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Abstract: In West Africa, Aedes aegypti remains the major vector of dengue virus. Since 2013,
dengue fever has been reemerging in Burkina Faso with annual outbreaks, thus becoming a major
public health problem. Its control relies on vector control, which is unfortunately facing the problem
of insecticide resistance. At the time of this study, although data on phenotypic resistance were
available, information related to the metabolic resistance in Aedes populations from Burkina Faso
remained very scarce. Here, we assessed the phenotypic and the metabolic resistance of Ae. aegypti
populations sampled from the two main urban areas (Ouagadougou and Bobo-Dioulasso) of
Burkina Faso. Insecticide susceptibility bioassays to chlorpyriphos-methyl 0.4%, bendiocarb 0.1%
and deltamethrin 0.05% were performed on natural populations of Ae. aegypti using the WHO
protocol. The activity of enzymes involved in the rapid detoxification of insecticides, especially
non-specific esterases, oxidases (cytochrome P450) and glutathione-S-transferases, was measured
on individual mosquitos. The mortality rates for deltamethrin 0.05% were low and ranged from
20.72% to 89.62% in the Bobo-Dioulasso and Ouagadougou sites, respectively. When bendiocarb 0.1%
was tested, the mortality rates ranged from 7.73% to 71.23%. Interestingly, in the two urban areas,
mosquitoes were found to be fully susceptible to chlorpyriphos-methyl 0.4%. Elevated activity of
non-specific esterases and glutathione-S-transferases was reported, suggesting multiple resistance
mechanisms involved in Ae. aegypti populations from Bobo-Dioulasso and Ouagadougou (including
cytochrome P450). This update to the insecticide resistance status within Ae. aegypti populations in
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the two biggest cities is important to better plan dengue vectors control in the country and provides
valuable information for improving vector control strategies in Burkina Faso, West Africa.

Keywords: Aedes aegypti; dengue; insecticide susceptibility; metabolic resistance; Burkina Faso

1. Background

Dengue is now the most important emerging mosquito viral disease and constitutes a major public
health threat in disease-endemic regions [1]. Up to now, four serotypes (DENV1, DENV2, DENV3,
DENV4) have been found to be responsible for dengue disease. Dengue virus (Flaviviridae, Flavivirus)
is transmitted during infected bites of Aedes female mosquitoes [1]. In Africa, Aedes aegypti remains one
of the main dengue virus vectors [2]. In Burkina Faso, Ae. aegypti is assumed to be the main dengue
vector in urban areas [3,4] and is characterized by a diurnal and crepuscular activity [5]. It is also most
frequently identified at larval stages from breeding sites such as water containers and used tires [4].

In Burkina Faso, a dengue epidemic was first reported in 1925 [6] and then in 1983 [7]. Outbreaks
were reported in Ouagadougou, the biggest city of Burkina Faso in 2013, 2015, and 2016 [1]. DENV2 was
found in a number of cases in the 1980s, while DENV1 was found among travelers returning from
Burkina Faso in the 2000s [8]. The presence of DENV3 was also observed in an European patient who
had travelled in Burkina Faso [9]. In Ouagadougou, DENV2, DENV3, DENV4 were reported during
a cross sectional survey done from December 2013 to January 2014 [4]. In 2016, more than 1061 cases of
dengue and 15 deaths were recorded in Ouagadougou [1]. In this city, Ae. aegypti populations were
found in artificial water containers such as flower pots, buckets, gutters, and tires, which are associated
with human activities.

Sound knowledge on vector species bio-ecology is essential for the implementation of vector
control strategies as no vaccine is available. Among the methods currently used, environmental
management, mechanic elimination of the breeding habitats, chemical use and to, a lesser extent,
biological agents, might be efficient against Aedes populations and consequently in reducing the
incidence of the disease.

Recent reports of insecticide resistance in dengue vector populations in Burkina Faso revealed
that Ae. aegypti was resistant to pyrethroid (deltamethrin 0.05% and permethrin 0.75%) and bendiocarb
0.1%, whereas it was fully susceptible to malathion 5% [10]. However, there are no available data
upon the implication of detoxification enzymes in insecticide resistance within Ae. aegypti populations
in Burkina Faso. This study aimed to explore this gap, evaluating the resistance level of Ae. aegypti
populations to the three classes of insecticide used in public health in Burkina Faso.

