objective measure of environmental impact than the dive logs,
which involve subjective elements, research is continuing on the use of these cores as
environmental indicators. In particular, sediment profiles for loss on ignition (LOJ)

data are being investigated. LOJ is a measure of carbon content, and since carbon depo
sition is one of the major forms of environmental effect from fish farms (due to faecal
settlement and waste feed), it is a critical indicator of both current and past deposi
tion rates, as well as of bioturbation.

Although preliminary results indicate good agreement between the classifications
based on the dive logs and those obtained from the LOJ data, the analysis of LOf data
is extremely difficult and requires a great deal of expertise. This makes it a prime can
didate for neuronal network analysis, since the value of LOf data for monitoring pur
poses would be greatly enhanced if an expert system could be used for the analysis,
and there did not seem to be any reliable way of developing a rule-based system.

We subsequently undertook the development of an artificial neuronal network to
simulate the impact-assignment process in an effort to develop an expert system that
does the same analysis, as described in Baptist et al. (1998).

The sediment profiles contain eleven sampling depths. The values for loss on igni
tion (LOJ) at each depth were used for the input neurons, so there were eleven input
neurons. The fuzzy membership values for the four impact classes were used as out
puts - these memberships sum to one, so there were three independent output neu
rons. The best results with the feed-forward error back propagation neuronal network
were obtained with a hidden layer of eleven neurons. Configurations with fewer hid
den neurons, even down to three, were also tried. Although the fit to the training set
was reasonable, the fit to the test set worsened with a decreasing number of hidden
neurons. The total network therefore had 165 connections. The data set of LOJ profiles
measured over a four-year period was small and contained only nineteen suitable pro
files. Baptist et al. (1998) were faced with a typical problem when using neuronal net
works for ecological problems: the data set was too small in relation to the number of
degrees of freedom in the neuronal network. Their results were typical for this kind
of problem, the training set (fourteen profiles) showed an almost perfect fit, whereas
the test set (five profiles) had considerable discrepancies. Figure 16.2 gives a sample
of the results that were obtained by applying the artificial neuronal network to the
scores for "moderate-impact:' Even though the test results were still acceptable, this
cannot be considered very significant in light of the small amount of data available
for the test procedure.

16.4
Preprocessing Data

One of the reasons why neuronal networks are inefficient is that they are usually trained
with raw data that ignores the understanding and insight that a human expert can bring
to bear. For example, in the classic pattern recognition problem of training a system
to recognize human faces, it is considered an achievement when an artificial neuronal
network "learns" to ignore whether the subject is wearing eyeglasses. Edelman et al.
(1998) discuss the differences one encounters training a neuronal network to recog-
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Fig.16.2. Sample results obtained with an artificial neuronal network fit to the raw "moderate-impact"
scores

nize faces when the full face is visible and when the hair is covered by a bathing cap.
But we all know that eyeglasses are almost useless for identification purposes, and hair
shape and colour can change rapidly. If we could teach the neuronal network in ad
vance to ignore eyeglasses and hair style, and to concentrate on facial structure, it
should be possible to make the training process much more efficient.

One way to interact with the training process is to preprocess the data before it is
fed into a neuronal network. Preprocessing has been applied to pattern recognition
problems, although more for the purpose of simplifying the vast amount of data con
tained in a matrix of pixel values than for the present purpose of extracting informa
tion as efficiently as possible from a limited data set (Huntsberger et aI.1998).Wemight
process the images through a graphics program that would erase eyeglasses and fa
cial hair, and generate just a three-dimensional profile that reflected the underlying
bone structure. We are not aware of any effort to investigate this approach, although
the underlying idea of looking for basic geometric structure has been discussed by
Edelman (1998).We did however look at ways of transforming the data for the LOI
profiles in such a way as to simplify the work of the neuronal network, and we feel
that the approach led to promising results.

When an expert on benthic ecology and geochemistry assigns classifications based
on different LOIprofiles, he makes use of subjective factors, even though the data them
selves are objective numerical values. An expert uses his knowledge of natural pro
cesses to analyse the shape and overall magnitude of the overall profile or parts of the
profile (for example the upper 5 centimetres) to arrive at an interpretation of the de
gree of impact. However, since a neuronal network only sees the numbers in the pro
file as independent variables, it does not even have the valuable information that the
depths of the samples are contiguous. It may therefore improve the neuronal network
performance if the data were preprocessed and expert-based discriminants were used
as input to the neuronal network. This can also simplify the neuronal network layout,
speed the training process and result in a network with a smaller number of degrees
of freedom.
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One way in which we can link this type of human pattern recognition with artifi
cial neuronal networks is to transform the data using orthogonal functions. For ex
ample, Edelman et al. (1998) use principal components analysis to represent the spa
tial data constituting a pixel image of a face in terms of a small number of eigen-func
tions (Le. orthogonal functions) which are then used as input variables. This proce
dure seems relevant to the problem of analysing the LO! profiles, except that we have
to keep in mind that each of these profiles contains at most eleven points, while the
facial images consisted of over 15000 pixels. The use of data transformations in pat
tern analysis is more a way of reducing unmanageably large data bases than a way of
using small data sets efficiently. Even so, the use of orthogonal transformations to
describe the connectivity of input data points seems promising in both situations.

