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Abstract: Transposable elements (TEs) are non-static genomic units capable of moving indistinctly
from one chromosomal location to another. Their insertion polymorphisms may cause beneficial
mutations, such as the creation of new gene function, or deleterious in eukaryotes, e.g., different types
of cancer in humans. A particular type of TE called LTR-retrotransposons comprises almost 8% of
the human genome. Among LTR retrotransposons, human endogenous retroviruses (HERVs) bear
structural and functional similarities to retroviruses. Several tools allow the detection of transposon
insertion polymorphisms (TIPs) but fail to efficiently analyze large genomes or large datasets. Here,
we developed a computational tool, named TIP_finder, able to detect mobile element insertions
in very large genomes, through high-performance computing (HPC) and parallel programming,
using the inference of discordant read pair analysis. TIP_finder inputs are (i) short pair reads such as
those obtained by Illumina, (ii) a chromosome-level reference genome sequence, and (iii) a database
of consensus TE sequences. The HPC strategy we propose adds scalability and provides a useful tool
to analyze huge genomic datasets in a decent running time. TIP_finder accelerates the detection of
transposon insertion polymorphisms (TIPs) by up to 55 times in breast cancer datasets and 46 times
in cancer-free datasets compared to the fastest available algorithms. TIP_finder applies a validated
strategy to find TIPs, accelerates the process through HPC, and addresses the issues of runtime for
large-scale analyses in the post-genomic era.

Keywords: TIP_finder; bioinformatics; HPC; parallel programming; polymorphism; HERV;
post-genomic era; TIPs

1. Introduction

Transposable elements (TEs) are non-static genomic units capable of moving indistinctly from
one chromosomal location to another [1–3]. These mobile elements can accumulate large copy
numbers in their host genomes [4] and have been found in all organisms. The majority of the nuclear
DNA content of large genomes is composed of TEs, such as in wheat, barley, and maize [5–7] for

Biology 2020, 9, 281; doi:10.3390/biology9090281 www.mdpi.com/journal/biology

http://www.mdpi.com/journal/biology
http://www.mdpi.com
https://orcid.org/0000-0001-5991-8770
https://orcid.org/0000-0003-4760-7232
https://orcid.org/0000-0001-7471-3845
https://orcid.org/0000-0002-4978-5211
https://orcid.org/0000-0002-7016-7485
http://dx.doi.org/10.3390/biology9090281
http://www.mdpi.com/journal/biology
https://www.mdpi.com/2079-7737/9/9/281?type=check_update&version=3


Biology 2020, 9, 281 2 of 17

plants. In humans, these elements (or TE-derived sequences) comprise ~50–70% of the sequenced
genome [8]. Several studies have indicated that TEs play crucial genomic roles involved in chromosome
structuring, structural variation, the alteration of gene expression [5,7], evolution, the variation of
genomic size, and environmental adaptation [9–13]. Nevertheless, these elements can also be associated
with human diseases, such as different types of cancer [14–16]. TEs are classified into two major
classes depending on their replication modes [17]. Accordingly, Class I or retrotransposons use an
RNA molecule as an intermediate, while Class II or DNA transposons utilize a DNA intermediate.
Each class can be hierarchically sub-classified into orders, super-families, lineages, and families [9,18,19].
Among retrotransposons, an order called LTR-retrotransposons bears structural and functional
similarities to retroviruses, including the presence of long terminal repeats (LTR) at both ends that
flank central coding domains and a similar replication cycle [20,21].

A particular kind of retrovirus present in the human genome is known as the human endogenous
retrovirus (HERVs) and makes up approximatively 8% of the DNA sequenced [22]. HERVs carry
genes (gag, pro, pol, and env) encoding essential proteins at the functional and structural levels [12,23].
These genes show overexpression in Mendelian diseases [24] and the etiology of cancer, including breast
cancer [25,26], testicular cancer [27], melanoma [28], and germ cell tumors [29]. This overexpression
could support the hypothesis that HERVs can be used in comparative studies to find polymorphisms
caused by the insertion of these retroelements. Other TEs have been used in comparative studies to find
transposon insertion polymorphisms (TIPs) associated with certain biological phenomena, such as the
adaptation processes of rice [30], paramutation and gene silencing [31], and gene expression regulation
in several organisms [32–34].