2. Methods

2.1. Study Area

The study was carried out in Ouagadougou (12◦21′56” N, 1◦32′01” W), the capital city in the
central part of the country, and Bobo-Dioulasso (11◦10′59” N, 4◦16′59” W) the second biggest city of
the country in the western part of the country (Figure 1). In 2016, the population was estimated as
2,293,635 inhabitants in Ouagadougou and 780,846 inhabitants in Bobo-Dioulasso [11] Ouagadougou
is located in the Sudan-Sahelian area with a short rainy season extending from June to September
and an average yearly rainfall of between 600 and 900 mm. Bobo-Dioulasso is located in the Sudan
savannah zone. The rainy season extends from May to November with an average yearly rainfall
above 900 mm.
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RH and 12:12 L-D) until adulthood. Mosquitoes were identified using morphological keys [12,13]. 
Adult mosquitoes issued from field collections (F0), fed with 5% sugar solution, were subsequently 
used for the insecticide susceptibility tests. The susceptible strain of Ae. aegypti, received from 
Montpellier and maintained in the insectary of IRSS, was used as control for insecticide bioassays.  
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Insecticide susceptibility tests were performed on 3–5 days old females of Ae. aegypti using WHO 
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procedure. Mortality rates were recorded 24 h after insecticide exposure. 
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Biochemical assays were performed to check the activity of detoxifying enzymes, namely non-
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Figure 1. Localization of the study cities in Burkina Faso.

2.2. Mosquito Collection and Rearing

We collected Ae. aegypti mosquito larvae in the years 2013, 2014 and 2016 in a random sample
of abandoned tires (twenty per site per year), found close to human dwellings. In each sample of
abandoned tires, 80–100 larvae were collected and then brought back in the insectary of IRSS/DRO in
Bobo-Dioulasso, where they were reared under standard controlled conditions (25 ± 2 ◦C, 80 ± 10%
RH and 12:12 L-D) until adulthood. Mosquitoes were identified using morphological keys [12,13].
Adult mosquitoes issued from field collections (F0), fed with 5% sugar solution, were subsequently used
for the insecticide susceptibility tests. The susceptible strain of Ae. aegypti, received from Montpellier
and maintained in the insectary of IRSS, was used as control for insecticide bioassays.

2.3. Insecticide Susceptibility Tests

Insecticide susceptibility tests were performed on 3–5 days old females of Ae. aegypti using
WHO diagnostic doses on mosquitoes collected in 2013, 2014 and 2016 [14]. The bioassays were done
with papers impregnated with deltamethrin 0.05%, bendiocarb 0.1% and chlorpyrifos-methyl 0.4%.
The wild F0 and the susceptible strain of Ae. aegypti populations were exposed to the same papers.
For each insecticide paper, four replicates of 20–25 Ae. aegypti were exposed for 1 h. For each assay,
control mosquitoes were also exposed to papers only impregnated with silicon oil following the same
procedure. Mortality rates were recorded 24 h after insecticide exposure.

2.4. Enzyme Activities

Biochemical assays were performed to check the activity of detoxifying enzymes, namely
non-specific esterases (NSE), mixed-function oxidases (MFO) and glutathione-S-transferases (GST)
involved in insecticide resistance within Ae. aegypti mosquito populations. The assays were conducted
on 3–5 days old Ae. aegypti adults issued from field collections (F0) (not previously exposed to
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insecticides and stored at −80 ◦C) using standard protocol [15]. Experimental procedures are detailed
in Namountougou et al. [16,17].

2.5. Statistical Analyses

Mortality rates recorded during bioassays were analyzed according to the WHO criteria [18].
The populations of Ae. aegypti were classified as “resistant” if less than 90% mortality was observed,
as “suspected resistant” if mortality rates were between 90% and 98% and “susceptible” for more
than a 98% mortality rate. Biochemical data were analyzed and compared between the two groups
(wild and susceptible strains) using non-parametric Mann–Whitney test run with Graph Pad Prism
5 software.