Baptist et al. (1998) experimented with ways of transforming the data with orthogo
nal functions, such as Fourier transforms, to generate input variables that more closely
correspond to the patterns that experts see when they analyse these kinds of data.
Fourier transforms distinguish particular patterns, and at least for the lower-frequency
transforms, each Fourier component emphasises a specific part of the profile and might
serve as a discriminant. For example, the lowest frequency components describe the
total carbon content and the gradient of the profile. Since Fourier components are based
on sine and cosine functions, they have a close correspondence to the wavelets used
by Huntsberger et al. (1998). The first five Fourier components were chosen as input
neurons. This way,each Fourier component distinguishes a particular pattern in the
LOJprofiles. Consequently the number of input neurons were reduced to five in a net
work with five hidden neurons and four output neurons. This brings back the num
ber of weights to 45.A sample of the results of this neuronal network for the "moder
ate-impact" scores are shown in Fig. 16.3 and were comparable with those of the raw
LOJ profiles. We found that the Fourier components were very sensitive to variations
in the LOJ values. Furthermore, the number of data pairs was too small to develop a
good neuronal network.
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16.5
Results

247

A comprehensive discussion of the results of this study would be complicated by the
fact that the expert assessments that were used to train and test the neuronal network
were expressed in terms of fuzzy membership functions. Because of the additional
complexity that this introduced to the analysis,we refer the reader to Baptist et al. (1998)
for a full discussion of the theoretical background of the study and of the detailed
results. In this paper we want to focus on the problems of the small data set and the
issue of whether transforming the data added to the efficiency and effectiveness of
the process. We feel that these results are strongly suggestive, but not conclusive.

The analysis of the data was carried out with both the raw input data (i.e. LO! val
ues as a function of depth) and with transformed values, using the first four or five
Fourier components only. We were surprised to see that in both cases the neuronal
networks worked quite well- it is not surprising that they fit the training sets, of course,
since there were so few data and so many parameters, but the test sets were reason
able. Given the small size of the test sets, we cannot attach very much significance to
this result, but they do suggest that the use of neuronal networks for even very small
data sets may prove practicable.

Wewere, however, also surprised to see that the use of a smaller number of trans
formed variables as inputs did not appreciably improve the fitting of the network. On
more careful examination of the network we discovered that when the raw data were
used, the output was dominated by the first input neuron, corresponding to the LOJ
value just below the surface (0.5 cm), so from this point of view the raw data was al
ready in a form that might not be improved by transformation.

16.6
Discussion and Conclusion

When data are scarce it might be useful to preprocess (transform) the data before they
are used to train a neuronal network. The transformation technique must be chosen
with care and should be based on ecological knowledge of the system. A preprocess
ing of data can reduce the number of input neurons and therefore reduce the problem
of overtraining. It may also help to understand the process handling inside a neuronal
network, making it less of a black box then it is when blindly applied to incoherent
data sets.

However, preprocessing based on understanding requires that the understanding
be reliable, and we don't always know that this is the case. Huntsberger et al. (1998)
discuss the distinction between feature-based systems and image-based systems, and
we have not been able to identify clearly the extent to which the experts who analysed
the LOJprofiles relied on features (such as the near-surface values) as opposed to evalu
ating the entire profile. They were also surprised to learn that the top part of the pro
file played such a major role in determining their evaluations, but in retrospect this
may not be unreasonable even if we accept their assertions that they looked at the total
shape of the profile. For example, a core that displays evidence ofbioturbation is likely
to have lower levels of surface carbon because it has been mixed deeper into the sedi-



W. Silvert . M. Baptist

ments. Although we feel that discussions with the experts can help resolve these is
sues, it is difficult when dealing with such a small data set as the one that was avail
able for this study.

We are not convinced that Fourier transforms were the best choice of transform
functions for this project, since they are best for analysing data that are distributed
over a uniform interval. Given the shape of the LOI profiles, it might have been prefer
able to use Bessel or Laplace transforms, which offer a better representation of func
tions which are large near the origin and taper off as one moves away from it, but nei
ther the amount of data nor the time available permitted exploration of this idea.

The use of preprocessing data to refine the inputs to artificial neuronal networks
has been studied only in a few cases, mainly in the context of reducing large quanti
ties of graphic data to manageable scale, and whether the same approach can be suc
cessfully applied to very small data sets is not clear. Even in the relatively advanced
field of image processing and facial recognition, it has not been shown conclusively
that preprocessing with orthogonal transformations is advantageous (Edelman et al.
1998). However we feel that the approach is promising and deserves further investiga
tion. Certainly if neuronal network theory is to be applied to small and highly vari
able ecological data sets, the focus must be on how to use all the data as efficiently as
possible, and we should not be using the data to establish patterns that are already
known.
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electrofishing 131,140
element 3,5,11,41,48,195,244

-, canopy 41
-, cluster 195
-, computational 6
-, nonlinear 5
-, processing 7

elucidation 143,154
endorphin 236
energy 69,225-236

-, allocation 225
-, growth 228,235
-, offspring 227,230-231,235
-, production rate 226
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-, repair 228, 231,234-235
-, reproductive 226-231, 233
-, transformation 234

entropy 50,52-55,72,81-83,85-88,90-94,135
EOS 31
epidemics 203
epidemiology 204

-, makro- 203
epoch 9,11,13-15,116,120,122,169-170,177
equator 123, 221
equivalence 82-83,88,94
Erpobdella sp. 106
Esox lucius 140

estimator 69,88,94
-, linear 69
-, sub-pixel area proportion 88, 94

estuaries 143
Euclidean distance 17,19
Euler-Lotka equation 225
euphotic zone 116-117

