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Background
Population stratification has long been known to be at the origin of spurious associa-
tions in genetic association studies [1]: if the frequency of the phenotype of interest var-
ies across the population strata, it will be associated to any allele the frequency of which 
varies accordingly. An early and elegant solution to this issue has been the use of fam-
ily data, notably in the Transmission Disequilibrium Test (TDT) [2] and in the Family 
Based Association Test (FBAT) [3]. However, these methods imposed the ascertainment 
and genotyping of affected individuals’ relatives, impairing their practical feasibility. The 
advent of Genome-Wide Association Studies (GWAS), demanding increasingly large 
samples to detect weaker and weaker effects, made the problem even more accurate.
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Methods adapted to large scale population studies have thus been proposed, among 
which the Genomic Control [4] and Structured Association methods [5, 6]. The 
Genomic Control uses the empirical distribution of the genome-wide chi-square sta-
tistics to correct the statistic inflation attributable to population structure whereas 
Structured Association methods infer population strata from genome-wide data before 
testing for association conditional to the strata.

A major breakthrough was achieved in 2006 with EIGENSTRAT [7], also known as 
Principal Component Regression (PCR). This conceptually simple but extremely effi-
cient method consists in incorporating the top Principal Components (PC) of the gen-
otype data in a linear model. The next major advance was the introduction of mixed 
models, which can be interpreted as a generalization of PCR which incorporates all PCs 
in the model with random effects [8, 9]. Incorporating a few PCs with fixed effects as 
well in the mixed model might still prove useful to correct statistic inflation at SNPs 
with large allelic frequency variations across strata [8, 10]. Fast approximate [11] or exact 
[12] methods for genome-wide analysis of quantitative traits with mixed linear models 
(MLM) were soon made available.

The analogue of MLM for case-control studies is the mixed logistic regression (MLR). 
However, fitting the MLR with the Penalized Quasi-Likelihood (PQL) [13] is computa-
tionally heavy. Thus, in case-control studies the status was often coded as quantitative 
trait (0 for control subjects and 1 for disease subjects), and analyzed as such. Neverthe-
less, Chen et al. [14] proved that when disease prevalence was heterogeneous between 
populations strata, while the overall distribution of p values is well corrected by this 
method, it leads to conservatives p values for some SNPs and to anti-conservative p val-
ues for others. This behavior was made evident by the mean of quantile-quantile plots 
(QQ-plots) in which SNPs were categorized according to their allele frequencies in the 
different population strata. In order to address this issue, Chen et al. proposed GMMAT, 
a score test for the MLR, which is feasible in GWAS. The p values obtained with this test 
were shown to be well distributed in all SNP categories.

While the score test has a reduced computational burden, its drawback is the absence 
of an estimation of the variants’ effects. When only the effects of genome-wide signifi-
cant SNPs are needed, an obvious solution is to fit MLR models including each of these 
SNPs. When the SNPs’ effects are needed for the whole genome, e.g. for meta-analysis 
purposes, it is desirable to have a computationally efficient method to estimate these 
effects. We propose two such methods in this paper.

The strategy to reduce the computational burden is to fit the MLR only once for a “null 
model”. This null model may incorporate relevant covariates, but no SNP. The SNPs are 
then tested one by one. Roughly speaking, this is done by using an appropriate method 
to confront a vector of genotypes with the residues of the null model. This stragegy is 
shared by the score test (GMMAT) and by the two proposed methods; but while the 
score test provides association p values with no estimate of the variant’s effects, the 
methods proposed here give such estimates.

One of the proposed method, named hereafter Approximate Maximum Likelihood 
Estimate (AMLE), is based on a first-order approximation of the MLR, which leads to 
an approximation of the SNPs effect. The association is tested by a Wald test, which is 
identical to the score test of [14]. A similar approach has been previously used for mixed 
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linear models [15] and has been recently adapted in SAIGE [15] for MLR, but without an 
evaluation of its capacity to properly estimate SNP effects.

The other method, named the Offset method, which bears similarities with the meth-
ods of [11], consists of first estimating individual effects in a mixed logistic regression 
model, and then incorporating these effects as an offset in a (non-mixed) logistic regres-
sion model.