3. Results

3.1. Insecticide Susceptibility Test

The mortality rate in unexposed controls of wild and susceptible adult mosquito strain was
less than 5% and no correction of the mortality rate was then required (Figure 2). Tests performed
with deltamethrin in 2013 and 2014 on Ae. aegypti populations collected in Bobo-Dioulasso showed
mortality rates (89.62% and 82.72%, respectively) lower than 90%, suggesting a resistance. Mortalities
of Ae. aegypti collected in Ouagadougou were 50.7% and 20.7% for 2013 and 2014, respectively,
when exposed to deltamethrin, showing a high resistance level. Two years later, in 2016, Ae. aegypti
populations from Bobo-Dioulasso and Ouagadougou exhibited resistance to deltamethrin, with 60.72%
and 52.54% mortality rates, respectively.
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Figure 2. Mortality rates of the Aedes aegypti populations in Ouagadougou and Bobo-Dioulasso during
the three years of survey. Red bars indicate the threshold of susceptibility.

During the three-year survey, Ae. aegypti populations from Ouagadougou and Bobo-Dioulasso
were found to be fully resistant to bendiocarb 0.1% and the mortality rates ranged from 7.73% to 71.23%.
Inversely, all Ae. aegypti populations tested in 2013, 2014 and 2016 against chlorpyriphos-methyl 0.4%
were fully susceptible, with 100% of mortality rates in both cities.

3.2. Non-Specific Esterases (NSE) and Para Nitro Phenyl Acetate (PNPA)

The results of NSE and PNPA activities are shown in Figure 3A,B. The NSE activity within the
susceptible strain of Ae. aegypti ranged from 0.006 to 0.012 mmol NSE/mg protein (the median activity
was 0.008). Concerning the PNPA, its activity was also high and varied from 0.410 to 1.378 mmol
PNPA/mg protein (the median activity was 0.585). For both cities, the results show higher levels of
esterase activity compared to the susceptible strain (Mann–Whitney test, p < 0.0001).
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Figure 3. Detoxifying enzyme activities in Aedes aegypti mosquitoes collected in Bobo-Dioulasso and
Ouagadougou in 2016. (A) Non-specific αEsterase activity, (B) PPNA activity, (C) glutathione-S-transferase
(GST) activity, (D) P450 activity. P-value denotes significant difference in activity level when compared
to the Ae. aegypti (from Montpellier) reference strain according to the Mann–Whitney U test. Red bars
indicate the median value in each strain.

3.3. Gluthathione-S-Transferases (GST)

The levels of GST activity within the laboratory and the field populations are shown in Figure 3C.
The susceptible strain showed a GST activity ranging from 0.047 to 0.135 mmol GSH/min/mg protein
(the median activity was 0.069). The activity level of GST within the wild populations was higher than
that recorded in the susceptible strain (Mann–Whitney test, p < 0.0001 in both cities).

3.4. Oxidases (Cytochrome P450)

The activity level of oxidase (P450) in the susceptible and wild strains is shown in Figure 3D.
Oxidase activity in the susceptible strain ranged from 0.0112 to 0.0465 nmol P450/mg protein (the median
activity was 0.020). A significantly higher level of P450 activity was detected in wild populations
from Ouagadougou (Mann–Whitney test, p < 0.0001). However, there was no statistically difference
between field and susceptible strains in Bobo-Dioulasso (Mann–Whitney test, p = 0.059).

4. Discussion

Aedes aegypti is identified as the main dengue vector in Burkina Faso [10]. The knowledge
about its susceptibility to insecticides is essential for the implementation of the suitable control of
Ae. aegypti populations, especially during dengue outbreaks requiring a rapid riposte. In this study,
the surveillance activities were limited to the two largest cities in the country, where dengue outbreaks
have been regularly reported since 2013 [19]. Aedes aegypti populations collected in Bobo-Dioulasso
and Ouagadougou were found to be fully resistant to deltamethrin and bendiocarb during the two first
years (2013 and 2014) of monitoring. Bioassays carried out in 2013 indicated moderate resistance level
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with deltamethrin and reduced mortality, averaging 80% in 2014 in Bobo-Dioulasso. Then, Ae. aegypti
was found to be fully resistant to deltamethrin in 2016, with mortality rates below 61%. This resistance
status was already notified in 2015 by Ouattara et al. [10] along a transect from Banfora to Ouagadougou.

