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Summary During extensive sampling in Burkina Faso and other African countries, the Leu-Phe mutation producing

the kdr pyrethroid resistance phenotype was reported in both Anopheles gambiae ss and A. arabiensis.

This mutation was widely distributed at high frequency in the molecular S form of A. gambiae while it

has been observed at a very low frequency in both the molecular M form and A. arabiensis in Burkina

Faso. While the mutation in the M form is inherited through an introgression from the S form, its

occurrence is a new and independent mutation event in A. arabiensis. Three nucleotides in the upstream

intron of the kdr mutation differentiated A. arabiensis from A. gambiae ss and these specific nucleotides

were associated with kdr mutation in A. arabiensis. Ecological divergences which facilitated the spread

of the kdr mutation within the complex of A. gambiae ss in West Africa, are discussed.

keywords pyrethroids, kdr mutation, introgression, Anopheles gambiae ss, Anopheles arabiensis,

molecular forms, Burkina Faso, Africa

Introduction

Pyrethroids are a large group of highly insecticidal com-

pounds. They have been widely used in controlling many

insect pests since the 1970s. However, their important use in

the last 20 years has led to the development of resistance in

many insect species (Dong 1996). One main resistance

mechanism is reduced target-site sensitivity to these com-

pounds in the insect nervous system, known as knockdown

resistance (kdr). The kdr has been first reported against

dichlorodiphenyltrichloroethane (DDT) in the early 1950s

in houseflies (Busvine 1951; Milani 1954), then lately in

various insects, such asMusca domestica (Williamson et al.

1993), Blattella germanica (Dong & Scott 1994), Heliothis

virescens (Taylor et al. 1993; McCaffery et al. 1995). This

phenotype results from a single pointmutation in a gene that

encodes the sodium channel (Williamson et al. 1996).

Pyrethroid resistance was first reported in Anopheles

gambiae ss in Côte d’Ivoire (Elissa et al. 1993). It was

probably selected by the intensive use of DDT and, later

pyrethroids for cotton crop protection (Chandre et al.

1999a; Diabaté et al. 2002a). As in several other insect

species, a single nucleotide substitution [leucine (TTA) to

phenylalanine (TTT)] in the p-sodium channel gene is the

mutation responsible for pyrethroid resistance in

A. gambiae ss from West Africa (Martinez-Torres et al.

1998). A second kdr mutation on the same amino acid

[leucine (TTA) to serine (TCA)], produces pyrethroid

resistance in A. gambiae ss from East Africa (Ranson et al.

2000) and recently pyrethroid resistance because of a

mono-oxygenase-based mechanism was observed in both

A. funestus and A. gambiae ss (Hargreaves et al. 2000;

Etang et al. 2003). Following the availability of a rapid

polymerase chain reaction (PCR)-based diagnostic test

(Martinez-Torres et al. 1998), several studies were con-

ducted to estimate the prevalence and assess the current

distribution of the Leu to Phe mutation in natural A.

gambiae populations (Chandre et al. 1999b; Weill et al.

2000; Della Torre et al. 2001). This mutation was

observed, sometimes reaching high frequencies, in the
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S molecular form of A. gambiae ss only, while it was not

observed in sympatric and synchronous M form mosqui-

toes, or in A. arabiensis (Brooke et al. 1999; Chandre et al.

1999a). This strengthened earlier evidences for genetic

heterogeneity within A. gambiae ss, formerly split into five

chromosomal forms (Coluzzi et al. 1985; Touré et al.

1998). The issue of reproductive isolation of the M and S

forms of A. gambiae ss (and, more broadly, of incipient

speciation within this mosquito species) is a moot point

and it is still unclear whether these forms can actually be

considered as ‘true’ species (Gentile et al. 2001; Della

Torre et al. 2001; Taylor et al. 2001; Tripet et al. 2001;

Wondji et al. 2002; Diabaté et al. 2003a). A few years

after the kdr mutation was described in the S molecular

form of A. gambiae ss, it was reported in the M form in the

forest belt of the littoral of Benin (Fanello et al. 2000).

Subsequent molecular analysis of the DNA sequence of a

large upstream intron suggested that this mutation arose in

the M form through genetic introgression from the S form

(Weill et al. 2000). Despite an extensive survey of this

phenomenon in A. gambiae M form, the mutation was

observed at high frequency only in the littoral forest belt of

West Africa, while it was rare inland (Fanello et al. 2000;

Weill et al. 2000; Della Torre et al. 2001; Diabaté et al.

2002b, 2003b; F. Chandre, unpublished data). The intro-

gression event and subsequent spread could be a recent and

ongoing process in this mosquito population.

