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Pearl millet genomic vulnerability to climate change
in West Africa highlights the need for regional
collaboration
Bénédicte Rhoné 1,2,8✉, Dimitri Defrance3, Cécile Berthouly-Salazar1,4,5, Cédric Mariac1, Philippe Cubry 1,

Marie Couderc1, Anaïs Dequincey1, Aichatou Assoumanne6, Ndjido Ardo Kane 5,7, Benjamin Sultan 3,

Adeline Barnaud 1,4,5,9✉ & Yves Vigouroux 1,9✉

Climate change is already affecting agro-ecosystems and threatening food security by

reducing crop productivity and increasing harvest uncertainty. Mobilizing crop diversity could

be an efficient way to mitigate its impact. We test this hypothesis in pearl millet, a nutritious

staple cereal cultivated in arid and low-fertility soils in sub-Saharan Africa. We analyze the

genomic diversity of 173 landraces collected in West Africa together with an extensive

climate dataset composed of metrics of agronomic importance. Mapping the pearl millet

genomic vulnerability at the 2050 horizon based on the current genomic-climate relation-

ships, we identify the northern edge of the current areas of cultivation of both early and late

flowering varieties as being the most vulnerable to climate change. We predict that the most

vulnerable areas will benefit from using landraces that already grow in equivalent climate

conditions today. However, such seed-exchange scenarios will require long distance and

trans-frontier assisted migrations. Leveraging genetic diversity as a climate mitigation

strategy in West Africa will thus require regional collaboration.
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Adapting agricultural practices to climate and environ-
mental changes is a major challenge1–3. Indeed, climate
change is already affecting agricultural productivity4,5 and

future global warming will increase the frequency and intensity of
extreme weather such as heat waves and intense rainfall events6,7

with consequences for food production and hence also for food
security8. The expected changes in rainfall patterns will affect
farming systems dominated by rainfed crops such as in sub-
Saharan Africa9. Sub-Saharan African agriculture is already
impacted and ongoing climate change already reduced yields of
major crops by up to 10% up to the beginning of this century5.

Adaptation strategies have been proposed, from cultivating
better adapted varieties or crops to diversify production sys-
tems10–12. Using existing varietal diversity of crop species and
favoring crop varietal replacement is viewed as an efficient short-
term strategy to adapt to rapid environmental changes13,14. This
strategy relies on identifying varieties among currently cultivated,
climate-adapted varieties that will still be suitable in future con-
dition. This strategy resembles assisted migration of wild species,
which makes it possible to keep pace with climate change in
natural ecosystems15,16.

Ecological niche models are widely used to evaluate the impact
of climate change on the distribution of wild species and to
provide recommendations for the management of endangered
species to minimize future biodiversity loss17. Such approaches
have most recently been used to identify the parts of the current
crop cultivation area that are unlikely to remain suitable for crop
production in the future due to climate niche losses10,18,19.
However, these approaches do not take intra-specific diversity
and local adaptation into account when assessing vulnerability.
Recent advances that combine genomic diversity with environ-
mental data20,21 make it possible to mitigate such constraints.
These new approaches improve predictions of the impact of
future environmental change on crops by accounting for the
adaptive potential of the species22.
In the present study, we use landscape genomic approaches

to investigate the impact of climate change on pearl millet
cultivation in West Africa. Pearl millet is a staple food for more
than 90 million people in the arid and semi-arid tropical
regions of Africa and Asia23,24. In West Africa, this allogamous
cereal is still mainly grown in family farming systems, in
rainfed conditions with no additional irrigation, using local
varieties (or landraces). High diversity of agro-morphological
traits and adaptive traits such as flowering time, photoperiod
sensitivity, or drought tolerance exists among and within pearl
millet landraces25–27. Furthermore, pearl millet is adapted to a
wide range of climate conditions with annual precipitation
ranging from 200 to more than 1000 mm26. Our analyses allow
us to identify areas where pearl millet cultivation would be at
greater risk under future climate conditions and to assess the
agro-biodiversity potential of local varieties to mitigate the
impact of climate change. These outcomes suggest that miti-
gating climate change for traditional African agriculture will
require coordinated regional actions and long-scale migration
of varieties.