The resistance in the Ae. aegypti populations might be selected by the high use of insecticides in
households such as aerosols and repellents to prevent nuisance, especially in urban and suburban
areas, from culicid bites [10,20]. Most of these widely used mosquito control products contain at
least pyrethroid insecticides [21]. According to Marcombe et al. [22], deltamethrin resistance in adult
populations of Ae. aegypti was positively correlated to urbanization, deltamethrin outdoor applications
and to the adult over-transcription of the genes CYP9M9 and GSTE7. It is also possible that the
high selection pressure exerted on the larval populations in periurban vegetable crops has increased
resistance to insecticides [23]. The use of the same insecticides in urban vegetable crops and in public
health (organophosphates, OP and pyrethroids) can contribute to polluting breeding sites, leading
to faster development of resistance to these compounds [24]. The dispersion of household waste
and empty packaging of pesticides in urban areas also allows resistance to be selected at the time of
rainwater runoff.

Also, the use of insecticides in cotton and vegetable growing areas was widely involved in
the emergence of the crossed resistance DDT/pyrethroids as shown by Diabaté et al. [25] and
Dabiré et al. [26] in Anopheles mosquitoes. Recently, a cross resistance DDT/pyrethroid was detected in
Aedes populations of Ouagadougou and Bobo-Dioulasso (Unpublished data). Many studies across Africa
have demonstrated the implication of genetic mechanisms in this cross-resistance DDT/pyrethroids
within Ae. aegypti populations [27]. Several amino acid substitutions have been detected in Ae. aegypti
voltage sensitive sodium channel gene (Vssc) [28]. Among them, only substitutions V1016G, V1016I,
and F1534C have been shown to be strongly correlated with pyrethroid resistance [29–32]. Recently,
Badolo et al. [33] showed that F1534C mutation was nearly fixed in semi-urban and urban areas
of Burkina Faso but was far less common in rural areas, where the V1016I mutation frequency
was also significantly lower. In addition, Badolo et al. [33] suggested the involvement of metabolic
resistance mechanisms involving P450s, and perhaps esterases as a pre-exposure to PBO restored
a substantial part of the susceptibility to permethrin and deltamethrin. Our study documents for the
first time the variation of detoxifying enzymatic activities in the populations of Aedes of Ouagadougou
and Bobo-Dioulasso.

Interestingly, the wild populations of Ae. aegypti were found to be fully susceptible to
chlorpyrifos-methyl during the three-year follow-up. In Burkina Faso, and likely elsewhere in
continental Africa, the demonstration of sensitivity to organophosphates suggests that insecticides of
this class are interesting options for controlling epidemics. GSTs and NSE activities might therefore
complement the phenotypic effect of gene mutations towards increasing resistance levels to OP
and broadening the resistance spectrum to unrelated compound. High levels of GST and NSE
activities were observed in both Ouagadougou and Bobo-Dioulasso populations of Ae. aegypti [34].
According to Hemingway et al. [35], enhanced NSE activity may be involved in resistance to OP and
carbamate (CM) in a number of arthropod species including mosquitoes, ticks, aphids and cockroaches.
Hence, NSEs could further contribute to the phenotypic resistance to pyrethroid and carbamates in
Ae. aegypti from Burkina Faso. In addition, there was evidence for an overall increase in cytochrome
P450 activity in the samples from Ouagadougou, as compared to the Montpellier reference strain
assessed simultaneously. That may explain the major role of cytochrome P450 in the metabolic
resistance of Aedes populations from Ouagadougou. In this present study, we provided evidence that
insecticide multi-resistance is a common phenotype within Ae. aegypti populations from Burkina Faso,
while a previous study showed that target-site mutations are widespread [33].

5. Conclusions

As no efficient vaccine against dengue fever exists, vector control relies on insecticide use and
remains the main strategy to reduce the spread of dengue fever outbreaks. In the current survey,
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Ae. aegypti populations were found to be fully resistant to pyrethroids and carbamates in the two main
cities of Burkina Faso, West Africa. For the first time, detoxification enzymes were found to be involved
in the insecticide resistance within Ae. aegypti populations in Burkina Faso.

Despite this high resistance to pyrethroids and carbamates, organophosphate compounds remain
effective against Aedes mosquitoes. These interesting data could be useful for health policy makers in
their design strategies. Here, we pointed out the occurrence of metabolic resistance and how these
results could impact the surveillance planning.
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