-, depth 116-117
Europe 203
Europeans 207
eutrophication 144, 147
evolution 63, 203, 225-226, 231,236

-, life histories 226
-, pressure 75

evolutionary ecology 4, 22
expert system 3,244
extinction 220
extraction 32, 61

-, ecological data 143
-, input vector 61
-, techniques 32

F

faecal coliforms 133
famine 203
fauna 140
FCM see fuzzy clustering mean
feeders 153

-, filtration 153
-, raptorial 153
-, suspension 153

feed-forward network 71
female 207

-, life expectancy 207
-,life history 207

fertility 207,216,221-222,225
Filariosis 208
Filipinos 207
filtration feeders 153
finite-duration impulse response (FIR) 70
FIR see finite-duration impulse response
fish 4,12,131,133,139-140,141,157,187-188,190,

198,200,243
-, abundance 132
-, biological monitoring 131
-, community 131,141

-, structure 131
-, diversity 4

Index

-, food consumption 12
-, marine populations 157
-, spatial dynamics 4
-, spawning biomass 157
-, species 131
-, stock 141

fishery 157,159
FLIERSProject 89
fluorometer 115
forest 34-36,38,40-41,53,57-59,61,66-67

-,age 34-36,40
-, backscatter model 40
-, biomass 41
-, classification 35
-, conifer 41
-, fragmentation 34
-, function 38
-, growth 35,38,40

-, model 38, 40
-,liana 61
-, mixed coniferous hardwood 38, 40
-, neotropical 57
-, primary 35-36
-, productivity 34,38
-, riparian 58
-, secondary 35-36
-, transition 58
-, tropical 57-59,67

forward-propagating step 5-7
Fourier component 246-247
Fourier transforms 246, 248
France 132,187,190,201,222

-, phytoecological zones 132
French Guyana 58
frequency 38-39,42,61,67, 107,133,191,211,

246
-, allelic 191

fuzziness 50,55
fuzzy classification 46, 81
fuzzy clustering 195,201

-, algorithm 201
-, mean (FCM) 195-196,198-200

-, algorithm 195-196,198-200

G

GAM see general additiv models
general additiv models (GAM) 13
genetic 3,19,38,153-154,187-189,191,195,198,

200-201, 234-235
-, algorithm 3,38,153-154,234
-, differentiation 200-201
-, distances 191
-, diversity 200-201
-, optimization 235

-, algorithm 234
-, separation 200
-, structure 187

genetics 187,198,222
-, population 187

Geneva 207
genotype 187,190-191,195
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geochemical
-, cores 241
-, profiles 243

geochemistry 245
geographical information system (GIS) 221
Germany 61
GIS see geographical information system
GNP see gross national product
Gobiogobio 139,141
grass 82,89,91
grassland 69, 165

-, community changes 165
-, Patagonia 69

gravel 140
-, substrate 140
-, spawning 153

grazing 70
-, pressure 153
-, sheep 70
-, zooplankton 147

greenhouse effect 4
gross national product (GNP) 206,222
growth 3,35,38,40,67,148-149,206,225-226,

228, 233-236
-, algal 148
-, forest 35,38,40

-, model 38, 40
-, population 206
-, vegetation 67

gudgeon 138-140
Gulf of Napoli 118-122, 128

H

habitat 35,131,133,139, 141,153,162
-, characteristics 131, 153
-, coastal pelagic 162
-, micro- 141
-, quality 133

-, classes 133
-, stream 139, 153

hair 245
hatchery 187,189-190,197-198,200
heat flux

-, latent 31
-, sensible 31

heavy metals 133
helminth 203, 208

-,eggs 208
Hepatitis

-, A 208, 212, 214, 218-219
-,B 208,214,218-219

herbivores 69
Hessian matrix 133
heterozygote 190
heuristic

-, model 147
heuristics 12
hidden

-, layer 5-8,10-11,13-16,51,63,101-102,112,
117, 135-136, 139, 244

-,neuron 90-92,94,242,244,246
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-, node 11,36,39,102,112,167,169-170,177,
180

Hirudinea 106
homozygote 190
Hopfield network 3
hormone 236
host 203,207,220,222
human 141,203-207,216-217,219-222,231,234,

236,244, 246
-, demographic crisis 203
-,diseases 204-205,208,219,221-222

-, distribution 222
-, disturbance 141
-, groups 206

-, main divisions 206
-, health 206,208
-, parasites 207
-, polymorphism 206
-, population 203,208,220

humidity 166-167,168,181
-, air 181
-, relative 166-168,181

hydrobiology 132
hydrogen sulphide 243
hydrology 34

image tone (DN) 51
Indians 207
indicator 50,106,110-111,131,159,161,188,209,

244
-, species 110-111

Indonesians 207
infection 205,207
information theory (IT) 71-72,77
initialisation 63
input 4-10,12,16-18,34-43,48,51,60-61,63,71,

73,76-77,93,100-102,105-108,110,116-118,
123,126-127,129,132,135,139,141,144,147-148,
160,165,167-168,170-171,173,177,180-182,
190-194,211-212,216-217,226,233,241,
244-248
-, layer 5-7,16,101-102,135,191
-, neuron 117,244,246-247
-, neuronal network 117,127,129
-, node 100,102
-, pattern 9-10,18,71,107,116
-, space 18,93
-, variables 12,38,40,43,141,147-148,165,

