
ENVIRONMENTAL MICROBIOLOGY

Meta-omics Provides Insights into the Impact of Hydrocarbon
Contamination on Microbial Mat Functioning

Johanne Aubé1,2
& Pavel Senin1,3

& Patricia Bonin4
& Olivier Pringault5 & Céline Jeziorski6 & Olivier Bouchez6 &

Christophe Klopp3
& Rémy Guyoneaud1

& Marisol Goñi-Urriza1

Received: 23 November 2018 /Accepted: 4 February 2020 /Published online: 19 February 2020
# Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract
Photosynthetic microbial mats are stable, self-supported communities. Due to their coastal localization, these mats are frequently
exposed to hydrocarbon contamination and are able to grow on it. To decipher how this contamination disturbs the functioning of
microbial mats, we compared two mats: a contaminated mat exposed to chronic petroleum contamination and a reference mat.
The taxonomic and metabolic structures of the mats in spring and fall were determined using metagenomic and
metatranscriptomic approaches. Extremely high contamination disturbed the seasonal variations of the mat. ABC transporters,
two-component systems, and type IV secretion system-related genes were overabundant in the contaminated mats. Xenobiotic
degradation metabolism was minor in the metagenomes of both mats, and only the expression of genes involved in polycyclic
aromatic hydrocarbon degradation was higher in the contaminated mat. Interestingly, the expression rates of genes involved in
hydrocarbon activation decreased during the 1-year study period, concomitant with the decrease in easily degradable hydrocar-
bons, suggesting a transient effect of hydrocarbon contamination. Alteromonadales and Oceanospirillales hydrocarbonoclastic
bacteria appeared to be key in hydrocarbon remediation in the contaminated mat. Overall, the contaminated microbial mat was
able to cope with hydrocarbon contamination and displayed an adaptive functioning that modified seasonal behaviour.

Keywords Microbial mats . Metabolism .Metagenomics .Metatranscriptomic . Functioning . Diversity

Introduction

Photosynthetic microbial mats growing in coastal areas are
among the most diverse and complex marine ecosystems
[1]. The overall metabolism of a microbial mat is driven by
solar light as the main energy source. Microbial activities gen-
erate physical and chemical gradients in the mat that maintain
the structure and activity of the mat’s community [2], leading
to a stable, self-supported mat. Microbial mats are highly dy-
namic and are subjected to strong fluctuations at the diel or
seasonal scales [2]. The extensive genetic and metabolic di-
versity of photosynthetic microbial mat-inhabiting organisms
enables development in a wide variety of environments, in-
cluding hot springs, hypersaline and alkaline environments
and polar ponds [1, 3–6]. Due to their localization in coastal
zones, microbial mats are frequently subjected to hydrocarbon
contamination [7, 8]. The response of microbial mats to pe-
troleum contamination has been studied in microcosm exper-
iments and under natural conditions after acute pollution
events (accidental or laboratory experiments). Microbial mats
can cope with contamination and develop a robust community
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adapted to petroleum levels [8, 9]. The few studies that have
focused on chronic oil pollution have concluded that the struc-
ture of microbial mats is related to the level of contamination
[8] and that contaminated mats can degrade hydrocarbons [10,
12]. Generally, noticeable changes in composition [8, 10] of
high contaminated mats are reported, and some studies de-
scribed lower diversity in higher contaminated mats [13],
but not overabundance of hydrocarbonoclastic microorgan-
isms have been observed. Nevertheless, when these contami-
nated mats were submitted to fresh oil pollutions, an immedi-
ate induction of RHD genes involved in polyaromatic hydro-
carbon degradation was observed, accompanied with an effi-
cient degradation of crude oil [10]. This metabolic response
(associated with a community structural shift [12]) was how-
ever quickly reversed, highlighting a fast, adaptive and effi-
cient response of the metabolically active bacterial population.
Oil contamination also impacts typical seasonal behaviour of
photosynthetic microbial mats, by strongly inhibiting primary
production and respiration in spring, but with no significant
impact in fall [20]. As consequences, the typical overabun-
dance of Cyanobacteria in fall compared with spring could
not be observed in the higher contaminated mat [19]. These
studies were performed using taxonomic and/or metabolic
gene markers, such as ribosomal genes or genes involved in
hydrocarbon degradation [9–14].

