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Résumé 
 

Variabilité océan-atmosphère du secteur Indo-Pacifique tropical 
 

Les océans Pacifique et Indien tropicaux se partagent la plus grande étendue d’eau chaude et de 
convection profonde de la planète. Cette région est le siège de la branche ascendante de la circulation de Walker, 
circulation atmosphérique d’échelle planétaire parfois décrite comme la « machine thermique » de la Terre. Cette 
région, dont les répercussions sur le climat sont importantes, est aussi source de variabilité océanique et 
atmosphérique aux échelles intrasaisonnières et interannuelles . En effet, la variabilité interannuelle associée à 
El Niño, dans l’océan Pacifique, et – dans une moindre mesure – au dipôle de l’Océan Indien (DOI) ont des 
conséquences climatiques marquées sur les pourtours de ces bassins et à l’échelle du globe. La variabilité 
intrasaisonnière liée à l’oscillation de Madden-Julian (OMJ) a également des conséquences climatiques 
marquées : modulations des moussons indiennes et australiennes et un rôle potentiellement important dans le 
déclenchement d’ENSO. 

Dans ce mémoire, je vais décrire mes travaux de recherche sur la variabilité océanique et atmosphérique 
aux échelles intrasaisonnière et interannuelle dans les Océans Indien et Pacifique. El Niño ou le DOI sont des 
modes couplés : c’est la rétroaction positive découlant des interactions océan-atmosphère qui est source de 
variabilité (le « Bjerknes feedback »). À l’échelle intrasaisonnière, le rôle du couplage océan-atmosphère semble 
moins primordial, et modifie seulement des modes de variabilité essentiellement atmosphériques ou océaniques. 
Par exemple, les ondes d’instabilité dans le Pacifique Est sont le résultat d’une instabilité interne océanique. 
Cependant, elles affectent la stabilité atmosphérique, les vents de surface, et cela tend à réduire légèrement leur 
activité. À l’inverse, l’OMJ est un phénomène dont la source est atmosphérique, naissant du couplage entre 
dynamique et convection dans les tropiques. Toutefois, nous verrons que ce phénomène a une réponse océanique 
forte dans l’Océan Indien, à la fois en termes de dynamique et de thermodynamique. Le degré d’influence du 
couplage dans les propriétés de l’OMJ reste toutefois une question largement ouverte. 

Nous nous intéresserons aussi à la question des interactions entre ces différents modes de variabilité. 
Nous verrons par exemple comment la variabilité intrasaisonnière atmosphérique peut déclencher un El Niño, 
comment El Niño peut supprimer l’activité des ondes tropicales d’instabilité et l’effet retour, comment le DOI 
module l’activité de l’OMJ et enfin, quelles sont les interactions entre DOI et El Niño. Je présenterai alors une 
région de l’Océan Indien assez emblématique de ces interactions d’échelle, et dans laquelle j’ai développé une 
activité d’observations (campagnes océanographiques Cirene de 2005 à 2008 et projet de campagne TRIO). La 
bande 5°S-10°S dans l’Océan Indien est une région très particulière. En raison de la structure des vents, la 
thermocline y est proche de la surface et la couche de mélange est peu profonde, ce qui induit une forte réactivité  
de la température de surface aux sollicitations de l’atmosphère. De plus, la température de surface en hiver 
boréal est proche du seuil de convection, impliquant une sensibilité accrue de l’atmosphère à de petites variations 
de température. Ces deux facteurs augmentent le couplage océan atmosphère dans cette région qui a une 
variabilité très marquée aux échelles synoptiques (cyclones), intrasaisonnières (OMJ) et interannuelle (réponse à 
El Niño, mais aussi au DOI). Cette région a enfin des conséquences climatiques marquées (sur l’intensité des 
pluies de la mousson suivante, sur le nombre de cyclones dans le secteur La Réunion-Madagascar, sur la 
convection au-dessus du continent maritime, et même sur l’Amérique du Nord).  

Pour conclure, je présenterai ma réflexion sur mes axes de recherches futurs, ainsi que mes projets en 
termes de campagnes et réseaux d’observations. 
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Abstract 
 

The tropical Indian and Pacific oceans share the largest span of warm water and deep atmospheric 
convection on our planet, which is also the ascending part of the Walker circulation, an essential component of 
the climate system. This region is also home to strong atmospheric and oceanic intraseasonal to interannual 
variability, with strong climatic consequences. The El Niño phenomenon, and, to a lesser extent, the Indian 

Ocean dipole (IOD) indeed have strong climatic consequences around these two basins, but also at global scale. 
Intraseasonal variability linked to the Madden-Julian oscillation (MJO) is also important, with its modulation of 
Indian and Australian monsoons and its potentially important role in triggering El Niño. 

In this document, I describe my research on intraseasonal to interannual oceanic and atmospheric 
variability in the Indian and Pacific basins. El Niño or the IOD are by essence coupled ocean-atmosphere 
phenomena: they result from positive feeadbacks arising from air-sea interactions (the “Bjerknes feedback”). At 
intraseasonal timescale, the coupling seems less important and only partially modifies the characteristic of a 
dominantly atmospheric or oceanic mode of variability. For example, Tropical Instability Waves in the eastern 
Pacific are the results of internal oceanic instabilities. However, they influence the stability of the atmospheric 
boundary layer and the surface windstress, and this feedback tends to reduce slightly their variability. On the 
other hand, the MJO is predominantly an atmospheric process, resulting from the coupling between atmospheric 
dynamics and deep atmospheric convection. But I will show that this phenomenon induce astrong oceanic 
response in the Indian ocean, both in terms of dynamics and surface temperature. The degree to which air-sea 
coupling influences properties of the MJO however remains an open question. 

I will also discuss interactions between those various modes of variability. I will for example illustrate 
how intraseasonal atmospheric variability can trigger an El Niño; how an El Niño can suppress tropical 
instability waves and be affected in return; how the IOD modulates the MJO activity and the interactions 
between the IOD and El Niño. I will then discuss a region of the Indian ocean which is emblematic of these scale 
interactions and in which I have developed past (Cirene cruises from 2005 and 2008) and hopefully future (TRIO 
cruise) observational programs. The 5°S-10°S band in the Indian Ocean has an elevated thermocline and shallow 
mixed layer due to climatological Ekman pumping, but high SST close to the threshold of deep atmospheric 
convection. These two factors increase air-sea coupling in this region, which has clear variability at synoptic 
(cyclones), intraseasonal (MJO) and interannual (IOD) timescales. This region has strong climatic consequences 
and impacts the quality of the following Indian monsoon, the number of cyclones in the Madagascar-La Réunion 
area and even atmospheric patterns over the Maritime continent and Northern Pacific ocean. 

I will conclude by presenting my future research plans and my projects in terms of cruises and 
observational networks. 

 



1. Introduction 

1.1. General introduction and structure of this document 

Most countries from the rim of the Indian Ocean or from South America still have an 
economy that is strongly based on Agriculture, and hence vulnerable climate variability. 
There is, for example, a clear correlation between the annual rice production in India and the 
quality of the monsoon (e.g. Gadgil and Gadgil, 2006). Another example of dependency of 
economical activity on climate variability is the sensitivity of fish catches to interannual 
variability in the Indian Ocean (e.g. Marsac and Leblanc, 1999; Lehodey et al., 1997).  

In addition to year-to-year variability, there is also considerable variability at 
intraseasonal timescales in the tropics, with associated modulation of e.g. the monsoon 
rainfall (e.g. Goswami, 2005) or cyclonic activity (e.g. Bessafi and Wheeler, 2006). The 
intraseasonal modulation of rain can also have a considerable impact on agriculture. Indeed, 
when interviewed, groups of African farmers indicated that a prior knowledge of “active” and 
“break” phases of the monsoon would benefit them (seeds planted before a break phase are 
generally lost, Ingram et al. 2002). Because of less developed infrastructures and housing, the 
countries from the south are also highly vulnerable to extreme events like cyclones, as the 
dramatic impact of Cyclone Nargis on Myanmar is a recent example (Webster, 2008). 

In the examples above, I singled out two types of variability of the tropical region: 
interannual and intraseasonal variability. Variability at these timescales appears prominently 
in both the ocean and the atmosphere in the tropical band. In some cases, this variability 
clearly arises from air-sea coupling. It is the case for, e.g., interannual variability of the 
Pacific Ocean (the famous “El Niño”) or the Indian Ocean (the less famous and less poetically 
named “Indian Ocean Dipole”, hereafter IOD). At intraseasonal timescale, the coupling is 
less obvious. For example, the “Madden Julian Oscillation” (hereafter MJO1) is the leading 
mode of atmospheric intraseasonal variability in the tropics. The origin of the MJO is clearly 
the coupling between large scale convection and atmospheric dynamics, but its large oceanic 
signature can leave us wondering if air-sea interactions don’t influence it as well. Similarly, 
“Tropical instability waves” (herafter TIWs) which modulate the Sea Surface Temperature 
(hereafter, SST) in the eastern Atlantic and Pacific Oceans are clearly the result of oceanic 
internal instabilities. But they also have an atmospheric signature: does it feedback on them? 