In the sequel, we evaluate the capacity of logistic regression (LR), MLM, and MLR 
(using either the score test or the methods mentioned above) to properly take into 
account population structure associated with heterogeneous prevalence. While Chen 
et al. were interested in geographically distant populations, spanning several countries 
in South America, part of our work focuses two geographically very close populations 
in West Africa, using real genotype data from a recent GWAS [16]. We also use data 
simulated with a coalescent model [17], reproducing the simulations presented in [14]. 
We use similar simulations to evaluate the ability of the PQL and of our two methods to 
properly evaluate SNPs’ effects.

Additionally, we propose to generalize the categorization of SNPs in QQ-plots pre-
sented in [14] to variables other than the population strata, including continuous varia-
bles as for example the first PC. The interest of this generalization is demonstrated using 
the same simulations.

All methods are implemented in the R package milorGWAS (for mixed logistic regres-
sion in GWAS), freely available on the Comprehensive R Archive Network (CRAN).

Results
Computational efficiency of the methods

We measured the running times of GMMAT and of the methods AMLE and Offset, 
implemented in our package milorGWAS, for a sample size n varying from 1000 to 
10, 000. The results are reported in Fig. 1. The figure is on log–log scale, showing that the 
results are in good accordance with the asymptotic complexity of the methods, given in 

Fig. 1 Running times for sample sizes varying from n = 1000 to n = 10,000 . All computations were run on 
a Intel i7 at 3.60 GHz with 8 MB of cache memory. Due to the log–log scale, the timing of an algorithm with 
complexity O(nα) appears as a straightline with slope α : slope 3 for the initial step, 2 for AMLE and GMMAT, 
and 1 for the Offset method
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the Methods section: the time taken by the initial step (fitting the mixed model) growing 
as n3 , it appears linear on log–log scale with a slope close to 3. Similarly, the complexity 
O(n2) of GMMAT and AMLE result in straight lines with a slope of 2. GMMAT is con-
sistently slower than milorGWAS: milorGWAS runs roughly 8 times faster for the initial 
step, and 6 times faster for the testing step. Part of the difference in the testing step is 
due to the fact that GMMAT reads data and write results on disk, whereas milorGWAS 
uses the RAM.

The Offset method is in O(n) while the AMLE and GMMAT are in O(n2) , which makes 
this method appealing in terms of running times. However, in practice the initial step 
in O(n3) is the limiting factor: it would take more than 24 hours to fit the MLR model 
for n = 50,000 . To manipulate larger samples such as those of biobanks, more complex 
workarounds and other approximate methods are needed [15].

Type I error in the presence of population structure

We analyzed two data sets with a simulated binary phenotype. Simulations were based 
either on real genotype data from a recent GWAS [16], or on large cohort simulated with 
a coalescent model. Both data sets present cryptic relatedness and population stratifica-
tion, with two strata (or two cohorts) with different disease prevalence. The simulations 
are fully described in the Methods section.

The first simulated set uses genotypes of 800 individuals from South Benin, ascer-
tained in two sites distant of 20 km from each other, forming the two population strata 
in which we set different prevalences for simulating the phenotypes. These data were 
analyzed using the logistic regression (LR), the mixed logistic regression (MLR) (with 
Chen’s score test GMMAT or equivalently Wald test with AMLE) and the mixed linear 
model (MLM) (the status being analyzed as a quantitative trait with values 0 or 1), with 
or without the top 10 principal components (PCs) in the model.

The Fig.  2 displays the stratified QQ-plots of the corresponding p values, the 
1, 847, 505 SNPs being split in three categories according to their allelic frequencies as 
described in the methods (we used a threshold th = 0.8 ). Category 1 contained 11.4% of 
the SNPs, categories 2 and 3, respectively 77.6% and 11.0% of the SNPs.

When no PCs are included (first row of the Fig 1), statistic inflation is observed for LR 
( � = 1.182 ). Based on the non-stratified QQ-plot, both MLM and MLR appear to ade-
quately correct for population structure; however the stratified QQ-plot shows that this 
is not the case for SNPs in categories 1 and 3. In particular, for MLM, there is a statistic 
inflation for SNPs in category 3, and a deflation for SNPs in category 1.

When 10 PCs are included in the models (second row of the figure), this difference of 
behavior between SNPs categories persists for MLM. However, both logistic regression 
and MLR show an adequate correction for all categories of SNPs.