167,170-171,173,177,180-181,212,246
-, vector 16-17,71,77,100-101,191-193

insects 70
integer 59
inversion 33,37-38,41
iris 19-20,22
Iris setosa 19-20,22
Iris virginica 19-20

Iris virsicolor 19

irradiance 115-118,120,122-125,127,129
-, surface 115-116,120,124-125,129

IT see information theory
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Italy 121,128
iteration 9-10,20,49,51,53-55,107,134,192,196,

211,242

J

Japan 144, 155
Japanese 207

K

Kohonen
-, network 3,16-17,191,242
-, self-organizing map (SOM) 3-4,16,18,20,

188,190-192,194-198,200
-, algorithm 188,190-192

Korea 103-104, 113
Koreans 207

L

LA! see leaf area index
lake 143-144,147

-, algae species 144
-, eutrophication

-, control 147
-, management 144

-, phytoplankton abundance 143
-, species succession 147

Lake Kasumigaura 144,147-148,155
lamprey 139
land cover 31,46,49,51,81,83,89

-, classes 46,49,51
-, types 81

landscape 20, 153
Larrea 70
larvae 153

-, copepodite 153
-, nauplius 153

latitude 122,127,205,209
layer 5-8, 1O-11,13-16, 42,48-49,51,63,101-102,

112,115,117, 135-136, 139, 160,191,244
-, hidden 5-8, 10-11, 13-16, 51, 63, 101-102, 112,

117, 135-136, 139, 244
-, input 5-7,16,101-102,135,191
-, multi- 3-4,34,70,90,100-102,105,

107-110, 112,133,139, 141,179
-, output 5-8,16,101-102,191

leaf 31-33,42,167-168,17°-171,173-175,179-181
-, abundance 59
-, age 167,181
-, area 31-32

-, index (LA!) 31-32
-, moisture content 42
-, size 33

learning
-, algorithm 5,49,51,53-55

-, BPN 5
-,procedure 9,13-15,67
-, process 63
-, rate 9-10,49,51,63, 116,133,167,169-17°
-, supervised 5,187-188

Index

-, unsupervised 20,187-188,192
least squares regression (LSR) 17°,177,180-181
Leishmaniosis 208, 212-213, 218

-,cutaneous 208,212,218
-, visceral 208,212,218

Iiana 58,61
life expectancy 207
light 20, 115,118-119, 146, 166

-, attenuation 115, 119
-, coefficient 115

-, ultra-violett 166
-, underwater 146

Limnodrilus sp. 106, 111
linear regression 12,36-37,58,129,161,165, 168,

17°,173-174,179,181-182
-, analysis 168,173

linearisation 180
linearity 41,57
liver-fluke 222
locus 188,190-191,195
LOI see loss on ignition
longitude 122, 205
log-transformation 122
loss 76,244

-, on ignition (LOI) 244,246-247
-, transpiration 76

LSR see least squares regression
Lyme 208

M

macro epidemiology 221
macroinvertebrate 99,103,105

-, benthic 99, 103, 105
Maine 38
Malaria 203, 208, 220

-, distribution 203, 208, 220
male 198,207
Malthusian parameter 225
man 2°3,2°7,221,225-226,229,231, 236
map 5,18,20,21,34,38,45-47,53,59,71,81-82,

132,188-189,191-192,194-198,204
mapping 3-5,42,45-46,5°,53,55,89,222
marine 157,241

-, benthic ecology 241
-, fish populations 157

marker 198
matrix 51,59,71-72,85,133,136,195,245

-, confusion 51, 136
-, Hessian 133

maturation 231
maturity 99,203,220,226,229-231

-, age of 226,230
-, soybeans 99

maximization 72, 225
maximum likelihood 45-46,51,81,83-86,94,135,

209
mean square error (MSE) 73-75, 117, 123,127-128

-, normalized (NMSE) 74-75,77
mean sum of square errors (MSSE) 58,66
medicine 3
Mediterranean Sea 125
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Melanesians 207
Meningococcosis 208
menopause 226, 229-230
metamodels 67
Mexico 158,163
Mhongs 207
Microcystis 147-153

-, abundance 148
microhabitat 141
microsatellites 187-188,198,201
Middle East 207
minimization 195,242
minnow 139
mixing 50,52,91,94,198

-, artificial 147
-, conditions 147

MLP see multilayer perceptron
MLR see -rnultiple regression

model
-, ANN 12,135,148,153-154,159-162,165,167,

17°-171,176-177,179-181,204,216-217
-, biological neurons 3
-, deductive 143-144
-, digital terrain (DTM) 35
-, empirical "5-"6, 120, 242
-, fish 4
-, forest growth 38,40
-, general additive (GAM) 13
-, global 122
-, greenhouse effect 4
-, heuristic 147
-, inductive 143
-, linear 32,81, us, 120, 160, 214
-, logistic 205-206, 209, 212
-, Monte Carlo 42
-, multiple linear regression (MLR) 12-14
-,~DVI 69-70,72-77
-, network control 232
-, neuronal network 10, ll8.120-128, 144,

147-148,153-154,204,216-217
-, nonlinear 32,81
-, optical 33
-, optimal control 226,229
-, PCA/ANN 177,180
-, PCA/LSR 180
-, physically based 32-33,37-38,4°,42
-, phytoplankton 143

-, primary productivity "5,123
-. population 147
-, primary production ll8
-, radar 33
-, radar backscatter 38, 42
-, radiative scattering 34-35,37,42
-, radiative transfer 32-33
-, regression 7°.144,160-163,2°5-206,2°9
-, sub-pixel area proportions estimation 85
-, vegetation