Most my work since my PhD has revolved around investigating tropical oceanic and 
atmospheric variability at intraseasonal to interannual timescales. My main focus has been 
on the Pacific and Indian Oceans. In this document, I’ll try to brush a picture of the various 
phenomenons I have looked into, and to highlight my contribution to their study. To ease that, 
I have highlighted in blue any quoted article for which I am a co-author. I’ll also generally 
separate a “Background” from a “Selected results” section. 

I have assumed in this text that the reader is familiar with the basic concepts of simple 
geophysical fluid dynamics (e.g. planetary waves in particular in the tropical waveguide, 
instabilities in a rotating stratified fluid, vertical modes of the stratification, etc…). In case of 
need, I suggest the reader to refer to one of the holy books in our field: Gill (1982). He 
describes all of these concepts with far more clarity and details than I’d be able to do. 

The rest of this introductive section will aim at giving the larger picture of the themes 
investigated here. I will start with some description of the Indo-Pacific warm pool and its 
importance, and then give an overview of the seasonal cycle of the surface winds and ocean in 
the Indo-Pacific region. I will finally introduce the main characters we’ll be concerned with 
(El Niño, the IOD, the MJO and TIWs!) by precising their timescales and centers of action. 

                                                
1 See the list of abbreviations at the end of the document: climate scientists are fond of them. 
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Section 2 is concerned with the Pacific Ocean. I will first introduce in more details the 
basic processes of TIWs, and then zoom on some selected results. I will then give more 
details on the current understanding of El Niño, and highlight my contributions to its study. 

Section 3 is concerned with the Indian Ocean. I will start by giving some background 
information on variability in the Indian Ocean, and describe some observing programs 
(RAMA and Cirene). I will then present some selected results on intraseasonal and 
interannual variability over the Indian Ocean basin, with highlights on some recent 
contributions from the Cirene program.  

Section 4 is entitled “What’s next ?”. I will describe the new science areas in which I 
want to invest myself in the next few years. I will also describe my aims in terms of 
observational programs in the Indian Ocean, and conclude. 

1.2. The Indo-Pacific warm pool 

 
Figure 1. Climatological SST (°C, 1998-2008 average from TMI, Wentz et al. 2000) and 

outgoing longwave radiation (OLR) at the top of the atmosphere (W.m
-2

, 1979-2008 average 

from NOAA, Liebmann and Smith, 1996). The OLR is an indicator of the temperature of the top 

of the clouds, and has low values associated with deep atmospheric convection. There’s a sharp 

increase of convective activity above 26-27°C, with deep convection occurring generally above 

28.5°C (high SSTs are a necessary, but not sufficient condition for deep convection to occur: 

Graham and Barnett, 1987; Gadgil et al., 1986).  

The tropical Indian and Pacific ocean basins are separated by a series of Islands 
(Indonesia and Papua-New Guinea) most generally referred to as “the maritime continent”, 
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but also by the South-East Asian landmass to the North, and by Australia to the South. In 
view of this geographical evidence, one will indeed be tempted to consider those two oceans 
as separate entities. On the other hand, these two oceans have in common what is probably the 
largest atmospheric circulation pattern on earth, and one of importance for our climate, related 
to the largest span of warm water on earth. 

The surface of water above 28.5°C in the Indo Pacific warm pool exceeds 35 millions of 
square kilometers (Fig. 1). A necessary condition for armospheric condition to occur over the 
oceans is sufficiently high SST (Gadgil et al. 1986; Graham and Barnett, 1987). While the 
threshold for deep atmospheric convection can vary from an ocean to the other, 28.5°C is a 
generally accepted critical threshold for allowing deep atmospheric convection. As the result, 
there is a strong almost permanent region of deep atmospheric convection anchored to the 
western Pacific warm pool and maritime continent (Fig. 1). 

 
Figure 2. Atmospheric response to tropospheric heating as predicted by the Gill model (Gill, 

1980). This very simple model explains many aspects of the mean circulation over the Indo-

Pacific ocean and, as we will see later, of the surface wind perturbations associated with the 

MJO or ENSO. 

 
The tropospheric heating associated to deep atmospheric convection drive easterly 

winds along the equator in the Pacific Ocean (Fig. 2ab). Those winds moisten progressively 
along the way, providing one of the sources of moisture to maintain convection in the western 
Pacific. Parcel of winds rise and release latent heat that maintain the convection and 
circulation patern. The dry air returns eastward and subsides over the eastern Pacific Ocean 
and western Indian Ocean, where it tends to suppress convection (Fig 2c). This image is 
simplified, because the tropospheric heating associated with the deep convection in the 
western Pacific is coupled at the same time with the Walker (zonal) and Hadley (meridional) 
circulations through angular momentum conservation.  
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Figure 3. Mean state and seasonal cycle in the Pacific Ocean. Top panel shows the wind stress 

(Quickscatt 1999-2008 average) and SST (TMI 1999-2008 average, Wentz et al. 2000) for April. 

Next panel shows the same fields for October. The third panel shows the 0-300m averaged 

ocean climatological temperature (from World Ocean Atlas 2005, Locarnini et al., 2006) and 

1993-2006 average of surface current estimates (Oscar product, Bonjean and Lagerloef, 2002). 

The surface current systems are indicated: the South Equatorial Current (SEC), North 

Equatorial Counter-Current (NECC) and North Equatorial Current (NEC). 

 

I don’t want to discuss the detailed processes of the Walker and Hadley circulation here, 
but want to convey that the Indo-Pacific warm pool is associated to an atmospheric circulation 
pattern that extends zonally over ~29000 km, has remote influences, and ties the Pacific and 
Indian ocean together. The Walker circulation is sometimes referred to as the “heat engine” of 
the earth and we’ll see later that zonal displacements of the warm pool associated to e.g. El 
Niño induce worldwide consequences because of the planetary scale of the Walker 
circulation. 
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1.3. Seasonal cycle 

In this section, I will give a brief overview of the mean state and seasonal cycle of the 
Indian and Pacific Oceans, since this background information will be useful for some of the 
interpretations in the following sections. While the seasonal cycle of the Pacific and southern 
Indian Ocean (south of 10°S) are roughly similar (dominated by easterlies), the Indian Ocean 
north of 10°S has a strikingly different response, because of the powerful monsoon annual 
cycle. 

1.3.1. Pacific Basin 

Fig. 3 gives an overview of the mean state and seasonal cycle in the tropical Pacific 
Ocean. First, there is an obvious asymmetry in the SST and wind distribution, with the Inter-
Tropical convergence Zone (ITCZ) and warmest SSTs being located north of the equator. The 
easterlies drive Ekman divergence along the equator and coastal upwelling along the coasts of 
South America, resulting in the formation of the east Pacific “cold tongue” and Peruvian 
coastal upwelling. 

 
Figure 4. Meridional section of temperature in the central Pacific. The various current systems 

associated with this stratification are indicated: the South Equatorial Current (SEC), 

Equatorial Under-Current (EUC), North Equatorial Counter-Current (NECC) and North 

Equatorial Current (NEC). 

The equatorial divergence results in a sea level minimum at the equator, which drives 
the South Equatorial Current (Figs. 3 and 4.). The ITCZ at 10°N is associated with wind 
convergence that induces another sea level minimum with the North equatorial Counter 
current on its equatorward flank and North equatorial current on its poleward flank. The 
easterlies along the equator need to be balanced by a zonal pressure gradient: this results in a 
tilt of the thermocline, with shallow thermocline in the eastern Pacific and a deep thermocline 
in the western Pacific warm pool. The wind stress forcing does not penetrate enough into the 
subsurface to balance the westward pressure gradient in the thermocline, resulting in an 
eastward subsurface return flow: the equatorial under current. 

Contrary to the Indian ocean, where the seasonal cycle of winds results in very 
contrasted distributions of the currents and sea level, the seasonal cycle in the Pacific ocean is 
just a more subtle modification of the patterns discussed above. In april (the end of boreal 
winter), the ITCZ has migrated south because of the annual march of the sun, and stands close 
to the equator. It thus bringing the “doldrums” (weak winds in the convergence region) to the 
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equatorial strip, and easterly stress at the equator is then weakest. In September-October (at 
the end of Boreal summer) the ITCZ reaches its northernmost position, in response to the 
annual march of the sun, ans easterlies along the equator are then strongest. The most striking 
response to this change in strength of easterlies is a cold tongue, which is most developed in 
September-October. There are also changes in the strength of various currents (e.g. the SEC is 
stronger, etc…) but they are more subtle. 

1.3.2. Indian Basin 

The Indian Ocean basin is a peculiar basin. It is the only tropical basin to be bounded by 
a continental landmass to the north. This is one of the reasons (together with elevated heating 
on the Tibetan plateau and Himalayas) why the Indian monsoon is so strikingly energetic. The 
southwest monsoon starts in June, and is associated with a strong low level jet over the 
eastern Arabian Sea (the Findlatter jet, see Fig. 5). In winter, the Asian landmass has cooled 
and the ITCZ stands south of the equator, following the annual march of the sun. This results 
in northeasterly winds over the Northern Indian from roughly November to March. 