The second simulation set consists in 10, 000 individuals simulated on a 20× 20 grid, 
whose genotypes were obtained from a coalescent model. These data include some first 
order relatives. Ten millions independent SNPs were simulated, among which 2,840,903 
had a minor allele frequency above 5% . Two strata were defined according to the indi-
viduals position on the grid (a “high risk strata” was defined as being the top left quarter 
of the grid), and a binary phenotype was simulated with different prevalences on these 
strata. Similar analyzes were performed on these data (Additional file 1: Figure 1). The 
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2,840,903 independent SNPs are at 23, 7% in category 1, 58.8% in category 2 and 17.5% in 
category 3. The same patterns of inflation and deflation of the test statistic are retrieved 
for most analyzes; the only notable difference is that, in this case, the logistic regression 
with 10 PCs does not correct the statistics inflation completely.

Both data sets were also analyzed using the Offset method for MLR. Figure 3 shows 
the QQ-plots for the Offset method with the top 10 PCs included in the model, on the 
two simulations sets. While it adequately corrects for population structure in the data 
from the South Benin, it is too conservative in the case of the simulated cohort.

Fig. 2 Simulated data based on South Benin genotypes (1). Stratified QQ-plots for logistic regression (LR), 
mixed logistic regression (MLR) using Chen’s score test (or AMLE), and mixed linear model (MLM) on the 
data simulated based on South Benin data. In each panel, a non-stratified QQ-plot is embedded. On the 
second row, 10 PCs were included as covariates. SNP categories are determined as in [14], based on the allele 
frequencies in the strata

Fig. 3 Simulated data based on South Benin genotypes (2). Stratified QQ-plots for the Offset method, 
for simulations based on South Benin data (left) and on the coalescent model (right). SNP categories are 
determined as in [14], based on the allele frequencies in the strata
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Extension of the stratified QQ‑plot

We extended the stratified QQ-plot proposed in [14] to the case in which strata are not 
clearly defined, or the strata information is missing. Our extension relies on the use of 
the first PCs instead of the strata.

Figure 4 compares the stratified QQ-plots obtained using either strata information (as 
in Figs. 2 and 3) or the first PC, for two of the analyses already considered in Fig. 2, the 
MLM and the MLR, both including 10 PCs as fixed effects. The same comparisons were 
performed for analyses on the simulated cohort (Additional file 1: Figure 2). While there 
are small differences between the QQ-plots, we see that they allow similar diagnostics, 
that is, an incomplete correction of population structure for MLM analyses, and in con-
trast an adequate correction for MLR.

Estimation of the SNPs’ effects

Figure 5 shows the bias (γ̂ − γ ) obtained for two different values of γ , in three scenarios 
corresponding to different magnitude of cohort and random effects (A: moderate cohort 
and random effect; B: moderate cohort effect, large random effect; C: large cohort effect, 
moderate random effect). Three MAF bins were considered (from 0.05 to 0.10, from 0.20 
to 0.25 and from 0.45 to 0.50).

In all situations, the PQL displays no bias, or a very small bias (for example in scenario 
B, corresponding to large random effects). The two proposed methods tend to have a 

Fig. 4 Stratified quantile–quantile plots based on PCs. Stratified QQ-plots obtained from the allele 
frequencies in the two strata (left) and from the first PC coordinates (right) for simulations based on South 
Benin data
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negative bias. For data simulated with a moderate SNP effect γ = 0.4 (corresponding to 
OR = 1.5 ), they both have small negative biases (at most − 0.08 corresponding to esti-
mated OR = 1.4 ), independently of the population structure’s effect size (scenarios A, B 
and C).

For larger SNPs effects ( γ = 0.7 , corresponding to OR = 2 ), the bias increases, with 
AMLE having the larger bias, attaining in some situations − 0.1 (corresponding to an 
estimated OR = 1.8 ). The bias is slightly more important for large random effects (sce-
nario B).

Power of the approximate methods

We compared the power of methods for which no inflation of type I error have been 
observed for all categories of SNPs. Table  1 reports powers obtained in simulations 
based on South Benin data for LR, AMLE (equivalent to the score test and GMMAT) 

Fig. 5 Bias of the SNP effect estimates γ̂  for two values of γ [ γ = log(1.5) and γ = log(2) ], in three scenarios 
(a moderate cohort and random effect; b moderate cohort effect, large random effect; c large cohort effect, 
moderate random effect), and three MAF bins (0.05 to 0.10, 0.20 to 0.25, and 0.45 to 0.50)