There are several computational tools to detect TIPs and most of them are based on the discordant
location of read pairs and split reads [35,36], such as iTIS_PseTNC [37], Jitterbug [38], Transposeq [39],
Metasv [40], DD_Detection [41], and TRACKPOSON [30]. The latter was the most recently developed
pipeline for the detection of TIPs in gene pools and it was designed to unravel the transpositional
activity of TEs in genomic datasets by applying a faster and validated methodology. Although the
bioinformatic programs used by TRACKPOSON can be executed in multiple processors, this pipeline
does not use any parallel strategies and as a consequence BLAST is executed in a non-efficient way and
the BLAST output is processed serially (i.e., on one processor). In addition, this program cannot be run
in more than one computational node (or computer) and has issues with the amount of disk space
required. Thus, this pipeline is not scalable to current supercomputers (with hundreds of servers)
and remains suboptimal for analyzing large genomes with a substantial amount of resequencing data,
such as Arabica coffee with 1.3 Gb [42,43], maize (Zea mays) with 2.3 Gb [44], pine tree (Pinus taeda)
with 22 billion base pairs [45], and the human genome with 3.3 Gb [46], as well as large datasets
(e.g., 10K plant genomes [47] and the Earth BioGenome [48]) and huge databases such as the NCBI
genome collection with sequence assemblies from more than 13,000 different organisms [49].

Therefore, it is important to take advantage of supercomputing, parallel programming [50],
and high-performance computing (HPC) approaches to speed up the bioinformatics analyses of large
genomes and huge datasets [51–53]. These techniques have been applied in several tasks, such as the
hierarchical clustering of nucleotide sequences [54], scaled BLAST using CPU [52] or Xeon Phi [53,55]
architectures, and a pipeline to analyze LTR-retrotransposons [2]. Message passing interface (MPI) [56]
is a well-known library for parallel programming [57], which is used to run many sub-problems that
are previously divided given different focuses [58].

Here, we present TIP_finder, a pipeline that can be applied to analyze large genomes and large
resequencing datasets to discover TIPs using the classical methodology of inference of discordant read
pairs as proposed by several pipelines. TIP_finder, written in python, proposes different BLAST engines
(NCBI or MagicBLAST) and works under HPC techniques and parallel programming. It can be scaled
on many computational nodes (or servers) and multi-core architectures, which makes it especially
functional for applications in massive sequencing projects in the current (post) genomic era [24,34,59].
To test the performance of TIP_finder in a challenging way, we use the very large human genome



Biology 2020, 9, 281 3 of 17

and available breast cancer datasets, for detecting the insertion of HERVs in relation with this disease.
In addition, we developed different utilities that automatically perform analyses, such as graphs
over TIPs frequencies, peak charts, and statistical associations analyses related to a certain condition.
TIP_finder version 1.0 is publicly available at https://github.com/simonorozcoarias/TIP_finder.

2. Materials and Methods

2.1. Implementation of TIP_finder

TIP_finder follows the strategy of the analysis of discordant read pair as proposed by several
algorithms such as by [30] to detect TIPs using (i) short pair reads such as those obtained by Illumina,
(ii) a reference genome sequence assembled at the chromosome level, and a database of consensus
TE sequences (or other mobile elements like HERVs). With available programs, we identified several
bottlenecks dramatically reducing the speed of the analysis and increasing the size of the output files
such as: the execution time of the NCBI-BLAST program, the writing time and format of the BLAST
results, the absence of parallelization or the non-use of a robust programming language.