There are two “intermediate” seasons between the northeast and southwest monsoons, 
generally reffered to as the two inter monsoons (April-May and October-November). During 
these two seasons, the monsoonal (highly meridional) circulation weakens, and the Walker 
circulation becomes more obvious along the equator. At these seasons, equatorial westerlies 
can be seen along the equator, whereas easterlies or near-zero winds exist along the equator at 
other seasons. 

A natural separation line can be drawn to separate the Northern Indian ocean from the 
southern Indian Ocean. Indeed, while the wind field north of ~ 10°S is dominated by the 
strong annual cycle linked to the monsoons, there is no seasonal wind reversal south of 10°S. 
Instead, there are year-long easterlies in the Southern Indian Ocean, which only exhibit 
varying strength, and are strongest during the southwest monsoon (Fig 5.). 

I will first describe the Southern Indian Ocean, putting some emphasis on the peculiar 
thermocline structure that emerges at the meting point of the Easterly and Monsoon wind 
regimes. I will then proceed to an overview of the intricacies of the North Indian Ocean 
circulation. 

1.3.2.1. Thermocline ridge 
South of 10°S, the northward termination of the easterlies is associated with Ekman 

pumping. This Ekman pumping is strengthened in winter when northwesterly winds 
associated with the winter monsoon induce northward transport to the north of 10°S. It results 
in the formation of a thermocline ridge, between 5°S and 10°S, to the east of 50°E in the 
Indian Ocean (e.g McCreary et al. 1993, Fig. 6a). This year-round feature is more pronounced 
in boreal winter. A more detailed explanation of the formation of this ridge and its annual 
cycle can be found in (Hermes and Reason 2008; Yokoi et al 2008).  

The Seychelles-Chagos thermocline ridge marks the limit between two current systems: 
the westward “South Equatorial Current” (Fig. 7) south of 10°S and the eastward “South 
Equatorial Counter-Current”, most marked in boreal winter, to the north of the ridge. 
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Figure 5. Seasonal cycle of Quickscat wind stress and TMI SST (left) and sea level (right) over 

the Indian Ocean. Note the complete seasonal reversal of the winds north of 10°S, associated 

with the Indian monsoon. 
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The thermocline ridge has a shallow thermocline and high SST, thus making it a 
potentially important region for air-sea interactions (Xie et al., 2002; Vialard et al., 2009a), as 
we will see in section 3. This region has attracted attention since it is home to distinct oceanic 
and atmospheric variability at multiple timescales, each time with significant climatic 
consequences. Anomalously high heat content in the ridge region is associated with increased 
cyclonic activity near Madagascar and La Réunion (Jury et al. 1999; Xie et al. 2002). 
Anomalously warm SST in this region also induces above-average rainfall along the Western 
Ghats of India during the following monsoon (Vecchi and Harrison 2004; Izumo et al. 2008). 
Atmospheric model experiments suggest that these SST anomalies force a substantial fraction 
of interannual precipitation anomalies over the west Pacific and maritime continent 
(Annamalai et al. 2005b) and influence the northern hemisphere extratropical circulation 
during boreal winter (Annamalai et al. 2007). These numerous climatic consequences are an 
incentive to better understand the various climate phenomena that affect SST in this region. 

 
Figure 6. a) Climatological surface winds and 0-300m average ocean temperature in January-

February. The thick black arrows indicate the surface flow induced by wind that promotes 

upwelling and leads to the SCTR formation. The arrows marked SEC and SECC indicate the 

South Equatorial Current and South Equatorial Counter-Current. b) Meridional section of the 

ocean temperature along 67°E, indicated by a dashed line in a). The climatological temperature 

data comes from world Ocean Atlas 2005 (Locarnini et al. 2006), while the wind is the 

Quickscat wind grided product produced by CERSAT. 

 
The most prominent seasonal signal between 5°S and 15°S is the strong seasonal signal 

in sea level in the eastern half of the Indian Ocean (Fig. 5). Surprisingly the strong signals that 
develop in the eastern Indian Ocean seem to vanish as they reach ~75°E. This is the result of 
destructive interference between the local and remote forcing in the western half of the basin 
(Wang et al, 2001). 
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Figure 7. From Schott et al. (2009). Schematic representation of identified current branches 

during the summer (southwest) and winter (northeast) monsoons. Current branches indicated 

are the South Equatorial Current (SEC), South Equatorial Countercurrent (SECC), Northeast 

and Southeast Madagascar Current (NEMC and SEMC), East African Coastal Current 

(EACC), Somali Current (SC), Southern Gyre (SG) and Great Whirl (GW) and associated 

upwelling wedges (green shades), Southwest and Northeast Monsoon Currents (SMC and 

NMC), South Java Current (SJC), East Gyral Current (EGC), and Leeuwin Current (LC). The 

subsurface return flow of the supergyre is shown in magenta. Depth contours shown are for 

1000 m and 3000 m (grey). Red vectors (Me) show directions of meridional Ekman transports. 

ITF indicates Indonesian Throughflow. 
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1.3.2.2. North Indian Ocean 
Contrary to the south Indian Ocean, where currents do not reverse but only vary in 

strength annually, the Northern Indian ocean is home to very energetic seasonally reversing 
currents and strong seasonal upwellings. I won’t give an exhaustive description of North 
Indian Ocean circulation here (see Schott and McCreary, 2001 for that), but will only focus 
on some features, which will be of relevance for the rest of the text.  

First, the SST in the northern Indian Ocean has a strong semi annual cycle, with coldest 
temperatures during both monsoons (the coldes being actually during the winter monsoon), 
and warm SST in between. While those changes are almost entirely driven by air-sea fluxes 
(and primarily shortwave and latent fluxes) in the Bay of Bengal and eastern Arabian Sea, 
there is a strong contribution of Oceanic processes during the southwest monsoon in the 
western Arabian Sea (Shenoi et al., 2002; de Boyer Montégut et al., 2007). Indeed, the strong 
alongshore wind stress component associated with the Findlater jet drives two localized 
upwellings during the summer monsoon: the Somalia and Oman upwellings (Figs. 5, 7). 
There are also fascinating dynamical features associated with the rise of the fidlater jet (the 
great whirl, the Socotra eddy, the reversing and very intense Somali Current but I defer the 
interested reader to Shott and McCreary, 2001 for a review of those). 

The northern Indian Ocean also displays a strong dynamical response to the changing 
monsoon winds. The most striking example of this strong dynamical response is the Wyrtki 
jet (Wyrtki 1973). As I mentioned earlier, the zonal wind stress along the equator in the 
Indian Ocean is near zero or slightly easterly during both monsoons, and switches to stronger 
easterlies during the two Inter-monsoon seasons (April-May and October-November). The 
strong imbalance during the wind stress and zonal pressure gradient thus forces a strong 
eastward jet at the equator with zonal velocities frequently in excess of 1 m/s. As we shall see 
later (section 3.3), this zonal jet, and currents along the equator in general, are strongly 
modulated at intraseasonal timescale. 

The last point of relevance here is the dynamical response of the equatorial and coastal 
waveguides of the Northern Indian Ocean to the monsoon winds. Currents sometimes flow 
against the direction suggested by local wind forcing in the Northern Indian Ocean. This is for 
example the case for currents off the west coast of India during the winter monsoon (the 
southward wind stress would tend to force coastal upwelling Kelvin waves, negative sea level 
anomalies at the coast and southward currents offshore, but the opposite actually occurs: Figs. 
5 and 7). This is because remote forcing is very important in the Northern Indian Ocean. The 
alternating southwest/northeast monsoons provide a strong annual forcing that drives a basin-
scale sea-level response involving both equatorial wave dynamics and coastal wave 
propagation around the perimeter of the northern Indian Ocean (McCreary et al., 1993). The 
East India Coastal Current (EICC), for example, is largely influenced by remote wind forcing 
from the equatorial region (through the equatorial and coastal waveguides) and from the 
interior of the Bay of Bengal (through planetary waves) (McCreary et al., 1996). Coastal 
Kelvin waves then travel around Sri Lanka and the southern tip of India to impact the West 
India Coastal Current (WICC) (McCreary et al., 1993; Shankar and Shetye, 1997). I will 
discuss in section 3.3 how this picture is modified when considering intraseasonal rather than 
seasonal propagation of signals in the equatorial and coastal waveguides of the Northern 
Indian Ocean. 

1.4. Timescales and centres of action 

Now that I have given a quick overview of the mean state and seasonal cycle of the 
tropical Pacific Ocean, let me introduce the main timescales of variability that I will 
investigate in this manuscript: intraseasonal and interannual variability. I won’t discuss the 
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processes in detail here (I’ll give more precise description in the “background” sections of 
chapters 2 and 3) but just give an overview of the timescales and of the regions affected by 
intraseasonal variability in the Indo-Pacific region. 

1.4.1. Intraseasonal variability 

Fig. 8 gives an overview of the amplitude of SST and convection interannual variability 
over the Indo-Pacific. There is a strong modulation of convective variability in this frequency 
band over the Indo-Pacific warm pool. We will se below that this is largely associated with 
the Madden-Julian oscillation, the dominant mode of atmospheric ntraseasonal variability in 
the tropics. For SST, the most striking feature is a region of strong intraseasonal variability, 
slightly shifted to the north of the equator, close to the cold tongue in the Eastern Pacific. We 
will see that this variability is associated with oceanic internal instabilities known as 
“Tropical Instability Waves” (hereafter TIWs). The more modest SST variability outlined in 
the tropical ocean corresponds to the oceanic signature of the MJO (except in the western 
Arabian Sea, where there’s also a contribution from meso-scale eddies) and has potentially 
important climatic significance, which I will discuss in section 3.3.  