Results
Genomic diversity reflects the geographical origin of varieties.
We first built a genomic dataset comprising 173 landraces
originating from 10 Sahelian countries (Fig. 1). Using 100 plants
per landrace in a pool-sequencing design, we estimated allele
frequencies for each landrace at 138,948 polymorphic single-
nucleotide polymorphisms (SNPs, Supplementary Data 1 and 2).
Principal component analyses (PCAs) of SNP allele frequencies
with complete data on landraces clearly separated according to

their geographical origin (Fig. 1c, d) and landraces were found to
cluster according to the country.

Modeling SNP and climate with a GF approach. We used a
gradient forest (GF) approach to model variation in allelic fre-
quencies along environmental gradients20,21 using both genomic
and climate observations at the 173 locations sampled. This
approach enables identification of the cut-off in allele frequencies
associated with major changes in environmental conditions
together with the identification of major climatic drivers of the
genomic composition. GF models were built using the 16,632
SNPs with an allele frequency higher than 10%. The climate
dataset consisted in 157 metrics of agronomical importance, i.e.,
onset of the monsoon and other metrics related to precipitation,
temperature, and solar radiation (Supplementary Table 1). These
metrics were calculated for a period of from 30 to 180 days after
monsoon onset, corresponding to the pearl millet growing period,
as farmers traditionally sow their fields after the first significant
rainfall. These metrics were obtained for 17 climate models
(Supplementary Table 2). The climate models were developed by
different independent climate modeling groups around the world,
associated in the CMIP5 international working group (Coupled
Model Intercomparison Project28). The 17 models are a subset of
the climate models considered by experts of the Intergovern-
mental panel on Climate Change. GF models were built sepa-
rately for each of the 17 climate models based on the climate that
prevailed on the date the landraces were collected in the field. The
most important climate predictors associated with the genomic
data are the minimum intensity of solar radiation at the begin-
ning of the growing season, monsoon onset, and precipitation
intensity at the beginning of the growing season (Supplementary
Table 3). We found an average of 88% of the SNPs that can be
predicted by the environmental variables (from 14,544 to 14,757
SNPs with a R2 > 0) depending on the climate model considered
(Supplementary Table 3).

Genomic vulnerability shows a latitudinal pattern. Based on the
current climate–genome relationship modeled using this GF
approach, we then predicted the genomic composition expected
in the future. The future genomic composition was predicted
throughout the pearl millet cultivation area in West Africa at the
2050 and 2100 horizons from future climate projections made by
a dedicated climate model. We then computed the genomic
vulnerability as the Euclidean distance between current and
future genomic compositions. Genomic vulnerability measures
the distance between the genotype of the currently cultivated
landraces and the inferred genotype under the future climate
using modeled genotype/climate relationships. Thus, genomic
vulnerability is a measure of how much genetic change is needed
to adapt to ongoing climate changes. Genomic vulnerability
relates to the risk of non-adaptation or to the evolutionary change
required to cope with the future environment. To account for
variability between climate models, we predicted the genomic
vulnerability of each of the 17 climate models (Supplementary
Table 2). For the future climate projections, we also considered
two different scenarios of a representative concentration pathway
(RCP29) of greenhouse gas emission trajectories among the four
adopted by the CMIP5 consortium as follows: (i) RCP2.6, a
scenario based on the assumption of a strict reduction in carbon
dioxide over the years that will limit the increase in global tem-
perature to <2 °C by 2100; (ii) RCP8.5, a pessimistic scenario
based on the assumption that emissions will continue to increase
leading to a 4 °C increase in temperature by 2100. Genomic
vulnerability inferred as the mean across the 17 models revealed a
similar spatial pattern under the two RCP scenarios considered at
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the 2050 horizon, but that varied in intensity (Fig. 2 and Sup-
plementary Fig. 1). The use of all climatic variables or of only
uncorrelated climatic variables had no major impact on our
results (Supplementary Fig. 2). Genomic vulnerability displayed
latitudinal organization with higher vulnerability around latitude
10° and latitude 15°. It should be noted that some areas, e.g.,
Niger in the RCP8.5 scenario, were associated with a high coef-
ficient of variation across models (CV > 50%), indicating con-
trasting patterns of vulnerability depending on the climate model
used (Fig. 2 and Supplementary Fig. 1). This is probably linked to
the high uncertainty of climate model projections of changes in
precipitation in such regions30.