Table 1 Comparison of  powers in  simulations based on  South Benin data (800 
individuals), with τ = 1 . p0 and p1 are the prevalences in the two strata

Powers at the genome‑wide significance level 5× 10
−8 are reported for logistic regression (LR), AMLE (equivalent to the 

score test) and Offset methods, all analyses including 10 PCs with fixed effect

Scenario p0 p1 OR MAF bin LR AMLE Offset

Moderate cohort effect 0.10 0.20 3 (0.20; 0.25] 0.179 0.261 0.268

Moderate cohort effect 0.10 0.20 3 (0.45; 0.50] 0.899 0.920 0.906

No cohort effect 0.30 0.30 2.5 (0.20; 0.25] 0.473 0.496 0.458

No cohort effect 0.30 0.30 2.5 (0.45; 0.50] 0.926 0.928 0.913
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and Offset methods. The AMLE performs slightly better than the two other methods, 
and in particular than LR.

Table 2 is dedicated to the simulations based on the coalescent model. Here LR has 
the largest power, which was expected as its type I error is largely inflated. Similarly, the 
Ofset method which was overconservative in this simulation setting, has a lowest power 
than AMLE.

Illustration on real data

We tested the association with the presence of malaria infection during follow-up in the 
South Benin data. We focused on SNPs with a minor allele frequency greater than 0.05 
on 100 kb segment on chromosome 20, and used both the AMLE and the PQL. The 
results are displayed in the Additional file 1: Figure 3 (Manhattan plot in panel a). The 
most associated SNPs (at p = 10−4 ) is the same as in the GWAS (rs6124419). The asso-
ciation signal is weaker than in the original GWAS, which used the recurrence of infec-
tions in a Cox model.

The two methods give similar p values (panel b of the figure), but AMLE produces 
slightly higher p values for the most associated SNPs. Consistently, the largest β values 
are slightly understimated by AMLE.

Discussion
Our first result is a reproduction of the observation made by Chen et al. that is, in the 
presence of heterogeneity of disease prevalence between population strata, the mixed 
linear model (MLM) is inappropriate to analyse binary traits. MLM leads to conserv-
ative p values for some SNPs, and to anti-conservative p values for others, depending 
on the ratio of expected genotype variance in the two strata. The motivation of Chen 
et al. was a genome-wide association study of asthma including individuals from dif-
ferent Caribbean and Latin American backgrounds, with in particular ca. 15% of indi-
viduals from Puerto Rico, in which the prevalence of asthma was much higher ( 25.6% ) 
than in other populations (from 3.9 to 9.6% ). We retrieved similar results in an analy-
sis of a simulated phenotype with large differences of prevalence among strata, based 
on genotype data from two geographically close cohorts (ca. 20 km apart) from South 
Benin [16], but with different self-reported ethnicities. Heterogeneity of prevalence 
may result from environmental factors (e.g. lifestyle, nutritional behavior, etc.), and 
could occur frequently in association studies, thus making the analysis of binary traits 

Table 2 Comparison of  powers in  simulations based on  the  coalescent model (5000 
individuals), with τ = 1

p0 and p1 are the prevalences in the two strata. Powers at the genome‑wide significance level 5× 10
−8 are reported for 

logistic regression (LR), AMLE (equivalent to the score test) and Offset methods, all analyses including 10 PCs with fixed 
effect

Scenario p0 p1 OR MAF bin LR AMLE Offset

Large cohort effect 0.05 0.30 1.5 (0.20; 0.25] 0.307 0.251 0.202

Large cohort effect 0.05 0.30 1.5 (0.45; 0.50] 0.597 0.544 0.464

No cohort effect 0.30 0.30 1.5 (0.20; 0.25] 0.871 0.859 0.834

No cohort effect 0.30 0.30 1.5 (0.45; 0.50] 0.996 0.989 0.987
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with the MLM incorrect, in particular in populations with a high genetic diversity, 
such as African populations.

A similar result was retrieved with data simulated with a coalescence model on a 
square grid, the “high-risk strata” consisting in the top left quarter of the grid; these 
simulations included many first-order related individuals and a random effect based 
on the kinship matrix. The mixed logistic regression (MLR) including the top PCs 
as fixed effects is the only method to completely correct for population structure in 
both simulations. A classical logistic regression including the top PCs can however be 
worth considering, as this conceptually simpler method was efficient enough for the 
South Benin data, in which the level of relatedness, though high, is lower than in the 
simulated data. In terms of power, however, our simulations hints towards a higher 
power of the MLR even in this case.