High-throughput sequencing of metagenomes and
metatranscriptomes has provided an unprecedented over-
view of the functional capacities and gene expression of
microbial communities confronting environmental stress-
es. As the presence and expression of genes involved in
hydrocarbon degradation (including complete metabolic
pathways) have been observed in oil spill-contaminated
seawaters [15–17] and soils [18, 19], applying these
sequencing techniques to contaminated microbial mats
will provide new insights on the adaptation of microbial
mats to hydrocarbon contamination.

The aim of this paper was to elucidate the impact of long-
term petroleum contamination on the functioning of microbial
mats. Two photosynthetic microbial mats located in the Berre
lagoon, a brackish lagoon bordering the Mediterranean Sea in
the South of France, were investigated in this work. These
mats feature similar physical and chemical parameters (salin-
ity, temperature, solar irradiation, etc.) [20] but have been
subjected to differing hydrocarbon contamination levels.
Specifically, the contaminated mat received hydrocarbon in-
puts from a petrochemical industry site for more than 80 years.
By app ly ing metagenome and enr i ched mRNA
metatranscriptome sequencing, we described the key metabol-
ic pathways of both microbial mats. Comparing the contami-
nated mat with the reference mat revealed the role of petro-
leum pollution in microbial community functioning. A deeper
analysis of metabolism related to hydrocarbon degradation
pathways was also performed.

Material and Methods

Sampling Sites and Procedure

Berre lagoon is located on the Mediterranean French coast.
Microbial mat samples were collected from two sites in the
lagoon: a reference station located in the bird reserve “Les
salins du Lion” (SL) (43.452570 N 5.230085 E) and a con-
taminated station located in a retention basin receiving
hydrocarbon-contaminated rainfall water from a petrochemi-
cal industry site (EDB1) (43.484946 N 5.188452 E) [8, 21].
At this latter site, the hydrocarbon content reaches 96μg/g [8].
In addition to this chronic contamination, an accidental oil
spill occurred in September 2009 due to the overflow of a
hydrocarbon-polluted water retention pond [22], which in-
creased the hydrocarbon content. Three sampling exercises
were performed: one in spring (April 2012) and two in fall
(September 2011 and 2012), which were named Apr12,
Sept11 and Sept12, respectively. A piece of mat (around
1.5 m2), including the top 2 cm of sediment, was collected at
mid-day as described in [19]. Subsamples for molecular anal-
yses were stored at − 80 °C. A description of main physical-
chemical characteristics and hydrocarbon composition of both
sites can be found at Table S1.

Whole Metagenome and Metatranscriptome
Sequencing and Bioinformatic Procedures

DNA and RNAwere co-extracted in triplicate using an RNA
PowerSoil Total RNA Isolation Kit (MO BIO Laboratories,
Inc.) coupled with an AllPrep DNA/RNA Mini Kit
(QIAGEN) for DNA and RNA separation. RNAwas digested
with an RNase-Free DNase Set (QIAGEN) for DNA removal,
and RNA quality was checked as described by Aubé and
coworkers [20]. Genomic DNA libraries were constructed
using a NEXTflex PCR-Free DNA Sequencing Kit from
BioScientific PCR-free kit following the manufacturer’s pro-
tocol. RNA-seq libraries were prepared according to
Illumina’s protocol on a Tecan EVO200 liquid handler. An
Illumina TruSeq Stranded mRNA sample prep kit was used
to analyse RNA after mRNA enrichment using an Epicentre
Ribo-Zero rRNA removal kit. RNAwas fragmented to gener-
ate double-stranded cDNA. Ten cycles of PCR were used to
amplify libraries following manufacturer’s instructions
(Illumina TruSeq Stranded mRNA library prep kit, Cat. No.
RS-122-2101), and the libraries were precisely quantified by
qPCR using a KAPA Library Quantification Kit. RNA-seq
and gDNA sequencing were performed with an Illumina
HiSeq2500 instrument using a paired-end read length of 2 ×
100 bp with an Illumina TruSeq SBS sequencing kit v3.