Genomic vulnerability is associated with flowering time. The
latitudinal pattern of genomic vulnerability we found in West
Africa (Fig. 3a, b) may be associated with the length of the pearl

millet flowering period. Mean flowering time in our 173 land-
races ranges from 41 to 124 days (Supplementary Fig. 3).
Flowering time exhibited bi-modal distribution, with a first
mode of around 60 days in the early-flowering landraces and a
second mode of around 110 days in the late flowering landraces.
The distribution of flowering time is spatially organized along a
latitudinal gradient, long-cycle landraces being cultivated in the
south up to 11° latitude and short-cycle varieties being culti-
vated in the north from latitude 13° to 16° (Fig. 3c). Crossing
the distribution of genomic vulnerability with the length of
flowering time revealed greater vulnerability at the northern
limits of cultivation in both early and late flowering landraces
(Fig. 3d). By contrast, reduced vulnerability was predicted for
late flowering types in their southern cultivation area or at
latitudes where a mix of both types plus types with intermediate
flowering periods are cultivated.
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Fig. 1 Diversity of pearl millet varieties in West Africa. a Photo of a pearl millet field in Senegal ©A. Barnaud, IRD. b Early-flowering pearl millet panicle
from Senegal, © C. Berthouly-Salazar, IRD. c Map of the 173 accessions of pearl millet considered in this study. d Principal component analysis (PCA) of
pearl millet landraces based on SNP allele frequencies. The plot shows landrace PCA projections on the first two axes that explain 26.6% of total variance.
Landraces are colored according to the country. Concentration ellipses with a normal probability of 0.6 are drawn around landraces originating from the
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To validate the hypothesis that flowering time is an important
trait in adaptation to climate, we first performed a genome-wide
association study (GWAS) to find SNPs linked to flowering time.
Association analysis was performed using a latent factor approach
(latent factor mixed model31,32, LFMM). We considered five
confounding factors to control for population structure (K= 5).
Using more confounding factors, i.e., up to seven, did not lead to
better control of population structure in the model and did not
alter the final results (Supplementary Figs. 4–6). A total of 103
SNPs were found to be significantly associated with flowering
time (K= 5, Supplementary Fig. 5). These SNPs are mainly found
on chromosomes 1, 2, and 5 on the pearl millet genome and
correspond to 75 annotated genes (Supplementary Data 3).
We then investigated whether the SNPs associated with

flowering time were also better predicted by the climate variables
in the GF model than the other SNPs. To this end, we used the
proportion of variance (R2) explained by the climate predictors
for each SNP. The 103 SNPs associated with flowering time
presented an average correlation twice higher (mean(R2)= 0.53)
than all the SNPs considered (mean(R2)= 0.28, Wilcoxon rank
test, p-value < 2.10−16, Supplementary Fig. 6). Consequently,
SNPs associated with flowering time contribute strongly to the
prediction of genomic vulnerabilities to future climate. This result
reinforced our previous observation that flowering time is a major
trait of pearl millet adaptation to climate.

Genomic vulnerability is associated with yield. We expect the
genomic vulnerability statistic to be negatively correlated with
yield. Greater genomic vulnerability should be associated with
yield loss. As assessing yield under future climate might be dif-
ficult, we used spatial contrast of climate to experimentally link

genomic vulnerability with yield. To this end, we used the two-
year common garden experiment on pearl millet landraces con-
ducted in Sadoré (Niger). In this case, the genomic vulnerability
of a given landrace was predicted using the climate condition at
the location of origin of the landrace and the climate at the Sadoré
experimental site. We found significant negative correlations
between yield-related traits and genomic vulnerability (r(Pear-
son)=−0.412, p < 0.0001 for 100-seed weight; r(Pearson)=
−0.368, p < 0.0001 for the mean weight of seeds on the main
spike; r(Pearson)=−0.310, p < 0.0001 for the total weight of
seeds per plant, Supplementary Figs. 7 and 8). These results
indicate that higher genomic vulnerability is associated with lower
fitness of the landraces under the climatic conditions at the site of
the field experiment. The correlation with yield-related traits was
slightly lower when genomic vulnerability was estimated using
the subset of uncorrelated climate metrics (r(Pearson)=−0.374,
p < 0.0001 for 100-seed weight; r(Pearson)=−0.252, p= 0.0015
for the mean weight of seeds on the main spike; r(Pearson)=
−0.258, p= 0.0011 for the weight of seeds per plant). We con-
sequently decided to only keep the genomic vulnerability assessed
using all climate metrics in the following analyses.