The first step consisted of mapping paired reads to a mobile elements database and filtering only
the reads showing one of the paired reads mapped. Then, the “unmapped reads” of read pairs are
aligned to the reference genome to detect the insertion point of the putative TIP. The second step of
TIP_finder processes the alignment output (saved as tabular format and only keeping the following
columns: subject sequence id, start and end positions of the alignment in the subject sequence, and the
ID of the query sequence) to search for reads with only one hit. This step produces a tabular file (in bed
format) that will be used in the third step. Finally, TIP_finder counts how many reads were aligned to
the reference genome, previously divided by a 10-Kb window, and generates a tabular-delimited file
that is processed using the TIP_finder_utils.py. A general scheme of TIP_finder can be consulted in
Figure 1.

Pair-end mapping against 
TE library

TE library Read pairs

Bowtie2 
V.2.3.4.1

Extract unmapped readsSamtools 
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Align unmapped reads 
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Figure 1. TIP_finder methodology and schematic representation of the pipeline. TE: transposable
element, TIP: transposon insertion polymorphism.

https://github.com/simonorozcoarias/TIP_finder
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TIP_finder_utils.py has four utilities to analyze and process the data generated, as follows:
(1) cluster the results in a presence/absence (coded by 1/0) matrix of TIPs for each paired-end sequence
file; (2) generate frequency graphs from the number of TIPs for each analyzed sample; (3) make
peak charts using the frequency for TIPs present along the entire chromosome length; and (4)
perform statistical association tests to identify TIPs displaying the highest association rate with a
specific condition.

TIP_finder used the following bioinformatic software: Bowtie2 (v. 2.3.4.1) to map the paired reads
of genomic data to the indexed consensus sequence of each TE/HERV family [30,60], Samtools (v. 1.9)
to process the bowtie2 output and keep only the unmapped reads [61], bedtools (v. 2.26.0) to split the
reference genome into 10 Kb windows and count reads in these windows [62], and NCBI-BLASTn
(v. 2.10.0) [63] or Magic-BLAST [64] to align the unmapped reads. Although Magic-BLAST is significantly
faster than NCBI-BLASTn, it requires more disk space. TIP_finder was developed using Python3
(3.8) and the following libraries: sys, time, os, subprocess, argparse, and MPI4py [65]. Furthermore,
TIP_finder_utils.py requires the additional libraries: math, Pandas [66], matplotlib [67], Seaborn [68],
and SciPy [69].

2.2. Parallel Strategy Implemented

To take advantage of multi-core architectures, TIP_finder is parallelized using the MPI standard
and executes the same process several times with different data [51]. First, the read files (in FASTQ
format) are split into n files (where n is the number of processes); then, each working process maps
reads against the TE consensus databases. The mapping output is used to extract the “unmapped
reads”, which are aligned against the reference genome. Each process generates a BLAST output file
and the master process finally joins all of these into one file. The next step includes the detection of
reads with a unique hit in the genome. For this, the number of lines in the BLAST output is divided by
the processes number, and a start and end line number is assigned to each work process; the process
analyzes its corresponding region and creates a Python dictionary, which is unified by the master
process. Finally, each working process extracts reads with a unique hit and writes them to a file in bed
format. The master process joins all the partial results, filters the final file, and deletes all the temporary
files. An overall flowchart of this parallel strategy can be consulted in Figure 2.
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2.3. Statistical Association Analysis

The statistical association tests performed using TIP_finder_utils.py consist of establishing two
categorical random variables: X which determines if a patient i (i: 1,...,n) has a disease (cancer) and Y,
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which determines if a patient i has factor (TIP) j (j: 1,...,m). Given this, n corresponds to the number of
patients (cases and controls) and m is the number of TIPs. The possible values associated with the
aforementioned random variables are X = 0, 1 where X = 0 means that patient i does not have the
disease and X = 1 means that the patient i has the disease, and Y = 0, 1 where Y = 0 means that patient i
does not have the factor j and Y = 1 means that the patient i has factor j [70].

Based on a sample of n patients and m factors, the statistical association analysis is performed
based on the chi-square distribution. Contingency tables are generated by crossing each of the m
factors individually with the probability of having the disease or not. A model of the contingency table
used is presented in Table 1.

Table 1. Contingency table used for the statistical association analysis.