The Trim Galore! utility was used for read quality control
http://www.bioinformatics.babraham.ac.uk/projects/trim_
galore/). Possible adapter sequences based on the Illumina
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TruSeq Adapter index were removed from the reads. Data
filtering was performed with cutadapt [23] and FASTX-
Toolkit (http://hannonlab.cshl.edu/fastx_toolkit/index.html)
by trimming reads with a Q score of less than 15 at the 3′
end, trimming unidentified dNTP (N) at the read ends and
discarding reads with Ns > 10%. Reads shorter than 50 bp
with low-quality bases (Q < 20) were also discarded. For func-
tional and taxonomic annotations, all filtered reads (DNA and
mRNA) were aligned to the KEGG gene database [24] using
LAST aligner v392 [25]. Each read was then annotated using
the single-directional best hit information method [26] with an
identity cut-off of 60% and a score of 96. Eukaryotic se-
quences were removed from the dataset. Statistics of the reads
at each bioinformatic analysis step are shown in the supple-
mentary material (Table S2).

Statistical Analysis

Before statistical analysis, random sampling of filtered data was
performed to obtain the same number of reads per sample (i.e. the
minimum number of sequences in metagenomic or
metatranscriptomic samples (Table S2)) and the means of the
pseudo-triplicates were calculated to perform statistical tests.
Taxonomic biomarkers of hydrocarbon contamination were de-
tected using the LEfSe algorithm [27]. The first analysis step was
a non-parametric Kruskal-Wallis (KW) sum-rank test to detect
taxa and functional pathways with significant differential abun-
dances. Biological consistency was subsequently investigated
using a pairwise Wilcoxon test. Finally, linear discriminant anal-
ysis (LDA) was used to estimate the effect size of each differen-
tially abundant taxon. Alpha values of 0.05 were used for the
KW and Wilcoxon tests, and a threshold of 2 was used for the
logarithmic LDA scores. Gene and transcript abundances for
functional data were compared using a two-group White’s non-
parametric t test in STAMP [28] by KEGG subsystem. To ac-
count for the variation of transcriptional activity, the gene expres-
sion rate was calculated as described by Stewart et al. [29].
Hydrocarbon content was analysed by principal component anal-
ysis (PCA) using the FactoMineR package [30]; variables with
cos2 below 0.5 on each factorial plane are not shown on the
corresponding correlation circles of the PCA.

Accession Number

The sequence data are available in the Sequence ReadArchive
of the National Center for Biotechnology Information under
accession number SRP063590.

Results and Discussion

Microbial mats are highly stratified systems, in which
microorganisms’ metabolism supports their physical and

chemical structure. In return, physical and chemical con-
ditions of the mats favour microbial specific metabolisms:
structure and function are thus slightly dependent. The
goal of the present study was to determine if pollution
changes metabolic profiles and its consequences on coast-
al mat’s structure and functioning.