Inter-country migration could mitigate the impact of future
climate. To infer how migration could help reduce the impact of
climate change on yield, we first determined the most vulnerable
regions identified by each of the 17 climate models. Two to eight
vulnerable areas were identified per climate model at the 2050
horizon under the RCP8.5 scenario. A total of 80 vulnerable areas
were identified considering all the climate models together
(Fig. 4a). We then assessed the distance and origin of the current
landrace that could be used to mitigate the impact of future
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Fig. 3 Spatial distribution of genomic vulnerability relative to flowering time. a Genomic vulnerability of pearl millet to climate change at the 2050
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climate change in a given vulnerable region (Supplementary
Fig. 9). We selected the landrace to migrate by choosing the one
with the lowest genomic vulnerability to future climate conditions
in the vulnerable region. We called this optimal migration. The
optimal migration distances ranged from 77 to 3665 km with a
mean distance of 1059 km (SD: 801 km, Fig. 4b). A total of
88.3% migrations would be between countries. We used the
genomic vulnerability of the migrated landrace to the future cli-
mate condition projected at the given vulnerable region as a
measure of migration load. This measure allowed us to reveal
where the migrated landrace would be not perfectly adapted.
High migration load values indicate migrations that rely on
potentially ill-adapted migrated varieties as no other varieties that
are better adapted to future climate conditions exist in the cul-
tivation area. The migration load ranged from 0.0010 to 0.0215
(mean= 0.0045; Fig. 4c). The high vulnerability of some migrated
landraces (migration load >0.01) suggests that some climate
model projections for the 2050 horizon do not correspond to the
climate faced by varieties cultivated today. Consequently, the
proposed migrations could rely on landraces that are ill suited for
the purpose.
We investigated whether less optimal migration scenarios

could reduce the migration distance. We selected the closest
landrace to migrate among the 1% lowest genomic vulnerability
(near-optimal migration) or among the 5% lowest genomic
vulnerabilities (sub-optimal migration Supplementary Figs. 10–
12). For near-optimal migration, the mean migration distance is
537 km with 63.75% of transboundary migration and a mean
migration load of 0.0052 (range 0.0014–0.0215, Supplementary
Fig. 7). For sub-optimal migration, the mean migration distance
is 257 km with 37.5% of transboundary migration and a mean
migration load of 0.0062 (range 0.0024–0.0215). Thus, using less
optimal migration scenarios reduces the migration distance but
also increases the migration load by 10–30%.

Discussion
Adaptation of today’s agriculture to climate change requires the
assessment of crop vulnerability18. In this study, we combined
spatial genetic structure and spatial climate variability21,33 to
assess crop vulnerability to future climate change and how
assisted migration could help mitigate its effect. By integrating
species genetic diversity in the predictive model, this approach
expanded existing methods that only focus on plant distribution,

e.g., in ecological niche modeling19. Our approach makes it
possible to account for local adaptation nested in the population
structure but could also directly rely on alleles linked to local
adaptation. With the increasing availability of crop genomic
resources, we should be able to predict which combination of
adaptive alleles will be suitable in given future conditions.
Another breakthrough is the use of multi-model projections of
relevant climate metrics for the pearl millet growing period
aligned with the monsoon onset. Using a common garden
experiment, we show that genomic vulnerability assessed using
our approach is associated with yield-related traits, varieties with
higher vulnerabilities exhibiting the biggest yield loss. This
experiment thus validates the predictive potential of genomic
vulnerability and its biological relevance for agriculture by sta-
tistically linking this estimate with the yield.
The northern edge of the cultivation areas of both early and late

flowering pearl millet was found to be the regions with the highest
genomic vulnerabilities. Flowering time is an important trait for
yield elaboration in annual plant species, as it synchronizes
reproduction with climate conditions, thereby ensuring grain filling
under favorable environmental conditions34–36. An increase in
temperature combined with a reduction in precipitation is likely to
affect late flowering varieties, in particular by increasing evapo-
transpiration at maturation5. Our results thus underline the
importance of taking flowering time into consideration when
studying climate adaptation in pearl millet.
Crop diversity11 and varietal diversity37 will make it possible to