 
Figure 8. Intraseasonal amplitude of the SST (°C, TMI product, Wentz et al. 2000) and OLR 

(W.m
-2

, NOAA interpolated OLR, Liebmann and Smith, 1996) variability. This was estimated as 

the standard deviation of daily interannual anomalies these two fields in the 20-100 days band. 

Regions of strong variability that will be discussed later in the manuscript have been outlined. 

1.4.1.1. MJO 
Linear equatorial wave theory has proven to be a powerful tool for describing the 

oceanic or atmospheric response in near equatorial regions. Figure 9 shows that convection 
over the Indo Pacific warm pool indeed has modes of variability that match well the 
theoretical dispersion relation for equatorial waves. Mixed Rossby-Gravity waves are 
antisymmetric, can propagate either east- or west-ward but with eastward group velocity (Fig. 
9). At planetary scale, they have short timescales (6 days or less). The symmetric solution 
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include the eastward propagating Kelvin waves, with timescales of ~15 day or shorter. At 
lowest frequencies (say periods longer than 15 days), there are two sources of variability of 
convection. The first is the westward propagating long Rossby waves (zonal wavenumbers 2-
6, periods ~15-40 days). The second one is not predicted by the linear equatorial wave theory 
and corresponds to the MJO (zonal wanenumbers 1-4, ~30-80 day periods). 

The MJO is a large-scale organised perturbation of the atmospheric deep convection, 
with energetic fluctuations of tropospheric winds at periods of 30-90 days (e.g. Zhang, 2005). 
The MJO originates from the Indian Ocean and propagates eastward at ~5 m s-1 into the 
western Pacific. Because of the strong coupling with deep atmospheric convection, the MJO 
surface signature becomes much weaker beyond the eastern edge of the Pacific warm pool 
(Figure 8). 

Note that a distinction is generally made between the “MJO” (which was originally seen 
as an essentially equatorial, eastward propagating phenomenon) and the “summer Tropical 
Intraseasonal Oscillation” (the active and break phases of the Indian and south-east Asian 
monsoon, which is shifted to the northern Hemisphere and displays northward phase 
propagation) (e.g. Goswami 2005, Wang 2005). In this document, we have chosen to 
collectively name the summer and winter oscillations “MJO”, irrespective of the fact that they 
might have slightly different physics: they are in any case closely associated (e.g. Wheeler 
and Hendon 2004). 

 
Figure 9. From (Wheeler and Kiladis, 1999). Spectrum of the OLR field in the frequency-zonal 

wavenumber space for the antisymmetric (left) and symmetric (right) parts. Curves 

corresponding to the theoretical dispersion diagram of equatorial waves have been added for 

three equivalent depths (12, 25 and 50m). In addition to the modes predicted by linear 

equatorial wave theory (mixed Rossby-gravity waves, Kelvin and Rossby waves), there’s a 

planetary scale eastward propagating mode: the MJO. 

 
I will present the main theories for explaining the MJO briefly in section 3.3. I underline 

here its basic timescale (30-90 day) and spatial distribution (over the Indo-Pacific warm pool). 
Because MJO is modulating convection, it is associated with perturbations of surface fluxes. 
Those perturbations include primarily momentum (surface wind response to the tropospheric 
heating associated with convection), latent heat flux (increased evaporation due to stronger 
winds) and shortwave flux (decreased solar radiation due to increased cloudiness). The MJO 
is hence associated with SST perturbations over most of the Indo-Pacific warm pool (e.g. 
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Duvel and Vialard, 2007). I will discuss in more details the processes of these SST 
perturbations and their potential feedbacks on the MJO in section 3.3. 

1.4.2.2. TIWs 
We saw above that the MJO is intrinsically an atmospheric phenomenon, with an 

oceanic signature. For TIWs, it is largely the opposite. As we will see in section 2.2, TIWs 
arise from instabilities developing within the eastern Pacific currents and cold tongue 
systems. TIWs also exist in the eastern Atlantic Ocean. There are no TIWs per se in the 
Indian Ocean, but there some related variability in the western equatorial Indian Ocean (e.g. 
Luyten and Roemmich, 1982; Reverdin and Luyten, 1986; Tsai et al., 1992). I will focus in 
this document on equatorial Pacific TIWs. 

 

 
Figure 10. From Vialard et al. (2003). Time–longitude section of 50-day high-pass filtered (a) 

observed TRMM SST and (b) modeled SST along 2°N for May 1998–March 1999. The thick line 

corresponds to a propagation speed of 0.5 m s
-1

. The lower panel shows a SST snapshot with 

undulations of the SST fronts on poleward edges of the cold tongue, characteristic of TIWs. 



Ocean-Atmosphere variability over the Indo-Pacific Basin                                                19/91 

TIWs were first spotted as undulations of the SST front to the north of the cold tongue 
in the Pacific ocean (Fig. 8, Legeckis, 1977). TIWs are characterized by SST variations of 1-
2°C, periods of 20-40 days, wavelength of ~1000-2000 km and westward phase propagation 
of around 0.5 m.s-1 (e.g. Qiao and Weisberg, 1995; Fig; 10). TIWs have strong seasonal (and 
interannual) amplitude variations: they strength varies with the cold tongue (they are almost 
suppressed in September-October or during El Niños; e.g. Vialard et al., 2001). I will discuss 
the possible role of TIWs in the tropical Pacific mean state and ENSO cycle in section 2.2. 

Similarly to the MJO (a primarily atmospheric phenomenon with an oceanic signature), 
the TIWs also have an atmospheric signature (e.g. Xie et al., 1998, Chelton et al. 2001). I will 
discuss in section 2.2 if the TIW-atmospheric signature feedbacks on TIW themselves (i.e. if 
air-sea coupling is to some extent important for TIWs). 

1.4.2. Interannual variability 

Fig. 11 gives an overview of the amplitude of interannual variability of the SST and 
convection over the Indo-Pacific domain. The interannual variability of SST in the eastern 
and cenral Pacific cold tongue associated with ENSO is the most striking pattern on that plot. 
In comparison, the SST variability associated with the IOD, along the coast of Java and 
Sumatra might seem negligible. However, because of the high mean temperature of the Indian 
Ocean (close to the threshold for deep atmospheric convection over a large fraction of the 
basin and the year), even modest SST anomalies can generate significant deep convection 
anomalies, and hence tropospheric wind response.  

The pattern of interannual anomalies of OLR confirm this notion that the warm pool is 
the hotspot of convective variability: the region of strong convective variability is indeed 
largely encompassed (or along the edges) of the warmest water (Fig. 11 and Fig. 1), as was 
the case for intraseasonal variability (Fig. 8).  

 
Figure 11. Amplitude of SST (°C, TMI product, Wentz et al. 2000) and OLR (W.m

-2
, NOAA 

interpolated OLR, Liebmann and Smith, 1996) interannnual variability. This was estimated as 

the standard deviation of monthly interannual anomalies these two fields. Regions of strong 

variability that will be discussed later in the manuscript have been outlined. 
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There is a tendency of the IOD and ENSO to co-occur (e.g. Schott et al 2009). By 
regressing interannual anomalies to an index of ENSO, figure 12 gives an overview of the 
spatial patterns of convection, surface wind and SST anomalies associated to a mature ENSO 
and IOD. In the next two sections, I will describe briefly the spatial patterns and timescales 
associated to both phenomenons, and will come back to the details of the processes in sections 
2.3 and 3.4. 

 
Figure 12. SST (color, ºC), OLR (contours, W/m2) and winds (vectors) anomalies in fall (Sep-

Nov) during an El Nino year. The fields are regressed on the Nino3.4 (black box, (170ºW-

120ºW; 5ºS-5ºN) SST anomaly in Dec-Feb. Only values significant at the 90% level are plotted. 

Since there is a tendancy for IODs to co-occur with ENSO, this analysis extracts the typical 

structure of both ENSO and the IOD.  

1.4.2.1. El Niño 
Figure 12 shows the trademark features of an El Niño: a weakening of the cold tongue, 

and an associated warm SST anomaly in the central and western Pacific. The atmospheric 
response to this change in SST distribution is a shift of convection from the maritime 
continent to the western and central Pacific, and a southward shift of the ITCZ in the eastern 
Pacific. The wind response to this anomalous tropospheric heating agrees well with the one 
predicted by the Gill model (Fig. 2), with predominantly westerly anomalies to the west of the 
anomalous tropospheric cooling.  

Now that I have brushed ENSO’s spatial structure, let me review quickly its temporal 
characteristics. First, ENSO is phase locked to the annual cycle, with the peak of ENSO 
occurring most generally at the end of the year (November-December). The SST and wind 
anomalies associated to an ENSO typically start developing in April-May. ENSO then 
culminates in November-December and has receded by March-April of the following year 
(e.g. Harrison and Larkin, 1998). The typical duration of ENSO events is hence one year. 
Spectrums of the average SST anomalies in the “Niño3.4 box” (see Fig. 12 for definition), a 
current index for El Niño, have a wide spectrum in the 2-7 years range, with most energetic 
fluctuations around 3-4 years. This is the typical return period of an ENSO.  