It is worth to note that in both simulations sets, it was necessary to include the 
top PCs as fixed effects in the MLR to obtain the correct type I error. The interest of 
including top PCs alongside the random components has been noted before [8, 10].

The diagnosis of the correctness of type I error cannot be based on the sole QQ-
plot of p values, as the behavior of the test differs in SNP categories defined from 
the allelic frequencies in the two strata, as mentioned above. When these strata are 
clearly identified in the study, Chen et al. introduced a QQ-plot stratified on SNP cat-
egories based on the allele frequencies in the strata. We propose an extension of this 
method that can be used when population information is not available, using the first 
PC as a proxy (or any continuous variable defined at the population level, indepen-
dently of the phenotype). Our simulations show that this method produces QQ-plot 
similar to those obtained with full knowledge of the two strata, thus allowing to diag-
nose better whether the population structure is adequately taken into account or not.

However, while the presence on the (stratified) QQ-plot of a deviation of the p values 
from their expected distribution implies that the association analysis is incorrect, the 
reverse is not necessarily true. Chen et al. demonstrated that new diagnostic plots can 
unveil hidden structures in the p values distribution; other new diagnostic plots could 
unveil other structures. More generally, while the correlation between polygenic effects 
is well modeled by the GRM, there is no reason that all unaccounted environmental vari-
ables have a correlation matrix similar to the GRM, and in theory the mixed model may 
prove inappropriate in some real studies. However, it seems to us that environmental 
variables that are not correlated to the genetic background would likely not be con-
founding variables.

Regarding SNPs’s effect estimation, made possible by the two proposed methods, our 
simulations studies show that both methods are slightly biased downward. The bias of 
the Offset method is less important than the bias of the AMLE, while the PQL has vir-
tually no bias. It is known that in the presence of unaccounted heterogeneity, logistic 
regression effect estimates have negative biases [18–20]; our result hints that the het-
erogeneity between population strata is not fully taken into account by these methods. 
However, the bias is sensible only for large effects such as OR = 2 , which makes its 
impact virtually negligible in GWAS. Note also that these methods are not adapted to 
the analysis of rare variants in highly unbalanced case-control ratio, as demonstrated in 
[15] for GMMAT – and thus for AMLE.
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Conclusion
We proposed two fast methods to estimate SNPs’ effects in mixed logistic regression. 
Both methods scale to up to at least 10,000 individuals, making them suitable for analy-
sis of most GWAS data. Their implementation in an R package allows flexible use, with 
for example the possibility to specify a user defined GRM matrix.

The methods are constructed with conceptually simple mathematical principles which 
could be applied to other models (e.g. mixed Cox model in survival analysis), although 
literal computations to derive the formulas in the AMLE can be tedious. The Wald test 
performed with the AMLE is equivalent to the score test of [14], and thus the conclu-
sions drawn for the MLR apply regarding type I error. The second method, which we 
called the Offset method, have similar performances on the simulations based on the 
South Benin genotypes, but is slightly over-conservative in the presence of strong famil-
ial effects in the simulations based on the coalescent model.

All methods are available in an R package milorGWAS based on the R package Gas-
ton [21] for data manipulation. The R and C++ source code of milorGWAS is available 
on the CRAN at https ://CRAN.R-proje ct.org/packa ge=milor GWAS. An excerpt of the 
data simulated using the coalescent model is also available, and is used in the package’s 
vignette to illustrate the methods.

Methods
Fast methods for mixed logistic regression

The mixed logistic regression model (or logistic mixed model) considered is

where Y is an n-dimensional vector of zeroes and ones ( logit E(Y ) is the vector of com-
ponents logit E(Yi) ), X is a n× p matrix of covariates (including a column of ones for the 
intercept), G is a vector of genotypes (ususally coded 0, 1 or 2), and ω is a random vector 
following a multivariate normal distribution MVN (0, τK ).

The likelihood of this model involves an integral over the random vector ω . There is 
no closed-form for this integral, and numerical integration schemes are computationally 
intensive in high dimension. A classical approximate solution is the Penalized Quasi-
Likelihood (PQL) algorithm, which is a sequence of approximations of the MLR model 
by linear mixed models. Even the PQL is too computationally intensive for estimating 
the effect γ of all SNPs in a GWAS.