-. otpical 33
-, physical 33

-, vertically generalized production (VGPM)
ll5
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modelling 4-5, n, 13,22, 40, 42, 70, 77, 89, ne,
127- 128,143,153-154,157,159,161-162,165,167,
169,180-181,2°4,214,216-217,220-221,226,
234,242
-,ANN 12
-, BPN II

-, ecological 4,13.22,70,77,127-128,154
-, primary production 128

modification 9,67,200,222
-, climate 67
-, genetic 200
-, weight 9

molecular biology 3
Mongoloids 207
Monte Carlo model 42
Moore-Penrose pseudoinverse 72
morbidity 220
morphology 140
mortality 203, 205, 220, 227

-, rate 227
MSE see mean square error
MSSE see mean sum of square errors
multifrequency 31,42
multilayer

-, neuronal networks 139,180
-, perceptron (MLP) 34,41-42,90,100-102,

105, 107-ll0, ll2
-, network 41-42

multiple regression 141,153-154,165.168-169,
175,181
-, linear (MLR) 12-14,36, "5, 168, 174-175,

179,182

N

Napoli ll8-122,128
nase 139
nauplius 153
Nei distance 191
neighbours 16, 18

-, nearest (NN) 16, 18, 63, 67, ue
neuron 3,5-7, n, 16-21, 86, 90-92, 94, 101, "7,

19°-195,234,242-244,246-247
New Guineans-Papous 207
nine-spined stickleback 139
nitrate 133,147,151
nitrogen 147-148
~MSE see mean square error
node 5, 9-ll, 17-18, 36, 39, 63, 100-102, nz, 160,

167,169,17°,177,180,192-194, 2ll, 226
noise 39,42,100, ne, 127,139, 198

-, gaussian ue
nonlinearity 41,153-154,179-180,206
normalization 71,86
normalized difference vegetation index (~DVI)

69-7°,72-77
Nouragues station 58, 62
nutrient 34,69, ll8, 143-144, 147-148, 243

-, availability ll8
-, cycle 34,69,143
-, limiting 147



o
ocean 128, 165

-, algal distribution 165
-, primary production u8

Oligochaeta 106
optimization 3,33,37, u6, 170, 225-226, 234-235

-,ANN 170
-, evolutionary 225-226
-, genetic 235

-, algorithm 234
-, techniques 33,37

Oregon 35
organic

-, carbon 69, 243
-, matter 140, 243
-, particles 153
-, pollution 103-104,109-UO

organism 153,207,221, 225-227, 234, 236
-, fitness 207
-, human 234,236
-,senescence 225

origin 187-189,195,198,248
-, genetic 188

OrthocLadius sp_ 106, III

orthophosphate 151
OsciLLatoria 147-153

-, abundance 148
-, seasonal dynamics 148

output 4-10,12,16,34,36-43,45-46,48-49,
5°-52,54,63,71,86,88,90,100-102,107, U7,121,
123,125,127,133,135,141,144,147-148,160,169,
191, 2°3,2°5,220,226,229,233-234> 244> 246-247
-, error 49,121, 123

-, distribution 121,123
-, layer 5-8,16,101-102,191
-,neuron 86,9°,101,244,246
-, neuronal network 86,125
-, node 9, 226
-, object 5
-, pattern 7-8,10,71
-, reproductive 229, 233
-, value 7-9,38,102,123,127

overfitting n, 13,63
over-parameterization 161
overtraining 55,163, 177,242, 247
oxygen 133,166

-, biological demand 103
-, dissolved 133
-, saturation 133

ozone 165-167,169,171,179-181
-, concentration 166
-, dose 166-167,179

-, AOT40 166-168, 170-171, 173-175, 179-181
-, flux 166, 181
-, tropospheric pollution 165
-, uptake by plants 166
-, yield response of beans 165

p

Pacific 34,7°,74,157-159,161

Index

-, air masses 70,74
-, sardine 157-159,161

-, abundance 161

-, eggs 157
-, population 157
-, spawning biomass 157

paludism 222
PAR see photosynthetically active radiation
parasite 203,205,207, 216, 220, 222

-,human 207
-, pattern 207
-, species distribution 205
-, virulent 203,220

parasitic 203
-, disease 203-204,208, 2U, 213, 216, 220-221

-,human 204
-, spatial distribution 220

parasitism 206-207
parasitofauna 208
particles 153

-, organic 153
partitioning 10.50,52,195, 2U, 217

-, methods 2U
-, procedures 10
-, techniques 210

Patagonia 69-70,72,74-75
-, grasslands 69
-, northern 70,72

-, climatic conditions 72
-, phytogeographical region 74
-, precipitation 75
-, steppes 70

Patagonian Phytogeographical Province 70
pattern 5,7-10.17-18,34,49,52,71,73-75.85,92,