Y/X X = 0 X = 1

Y = 0 O00 O01

Y = 1 O10 O11

The Oij values refer to the frequency observed in the data for patient i and the presence or absence
of factor j.

Based on the values found in the contingency table, the totals by rows and columns are calculated
to determine the expected frequency of each of the Oij observed frequencies. In order to determine
whether factor j has a statistically significant influence on having the disease, we decided to propose a
non-parametric independence hypothesis test based on the chi-square distribution. This test has the
structure presented in (1) and (2) [71].

H0 : Variables X and Y are independent. (1)

H1 : Variables X and Y are associated. (2)

The chi-square statistics for these tests was calculated as follows:

χ2
Squared =

r∑
i=1

s∑
j=1

(
Oi j − ei j

)2

ei j
, (3)

where Oij is the observed frequency, eij is the expected frequency, and r, s are the row and column
sizes, respectively, which in this case are both worth two. The expected frequency eij for each observed
frequency Oij is calculated as follows:

ei j =
ni.n. j

n
, (4)

where ni. refers to the total of row i, n. j refers to the total of column j, and n refers to the total of the
joint data in the contingency table. Once the contrast statistic is determined χ2

calculated, a rejection
criterion is proposed based on a significance level α and the degrees of freedom of the test given by
FD = (r− 1)(s− 1). The criterion proposed is:

χ2
calculated ≥ χ

2
α,(r−1)(s−1). (5)

The above test requires each of the expected frequencies to have a minimum value of five, in which
case, the contrast statistic is recalculated by Yates’ correction for continuity. The new statistic is
as follows:

χ2
calculated =

∑r

i=1

∑s

j=1

(∣∣∣Oi j − ei j
∣∣∣− 0.5

)2

ei j
. (6)
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Finally, once the factors associated with having the disease are identified, we proceed to determine
the value of the strength of the association, which ranges from 0 to 1 and is a measure of the degree of
association found between variables X and Y. To do this, we calculated the contingency coefficient [72],
which is estimated based on the chi-square statistic, as follows:

C =

√
χ2

n + χ2 . (7)

2.4. Genomic Data Used by TIP_finder

We first use the coffee genome (C. canephora) [73] to test available tools. The pseudomolecule chr2
(with 53 Mb), was used as a reference genome, the LTR-retrotransposons (SIRE lineage) as the repeat
library, and one resequencing Illumina data set for C. canephora (SRX5013724) [74].

In order to test the behavior and performance of TIP_finder, we used human endogenous
retroviruses (HERVs) as a proof of concept since HERVs have been correlated with many tumors.
For example, there are several studies reporting an overexpression of HERVs type K in several cancers,
such as melanoma [28], prostate [27], pancreas [75], breast [26], and ovary [76]. Breast cancer was
chosen here as a condition of interest [26] since it is the leading cause of death by cancer among women
worldwide [77].

We used publicly available datasets from the NCBI Whole Genome Sequencing (WGS) database,
corresponding to people with breast cancer (i.e., case patients) and people without the disease
(i.e., control patients). Case patients were obtained from the SRA (Sequence Read Archive) database
through search Equation (8). We retrieved 512 datasets and discarded those obtained by sequencing
technologies other than Illumina and that lacked public permission for download. As a result,
~300 datasets of paired reads were pre-selected and only 10% were used (30 patients) due to the huge
disk space required for storage. Control patients were consulted from Chen 2016 [78], obtaining a list
of 30 patients from the BioProject PRJNA551447 on a study of schizophrenia in a Chinese population
(Supplementary Material S1):

((((((((((breast cancer) AND Homo sapiens[Organism]) AND PAIRED[Layout]))
AND GENOMIC[Source])) AND WGS[Strategy]))) NOT exome).

(8)

For each patient (i.e., case and control), a maximum of 30 million reads was downloaded using the
fastq-dump tool from the SRA toolkit [79]. Overall, the datasets comprised approximately 1.1 Terabytes
of disk space (642 Gb for controls and 458 Gb for cases). HERV-K consensus sequences were obtained
from Repbase (free version 2017) [80]. Finally, the human reference genome (3.3 Gb) in FASTA format
was downloaded from the NCBI (assembly GRCh38.p13).