Structure of Microbial Mat Communities

The metagenomes and metatranscriptomes of the microbial
mats were annotated using the KEGG database. Between
24 . 7 0% and 46 . 8 6% o f t h e me t a g e nome and
metatranscriptome sequences, respectively, aligned to the
KEGG database (Table S2). The community composition
based on the taxonomic affiliations of protein-encoding genes
revealed a structure similar to that described by 16S rRNA
gene affiliations [20] and to those of other mats [31, 32]; i.e.
Proteobacteria, Cyanobacteria and Bacteroidetes were dom-
inant (Fig. 1) with metagenomes’ mean relative abundance of
48.1%, 16.0% and 15.5%, respectively. The high similarity
between the structure described here and those described in
previous studies on the same mats based on 16S rDNA se-
quences [8, 19] supported the robustness of the annotation
approach. Oscillatoriales dominated among Cyanobacteria.
The relative abundance of Cyanobacteria was highest in the
EDB1 Sept12 metagenomes and metatranscriptomes, with a
greater abundance of Rivulariaceae (Table S3). Among the
Deltaproteobacteria (10.8% of the metagenomes’ mean rela-
tive abundance), most of the sequences were affiliated with
sulphate reducers in the order Desulfobacterales (Table S3).
The sequences related toGammaproteobacteria (15.0% of the
metagenomes’ mean relative abundance) were affiliated with
Alteromonadales andChromatiales; most of theChromatiales
were purple sulphur bacteria. Among the Alpha and
Betaproteobacteria (17.1% and 4.3% of the metagenomes’
mean relat ive abundance) , Rhodobacterales and
Burkholderiales dominated, respectively. Consistent with ob-
servations in the Guerrero Negro hypersaline microbial mats
and Highborne Cay mat (The Bahamas) [33, 34],
Archaea were in the minority in the microbial commu-
nities, accounting for 1 to 3% of total reads and mainly
represented by the methanogens Methanomicrobia.
Thus, both mats are classical mats with dominance of
photosynthetic bacteria and bacteria involved in the sul-
phur cycle (sulphate reducers and sulphur oxidizers [2]).

Th e commun i t y s t r u c t u r e s d e s c r i b ed u s i ng
metatranscriptomic data differed from those described by
metagenomic data (Fig. 1). Remarkably, transcripts related
to Cyanobacteria highly dominated the communities in both
mats, accounting for 36.5 to 78% of the reads, highlighting the
major role of Cyanobacteria compared with other functional
groups in the mats [34, 35].
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As microbial mat functioning is dependent on the seasonal
period [36], sampling was performed in spring and fall to
assess the seasonal variation of the structure and activity of
the mats. The reference mat showed typical seasonal varia-
tions characterized by (1) an increase of Cyanobacteria in fall
(around 13% of metagenomic data in spring and 19% in fall,
Table S3) and (2) an increase of the sulphur-related microor-
ganisms in spring. This increase was observed either at
metagenomic (from near 14% in fall to 19% in spring) or at
metatranscriptomic level (a mean of 6% in fall and 21% in
spring, Table S3) and mainly concerned Desulfobacterales
and Chromatiales. On the contrary, no seasonal variations
were observed in the contaminatedmat:Cyanobacteria highly
dominated the community in Sept12 but not in Sept11

samples, and a continuous decrease of the relative abundance
of microorganisms related to sulphur cycle, either at
metagenomic or metatranscriptomic level, was observed in
the contaminated mat (Table S3).

Metabolism of Microbial Mat Communities

A total of 7009 different KEGG ortholog groups (KOs) were
detected in the metagenome, and 6470 KOs were detected in
the metatranscriptome. Among the annotated reads, around
44% of the microbial mat metagenomes matched genes in-
volved in pathways associated with metabolism (Fig. 2), in-
cluding 10.2–11.1% related to genes involved in carbohydrate
metabolism (547 KOs) and 9.9–10.8% related to amino acid
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metabolism (420 KOs). Energy metabolism–related se-
quences represented only 4.1–4.5% of the metagenomes but

up to 49.9% of the metatranscriptomes (389 and 381 KOs for
genes and transcripts, respectively). Among them,
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photosynthesis metabolism–related genes (i.e. genes encoding
proteins of photosystems I and II (P700 and P680) and
phycobiliproteins (phycocyanin, allophycocyanin and phyco-
erythrin subunits)) exhibited maximum expression rates of
1094. Genes related to nitrogen and sulphur metabolism ex-
hibited high expression rates as well. Sequences related to
nitrogen metabolism were mainly involved in nitrogen fixa-
tion (i.e. nitrogenase enzyme complex); among them, nifH
exhibited expression rates as high as 5.85. The sequences
related to the sulphur cycle were involved in sulphate reduc-
tion: adenylyl-sulphate reductase and sulphite reductase
(AprAB and DsrAB) exhibited maximum expression rates
of 8.83 (data not shown).