100-101,105.107,109, U6-117, 120, 122-123, 128,
131,143,159,162,2°3-204,2°7,216.244-246,
248
-, analysis 246
-, benthic community 99, u3
-, demographic 205
-, diseases 204
-, economic 205
-, extraction 143
-, fish community 131
-, input 7,9-10,17-18,71, 107.u6
-, learning u6
-, mortality 203
-, output 7-8,10,71
-, parasite 207
-, phenological 75
-, precipitation 74
-, recognition 105,216, 244-246
-, social 205
-, temporal 99
-, training 49.85,92,117,120, 123

peA see principal components analysis
pelagic U8,157

-, coastal habitat 162
-, ecosystem u8
-, eggs 157

perceptron 3,71,90,100
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-, multilayer (MLP) 34,90,100-102.105,107
110,112

perch 139
performance 5,9-11,37,39,42-43,63,66,71,73,

81-82,88,90-92,139,159-163,165-171,173,
177-181,204,212-213,219,245
-, ANN 161,163.166-167,169-170,180
-, generalization 90
-,learning 9
-, multiple linear regression 168
-,neuronalnehvork 5,10,39,43,82,90,245
-, peA 170
-, perceptron 71
-, physically based models 42
-, regression models 161
-, sub-pixel area estimator 88

periodicity 220
perturbation 67, 126

-,anthropogenic 67
-, characterization 67

pH 133
phaeophytin 120
phenomenon

-, spectral confusion 83
phosphates 133
phosphorus 147-148,151

-.limitation 151
-. sufficiency 147
-, total 147

photoadaptation 129
photoinhibition 124
photosynthetic 31-32,69,115

-, capacity 32
-. efficiency 31
-,rate 115

photosynthetically active radiation (PAR) 31-32,
69,166-168,170,173-175,181
-, absorbed 31

phylogeny 206-207
physical 32-35,37,42.132-133,139,143-144,153,

187,205
-, characteristics

-, streams 153
-, habitat 133

-, mass balances 143
-, models 37

-, radiative scattering 34-35,37,42
-, vegetation 33

-, water quality 144
physiology 226, 236
phytoplankton 4,115-120.122-125.127-129,144,

147,154
-, abundance 154
-, biomass 115-117,120,124-125,127
-, cells

-, adapt ion 118
-, photoadaption 129

-, models 144
-. primary production 4,115

-, global 122
-) ocean 122
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-, species assemblage 118
pigment 120
pike 138-140
pike-perch 139
pixel 33,36-37,41,45-46,48,50-52,54,55,59-60,

67,73,81-94,245-246
polar 123

-, regions 123
polarimetric

-, radar backscatter 38
polarization 42
pollution 99-100,103-104,109-111,113,140,165

-. impact 100
-. indicator species 111
-,level 110
-, organic 103-104,109-110
-, ozone 165
-, river 140

polymorphism 198
polynomial 60-61, 116. 242
population 4,35,70.77,99.131,147,157,159.

187-191,197-198,200-201.203-206,208,220,
222,225,227
-, algal 147
-, biomass 157
-, brown trout 187,200
-, genetics 198,201.222
-, geography 205
-,human 203,208,220

-, density 206, 222
-, growth 206

-, marine fish 157
-, models 147
-, Pacific sardine 157
-, size 99
-, spawning 159
-, time 70, 77

porewater 243
precipitation 69,72-77
predation pressure 67
prediction 3,16,57,66,70,72,77,92,100-101.

103-104,107.110,133,135-136,138-141,143,153,
204, 211, 213- 214, 218, 220, 222
-, aquatic ecosystems 143
-, climatic 57
-, community dynamics 103
-, density of brown trout redds 153
-, error 135-136, 139, 211

-. rate 135,136
-, food consumption by fish 12
-, phytoplankton abundance 143
-, ratio 135,136.139
-, solar radiation 70
-, water quality 144

predictions 67,71,74-75,91-94,107-109,
143- 144,153, 165,168,170,177,180-181,204,
209,211.219,220

predictor 100
preprocessing 48, 241, 247-248
pressure 67.75,153,166,221

-, evolution 75
-. grazing 153



-, predation 67
-, selection 221
-, vapour 166

primary
-, consumers 157
-, forest 35-36
-, production 69,115-126,128-129

-, global 115
-, model 116,118,120,122,128
-) ocean 115) 122

-, phytoplankton 115-120,122-123,128
principal components analysis (PCA) 19, 166,

169-170,176-177,180-181,188
-, with ANN 177,180
-, with LSR 180

probabilistic interpretation 81-83
procedure

-, backward elimination 209
-, clustering 198
-, hold-out 10,211,217
-, jack-knife 211-212,218-219
-, learning 9,13-15,67
-,leave-one-out 11,211,213, 216
-, logistic regression 213-214, 220
-, maximum likelihood 85
-, testing 128
-, training 9, 11,116,123,128
-, weight-correlation 8

processing 3,7-8,35,48,57,67,248
production 4,46,69,115-126,128-129,229

-, primary 69,115-126,128-129
-, aboveground net (ANPP) 69
-, global 115
-,model 118
-, ocean 115,122
-, phytoplankton 115

-, secondary 69
productionlbiomass ratio (P/B) 4
productivity 34,38,69,115,124,2°5

-, ecosystem 205
-, forest 34,38
-, phytoplankton 115,124
-, primary 69,115

Pusan 103

Q

quality 16,45,66,99-100,1°3-1°4,112,121,133,
135-136,139-14°,144,194-196
-, habitat 133
-, prediction 16,66,135-136,140
-, water 99-100,103-104,112,133,139-140,

144

R

radar 31,33,35,38,41- 42
-, backscatter 31,38,41-42

-, model 38, 42
-, Monte Carlo model 42
-, multifrequency 31

Index

-, polarimetric 38
-,model 33
-, wavelength 35

radiation 31-32,41,69,148,150,166,167
-, photosynthetically active (PAR) 31-32,69,