mitigate the impact of climate variation. Pearl millet landraces are
characterized by highly diverse agro-morphological and adaptive
traits, including flowering time, photoperiod sensitivity, or
drought tolerance25–27,38. Building on existing diversity, we
investigated whether a varietal replacement strategy involving
migration of better adapted varieties to future climate conditions
could mitigate yield loss and reduce agricultural risks in vulner-
able areas. Our analyses show that a strategy involving long
distance and mainly transboundary migration will indeed be able
to partly mitigate ongoing climate change. These results highlight
the need for the discussion of action plans at the scale of West
Africa as a whole. The need for regional collaboration in West
Africa for climate mitigation has already been previously
acknowledged39 based on present and projected future climate
analogy.
In family farming systems, farmers are directly involved in

crop varietal innovation and in the management of crop genetic
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resources40. Varietal diffusion is shaped by social factors, as
illustrated by the relationship between the structure of crop
diversity and ethno-linguistic groups41–43. Farmers’ seed net-
works are known to be major drivers of gene flow, within and
beyond local communities and environments44,45. In some cases,
this traditional seed system may be able to provide farmers with
landraces suitable for agro-ecological conditions under predicted
climate change, as already demonstrated for maize landraces in
Mexico46. However, our findings also clearly show that farmers
are likely to need to source seeds outside their traditional geo-
graphic ranges, to be sure germplasm is suitable for cultivation in
the future46.

With the exception of strategies that involve simple changes in
agricultural practices, such as crop planting schedules, most
adaptation strategies to mitigate the consequences of climate
change on agriculture require significant investment by farmers
and substantial modifications of eating behavior and social
organization3. This also applies to the relocation of crop pro-
duction to more favorable climatic regions. This kind of adap-
tation strategy either requires farmers to migrate or crop species
to be replaced by species that are better adapted to the new
environmental conditions10, and consequently leads to significant
changes in the eating habits of the population concerned. One key
factor that needs to be taken into consideration when exploring
varietal replacement strategies is farmers’ potential resistance to
the adoption of migrated varieties. Involving farmers in partici-
patory breeding schemes could help solve this problem, while
making it possible to better meet farmer’s needs for varietal
adaptation to climate change47–49.

Methods
Plant material. A total of 173 geo-referenced landraces originating from 10 West
African and Central African countries were sampled. The landraces were collected
by the Institut de la Recherche pour le Développement (IRD) on dedicated mis-
sions conducted between 1974 and 1989 (Supplementary Data 1). One hundred
seedlings of each of the 173 landraces were grown in IRD greenhouse facilities in
Montpellier (France) from seed stocks maintained as part of the IRD collection.
This corresponds to a total of 17,300 seedlings grown for DNA extraction. The
same quantity of leaf material was collected from each of the 100 seedlings of each
landrace for DNA extraction.

Pool-sequencing, bioinformatic analysis. Bait design. A total of 152,619 bioti-
nylated 80 bp baits were designed and synthesized by Mycroarray (Ann Arbor,
Michigan, USA, reference: 160606-32). The baits target the first 1000 bp of all
annotated genes of the genome. Repetitive sequences over the pearl millet reference
genome were discarded using RepeatMasker (http://www.repeatmasker.org).

Library preparation and sequencing. Libraries were prepared according to the
protocol detailed in ref. 50. Briefly, DNA samples were sheared to yield 400 bp
fragments. DNA was then repaired and tagged using 6 bp barcodes to allow further
multiplexing. Real-time PCR was performed to complete adapter sequences and to
generate ready-to-load libraries. The libraries were either immediately sequenced
for shotgun genomic sequencing or enriched by capture using the Myselect
protocol (Mycroarray) before sequencing. Sequencing was performed using four
Illumina sequencing lanes on a HiSeq2500 and outsourced to Novogen in China.