1.4.2.2. Indian Ocean variability 
The Indian Ocean had long been known to exhibit variability associated with ENSO. 

Increased convection over the central Pacific during an El Niño induces anomalous 
subsidence over the Indian Ocean (Fig. 2) and thus increased solar forcing that tends to raise 
the SST quite uniformly over the basin (Klein et al., 1999; Lau and Nath, 2000). 

It was suggested quite early that, in addition to this uniform variability associated with 
ENSO, there was also a co-variability between zonal winds in the central equatorial Indian 
Ocean and the east-west temperature gradient (Reverdin et al., 1986). This aroused the 
attention of the scientific community more acutely after the 1997 event in the Indian Ocean 
and the papers it generated (e.g. Saji et al., 1999; Webster et al., 1999; Murtugudde et al., 
2000). It now appears more clearly that the “Indian Ocean Dipole” (IOD) is an independent 
mode of variability of the Indian Ocean, but that it often (but not always) co-occur with 
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ENSO (e.g. Yamagata et al., 2004; Schott et al., 2009). Because of this tendency of both 
phenomenons to co-occur, it is difficult to separate their relative influences from observations 
only, as illustrated by Figures 11 and 12, where large convective anomalies develop in 
between the Indian and Pacific Oceans. 

Figure 12 captures the patterns of the IOD at its peak, in boreal fall. The IOD is 
associated with a well-defined cold anomaly along the coast of Java and Sumatra, and more 
variable warming of the western Indian Ocean. The cooling of Java and Sumatra is associated 
to a local suppression of convection there. As predicted by the Gill model (Fig. 2), this results 
in anomalous easterlies over the central Indian Ocean. 

The Indian Ocean dipole has a shorter life span than El Niño. Its surface signature 
becomes visible in May-June, peaks in October, and then quickly recedes, largely 
disappearing by the end of the year for a total duration of about 6 months (e.g. Saji et al, 
1999). The IOD has a biennial tendency. 

 
 
The purpose of this chapter was to introduce the main characters that will come back in 

the following ones: the MJO and TIWs at intraseasonal timescale, and the IOD and ENSO at 
interannual timescale. Now we’ll get to know these characters a bit more in the next chapters. 

 



2. Pacific Basin 
In this chapter, I will first give an overview of the observational system in place in the 

Pacific Ocean, and which allowed to make huge progress in the understanding of variability 
in this ocean. I will then proceed to give a more detailed description and selected results, first 
about TIWs and then about El Niño. 

2.1. Introduction 

Because of the overwhelming influence of El Niño on the global climate, the tropical 
Pacific was put early at the heart of research on global climate. The main objective of TOGA 
(Tropical Ocean-Global Atmosphere, a research international initiative from the World 
Climate Research Program) was to improve the understanding and predictability of El Niño. 
In order to achieve the TOGA goals, a strategy of large-scale, long-term monitoring of the 
upper ocean and the atmosphere has been planned. One of the results of this effort was the 
development of the TAO (Tropical Atmosphere Ocean) array (e.g. McPhaden et al., 1998). 
NOAA largely supported this effort (with the PMEL at the frontline), with contributions from 
Japan and France for the western part of the array. 

 
Figure 13. Distribution of moorings from the TAO/TRITON array (above) and sketch of the 

design principle ATLAS mooring. There are about 70 active moorings in the TAO array. 
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The TAO/TRITON array is comprised of about 70 moorings. Each of these moorings 
records subsurface temperature and salinity at selected depths between ~ 1m and 500m. The 
surface platform has wind, rainfall, downwelling shortwave radiation, air temperature and 
humidity measurements. In combination with surface SST, these parameters allow to estimate 
air-sea exchanges of momentum, heat and freshwater by applying bulk formulae (e.g. Fairall 
et al. 2003).  

The moorings transmit daily averages of most parameters to land through an Argos 
antenna. Higher resolution data (generally 10-minute averages) is recorded internally and is 
retrieved upon mooring servicing. Some of the data (e.g. surface winds, SST, subsurface 
temperature) is transmitted to the GTS (Global Telecommunication System) and is 
assimilated into meteorological analyses and in oceanic analyses used to initiate seasonal 
forecasts (section 2.3.2.b). All of the data is available freely and timely through the Internet to 
the scientific community (http://www.pmel.noaa.gov/tao/). With about 600 refereed 
publications using the TAO data since the beginning of the array in 1986, this array is a living 
demonstration of how observations are the drivers of science. A similar array is now quickly 
developing in the Indian Ocean (section 3.1) and will hopefully allow a similar flourish of 
scientific results in the least observed of the three tropical oceans. 

2.2. Tropical Instability Waves 

2.2.1. Background information 

Spatio-temporal properties of TIWs. As we saw earlier, TIWs appear in space-borne sea 
surface temperature (hereafter SST) as well as ocean color measurements (Legeckis 1977, 
Chavez et al., 1999, Chelton et al., 2000, Menkes et al., 2002), as large scale westward-
propagating oscillations of the temperature front separating cold and rich waters of the 
equatorial upwelling from warmer and nutrient-depleted waters to the north. These 
oscillations have a longitudinal scale of 1000-2000 km (Qiao and Weisberg, 1995) and 
propagation speed of about 0.3-0.5 m.s-1 (Weidman et al., 1999). They are associated with 
monthly-timescale variations in sea level (Busalacchi et al., 1994, Perigaud 1990; Weidman et 
al. 1999), as well as in currents north of the equator. These features are associated with 
anticyclonic vortices (Flament et al. 1996; Kennan and Flament 2001; Menkes et al. 2002) as 
first suggested by Hansen and Paul (1984).  

Instability mechanism. There is no consensus on the instability mechanisms that give 
rise to TIWs (Weidman et al. 1999). Some studies suggest that barotropic instability of the 
shear region between the North Equatorial Countercurrent and South Equatorial Current could 
be important (Cox 1980), while others stress the importance of the shear between the 
Equatorial Undercurrent and the South Equatorial current (Luther and Johnson 1990; Qiao 
and Weisberg 1998; McCreary and Yu 1992). Other processes (such as baroclinic, Kelvin–
Helmholtz or frontal instability) may also contribute to TIWs (Luther and Johnson 1990; 
McCreary and Yu 1992; Masina et al. 1999). More recently, TIWs have been described as the 
resonance of the first and second meridional mode, first baroclinic mode of Rossby Waves, 
modified to include interactions with the mean flow (Lyman et al., 2005), but with no clear 
explanation of how this relates to other instability mechanisms. 

Impact of TIWs on heat budget. At seasonal scale, observations by Stevenson and Niiler 
(1983), Hansen and Paul (1984), Bryden and Brady (1989), Baturin and Niiler (1997), 
Swenson and Hansen (1999), Wang and McPhaden (1999) have shown that TIWs play a large 
role in the cold tongue heat budget. Estimates in those studies suggest that the horizontal TIW 
flow induces large equatorward transport of heat, equivalent or stronger than the effect of the 
seasonal surface forcing.  
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Atmospheric signature of TIWs. Several observational studies have shown that TIWs 
have an atmospheric response (Xie et al., 1998; Liu et al., 2000; Chelton et al., 2000). Wind is 
accelerated over warm anomalies and decelerated over cold ones, producing centers of 
convergence and divergence collocated with maximum SST gradient regions (Fig. 14). The 
convergence (divergence) centers in turn lead to increased (decreased) water vapor content in 
the lower layers of the atmosphere. These spatial patterns are consistent with the suggestion 
by Hayes et al. (1989) that the modulation of the wind is linked to the impact of TIW 
temperature anomalies on the stability of the atmospheric boundary layer (ABL).In situ data 
analysed by Hashizume et al. (2002) is also consistent with this mechanism. However, 
Hashizume et al. (2001) and a modeling study by Small et al. (2003) suggest that the zonal 
pressure gradient driven by the temperature anomalies is also an important factor, as initially 
suggested by Lindzen and Nigam (1987). 

 
Figure 14. From Chelton et al. (2000). Snapshot of SST (contours) and wind stress magnitude 

(colors) on top; and of SST (contours) and wind stress divergence on bottom. Decreased 

vertical mixing in the atmospheric boundary layer causes the easterlies to slow down over cold 

cusps, causing strong divergence on the leading edge of the TIW. 

2.2.2. Selected results 

Above, I have presented background information on some aspects of TIWs. In this 
section, I will present a selection of results pertaining to most of the aspects discussed above. 
The results in this chapter are highlights from the following publications: Vialard et al. 
(2001), Vialard et al. (2002), Vialard et al. (2003b), Pezzi et al. (2004), Gorgues et al. (2005), 
Menkes et al. (2006), Dutrieux et al. (2008). 