We aimed at reporting in this paper, the detection of the

Leu-Phe mutation in A. arabiensis and its distribution

within the A. gambiae complex in Burkina Faso. We

investigated whether this mutation has arisen in A.

arabiensis through genetic introgression or through a de

novo mutation by looking at the polymorphism of the

intron upstream of the mutation.

Materials and methods

Mosquito populations

Larvae of A. gambiae sl were collected in Burkina Faso

from 26 sites throughout the country. Because larvae

samples can be biased with respect to kdr (there may be

high levels of consanguinity among larvae from the same

pool), special effort was made to collect large samples from

different breeding sites and pooling them. The larvae were

kept in the laboratory until adults emerged before pro-

ceeding to PCR analysis. Anopheles arabiensis was sam-

pled from several African countries: Burkina Faso, Benin,

Mali, Mauritania, Cameroon, Sudan, Chad, Kenya,

Mozambique, Mauritius Island, Reunion Island, Mada-

gascar Island, Djibouti. Mosquitoes were identified mor-

phologically before PCR analysis.

DNA diagnostic test for kdr alleles in single mosquito

Genomic DNA was extracted from single mosquitoes

according to Collins et al. (1987). Overall 10–50 ng of

genomic DNA were combined in a 25 ll total volume with

four primers Agd1, Agd2, Agd3 and Agd4 according to

Martinez-Torres et al. (1998). The PCR conditions were

30 s at 94 �C, 30 s at 48 �C and 30 s at 72 �C for 45

cycles. Amplified fragments were analysed by electro-

phoresis on 1.5% agarose gel.

PCR identification of the A. gambiae complex

Each single mosquito was PCR identified for A. gambiae

complex determination according to Scott et al. (1993).

The genomic DNA was mixed with the four primers AA

(specific for A. arabiensis species), AG (specific for

A. gambiae ss species), AM (specific for A. melas and

A. merus) and UN (common for all the species) in a total

volume of 25 ll. The PCR was carried out with a

programme of 30 cycles of denaturation at 94 �C for 30 s,

annealing at 50 �C for 30 s and extension at 72 �C for

30 s. Ten microlitres of amplified product were run onto

an 1.5% agarose gel and visualized by ethidium bromide

staining under UV light.

M/S taxon determination

About 10–50 ng of genomic gambiae s.s. DNA were PCR

amplified according to Favia et al. (2001) using primers

R3, R5, Mopint and B/Sint. The PCR conditions were 30 s

at 94 �C, 30 s at 63 �C and 30 s at 72 �C for 25 cycles with

a final extension step at 72 �C for 7 min. Amplification

products were run in a 1.4% agarose gel. The results were

analysed as described in Favia et al. (2001) to determine M

or S taxon.

Intron sequence determination

The kdr and knockdown-susceptible (kds) alleles were

separately amplified and sequenced. Resistant allele was

amplified using the primers I1dir (5¢-AATTTGCAT

TACTTACGACA-3¢, Weill et al. 2000) and Agd3

(5¢-AATTTGCATTACTTACGACA-3¢), according to

Martinez-Torres et al. (1998). For the susceptible allele,

we determined a new reversed primer, AgdS (5¢-AATTTG
CATTACTTACGACT-3¢), located at the same place than

Agd3, from the position 312 of the sequence published by

Martinez-Torres et al. (1998), but different from one base,

at the 3¢-extremity (on the kdr point mutation). The end of

this primer, as Agd3, is located into the intron 2, which is

situated only 4 bp apart downstream of the kdr mutation.
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About 10–50 ng of genomic DNA were combined with

I1dir (Weill et al. 2000) and Agd3 (Martinez-Torres et al.

1998) for the kdr allele and, separately I1dir and AgdS for

the susceptible one. The PCR conditions were 30 s at

94 �C, 30 s at 63 �C and 30 s at 72 �C for 35 cycles with a

final extension at 72 �C during 10 min. PCR fragments

were gel purified using the QIAquick Gel Extraction Kit

(Qiagen) then automated sequencing was performed using

the same primers.

Results

Distribution of the kdr mutation in Anopheles gambiae

complex in Burkina Faso

Sampling was conducted throughout Burkina Faso (26

localities) to assess geographical distribution of the kdr

mutation in both A. gambiae ss and A. arabiensis. Overall,

546 A. gambiae S form specimens, 795 A. gambiae M

forms and 232 A. arabiensis specimens were analysed for

the kdr Leu-Phe mutation with a minimum of 50 specimens

per village (Figure 1). A total of 571 additional

A. arabiensis specimens were collected from 11 different

countries (Benin, n ¼ 15; Mali, n ¼ 10; Mauritania,

n ¼ 40; Cameroon, n ¼ 50; Sudan, n ¼ 30; Chad, n ¼ 30;