We describe below two approximate methods for estimating γ . The first is based on an 
approximation of the maximum likelihood estimate in the PQL. The second consists in 
first estimating predicted linear scores X β̂ + ω̂ in the MLR model (1) without the term 
Gγ , and then incorporating these linear scores as an offset in a (non-mixed) logistic 
regression model.

Approximate Maximum Likelihood Estimate (AMLE)

We outline here the general principle on which the formula presented in Additional 
file 1 can be derived. This principle could be applied to any statistical model. Let ℓ(κ , γ ) 
be a log-likelihood, in which κ is a nuisance parameter and γ is the parameter of interest. 

(1)logit E(Y ) = logit P(Y = 1) = Xβ + Gγ + ω

https://CRAN.R-project.org/package=milorGWAS
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The null hypothesis to be tested is H0 : γ = 0 . Denote κ̂0 the Maximum Likelihood Esti-
mator (MLE) of κ under the null hypothesis:

The score statistic to test for H0 is the first derivative in γ at the point (κ̂0, 0) :

The null hypothesis can be tested using T = U(0)2/ var(U(0)) , which asymptotically fol-
lows a χ2(1) distribution. A second-order approximation, with κ = κ̂0 fixed, gives

which maximizes in

This estimator of γ̂  is not the MLE of γ , but when the true value of γ is small enough, 
both estimators are close.

In the context of GWAS, κ is the vector of random term variance and covariates 
effects, while γ is the effect of the SNP to be tested. This estimator shares with the 
score test the advantage that κ̂0 has to be estimated only once; the partial derivatives 
in γ are usually easy to compute, allowing a fast testing and estimating procedure.

However, as mentioned above, in the case of the MLR, the likelihood can’t be com-
puted efficiently. We use the PQL to estimate the nuisance parameter κ = (β , τ ) , and 
the log-likelihood of the last linear approximation used in the PQL to estimate γ . The 
variance of the resulting γ̂  is estimated in this linear approximation; the resulting 
Wald test is identical to the score test of [14]. All details are given in the Additional 
file 1.

Offset

The proposed method consists of estimating a vector of individual effects, including 
both the random components and the covariates in X, which is then incorporated in a 
logistic regression as an offset:

• First estimate β̂0 and ω̂0 under the hypothesis γ = 0 , in the MLR model 

 with ω as in (1).
• Then, for each vector of genotypes G, fit a linear model for 

κ̂0 = arg max
κ

ℓ(κ , 0).

U(0) =
∂

∂γ
ℓ(κ̂0, 0).

ℓ(κ̂0, γ ) ≃ ℓ(κ̂0, 0)+
∂

∂γ
ℓ(κ̂0, 0)γ +

1

2
·
∂2

∂γ 2
ℓ(κ̂0, 0)γ

2

γ̂ = −

∂
∂γ

ℓ(κ̂0, 0)

∂2

∂γ 2 ℓ(κ̂0, 0)
.

logit E(Y ) = Xβ + ω

E(G) = Xδ,
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 let G̃ = G − X δ̂  be the residuals of G, and estimate γ in the fixed-effects logistic 
regression 

 in which the vector X β̂0 + ω̂0 is an offset (that is, is held constant).
The motivation of this heuristic is that a similar two-steps method applied to a linear 

model E(Y ) = Xβ + Gγ would give the same estimator γ̂  than the classical regression 
(cf Additional file 1 for the details).

Asymptotic complexity of the methods and efficiency of the implementation

The initial step of both AMLE and Offset method is to fit the MLR model 
logit E(Y ) = Xβ + ω . Each iterative step of the PQL needs the inversion of an n× n 
matrix, where n is the number of individuals; the complexity of this operation is O(n3) . 
The second step of the AMLE involves, for each SNP, multiplying an n× n matrix P by 
the vector of genotypes; this is the most costly operation, and the complexity of this step 
is thus O(n2) . The second step of the Offset method is an iterative algorithm, each itera-
tion of which is in O(n) (considering the number of covariates as fixed). The complexity 
of the second step of the Offset is thus O(n).

Our package milorGWAS is implemented in C++ using Rcpp [22], and RcppEigen 
[23] for matrix arithmetic. We performed simulations with random genotypes for sample 
size n = 1000 , n = 2000 and n = 5000 , to assess the performance of the implementation.