2.5. Computational Resources

TIP_finder was executed on a server with 56 cores E5-2695 v. 3, 252 GB RAM, and CentOS 7
managed by Slurm. Python 3 and the libraries used were installed using Anaconda 3 environments
and pre-required software were loaded using environmental modules [81].

3. Results

3.1. Problems Encountered with Large Genomes and Testing TIP_finder

Several tools have been developed to search for transposable element insertions using the
approach of discordant read pair analysis when mapped against a reference genome. Recently,
we were interested in the study of the diversity of cultivated coffee trees (C. canephora and C. arabica)
induced by the insertion of LTR-retrotransposons, the latter elements representing about 50% of
the size of these genomes. The fastest and most accurate tool available (TRACKPOSON) was used
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with one family of LTR-retrotransposons (SIRE lineage) with a single set of resequencing data and a
single pseudomolecule of C. canephora (representing 1/11 and 1/22 of the C. canephora and C. arabica
pseudomolecules respectively). The result was obtained in 9474 seconds, and generated a BLAST
output file of 7577.6 Mb. Several factors explain this result, such as bottlenecks in the execution time of
the BLAST program, the writing time and format of the results, and the lack of overall parallelization
of the tools. Based on this observation, we decided to develop a new tool that could overcome these
different bottlenecks in data analysis time to obtain a faster program that could be more easily deployed
on supercomputers.

Thus, TIP_finder was developed for use in current supercomputers to analyze TIPs in huge
genomic datasets. We first tested TIP_finder on coffee data and we obtained a computational time of
594 seconds and a BLAST result file size of 448 Mb, showing a decrease in the execution time of 15.9X
and a decrease in file size of 16.9X. To test TIP_finder on very large genomes, we decided to analyze
the insertional polymorphisms caused by HERVs of type K in the human genome since several studies
have demonstrated that these elements correlate with breast cancer [26], a disease that causes high
mortality rates in women [77].

TIP_finder implements the MPI standard to reduce execution times; thus, allowing researchers
to use more datasets. We tested TIP_finder (using NCBI-BLAST and MagicBLAST as aligners) and
TRACKPOSON using a maximum of 30 million of reads (~1X of the human genome) from one
randomly selected case dataset (Figure 3A,B) and one control dataset (Figure 3C,D) using 2, 4, 8, 16, 32,
44, and 56 cores, executed 10 times, to determine the behaviors of runtime (Figure 3A,C) and speedup
(Figure 3B,D). To calculate the speedup, we used the execution with two cores as serial time since our
MPI implementation used one processor as master and the others as workers.
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Figure 3. Total average runtime and speedup of TIP_finder -using NCBI-BLAST and MagicBLAST- and
TRACKPOSON using 2, 4, 8, 16, 32, 44, and 56 cores with a randomly selected case dataset (30 million
of reads) and executed 10 times (A,B), and a randomly selected control dataset (26.5 million of reads)
and executed 10 times (C,D). The times for all executions can be found in Supplementary Material S2
Table S1 (for case dataset), and in Table S2 (for control dataset).
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We analyzed the behavior of TIP_finder for each of the four steps: Step 1: mapping and alignment,
Step 2: creation of the dictionary with reads, Step 3: filter reads with one hit, and Step 4: the post-processing
of TIPs. Here, we were particularly interested in monitoring the execution time and the speedup for
each step with two different numbers of cores: two and 32. We used the same case and control datasets
used for the speedup analyses. Figure 4 shows that Step 1 in both data sets benefited the most (up to
11.5X) from the parallel strategy used, because this Step is the most computationally time consuming
(Figure S1).
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Finally, we compared the execution times between TIP_finder and TRACKPOSON by randomly
selecting five case and control datasets, in addition to the two patients used in the speedup analyses.
This analysis aimed to measure the runtimes based on different numbers of TIPs in the datasets
(Figure 5). All executions of TRACKPOSON and TIP_finder were performed using 32 cores and a
maximum of 30 million reads.
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Figure 5. Total average runtime and speedup of TIP_finder and TRACKPOSON using six randomly
selected control datasets and six randomly selected case datasets, each one executed 10 times.
(A) Comparison of runtimes between TRACKPOSON and TIP_finder (with B: NCBI-BLAST, and M:
Magic-BLAST), and (B) the comparison of the speedup of TIP_finder (NCBI-BLAST and MagicBLAST)
compared to TRACKPOSON. Additional information can be consulted in Table S7.