While reference mat showed a typical seasonal behav-
iour, contaminated mat did not show the same behaviour.
In this case, the comparison of metabolic potentials of both
mats in order to define which of them are related to the
contamination is challenging. For further analysis on hydro-
carbon contamination impact on microbial mat functioning,
all the samples for each mat (reference or contaminated)
have been averaged. This approach could probably dissim-
ulate some metabolisms, but eliminates the errors originat-
ing from a seasonal divergent functioning.

Metabolic and Taxonomic Differences Between Sites
with Focus on Metabolic Pathways Associated
with Xenobiotic Degradation

Microbial communities from coastal environments impacted
by punctual oil input have been intensively studied (e.g. [16,
37, 38]), and a decrease in microbial diversity associated with
dominance of hydrocarbon-degrading marine bacteria is gen-
erally observed following an oil spill [39]. By contrast, in this
study, dominance of hydrocarbonoclastic bacteria in the con-
taminated mat compared with the reference mat was not ob-
served, consistent with previous studies of chronically con-
taminated sites [8, 40]. At the taxonomic level, 36 and 3 dif-
ferentially abundant taxa were detected based on
metagenomic and metatranscriptomic data, respectively
(Fig. 3). At the metagenomic level, the main difference was
a decrease in the relative abundance of some phylogenetic
groups (Fig. 3a), suggesting a sensitivity of those groups to

contamination. At the transcriptomic level (Fig. 3b), few taxa
appear characteristic of each mat. Only Parvularculales with-
in Alphaproteobacteria were characteristic taxa of the con-
taminated mat. Alphaproteobacteria are key contributors to
the later stages of oil degradation [41]. However, hydrocarbon
degradation is strain specific; phylogenetic description based
on taxonomic genes such as 16SrRNA (especially when this
description is performed at high phylogenetic levels such as
the order) has low explanatory value, since two strains belong-
ing to the same taxon can be or not hydrocarbonoclastic.
Using short reads approaches, affiliation of sequences below
the genus, or even the family, is often unattainable.

The greatest differences in metabolic potential at the
metagenomics level were related to signal transduction
and membrane transport. These pathways were significant-
ly more abundant in the hydrocarbon-contaminated micro-
bial mat, whereas nucleotide metabolism and replication
and repair pathways were significantly more abundant in
the reference mat (Fig. 4). The contaminated mat was
enriched with genes involved in two component systems
(signal transduction, TCS) of the OmpR family (involved
in copper ion efflux and manganese transport as a response
of Mn starvation) and NtrC family (involved in nitrogen
availability) (Table S4). The TCS are known to modify mi-
crobial physiology in response to multiple environmental
signals and thus playing a role in biogeochemical cycles.
Indeed, marine bacteria have varied TCS systems, and it
has been proposed that lack of TCS could be a hallmark of
oligotrophy in marine systems [42]. Contaminated mat is
probably enriched with TCS as an adaptive response to con-
tamination. The overabundance of membrane transport–
related genes concerns the ABC transporters and the type
IV (T4SS) secretion systems. Recently, Xu et al. [43] de-
scribed an enrichment in ABC transporters and TCS after
dibutyl phthalate contamination in soils. They also ob-
served an acceleration of nitrogen, carbon and sulphate me-
tabolisms and suggested that ABC transporters and TCS
were the culprits of this metabolic activation.

The T4SS are found in gram-negative bacteria, and are
capable of secreting a wide variety of substances across
the bacterial membranes including toxic bacterial effectors
that result in cell death of rival bacteria and eukaryote

Fig. 4 Comparison (White’s non-parametric t test in STAMP) of func-
tional gene annotations of metagenomes using KEGG pathways (level 1).
Plots compare the hydrocarbon contaminated mat (EDB1) in black to the

reference (SL) in white. Only pathways with p value below 0.05, with
difference in mean proportions above 0.05% are shown
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[44]. T4SS is ancestrally related to bacterial DNA conju-
gation systems, and the T4SS-mediated genetic horizontal
transfer is considered as a major contributor to bacterial
genomic mobility [45]. Altogether, enrichment of ABC
transporters and T4SS appears as a mechanism to control
the community structure and the metabolic potential in the
contaminated microbial mat.