2.2.2.1. Structure and circulation of TIWs 
TIWs are associated with anticyclonic eddies north of the equator, or tropical instability 

vortices (TIVs). TIVs are about 500 km in diameter, and are responsible for the undulating 
shape of the equatorial front. They are clearly revealed by surface drifter trajectories (Hansen 
and Paul 1984; Flament et al. 1996; Kennan and Flament 2000; Menkes et al. 2002; Foltz et 
al. 2004). Revealing the exact circulation pattern within these vortices is important, because it 
will explain some of their transport properties, and also their dynamical properties, as we’ll 
see below. 
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Figure 15. From Menkes et al. (2006). (Left) Horizontal surface structure of SST and currents 

of a TIW in both model and observations. (Right) Zonal cross section at 4°N (black box 

indicated on the left) in the model. The results above are quite similar to observations of 

Kennan and Flament (2000).  

Fig. 15 shows the typical circulation pattern within a TIV. There is a clear anticyclonic 
circulation at the surface, which drives the undulations of the SST front. Note that there is a 
strong cross-isotherm flow in the southern part of the eddy, which is associated to strong 
zonal heat advection (next section). The velocity has a tilted structure with maximum 
northward flow at the surface, while the return southward flow is maximum at ~100m. The 
anticyclonic vortex is associated with a sea level maximum and a thermocline depression at 
its centre. There is surface convergence (and downwelling) in the leading edge of the vortex, 
and divergence (and upwelling) in its trailing edge.  

 
Figure 16. From Dutrieux et al. (2008), here for a numerical experiment of TIVs in the Atlantic 

ocean. The left panels show the Lagrangian trajectory of a particle inside a TIV and its depth 

variations. The right panel show how long particles typically reside within the TIV structure. 

Whereas the TIV remains a coherent dynamical structure throughout its zonal propagation, it 

constantly exchanges water with its environment. 
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This picture is consistent with the Lagrangian analysis of Fig. 16. Particles within the 
vortex describe a cycloidal trajectory, diving in the southwestern part of the vortex, and 
progressively rising back to the surface as they travel back southward. This typical trajectory 
of a particle residing inside the vortex should however not hide the fact that the vortex 
constantly exchanges mass with its environment. Fig 16. shows that after 20 days, the vortex 
has typically exchanges half of its mass with surrounding waters. 

This strong exchange of water with the environment suggests two important 
consequences. First, to be able to contribute to long term heat transport (next section) 
throughout the basin, the eddies need be associated with a net particle transport all along their 
trajectory, as suggested by figure 16. Second, there is some ambiguity about TIWs, which are 
considered by some largely as a superposition of linear equatorial waves (e.g. Lyman et al. 
2005, 2007) and by others as fully non-linear vortices (Flament et al., 1996). In general, a 
vortex is seen as a body of water in rotation that is more or less isolated from its surroundings. 
On the contrary, a dispersive linear wave can have a similar current signature, but will not 
transport mass. TIVs thus appear to be on the fringe of the two cases, because they transport 
mass zonally over long distances, but still exchange a significant amount of properties with 
their environment. 

2.2.2.2. Heat and salt transport by TIWs 
We saw in the previous section that TIWs are associated with strong cross-isotherm 

currents in the mixed layer. Fig 17. shows that this cross isoterm flow is associated to a 
significant heating slightly north of the equator (mostly by zonal advection, with some 
contribution of meridional advection) and a cooling further north (contributed both by zonal 
advection and meridional advection of the mean SST gradients by meridional current 
anomalies, Menkes et al. 2006). These terms contribute strongly to the surface layer heat 
budget at the TIW scale (and a detailed analysis is given in Menkes et al. 2006), but do not 
average to zero over longer time-scales (last panel of figure 17). This results in a strong 
horizontal transport of heat and salt, which contributes significantly to the long-term heat 
budget of the tropical Pacific. 

 
Figure 17. Model results from (Vialard et al. 2001). a) Snapshot of model SST showing TIW 

cusps; b) Corresponding snapshot of currents (vectors), horizontal advection (colors) and 

selected isotherms (contours); c) Monthly average of advection terms. The strong zonal 

advective warming in the trailing edge of the TIW (b) contributes to long-term warlming of the 

cold tongue (c). 
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At seasonal scale, observational studies have shown that TIWs play a large role in the 
cold tongue heat budget (e.g. Baturin and Niiler 1997, Swenson and Hansen 1999, Wang and 
McPhaden 1999). Estimates in those studies suggest that the horizontal TIW flow induces 
large equatorward transport of heat, equivalent or stronger than the effect of the seasonal 
surface forcing. In these studies based on observations, however, only the lateral transport of 
heat by TIWs was quantified, and not the vertical component due to data limitations. 
However, Vialard et al. (2001) noted that there may be a compensation between the 
climatological lateral and vertical eddy heat advection associated with TIWs, although they 
did not explicitly compute vertical eddy heat advection. Thus, the potential compensation 
between horizontal and vertical TIW-induced mean advection remained to be quantified. If 
such compensation indeed exists, the TIWs contribution to the long-term budget of the cold 
tongue might be smaller than what was previously estimated in observational studies that only 
took into account horizontal heat flux estimates.  

 
Figure 18. Model results from Menkes et al (2006) and Vialard et al. (2002). Decomposition of 

the mixed layer heat balance into its various components. The first row shows advection by low-

frequency currents. The second row show eddy-terms (i.e. advection by TIWs). The third row 

shows vertical and lateral diffusion, atmospheric forcing and total advection (eddies + low-

frequency). The last row shows the decomposition of the vertical diffusion term into a low 

frequency and eddy components. The last panel on the last row shows advection of mixed layer 

salinity by TIWs. TIWs contribute significantly to long-term warming and freshening of the cold 

tongue. 

A modeling study by Jochum et al (2004) evaluated both meridional and vertical 
advective heat fluxes associated to TIWs in the Atlantic ocean in the top 20m, and concluded 
that there was an almost complete compensation between the meridional heat fluxes and 
vertical heat fluxes. In Menkes et al. (2006), we followed a more physical approach by 
computing the average mixed layer budget (rather than the top 20m) and decomposing each 
term in a mean current and TIW contribution (Fig. 18). We also used an advection 
computation rather than the flux divergence computation. This approach is better suited for 
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this kind of study, since flux divergence studies do not allow to separate the influence of mass 
convergence (see Menkes et al. 2006 for details). 

In contrast to what has been argued by Jochum et al. (2004), TIW-induced vertical 
advection (cooling) is negligible in the SST budget (Fig 18g). It however plays a role when 
considering the heat budget over the upper 200m. Cooling by vertical mixing, however, is 
structured at the TIW scale and almost compensates for lateral advective heating in the cold 
cusps. This study lead to a thorough evaluation of all the contributions to the SST balance in 
the TIW-active region, and confirmed the importance of TIWs in the long term heat budget. 
Within 160°W-90°W, 2°S-6°N, where TIWs are most active, TIW-induced lateral advection 
leads to a warming of 0.8°C.month-1 (vertical TIW cooling being negligible), of the same 
order as the 0.95°C.month-1 effect of atmospheric fluxes, while the mean currents and vertical 
mixing cool the upper ocean by –0.65°C.month-1 and –1.13°C.month-1 respectively. In the 
study of Vialard et al. (2002), a similar estimate of contribution of TIWs was made for the salt 
balance of the tropical Pacific mixed layer (last panel of Fig. 18). The TIWs contribute to 
transport freshwater from under the ITCZ southward and then westward along the equator. 
The resulting long-term advection of salt by TIWs is a freshening north of the equator, 
equivalent in magnitude to the contribution of zonal advection by low frequency currents or 
vertical mixing.  

I will discuss the potential role of heat transport by TIWs in the ENSO cycle in section 
2.3. 

2.2.2.3. Phase locking of TIWs to the wind 
As I mentioned earlier, there is no clear consensus about the exact instability 

mechanism of TIWs. However, it is quite clear that TIWs are the result of an instability, since 
they also occur in experiments with constant forcing. If TIWs were developing through 
amplification of small random perturbations of the background flow, one would expect their 
phase to be random. However, previous studies suggested this is not the case. Allen et al. 
(1995) showed that their model correctly predicted observed TIW phase, and suggested that 
the development of TIWs is phase locked to the background flow fluctuations induced by 
intraseasonal wind variability. Benestad et al. (2001) showed that TIWs phase in their model 
was shifted by one week when they shifted the intraseasonal variability of the wind forcing by 
the same amount.  

In Vialard et al. (2003), we took a different approach and investigated the sensitivity of 
TIWs to initial conditions in an oceanic model, which reproduces many features of observed 
TIWs. The model was run using realistic forcing for the 1993–99 period and rerun starting 
from different initial conditions (restarted in July 1993 from the 1993–96 average of the 
previous run). As expected, TIWs are initially completely uncorrelated in the reference and 
perturbation experiments. After a few years, however, the TIW phases in the two experiments 
converge (Fig. 18). In experiments with small initial perturbations, Small differences 
sometimes grow locally in space and time (i.e., a few TIW cusps can be located differently in 
the control and perturbed experiments), but never enough to significantly harm the phase 
agreement over the whole active TIW region. Additional experiments with idealized wind 
forcing allowed to show that TIWs are phase-locked to the wind forcing and that the phase 
locking is strongest when the full spectrum of the winds is used rather than, e.g., the seasonal 
cycle. In the case of constant wind forcing, there is obviously no phase locking, but a limit 
cycle behaviour. 