3.2. Correlation of HERV-K TIPs with Breast Cancer as a Proof of Concept

After implementing TIP_finder and testing it in several configurations (e.g., different numbers of
cores and datasets), we were interested in applying the software to a specific problem, such as the
association of TIPs (in this case HERV-K) with breast cancer. We used publicly available Illumina read
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datasets found in the SRA database (NCBI) [82]. For this proof of concept, we selected 30 datasets for
cases and 30 for controls. After obtaining the datasets, we ran TIP_finder to generate a tabular-separated
file (in bed format) per individual, which contained the information of TIPs located throughout the
chromosomes of each genome. Then, we ran TIP_finder_utils.py to automatically generate the analyses
based on these data.

TIP_finder_utils.py (“finalMatrix” utility) was run using the tabular-delimited file produced by
TIP_finder.py to generate a presence/absence matrix of TIPs for each patient (using the bed file from
TIP_finder produced for each individual). From this matrix, the number of TIPs for cases and controls
were identified and grouped into bins. Figure 6A shows only the controls and displays the number
of TIPs in a reduced bin with a specific range from 0 to 220. The cumulative number of TIPs in case
patients, as seen in Figure 6B, is distributed over all bins (0–4000), while TIPs in control patients are
only clustered into the first bin (0–500). These findings suggest a much higher insertional activity
(HERV-K) for cases compared to controls (Figure 6).
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Figure 6. Number of TIPs insertions for the cases and controls identified by TIP_finder and grouped
into bins of 500. Control and case patients are show in red, and in blue respectively. (A) Distribution of
the number of TIPs insertions in cases and controls shown in blue and red, respectively. (B) Distribution
of TIPs in controls within a range of 140–220.

We executed the “histograms” utility of TIP_finder_utils.py to analyze the insertional activity of
cases and controls. Figure 7A shows a high insertional activity of HERVs for case patients while control
patients (Figure 7B) show a low insertion activity. Based on this insertional activity, the frequency
of TIPs for both categories (cases and controls) were grouped according to their estimated position
along each chromosome using bins of 300. TIP_finder split the reference genome into windows of
10 Kb, so the positions of each TIP were given within intervals of the window length. This clustering
approach allowed detecting chromosome sections where the insertion of HERVs is markedly more
frequent using the “peaks” utility of TIP_finder_utils.py. Figure 8 shows the distribution of TIPs for
four of the 23 chromosomes (e.g., chromosomes 6, 8, 12, and 17), in which the peaks of polymorphic
presence were most significant.

Finally, we performed a statistical association analysis through the “association” utility of
TIP_finder_utils.py to investigate which TIPs may be associated with the condition of interest
(i.e., breast cancer). We found a total of 3860 associated TIPs (significance level of 5%) along all the
chromosomes. Chromosomes 18, X, 17, 7, 12, and 8 showed the highest associated TIPS with 498, 459,
427, 390, 233, and 299 TIPs, respectively (Figure 9 and Supplementary Material S3).
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represents the chromosome length (on a scale of 1 × 108), where cases and controls are shown in
blue and red, respectively. The Y axis represents the number of TIPs along the chromosome length.
The arrows show the end of each chromosome. The graphs for all chromosomes are available in
Supplementary Material S4.
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4. Discussion

The analysis of TIPs offers an efficient way to elucidate the dynamics of genome evolution in all
organisms, from archaea to humans, via the activity of mobile elements. TIPs may help to answer
multiple questions that arise in the field of genomics and bioinformatics, such as the process of the
domestication of plants [30,82,83], how mobile elements have shaped the evolution of mammals [84],
and inheritance features between organisms [85]. The study of genome diversity based on the
insertional activity of TEs also provides an opportunity in the future to understand genetic diseases [24]
caused by TIPs, such as breast cancer and its association with HERVs [26,86].