Although less pronounced, xenobiotic biodegradation
and metabolism pathways were significantly more abun-
dant in the contaminated mat than in the reference mat. At
the metatranscriptomic level, no differences in xenobiotic
biodegradation and metabolism nor in the other level1
KEGG metabolic pathways were observed between the

two mats (p value > 0.05 or difference in mean propor-
tions < 0.05%).

To further characterize the hydrocarbon degradation poten-
tial of the mats, genes involved in hydrocarbon molecule ac-
tivation were retrieved from the whole dataset (Fig. 5a;
Table S5). These genes are specifically associated with hydro-
carbon degradation, whereas those involved in intermediate
reactions can be shared with other metabolic pathways
(http://www.genome.jp/kegg/pathway.html). The gene
encoding alkane 1-monooxygenase (alkB) (the single repre-
sentative of genes involved in the fatty acid degradation path-
way, Table S5), which is responsible for alkane activation, was
more abundant (Wilcoxon test, p value = 0.03125) than the
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genes involved in degradation of aromatic compounds (Fig.
5a), as observed after the Deepwater Horizon oil spill [16].
The relative abundance and taxonomic identification of alkB
were similar between the contaminated and reference mats
(Fig. 5a; Fig. S1). Although the alkB gene has been widely
used to investigate alkane degradation [46–49] and as a mark-
er of petroleum degradation potential [16], its direct relation-
ship with petroleum hydrocarbon degradation is questionable,
especially in chronically contaminated environments [14]. In
fact, alkB is involved in the degradation of alkanes of both
biogenic and petrogenic origin. Biogenic alkanes are the con-
sequence of organic matter degradation and are ubiquitous in
nature [50]. As for alkB, the relative abundance of all the
genes involved in the degradation of aromatic hydrocarbons
was similar in both mats (Fig. 5a).

Analysis at the metatranscriptomic level revealed sig-
nificant higher expression of genes involved in PAH acti-
vation in the contaminated mat (Fig. 5b). However, the
expression of all the genes involved in HC activation in
the contaminated mats decreased over time (Fig. 6a).
Interestingly, this decrease was concomitant with changes
in hydrocarbon composition during the sampling exer-
cises (Fig. 6b). Short-chain alkanes (<C28), medium-
weight PAHs and heavy PAHs dominated the hydrocar-
bons in the first, second and last exercises, respectively.
The contaminated mat was therefore enriched in recalci-
trant molecules in the last exercise [20], reaching a com-
position similar to that previously observed at this site [8].
Overall, these results (chemical modification and a de-
crease in the expression rates of hydrocarbon activation-
involved genes) suggest a progressive degradation of the
more easily degradable hydrocarbons released by the
overflow spill in September 2009.

A decrease in relative abundances was evident for fatty
acid degradation activation genes, namely alkB (Fig. 7a).

The taxonomic affiliations of the alkB transcripts suggest
Alteromonadales-related bacteria as the main alkane de-
graders in the first sampling exercise, consistent with a previ-
ous study of the Berre lagoon in which Marinobacter
aquaeoleiwas the dominant alkB phylotype [14]. The relative
abundance of alkB transcripts decreased over time in parallel
with the decrease in lower-molecular-weight alkanes.
Transcripts involved in PAH degradation also decreased, al-
beit to a lesser extent, with Oceanospirillales-related bacteria
as the main actors (Fig. 7b).

Conclusion

Both mats displayed a typical structure and functioning, with
dominance of Cyanobacteria and sulphur cycle–related mi-
croorganisms. Genes involved in environmental information
processing were overabundant in the contaminated mat com-
pared with the reference one. However, xenobiotic degrada-
tion metabolisms represented a minor part of the metagenome
and metatranscriptome, and no overabundance of
hydrocarbonoclastic bacteria was observed in the contaminat-
ed mat. The expression levels of genes associated with hydro-
carbon degradation pathways varied between the mats and
among sampling exercises. In the contaminated mat, the ex-
pression of genes responsible for hydrocarbon activation was
related to hydrocarbon composition, suggesting degradation
of easily degradable molecules. The studied mat appeared
robust enough to cope with hydrocarbon contamination but
its seasonal behaviour was affected.
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