166-168,170,173-175,181
-, solar 148,150

radiative scattering model 34-35,37,42
rainbow trout 139
rainfall 58
randomness 234

-, death age 234
ranking 131,169,175,181
raptorial feeders 153
received operating characteristics (ROC) 211
recognition 3,59,104-109,112,165,216,244-248

-, birdsong 165
-, facial 248
-, image 3
-, pattern 105,216,244-246
-, shape 59
-,speech 3

Red Sea 243
redundancy 47,177
reflectance 33,38
regeneration 35,38, 67

-, forest 35
regression 4,12,34,36,58,7°,129,141,143-144,

153-154,159-163,165-166,168-17°,173-176,
179-182,204-206,209,211-214,216,218-220,
242
-, analysis 143,153,168,173-175,179,181
-, least squares (LSR) 166,180
-, linear 12,36-37,58,129,161,165,168, 170,

173- 174,179,181-182
-, multiple 12,36,168,174,179,182

-, logistic 4,204-206,209,211-216,218-220
-, model 7°,144,154,160-162,163,176,

205-206, 2°9
-, multiple 141

-, stepwise 169
relative humidity 166-168,181
remote sensing 4,22,31-32,38,42,45-46,55,67,

115,117,241
robustness 131,206
reproduction 131,207, 225-229,233-235
reproductive biology 203, 220
residuals 61
resistance 31

-, stomatal 31
resolution 45,73,157

-, spatial 45,73
-, temporal 45

resource 70,92,157,206-207,225
-, management 70

restoration 104, 131
river 35,103-107,110,131-132,139,143-144
River Thames 144
RMS see root mean square
RMSE see root mean squared errors
roach 139
ROC see received operating characteristics
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rock 58
-, cristalline 58
-, granitic 58

root biomass 69
root mean square (RMS) 35,160-161,163
root mean squared errors (RMSE) 35-36,38-41
rotifera 153
roughness

-, canopy 31
rudd 139
ruffe 139
runoff 76

s
Salmo salar 190
Salmo trutta fario 139
salmon 190
saltmarsh 46
saproby 103-104

-, /3-meso- 103
-, iso- 103
-, poly- 104

sardine 157,159
-, age structure 159
-, biomass 160-161,163
-, Pacific 157

-, abundance 161
-, population 157

Sardinops caeruleus 157
satellite 31,41,69,77

-, EOS 31
-, micro- 187-188,198,201
-,NOAA 69
-,sensors 41

savannah 58, 69
scatterers 42
scattering 33-35,37-38,42

-, models 34-35,37,42
-, multiple 42
-, properties

-, vegetation 33
-, radiative 34-35,37-38,42

scenario 3,147-148,153,222
-, analysis 147-148,153

Schistosomiasis 208,212,214,216-217
sculpin 138-139
SE see standard error
sea 116,158,161-162
Secchi depth 148
secondary

-, forest 35-36
-. production 69

sector 59
sediment 157,241.243,248

-, anaerobic 157
-, core 243
-, hyperenriched 243
-, profile 243-244
-, trap 241

segmentation 99
Seine River 131-132,139
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-, basin .131,139
Seine River 131-132,139
selection 11,36.38,42,47,55,212

-, pressure 221
-,procedure 36,212

self-organizing map (SOM) 3-4,16,18,20,188,
190-192,194,196,200

set-shading 124
semiarid 69.78

-, steppes 69
semideserts 69
senescence 225
sensibility 211
sensitivity 33,94,125-126,147-149,151.153,166,

216, 218-219
-, analysis 125-126,147-148

sensor 32,41,46,69,236
-,ATM 46
-,AVHRR 69

Seoul 104
separation 19,188,198.200
seperability 94
sewage

-, domestic 103
Shannon diversity 104
shrubland 69
shrubs 41. 70
similarity 4, 19, 45
simulation 70

-,models 70
soft mapping 45

-, coastal vegetation 45
soil 32,58,69,76

-, classes 46
-, clay 58
-, holding capacity 76
-, organic carbon dynamics 69
-, sandy clay 58
-, water 76

Soktae stream 103,106-107
SOM see self-organizing map or Kohonen self-

organizing map
Southern Ocean 122
soybean 99
spawning 153.157-159

-, biomass 157-159
-, gravel 153
-, population 159

species diversity 34, 205
spectral

-, albedo 31
-, analysis 57,67
-, confusion 82-83,88,94
-, measurement 87,94
-, regions 33
-, signature 87-88
-, wavebands 48

speed
-, wind 163

SSE see sum of square errors
standard error (SE) 160
stomata 166
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stomatal resistance 31
stone loach 139
Stoughton area 89
stream 99,103-104,106-1°7,110,153

-, benthic community 113
-, brown trout redds 153
-, habitat 139, 153
-, mountain 153
-, order 132
-, physical characteristics 153
-, urbanized 99
-, water quality 103

structure 5, 187
-, age- 159
-, BPN 5
-, community

-, fish 131
-, facial 245
-, genetic 187
-, network 34,41, 117

structures 34,41,71
sub-pixel

-J area
-, proportion 81-89,91-94
-, proportion estimation 81,83-89,91,94
-, proportion estimator 88,94

-, class 82
-,map 82,85

substrate 132,133,140
succession 144,147-149

-, algae 144, 147
-, lakes 147

sulphide
-, hydrogen 243

sum of square errors (SSE) 58,63,66
surface 9,58,115-118,120,122-126,129,153,158,