Read filtering and mapping step. Adapter sequences and extremities with low
quality scores (–q 20) were removed from row reads using Cutadapt (v1.1051). Reads
were filtered based on their length (L > 35 bases) and on their quality mean values (Q
> 30) using a freely available Perl script (https://github.com/SouthGreenPlatform/
arcad-hts/blob/master/scripts/arcad_hts_2_Filter_Fastq_On_Mean_Quality.pl). The
separately trimmed forward and reverse reads were then re-synchronized into pairs
with an in-house Perl script. The filtered paired-end reads were mapped to the pearl
millet reference genome14 using BWA (Burrows-Wheeler Aligner, v0.7.252), with the
MEM algorithm and standard parameters. Unmapped, low mapping quality (MAPQ
< 20) and improperly paired reads were filtered out with SAMtools (v1.153). The
exome mean coverage was estimated for each accession with QualiMap (v2.254) using
the gene annotation from ref. 14. Local realignment was performed using
IndelRealigner and variant calling was performed using UnifiedGenotyper in the
Genome Analysis Toolkit (GATK v3.755).

SNP calling. Raw SNPs were filtered out using the GATK VariantFiltration
tool with the following criteria: bi-allelic SNP, depth coverage >10 and <250 per
accession, <3 SNPs in a window of 5 bp, frequency of the alternate allele to be
called as an SNP (AF > 0.003 corresponding to a minimum count of five reads
with the alternative allele throughout the dataset). For each accession, SNPs with

a total read count of <20 reads were set to NA. Finally, only the SNPs
with complete data were considered in the final SNP set. The allele frequencies of
the remaining SNPs after filtration were estimated and total read counts using an
in-house R script. SNP filtration criteria were chosen to maximize the correlation
of allele frequencies obtained from three PE05487 sequencing replications.
Accession PE05487 was sequenced twice pooled (i.e., two sequencing runs from
the same library). In addition, this accession was sequenced from 100 distinct
unpooled individuals. The unpooled individual fastq files were submitted to the
very same bioinformatic pipeline as described below and allelic frequencies were
obtained from the.vcf file generated by UG-GATK after variant filtration. Our
bioinformatic pipeline resulted in a highly correlated estimation of allele
frequencies at common SNPs (r(Pearson)= 0.91 to 0.96, n= 5 275).

PCA analysis. PCA analysis was performed on allelic frequencies using the
prcomp() R function to summarize variations in population structure.

Climate data. Climate datasets. The data in the observed climate dataset were
extracted from the EWEMBI climate dataset56. The EWEMBI dataset covers the
entire globe at 0.5° horizontal and daily temporal resolution from 1979 to 2013
and combines several reference datasets: ERA-Interim reanalysis data57,
WATCH forcing data methodology applied to ERA-Interim reanalysis data58,
eartH2Observe forcing data (E2OBS59), and NASA/GEWEX Surface Radiation
Budget data (SRB60). The SRB data were used to bias-correct E2OBS shortwave
and longwave radiation61. Variables included in the EWEMBI dataset are Near
Surface Relative Humidity, Near Surface Specific Humidity, Precipitation,
Snowfall Flux, Surface Air Pressure, Surface Downwelling Longwave Radiation,
Surface Downwelling Shortwave Radiation, Near Surface Wind Speed, Near
Surface Air Temperature, Daily Maximum Near Surface Air Temperature, Daily
Minimum Near Surface Air Temperature, Eastward Near Surface Wind, and
Northward Near Surface Wind. A sample of this dataset was extracted for a
period corresponding to the sample collecting missions among the available data
in the dataset (1979–1989, mean value over the 10-year period) at a pixel
resolution of 0.5° × 0.5° (~50 × 50 km). In the present study, the pearl millet
cultivation area is delimited by the convex hull of our landrace coordinates. This
area extends over 3.1 million km2, including 1041 pixels. Climate data for the
sampled locations were inferred from the pixel in which the landrace coordinates
are located.

Future climate projections consisted in bias-corrected daily climate data
extracted from a subset of 17 climate models among the CMIP5 dataset28

(Supplementary Table 4). Climate data from the 17 climate models were corrected
using the Cumulative Distribution Function transfer method to reduce errors in the
present-day simulations of the CMIP5 models compared to observed data28,58,62,63.
We focused our analysis on two RCPs (RCP2.6 and RCP8.5), representing two
future greenhouse gas concentration trajectories29. Only the 17 climate models that
include both the RCP2.6 and the RCP8.5 scenarios were used. For each climate
model and RCP scenario, we extracted climate projections for the 2049–2059
period, hereafter referred to as T2050, and for the 2089-2099 time period, hereafter
referred to as T2100. The so-called historical climate projections for each of the 17
CMIP5 models were also extracted for the 1979–1989 period for vulnerability
assessment.