Stratified QQ‑plot

One of the contributions of Chen et al. was to show that a QQ-plot of log p values was 
not sufficient to diagnose an incorrect test procedure, and to propose a “stratified QQ-
plot” in which different categories of SNPs are represented separately. This allowed to 
see that in some of these categories, the test statistics are either inflated or deflated, 
while the overall distribution of p values was correct. Here is how their categories were 
defined. Chen et al. consider a population with two strata, indexed by i = 0 or 1 accord-
ing to disease prevalence in ancestry groups, i = 1 being the group with a higher risk of 
desease. The strata are assumed to be panmictic, so that expected variance of a SNP gen-
otype G in stratum i is vari(G) = 2piqi , pi and qi being the SNP allele frequencies. Each 
SNP is categorized according to the variance ratio r(G) = var1(G)/ var0(G) between the 
two strata as follows (Chen et al. use a threshold th = 0.8):

• The SNPs with r(G) < th are category 1,
• the SNPs with th ≤ r(G) ≤ 1/ th are category 2,
• the SNPs with 1/ th < r(G) are category 3.

We propose to extend the method to stratify QQ-plots according to any covariate Z. If 
G ∈ {0, 1, 2}n is the vector of genotypes, Z a vector with components in the range [0, 1], 
and 1 denotes a vector of ones, we let

logit E(Y ) = X β̂0 + ω̂0 + Gγ ,
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and we defined SNP categories as above (with pi = 1− qi ). If Z is the indicator variable 
of the strata, q1 and q0 are the allelic frequencies in the two strata, and the categories will 
be identical to those of Chen et al. The point of this extension is that when the relevant 
sub-strata are unknown, one could use one of the top genomic PCs instead (after rescal-
ing them to [0, 1]).

Simulation studies: type I error in the presence of population structure

We performed two sets of simulations, based on the simulations performed in [14], to 
assess the efficiency of the different methods to correct for population stratification. In 
both simulation sets, there are two strata (or two cohorts) with different disease preva-
lence, and related individuals. Simulations were performed under the null hypothesis of 
no genetic association [ γ = 0 in Eq. (1)] and were analyzed with

• a logistic regression model (LR)
• a mixed linear model (MLM)
• a mixed logistic regression model, using Chen et al. score test GMMAT, identical to 

AMLE Wald test (MLR)
• a mixed logistic regression model, using the offset method (Offset)

All analyses were repeated with the top ten PCs included as fixed effects in the model. 
We assessed the capacity of each test procedure to control type I error rates using 
Chen’s stratified QQ-plot. Moreover, to gauge the interest of our extension, we com-
pared Chen’s QQ-plot to the stratified QQ-plot obtained using the first PC instead of the 
cohort indicator.

Simulations based on South Benin data

We used genotype data from a GWAS on mild malaria susceptibility performed on two 
cohorts in South Benin [16]. The participants were ascertained in two sites distant of 
20 km from each other, in three different health centers for the first cohort and two 
for the second one. After quality control (QC), the genotypes of 800 individuals were 
available, 525 in the first cohort, and 275 in the second one. The genotyping was per-
formed with Illumina HumanOmni5 chips (1,847,505 SNPs after QC and filtering out 
SNPs with minor allele frequency, MAF, less than 5% ). This genetic sample presents both 
population structure and cryptic relatedness. Self-reported ethnic composition differed 
between the two cohorts, and principal component analysis confirmed the presence of 
population structure. A sub-structure related to the health center, where the participant 
was ascertained, was also apparent. Moreover, substantial relatedness was observed in 
the sample, with levels of relationship corresponding to half-sibs, uncle-nephew or even 
3/4 siblings for some pairs (estimated kinship coefficient φ from 0.10 to 0.16).

We simulated a binary phenotype with a difference of disease prevalence between the 
two cohorts, and a random effect modeling both population stratification and related-
ness. Specifically, the probability on an individual i of being a case was calculated as:

q1 =
1

2

Z′G

Z′1
and q0 =

1

2

(1− Z)′G

(1− Z)′1
,
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where Z is an indicator variable for belonging to the second cohort, and ωi an indi-
vidual random effect. The coefficients a0 and a1 were defined as a0 = logit(0.05) and 
a1 = logit(0.30)− logit(0.05) , so as to obtain a prevalence of 0.05 in the first cohort and 
of 0.30 in the second one (not taking into account the presence of random effects). The 
vector of random effects was simulated following a multivariate normal distribution:

where K is the Genomic Relationship Matrix (GRM) calculated from all the SNPs. We 
set τ = 1.