Those results hence suggest that a numerical model able to reproduce correctly the 
spatio-temporal characteristics of the TIWs should be able to predict accurately their phase 
from the information of wind forcing only. To my knowledge, current theories of TIWs do 
not explain this phase locking to the wind forcing. 
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Fig 19. Modelling results from Vialard et al. (2003). Panel a) shows a time-longitude plot of SS 

at 2°N in a control experiment with realistic winds for the 1993-1999 period. TIWs are clearly 

visible in this experiment. Panel b) show the difference between panel a) and a sensitivity 

experiment restarted from the 1993-1996 average of the control run in mid 1993. TIWs come 

back in pphase after a few year in two experiments with a very different initial state. 

2.2.2.4. Air-Sea interactions in TIWs 

 
Figure 20. Modelling results from Pezzi et al. (2004). Average standard deviation of 

temperature, zonal and meridional current between 90°W and 150°W for control experiment 

with no coupling (first row) and experiment with simple air-sea coupling at TIW-scale (second 

row). Active air-sea coupling tends to diminish the amplitude of TIWs. 
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We saw earlier that TIWs have an atmospheric response in wind stress, due in large part 
to the modulation of vertical mixing in the atmospheric boundary layer by the TIWs cold and 
warm patches. One interesting question is: does this modulation feedback on TIW properties 
themselves. To that end, we included a very simple parameterisation of coupling in the ocean 
model already used to study TIWs in Vialard et al. (2001), Vialard et al. (2002), Vialard et al. 
(2003b), Menkes et al. (2006). Although very simple, this parametrisation reproduced 
qualitatively well the observed coupling between wind stress and SST, with a reasonable 
amplitude. Active coupling results in a negative feedback on TIWs, slightly reducing their 
temperature and meridional current variability, both at the surface and sub-surface (Fig. 20). 
This reduced activity modulates the meridional heat and momentum transport, resulting in 
modest changes to the mean state, with a cooler cold tongue and stronger equatorial currents. 

A recent excellent study by Small et al. (2009) pointed out that there are in fact two 
sources of modulation of wind stress by TIWs: 1) ocean surface currents altering the relative 
motion between air and sea and hence the stress fields and 2) SST gradients forcing changes 
in stability and near-surface winds. They could evaluate both effects in their study combining 
coupled modeling and observations. They corroborated our result that the stability effect only 
leads to a modest reduction in TIW activity. On the other hand, the different spatial pattern of 
wind curl associated with the effect of currents drives a much more significant reduction in 
TIW activity. 

2.2.2.5. Biogeochemical impact of TIWs 
TIWs also modulate the distribution of biogeochemical parameters. Satellite pictures 

show clear meridional oscillations of the front separating equatorial nutrient-rich water and 
oligotrophic water from the north (Chavez et al. 1999). TIW-induced upwelling has been 
suggested to have a net fertilization effect on the climatology of the equatorial region (Yoder 
et al. 1994; Strutton et al. 2001; Menkes et al. 2002). 

 
Figure 21. Modelling results from Gorgues et al. (2005). The left column shows the eastern 

Pacific long-term average values for iron (in nM) (A), chlorophyll (mg m
-3

) (C) and new 

production (mmolN m
-2

 day
-1

) in a biogeochemical model simulation with realistic forcing. The 

right column shows difference to the left column in an offline experiment where TIWs have been 

filtered out. Contrary to the previous conception, TIWs tend to diminish the iron concentration 

in the cold tongue. 
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In Gorgues et al. (2005), we used a biogeochemical model to show that, contrary to this 
suggestion, TIWs induce a decrease of iron concentration by 10% at the equator and by about 
3% over the Wyrtki box [90°W–180, 5°N–5°S] (Fig. 21). Chlorophyll decreases by 10% at 
the equator and 1% over the Wyrtki box. This leads to a decrease of new production up to 
10% at the equator (4% over the Wyrtki box). TIW-induced horizontal advection exports 
iron-rich equatorial water to the north, but also brings iron-depleted water to the equator 
leading to a net decrease in iron. Additional iron decrease is caused by TIW-induced iron 
vertical diffusion. These two mechanisms are partly counter balanced by a decrease of iron 
biological uptake, driven by lower phytoplankton concentrations, and to a lesser extent by 
TIW-induced iron vertical advection. 

2.3 El Niño 

2.3.1. Background information 

 
Figure 22. Schematical view of the tropical Pacific ocean during a normal year (left) and 

during an El Niño (right). The transition from a normal to an El Niño year occurs because of a 

positive interaction loop named the Bjerknes feedback. 

At the simplest level, El Niño develops as the result of the Bjerknes feedback (Bjerknes, 
1966), a positive ocean-atmosphere interaction that links the strength of easterlies to surface 
temperature in the Pacific cold tongue. A warm anomaly in the central Pacific induces a 
westward displacement of the atmospheric deep convection, and westerly wind anomalies in 
the central and western Pacific (Fig. 2). The westerly wind anomaly drives an ocean response 
that reinforces the initial Sea Surface Temperature (SST) anomaly: the downwelling Kelvin 
wave that is excited has a current contribution that pushes the warm pool to the east and 
depresses the thermocline in the west. This positive feedback loop eventually leads to 
anomalous conditions such as those displayed on Figure 22, typically culminating in boreal 
winter.  

This simple instability mechanism is at the heart of all ENSO theories. But it is however 
incomplete, primarily because it does not describe the return to normal conditions after an El 
Niño. There are several mechanisms to explain this return to normal condition, and they all 
involve the ocean as the “memory” to the coupled ocean-atmosphere system. I.e. while the 
tropospheric wind response is in quasi equilibrium with SST anomalies, the ocean response to 
these wind perturbations is much slower, and deterministic through, e.g., equatorial wave 
dynamics. This is what induces some predictability in ENSO, and what allows the coupled-
system to revert to its normal state. Four types of negative feedbacks involving this slow 
response of the ocean have been proposed, and most of them seem to be valid at times (i.e. 
there is more than one process that can terminate ENSO, and several of them sometimes act 
together). These processes are:  
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• the “delayed oscillator” (Suarez and Schopf 1988, Battisti and Hirst 1989) was the 
first to be proposed. Westerly anomalies during the rise of El Niño force upwelling 
Rossby waves, which reflect at the western boundary and come back after a few 
months as upwelling Kelvin vaves. In the original version of the delayed oscillator, 
thermocline anomalies associated to these waves tend to cool the SST in the central 
Pacific, eventually terminanting the El Niño. The advective-reflective oscillator was 
proposed by Picaut et al. (1997). In essence, the idea is not so different than the one 
of the delayed oscillator (reflected waves induce the termination of El Niño), but 
this model is more physical in that it underlines the role of zonal advection for 
modifying SST in the central Pacific. Zonal advection is indeed one of the primary 
drivers of SST anomalies in the central Pacific during El Niños (see, e.g., the review 
of Picaut et al. 2001). 

• The equatorial Pacific Warm Water Volume (WWV) is an essential parameter in the 
ENSO cycle (e.g. Meinen and McPhaden, 2000). The “recharge oscillator” model 
of ENSO (Jin, 1997) provides a simple physical explanation: the WWV controls 
temperature of water upwelled in the eastern Pacific; a high WWV favors a warm 
anomaly, leading to an El Niño via the Bjerknes feedback. The zonal wind 
anomalies during an El Niño then induce a zonal pressure gradient that tends to 
chase warm water away from the equatorial strip, inducing negative WWV 
anomalies after the ENSO peak and a transition to La Niña. 

• The “western Pacific oscillator” was proposed by Weisberg and Wang (1997). 
Easterly wind anomalies tend to develop in the far western Pacific at the height of 
ENSO (e.g. Wang et al. 1999). These equatorial easterly wind anomalies cause 
upwelling and cooling (e.g. Vialard et al. 2001) that proceed eastward as a forced 
ocean response providing a negative feedback to terminate ENSO. Boulanger and 
Menkes (2001) and Boulanger et al. (2003) demonstrated that, for the 1997–98 El 
Niño, about two-thirds of the Kelvin wave amplitude is actually forced by easterly 
wind in the western Pacific and the other one-third is due to wave reflection at the 
western boundary. 

 
Figure 23. From Wang and Picaut (2004). A summary of the important elements in the main 

paradigms for negative feedbacks that terminate an ENSO. 

While the ocean provides some predictability to ENSO by inducing some long 
timescales, the atmosphere has a tendency to reduce this predictability because of stochastic 
forcing. A lot of studies have illustrated the potential role of intraseasonal wind anomalies in 
the western Pacific on ENSO development through the generation of Kelvin waves (e.g. 
Kessler and McPhaden 1995; McPhaden 1999; Vialard et al. 2001; McPhaden et al. 2006; 
Lengaigne et al. 2004). These anomalies include westerly wind bursts (WWBs) and the 
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Madden Julian Oscillation. WWBs are somewhat related to the MJO (they occur more 
frequently within the background westerly flow associated with the active phase of the MJO, 
Seiki and Takayabu, 2007), but are synoptic features, while the MJO is planetary scale. In 
both case, the basic mechanism is the same: the westerly winds force downwelling Kelvin 
wave, which tend to push the warm pool eastward and depress the thermocline in the western 
Pacific. In the case of the MJO, however, it is not obvious how a weak, zero-average signal 
(the MJO also has suppressed phases, associated with easterly wind anomalies) can induce a 
low frequency response of the coupled system. It has been suggested that the westerly MJO 
wind anomalies are more efficient than the easterly, because it pushes the warm pool eastward 
and extends the fetch of the region over which the MJO is active (Kessler and McPhaden 
1995; Hendon et al. 1998). It has also been suggested that resonance at lowest frequencies 
makes the low-frequency tail (periods longer than ~60 days) of the MJO more efficient in 
generating coupled model response than the higher frequency part (Hendon et al. 1998; 
Zavala-Garay et al. 2008).  