Climate metrics. Climate observations and future climate projections were used
to compute 157 metrics in five categories (Precipitation, Mean Near Surface Air
Temperature, Near Surface Maximum Air Temperature, Near Surface Minimum
Air Temperature, and Surface Downwelling Shortwave Radiation; Supplementary
Table 1), which are critical variables for agricultural purposes. The monsoon onset
was assessed from rainfall data in each pixel in the cultivation area and for each
model. This metric has been found to be highly correlated with the sowing date of
pearl millet in the West African cultivation area64. All the other 156 climate metrics
were mean, minimum, or maximum values of a climate parameter or number of
events calculated within a period of 30, 60, 90, 120, 150, or 180 days after monsoon
onset (6 × 26 metrics).

GF predictions of genomic vulnerability. We used GF (R package,
gradientForest21,33) to model the importance of changes in allele frequency along
the environmental gradients. GF is a machine-learning approach derived from the
random forest algorithm. It is based on regression trees linking allele frequencies
with environmental data observed at the locations of the 173 landraces. For this
analysis, 500 trees per SNP were generated. We only considered SNPs with a minor
allele frequency >10% following20. GF analysis enabled identification of a list of
climate predictors ranked in order of importance and the SNPs with predictive
power (i.e., with R2 > 0). This R2 measures the proportion of variance explained by
the climate predictors for each SNP calculated using a cross-validation procedure
(see refs. 21,33 for details). Using the turnover functions generated by GF analysis
linking allele frequency changes with environmental variables, we predicted the
genomic composition expected at unsampled locations or, for the future, based on
climate data projections. Current and future genomic composition throughout the
pearl millet cultivation area in West Africa were thus predicted using the historical
and future predictions in each of the 17 climate models. As in ref. 20, genomic
vulnerability (also referred to as genomic offset in ref. 21) was calculated as the
Euclidean distance between the genomic composition under the past and future
projected climates. This analysis enabled assessment of the genomic vulnerability of
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pearl millet landraces currently cultivated in West Africa at the 2050 and 2100
horizons. Genomic vulnerability was obtained using both the dataset of total cli-
mate metrics and the subset of uncorrelated climate metrics following20 with a
maximum Pearson’s correlation threshold of 0.7.

GF model assisted migration scenarios. We wanted to find out which currently
cultivated landraces would be best adapted to future climate conditions projected in
the most vulnerable areas in order to infer migration. This analysis relied on the GF
models previously built for each of the 17 climate models. Each climate model was
analyzed separately and then combined.

For a given climate model, we identified vulnerable areas using a spatial
approach that clustered the 10% most vulnerable pixels (see details in
Supplementary Fig. 9). Clusters of vulnerable pixels were designed using DBscan
(Density-Based Spatial Clustering of Applications with Noise; dbscan R
package65), which groups pixels that are closely packed together. Clustering was
based on the geographic distance between vulnerable pixels measured with the
distm function in the geosphere R package. Only clusters with at least four
vulnerable pixels and separated by <1200 km were retained for further analysis.
This distance corresponds to the value that best optimizes the spatial distribution
of the vulnerable areas within the 3.1 million km2 region considered here.
To assess migration, in each cluster, we selected the pixel with the highest
vulnerability.

For each cluster independently (Supplementary Fig. 9C, D), a genomic
vulnerability estimate (i.e., Euclidean distance) was calculated between the future
climate predicted in the cluster and current climate conditions in other pixels
covering the entire cultivation area. The lowest genomic vulnerability estimate (i.e.,
the minimum Euclidean distance, EDmin) pinpoints the location where the
landrace best adapted to the future climate condition of the highly vulnerable area
might be found. In this way, we identified the location of the landrace that is
currently the best adapted to the future climate in the vulnerable area for optimal
migration of varieties. We then measured the geographic distance between the
identified location and the vulnerable area and used the genomic vulnerability
estimate (EDmin) as a measure of migration load. This measure represents the
genomic gap that needs to be filled for the migrated varieties to be fully adapted to
their new location and conditions. High migration loads indicate migrations
relying on migrated varieties that may not be perfectly adapted, as no other
varieties that are better adapted to future climate conditions in the vulnerable area
exist in the cultivation area.