Kenya, n ¼ 30; Mozambique, n ¼ 136; Mauritius Island,

n ¼ 60; Reunion Island, n ¼ 100; Madagascar Island,

n ¼ 30; Djibouti, n ¼ 70) and analysed for the same

mutation. In a total of 26 localities sampled in Burkina

Faso, the molecular S form was detected in 22 sites, the M

form in 20 sites and A. arabiensis in 18 sites. While the

molecular M form is widely distributed throughout the

country, the S form and A. arabiensis are observed

preferentially in humid and dry areas, respectively. The kdr

mutation was found in the molecular S form wherever

present and its frequency ranged from 0.17 to 0.96

(Figure 1). In the M form, the mutation was observed in

just one site namely VK7 at a frequency of 0.02 (four
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Figure 1 Geographic distribution and resistance profile of Anopheles gambiae sl to pyrethroids and dichlorodiphenyltrichloroethane

(DDT) in Burkina Faso.
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heterozygous of 173 specimens analysed for the kdr

mutation). Despite large and extensive sampling, the kdr

mutation was observed in a single A. arabiensis specimen

from Burkina Faso.

Intron polymorphism of susceptible and resistant

A. gambiae ss and A. arabiensis

To better understand the history of the kdr allele in both

A. gambiae M form and A. arabiensis, we sequenced

540 bp of the intron upstream the sodium channel gene

near the kdr mutation. Both alleles were sequenced in 69

mosquitoes (A. gambiae S form, n ¼ 15; A. gambiae M

form, n ¼ 20 and A. arabiensis, n ¼ 34). Anopheles

gambiae ss specimens were collected in the villages of Lena

and VK7 in Burkina Faso (Figure 1). Anopheles arabiensis

specimens were from Burkina Faso, Soudan, Cameroon

and Mauritius Island. The Leu-Phe mutation (TTA-TTC)

was observed in both A. gambiae ss and A. arabiensis in all

resistant alleles (n ¼ 30). A leucine residue was found in

susceptible alleles at amino acid 1014 regardless of the

species (n ¼ 108). No Leu-Ser (TTA-TCA) substitution

was detected, as described in East Africa resistant

A. gambiae ss (Ranson et al. 2000). Two polymorphic sites

(positions 702 and 896) differentiated the two molecular

forms as previously reported in Weill et al. (2000).

However, both M and S forms displayed the T-C combi-

nation at positions 702–896, associated with the kdr allele

(Table 1). The same pattern was observed with the

susceptible allele in A. gambiae S form, while the suscept-

ible A. gambiae M form consistently displayed C-C or C-A

combinations. Three positions (824–830–835) were found

to consistently differentiate A. arabiensis from A. gambiae

ss (Table 2). Nucleotide at position 494 was fixed in

A. gambiae ss and polymorphic in A. arabiensis. Because

the sequence of nucleotides at positions 824–830–835 was

specific to A. arabiensis in both resistant and susceptible

alleles, the kdr mutation in A. arabiensis is likely to be a de

novo event rather than the result of introgression.

Discussion

After extensive sampling, the Leu-Phe kdr mutation was

detected in both A. gambiae ss and A. arabiensis in Burkina

Faso. This mutation was widely distributed at high

frequency in the molecular S form, but occurred at a very

low frequency in both A. arabiensis and the molecular M

form of A. gambiae ss.

The unequal distribution of the resistant phenotype in

A. arabiensis and themolecularMand S formsofA. gambiae

ss is probably the result of differential insecticide pressure

selection. The distribution and temporal dynamics of the

molecular S form should expose it to higher insecticide

selection pressure (Diabaté et al. 2002a). As the kdrmuta-

tion confers cross-resistance to bothDDTandpyrethroids, it

is likely that the present pattern of this resistance allele

distribution in A. gambiae ss is a consequence of the

important use of DDT in cotton crops in the 1960–1970s,

replaced by pyrethroids in the 1980s. The kdrmutation has

probably been selected some time ago in West Africa, as

DDT-resistant, A. gambiae ss were reported there in the

1960s (Hamon et al. 1968). This, coupled with subsequent

pyrethroid exposure, may explain why the kdrmutation is

observed at such a high frequency in West Africa.

Table 1 Discriminating nucleotides (702–896) in the upstream
intron of the knockdown-resistant (kdr) mutation within M and S

molecular forms of Anopheles gambiae ss in Burkina Faso

Susceptible (Leu) Resistant (Phe)

C-A C-C T-C C-A C-C T-C

M taxon
VK7 4 27 0 0 0 5

Léna 0 4 0 – – –

Total 4 31 0 0 0 5

S taxon
VK7 – – – 0 0 16

Léna 0 0 6 0 0 8

Total 0 0 6 0 0 24

Polymorphism observed in position 702 and 896. A T-C combi-

nation is observed in both molecular S and resistant molecular M
form while the susceptible M form consistently displayed C-A or

C-C combination.