196,198-199,2°5,2°9,247
-, area 205,209
-, biomass 118,120,122-123

-, phytoplankton 116
-, chlorophyll concentrarion 124
-, error 9, 116
-, irradiance 115-116,120,124-125,129
-, temperature 116,125-126,158
-, velocity 153

Suyong River 103-108,110-111

T

Tanytarsus sp. 106, 110
target 5,7-9,49,69,84,87-88,92,94,99,101,107,

123
TDNN see time-delayed neuronal network
teledetection 67
telemetry 241
temperature 12,58,76,116-118,120,122-123,

125-12 7, 133, 144, 148, 15° , 158- 163, 166- 168,
174,181,2°5
-, surface 116,125-126,158

-, sea 116,158
-, water 118

Index

tench 139-140
tendency 82,92,94,128,200,219,235
terrestrial 22,70, 117

-, animals 70
-, ecosystem 22
-, runoff 117

theorem
-, Bayes' 83

theory 38,86,94, 143, 203, 207, 220-221, 225-226,
248
-, ecological 143
-, information (IT) 71
-, life-history 203,207
-, neuronal network 248
-, of optimal control 226
-, probability 94

three-spined stickleback 139
threshold 7,163,211,218-219,234

-, effect 216,218
-, function 7
-, value 219

time-delayed effect 100
time-delayed neuronal network (TDNN) 113
Tinea tinea 140

tolerance 134, 176, 181
-, limit 176
-, value 181

topographic 34-35,40,188, 194, 196
-, data 34-35,40
-, error 194,196
-, information 35,40
-, map 188

topography 31,35
toxic 143

-, cyanobacteria 143
training 5,9-11,17-18,34,38,45,48-51,55,61,

63-65,72-73,78,85-86,9°,92-94,100-101,
1°4-1°7,110,112,116-117,120,122-125,128,135,
143- 144,163,167-171,174,177-179,193-194,
196,210-211,217,241-242,244-245,247

transformation 12,14,32,35,38, 120, 122, 165,
168-169,174,179,181,234,246-248
-, energy 234
-, exponential 165,174
-, genetic data 190
-, logarithmic 12, 120, 122, 165, 174
-,orthogonal 246, 248
-, power 165, 168, 174

transition 52,58,61,110
transmission 205, 220
transmittance 33
transparency 115,148,150

-, water 115,148,150
transpiration 69,76

-, loss 76
tree 38,40-41,57-59,61-67,99,141

-,age 38,40
-, crown shape 41
-, densi ty 38
-, diameter at breast height (DBH) 57,59,

62-67
-, height 38,40
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-, ring thickness 99
-, spatial distribution 41

Trent biotic index 103
trophic 69.144

-.level 69
-. status 144

tropical 57-59.67.205
-, forest 57-59.67

tropics 221
tropospheric

-, ozone pollution 165
trout 4,138-139,153-154,187-188,190.195,199-201

-, abundance 153-154
-, Atlantic 187
-, brown 153.187

-. management 4
-. redds 154

-. populations 200
-. rainbow 139

Trypanosomiasis 208
t-test 162

-, paired 162
turbidity 52. 133

u
ultra-violet

-, light 166
underestimation 154
urbanization 205
USA 158.207

v
validation 10,90-94,128,135-136,167-171,175,

177-179,211
-, cross- 211

-, k-fold 10,211
validity 10.143,196
vapour 166

-, pressure 166
variability 63,66,120,129,135-136,157.160,190,

207,220
variance 12,20.88,94,129.135, 176. 180, 242

-, percentage 176
variation 32,33,38,46,52,54.63,90.177,180,

203-204. 209, 217,221, 241. 246
variety 20,147,180,208

-, algal species 147
-, iris 20
-, phytoplankton model 143

vector 16-18,20-21,60-62,71-72,77,85,87,
100-101,188,190-194,196,220
-, histogram (VH) 61-62
-, input 16-17,71,77,100-101,191-193
-, weight 16-18,20-21,192.196

vegetation 31,45.69
-, age 31
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-, distribution 45
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-. index 32
-, normalized difference (NDVI) 69-70,

72-77

-, model 33
-,types 31-32,46,58.67
-, variables 31-35.41-42

velocity 153
-. bottom 153
-, surface 153

vertebrate 70
vertically generalized production model (VGPM)

125
VGPM see vertically generalized production

model
VH see vector histogram
visualisation 188
vulnerability 226-228,230-231,233.235-236

-. organism 226, 236
-, state equation 227

w
Wales 46,55
wastewater treatment plant 140
water

-, depth 52
-, quality 99-100,103-104,112,133,140,

144
-. raw 147
-. soil 76
-. temperature 118,122,148.150
-. transparency 115,148,150

waveband 46.48.51
-.ATM 46.48

wavelength 31.35,37
-, optical 31,35
-, radar 35

wavelet 246
weight 5-9,12-14,16-21,49,65.71-72,90,

101-102,134-136,165,192-193,196,233-235,
243,246
-. adjustment 9
-, decay 134-135
-. distribution 72
-, linear combination 102
-, vector 16-18,20-21,192,196

weighting 36
-, automatic procedures 36

weightings 170
-, analysis 173.180-182

wetlands 143
white bream 139
Whiteford Burrows 46
Willamette National Forest 35
wind speed 163
women 207,226-227,229-233.235-236

-, ageing 231
-, age of menopause 229
-.life history 226,229,236
-, mean life span 231

woodland 46-47,52-54
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