We also checked whether migration distance could be reduced by selecting the
pixel located closest to vulnerable area among the 1% least vulnerable pixels for a
near-optimal migration instead of the optimal migration (Supplementary Fig. 9).
We also investigated one sub-optimal migration corresponding to the 5% of least
vulnerable pixels. Migration distance and migration load were thus assessed under
optimal (EDmin), near-optimal (Closest_EDmin1%), and sub-optimal
(Closest_EDmin 5%) conditions.

Measuring flowering time. Flowering time was measured in six trials composed of
two completely randomized blocks in 2016 and four trials in 2017. All the trials
were performed at the International Crops Research Institute for the Semi-Arid
Tropics field station in Sadoré, Niger (Lat. 13.2375, Long. 2.2797). Ten plants were
phenotyped for each landrace. Sowing dates ranged from 15 June to 6 July,
depending on the trial. The trials were conducted under rainfed conditions with
supplementary sprinkler irrigation if necessary.

GWAS analysis for flowering time. Analyses associating SNP allele frequencies
with flowering time were performed using a subset of 27,409 SNPs with a minor
allele frequency >5%. We adjusted both a simple linear model that did not account
for population structure and a LFMM (with the lfmm R package31,32) designed for
the correction of unobserved confounding factors such as population structure. We
estimated the number of latent factors from the screeplot generated from a PCA of
the genomic data with the prcomp R function. After model selection based on Q–Q
plots (Supplementary Fig. 4), we considered association results obtained from the
LFMM analyses with five latent factors. We used a false discovery rate (FDR) of 5%
to select associated SNPs (with the qvalue R package, v 2.18.0). Intersecting the
position of the SNPs with the position of the pearl millet genes24 using the bedtools
program (v2.27.1), we identified annotated candidate genes involved in variations
in flowering time.

The GF model linking change in allele frequencies with climate provides a
correlation (R2) for each SNP by assessing their relative importance in the model
based on the cross-validation procedure detailed in ref. 33. We compared the mean
R2 of the SNPs associated with flowering with the mean R2 of all the SNPs using a
Wilcoxon rank test. The R2 values of each SNP were obtained from the GF model
built with observed current climate data (EWEMBI dataset).

Analysis of genomic vulnerability and yield. As genomic vulnerability measures
the mismatch between current and predicted future genomic variation20, the big-
gest mismatches, i.e., vulnerabilities, should result in maladaptation and hence in
less fit varieties. A negative relationship between yield (as a proxy of fitness) and
genomic vulnerability could therefore be expected. We experimentally assessed the

relationship between yield and genomic vulnerability using the spatial hetero-
geneity of climate experienced by pearl millet varieties in West Africa. For that
purpose, we first evaluated the yield of landraces originating from West Africa
under the common garden conditions at Sadoré, Niger (Supplementary Fig. 7). We
used yield-related measurements based on the main spike in 10 plants of each
landrace sowed. The yield-related measurements were 100-seed weight, the mean
weight of the seeds on the main spike, and the average weight of seeds per plant.
The last was estimated by multiplying the mean weight of seeds on the main spike
and the mean number of productive tillers in each variety. We then calculated the
genomic vulnerability of these landraces under the conditions used in the field
experiments, measured here as the Euclidean distance between the genomic
composition predicted under the existing climate conditions in the location of
origin of the landraces and the climate of the field experiment (Sadoré). Genomic
vulnerability was assessed using the GF model built from the observed climate data
(EWEMBI dataset).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The raw sequencing data are deposited in the NCBI Sequence Read Archive (SRA)
database with the BioProject accession number PRJNA422966. The allele frequency data,
the raw phenotypic data, and the climate datasets associated with this paper are publicly
available in the Zenodo repository at https://doi.org/10.5281/zenodo.397081566.

Code availability
The scripts for the bioinformatics analysis and the custom R code used to perform the
analyses are publicly available in the Zenodo repository at https://doi.org/10.5281/
zenodo.397081566.
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