Simulations based on a coalescent model

We also performed coalescent simulations, reproducing closely the simulations 
described in [14], to obtain genotypes for a large cohort of 10,000 individuals, with both 
population structure and relatedness, using the ms software [17]. This procedure, which 
is based on a stepping stone model with symmetric migration between adjacent cells of 
the grid, is commonly used to simulate a population with a spatially continuous popu-
lation structure [24, 25]. We use a 20× 20 grid, in which the migration rate between 
adjacent cells was set to 10; this parameter produces a Wright’s fixation index Fst < 0.01 
when dividing the simulated grid into two equal sub-populations, a level comparable to 
what is observed within Europe [24]. We simulated a total of 10 million independent 
SNPs. After filtering out SNPs with MAF lower than 5% , 2,840,903 SNPs were available. 
The full command line arguments for ms are included in Additional file 1. We also cre-
ated a R data package containing part of the simulated data (link in Additional file 1).

To obtain related individuals, we first simulated the genotypes for 8000 founders (20 
on each of the 400 cells). We then sampled 10 pairs of individuals in each cell, forming 
4000 couples, and simulated two offsprings by gene dropping. Thus we obtained 16,000 
individuals (founders and offspring) from which 10,000 individuals were randomly 
selected to obtain the cohort.

The phenotype was simulated as before using Eq.  (2), where Zi was set to one when 
individuals were sampled in the top left 10× 10 grid, corresponding to strata with a 
higher risk. The values of a0 , a1 and τ were set as before; in this simulation set, K = 2� 
were � is the matrix of kinship coefficients (entries are 0.5 for first order relatives, 1 on 
the diagonal, 0 elsewhere). Data analyses were subsequently performed using a GRM 
calculated from 100,000 random SNPs.

Simulations studies: estimation of the SNPs’ effects

Simulations including a SNP effect were performed using the South Benin data set, using 
the model

with G, a genotype picked at random in the data, and Z and ω as described above. We 
considered four different scenarios: 

(2)logit(pi) = a0 + a1Zi + ωi

ω ∼ N (0, τK )

logit(p) = a0 + a1Z + Gγ + ω
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A Moderate cohort effect (respective prevalence p0 = 0.10 and p1 = 0.20 ) and moder-
ate random effect ( τ = 0.3).

B Moderate cohort effect (respective prevalence p0 = 0.10 and p1 = 0.20 ) and large 
random effect ( τ = 1).

C Large cohort effect (respective prevalence p0 = 0.05 and p1 = 0.30 ) and moderate 
random effect ( τ = 0.3).

The coefficients a0 and a1 are computed as a0 = logit(p0) and a1 = logit(p1)− logit(p0) ; 
G is centered to ensure that the expected prevalence is as prescribed. For each scenario, 
we considered SNPs with MAF in intervals (0.05; 0.10], (0.20; 0.25] and (0.45; 0.50], and 
SNP effect γ = log(1.5) and γ = log(2) (corresponding to OR = 1.5 and 2). One hundred 
replicates were performed for each condition, redrawing a vector of random effects each 
time, and analyzed with the PQL, the Offset and the AMLE, including the top 10 PCs.

Simulations studies: comparison of powers

To compare the power of the methods that have shown a correct type I error, we per-
formed additional simulations in a similar setting as in the previous section, with a large 
random effect ( τ = 1 ), a moderate cohort effect (as defined above) and OR = 3 , and 
without cohort effect and OR = 2.5 . Other simulations were performed based on 5000 
individuals extracted from the cohort generated under the coalescent model, with either 
a large cohort effect or no cohort effect, and an OR = 1.5 . In each scenario, 1000 repli-
cates were performed, redrawing a vector of random effects each time.

Illustration on real data

To illustrate the method, we applied it on the data from the GWAS in South Benin 
described in [16]. We used as binary phenotype the presence/absence of any malaria 
infection during the follow-up (there were 229 individuals with no infection and 546 
with at least one infection). We tested all SNPs with a minor allele frequency greater 
than 0.05 on a 100 kb segment on chromosome 20, which contains one of the strongest 
association signals discovered in [16]. We included as covariates the site of ascertain-
ment, the duration of the wollow-up, and mean infection exposure. We performed the 
testing with AMLE and, for comparison, with the PQL.
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