Table 2 Discriminating nucleotides (494–824–830–835) between

Anopheles gambiae ss and A. arabiensis in the upstream intron

of the kdr mutation

Forms/species Country Allele N

Nucleotide

position

494 824 830 835

A. gambiae
S form

Burkina Faso kds 6 T T G A

kdr 24 T T G A
A. gambiae
M form

Burkina Faso kds 35 T T G A

kdr 5 T T G A

A. arabiensis Burkina Faso kds 12 T A A T

kds 17 G A A T
kdr 1 G A A T

Soudan kds 8 T A A T

kds 10 G A A T

Cameroon kds 6 T A A T
kds 6 G A A T

Mauritius kds 8 G A A T

kds, knockdown-susceptible (Leu); kdr, knockdown-resistant

allele (Phe); N, number of allele sequenced.
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A substitution of the same amino acid in various species

of insects is rather a rare event. However, the kdr mutation

has been reported in many species of insects (Dong 1996;

Williamson et al. 1996; Jamroz et al. 1998; Martinez-

Torres et al. 1998; Ranson et al. 2000; Enayati et al. 2003).

The leucine replacement by an other amino acid is the most

common and that suggests that the leucine residue is very

important in the recognition and/or binding of pyrethroids

and DDT (Ranson et al. 2000). The occurrence de novo of

this mutation in A. arabiensis in a sympatric area with

highly resistant A. gambiae ss, suggests that the hybrid-

ization rate between these two sibling species is very low

(Touré et al. 1998; Taylor et al. 2001). Interestingly, the

same mutation found in both M and S forms is resulting

from an introgression from one form to the other (Weill

et al. 2000). We believe that the kdr mutation distribution

in A. gambiae complex provides some indication on the

level of gene exchange between and within these species and

thus is an important genetic marker to assess the repro-

ductive isolation within this complex of species. Of course,

a larger sample size of kdr-arabiensis would have streng-

thened our results, but it is worth noting that overall 803

arabiensis specimens were analysed for the kdr mutation.

Furthermore, kdr-gambiae resistance is already observed at

very high frequencies in Benin and Burkina Faso where both

A. gambiae ss and A. arabiensis are sympatric. That

suggests that the kdrmutation in A. arabiensis is certainly a

recent and ongoing process. The patchy distribution of the

kdr mutation in the molecular M form of A. gambiae ss in

West Africa is unclear and raises the question of the origin

and frequency of resistance in natural M populations. It

may be a recent and unique event, which arose in this form

through introgression from the S form in the forest belt and

subsequently spread inland. However, the current pattern

of distribution of the resistant M populations of A. gambiae

ss do not support this hypothesis. Highly resistant M

populations are observed alongside the littoral while low

resistance levels are recorded in only a few and discrete

places inland. According to Black and Lanzaro (2001) gene

flow with partial reproductive isolation among molecular

forms occurs only in certain geographical locations or

during certain seasons. If that is true, then the current

patchy distribution of the kdr mutation in the M form of

A. gambiae ss is probably resulting from different events of

introgression within A. gambiae ss. Introgression has

probably occurred when A. gambiae M and S forms are

found in sympatry at high densities, but where one form is

predominant (Diabaté et al. 2003b). The kdr mutation

distribution in relation with the dynamic of both molecular

and chromosomal forms of A. gambiae ss in a wide scale

including the ecological description has not been thor-

oughly investigated. Such a study may be helpful to

understand the ongoing process of the kdr mutation in

A. gambiae ss.

The report of kdr in A. arabiensis, another major

malaria vector in Africa, is of great significance at both

fundamental and applied levels. Its potential impact on the

efficacy of malaria vector control interventions will have to

be evaluated and results taken into consideration by

malaria control programmes. The very low frequency of

this allele in both A. arabiensis and in the M form of

A. gambiae ss suggests that these were recent phenomenon,

but it may spread quickly in these mosquitoes in areas of

intensive insecticide use. Further, characterization

throughout the range distribution of the A. gambiae

complex will be very informative to understand the history

and the contrasting distribution of this new allele in

mosquito field populations.
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R. Masendu, A. Ouari, S. Mamourou, S. Souleymane, K.

Tahirou, M. Niama, O. Abdoulaye, G. Le Goff, P.

Rabarison, J. Grunewald, R. Gopaul, N. Kimingar, M.A.

Homeida, D. Benzerroug for help in mosquito collection.

We thank M. Weill for her comments. Also highly

appreciate the collaboration of the different villages where

mosquitoes have been sampled. This investigation received

financial assistance from the Institut de Recherche et de
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