Although previous algorithms significantly improve the discovery of TIPs [30,87], their programming
remains suboptimal considering that a parallel strategy and the use of multi-core architectures were
not considered in their implementation. TRACKPOSON displays a speedup of ~1X (Figure 3) on
56 processors compared to two processors, due to the suboptimal execution of NCBI-BLAST and
BLAST output processing using a single-processor Perl script. This demonstrates that a parallel
strategy is required for better execution and this limitation is a disadvantage for massive sequencing
projects that generate huge genomic datasets. To address this deficiency, the HPC and MPI techniques
used by TIP_finder allow researchers to use many processors simultaneously in an efficient manner,
taking advantage of all the benefits of supercomputers. TIP_finder can accelerate up to 55× the
runtime compared to TRACKPOSON (Figure 3B,D). This improvement is important considering
that TRACKPOSON is the fastest TIP detector in a recent benchmarking analysis [36]. Furthermore,
TIP_finder can process larger datasets, improving its speedup using a high number of processors.
Particularly, Step 1, which involves mapping (Bowtie2) and alignment (NCBI-BLAST or Magic-BLAST),
requires the highest execution time and computational resources (Figure S1); thus, greatly benefiting
from a parallel programming approach to speed up the analysis compared to TRACKPOSON (Figure 4).
Furthermore, TIP_finder is a scalable software since it can run single-node applications (i.e., software
than can run over multiple processors but are limited to one server), such as Bowtie2, NCBI-BLAST,
and MagicBLAST, on multiple servers by splitting data into different inputs (i.e., data is split to run on
different servers, see Figure 2). This feature allows taking advantage of current clusters that follow
a distributed memory structure and makes the TIP_finder an especially useful tool for the massive
sequencing projects required in the post-genomic era. Since TIP_finder applies a validated strategy to
find TIPs [30], the results have high quality in terms of precision and sensitivity [36].

In a proof of concept using the sequencing data of 60 patients, TIP_finder demonstrated suitable
performance for TIPs identification (represented here as hte consensus sequences of HERV-K) in the
large human genome. Despite this not being the objective of the present study, the association between
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HERV-K and breast cancer in humans was confirmed. HERV-K in human breast cancer are involved
in the processes of replication and tumorigenesis [88], derived directly from the protein and gene
activities of mobile elements in the host [12]. This association is supported by the literature, indicating
that this disease could be caused by the presence of HERVs in chromosomes 6, 7, 8, and 19 [26]. A larger
sample of patients is necessary to further study this association and particularly, identify the coding
regions involved. Moreover, TIP_finder should be tested on other human genetic diseases involving
the mobility of endogenous retroviruses.

Overall, TIP_finder is a software that, besides its computational versatility (scalability and high
performance), can run analyses on any group of organisms (plants, bacteria, animals) and uses
information from any type of mobile element. Finally, this software will be used in future work on
applications of the deep analysis of retrovirus interference or association with diseases in humans.
These applications will help unravel potential applications in the industry of personalized medicine
and pharmacology, as well as innovate with biological pathways for the treatment and prevention of
the condition analyzed.

5. Conclusions

The development of HPC-based applications in bioinformatics is required on a daily basis.
Thanks to the reduced cost of sequencing technologies, the challenge is not in obtaining genomic datasets,
but rather in the analysis of this information in record time. Studies on TIPs have been performed
in large datasets, demonstrating promising results for solving biological questions. Nevertheless,
TIPs analyses show limitations in scalability since the available tools do not implement parallel strategies
and follow a single-node approach. TIP_finder proves to be a very useful tool to be implemented on an
HPC computing cluster architecture with many servers and with genomic datasets of considerable size.
Moreover, the analysis of polymorphic activities of HERV-K could be used to perform a genomic-scale
study of certain cancer types, such as breast cancer.
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