2.3.2. Selected results 

The results in this chapter are highlights from the following publications: Vialard et al. 
(2001), Radenac et al. (2001), Picaut et al. (2001), Vialard et al. (2002), Zavala-Garay et al. 
(2008) for the processes of El Niño; and Troccoli et al. (2002), Tang et al. (2003), Weaver et 
al. (2003), Moore et al. (2003), Vialard et al. (2003a), Vossepoel et al. (2004), Tang et al. 
(2004), Vialard et al. (2005), Ricci et al. (2005), Moore et al. (2006) for the prediction and 
predictability parts. 

2.3.2.1. Processes of El Niño 
The 1997-98 El Niño was the strongest and best-observed of the 20th century (e.g. 

McPhaden, 1999). Modeling studies of the 1997-98 El Niño by Vialard et al. (2001), Radenac 
et al. (2001), Vialard et al. (2002) illustrate many important processes in the rise and fall of an 
El Niño. 

Role of westerly wind bursts 

 
Figure 24. Modelling results from Vialard et al. (2001). Longitude-time section of 2°N-2°S 

averaged a) SST, b) Zonal wind stress, c) depth of the 20°C isotherm interannual anomalies and 

d) zonal surface current, during the 1997-98 El Niño. The thick contour in all 3 plots is the 

model’s 28°C isotherm. The two thick lines indicate the downwelling Kelvin waves associated 

with the December 1997 and March 1998 WWBs. 
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Fig. 24 shows ocean model results for the 1997-98 El Niño, using realistic forcing. The 
model displays two very clear downwelling Kelvin waves (Fig. 24c) associated with the 
westerly wind bursts of December 1997 and March 1998 (Fig. 24b). These Kelvin waves 
seem to initiate the warm pool eastward displacement in the central Pacific, and weakening of 
the cold tongue in the eastern Pacific (Fig. 24a). An analysis of surface layer heat budget (Fig. 
25, Vialard and Delecluse, 1998a for the description of the method) allows to understand 
better the various processes of the SST change associated with this Kelvin wave.  

 
Figure 25. Modelling results from Vialard et al. (2001). Interannual anomalies of the surface 

layer heat budget during the 1997-98 El Niño averaged in the Niño 4 (5°N-5°S, 50°W-160°E; 

left) and Niño 3 (5°N-5°S, 90°W-150°W; right) boxes. Zonal advection dominate the SST 

changes in the central Pacific, while vertical processes are very important in the cold tongue. 

TIWs suppression provide a negative feedback to El Niño growth. 

In the central Pacific (Niño4 box), the main process responsible for SST rise (initially, 
but also until the end of 1998) is zonal advection: it is the zonal current anomaly associated 
with the downwelling Kelvin wave that initially pushed the warm pool eastward. In the 
eastern Pacific, the main contribution is from vertical processes (vertical advection and 
mixing): the deepening of the thermocline results in diminished cooling. 

Role of salinity and zonal advection 

As we have seen above, zonal advection plays a fundamental role in the central Pacific, 
while vertical processes tend to be more important in the eastern part of the basin. During my 
PhD, I had shown that the peculiar haline structure of the warm contributes to the strong role 
of zonl advection in the central Pacific.  

The eastern edge of the western Pacific warm pool corresponds to the separation 
between the warm, rainfall-induced low-salinity waters of the warm pool and the cold, high-
salinity upwelled waters of the cold tongue in the central-eastern equatorial Pacific. Although 
not well defined in sea surface temperature (SST), this eastern edge is characterized by a 
sharp salinity front (Fig 26., Vialard and Delecluse, 1998ab). This front is the result of the 
zonal convergence of the western and central Pacific water masses into the eastern edge of the 
warm pool (Vialard and Delecluse, 1998b). This occurs through the frequent encounter of the 
eastward jets in the warm pool and the westward South Equatorial Current in the cold tongue. 
These wind-driven zonal currents are advecting the warm pool back and forth over thousands 
of kilometers, in synchrony with the ENSO cycle. The strong haline stratification in the fresh 
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pool contributes to trap atmospheric momentum in the surface layer and to increase the warm 
pool zonal movements (Vialard and Delecluse, 1998a). 

 
Figure 26. Modelling results from Vialard et al. (2002). Time-longitude section of 2°N-2°S a) 

SSS, and c) precipitation in a control experiment using realistic forcing. Panel d) shows a 

sensitivity experiment with climatological precipitation. The front movements are due to zonal 

advection and not to precipitation anomalies. However, precipitation makes a strong 

contribution to the freshening in the eastern Pacific. 

 
Figure 27. Modelling results from Vialard et al. (2002). Longitude-time sections of estimated 

salinity effects during 1998 on (a) mixed layer depth (contour every 10 m), (b) surface zonal 

current (contour every 0.1 m s
-1

) and (c) SST (contour every 0.25°C). Positive values (shaded) 

indicate that salinity effects favour warmer water, deeper mixed layer, or surface currents more 

to the east. The thick line indicates the position of the 34.8 psu isohaline. The map shows the 

salinity effect on SST in May 1997 (contour every 0.25°C, horizontal line in panel c). Salinity 

effects tend to favour eastward migration of the front and can induce monthly anomalies of 

~.75°C over ~1000-2000 km. 

The numerical experiments I had performed during my PhD suffered from a strong 
salinity bias, which might have resulted in an overestimate of the salinity effects. They also 
did not cover the strong, well observed 1997-98 El Niño. I thus re-evaluated my PhD results 
with a new modeling experiments using better wind forcing, and a flux correction approach 
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which resulted in a spectacular agreement between the model SSS and TAO observations 
(Vialard et al. 2002).  

Since deep atmospheric convection moves zonally along with the warm and fresh pool 
(Fig. 26), there was always a doubt about the relative contribution of rainfall and zonal 
advection in producing the fresh pool zonal displacements. In an experiment with 
climatological freshwater forcing (Fig. 26d), the front is slightly eroded, but still displays 
zonal displacements consitent with the control experiment and observations (Vialard et al. 
2002). Zonal advection is hence the main mechanisms for the salinity (and temperature) front 
zonal displacements in the central Pacific. On the other hand, east of 150°W, the salinity is 
strongly degraded when using climatological precipitation. Interannual variability of rainfall 
is hence important for the surface salinity balance in the eastern Pacific. 

A sensitivity experiment was then performed to evaluate the effect of salinity during the 
1997-98 El Niño (Fig. 27). Neglecting salinity stratification results in a deeper mixed layer in 
the warm / fresh pool (Fig. 27a). The westdward wind anomalies of the WWBs and El Niño 
are thus distributed over a thicker layer and result in less intense eastward currents (Fig. 27b). 
The eastward advection of the warm pool is thus less efficient, and the warm pool eastward 
extension is diminished by about 2000 km during most of the El Niño. The SST anomalies 
might appear rather weak (around 0.5 to 0.75°C, Fig 27), but they are located in a region 
where the mean SST is close to the convective threshold, and where small SST changes can 
induce a significant response (e.g. Palmer and Mansfield, 1984).  

Role of western Pacific winds 

 

 
Figure 28. Figure from Vialard et al. (2001). Sketch summarizing themain processes at work 

during the rise and fall of the 1997-1998 El Niño. 

While El Niño was reaching its mature phase, large-scale eaterly wind anomalies 
developed and strengthened in the far western Pacific ocean (Fig. 24) and spread eastward, 
from the end of 1997 onward. These easterly anomalies, combined to the delayed oscillator 
mechanism, contributed to the end of the El Niño. In the far-western Pacific, because of the 
shallower than normal thermocline (Fig. 24), these easterlies cooled the SST by vertical 



Ocean-Atmosphere variability over the Indo-Pacific Basin                                                37/91 

processes (Figs. 25, 28). In the central Pacific, easterlies pushed the warm pool back to the 
west through zonal advection (Figs 24, 25, 28). In the east, they led to a shallower 
thermocline, which ultimately allowed subsurface cooling to resume and to quickly cool the 
surface layer (Figs 24, 25, 28). 

Role of TIWs 

Tropical instability waves feed on the current horizontal shear between the SEC and 
EUC and SEC and NECC and/or density contrast between the cold tongue and waters to the 
north of it. When these current shear and density gradients become weaker (e.g. in May 
during the seasonal cycle or during El Niño events), the TIW activity in the eastern and 
central Pacific diminishes drastically (Fig. 19). Since TIWs are a source of heat (and 
freshwater) to the cold tongue (section 2.2.2.2, Fig. 17), the suppression of this heat source 
represents (in anomaly) a negative feedback to the development of El Niño (blue curve in Fig. 
25). This negative feedback is almost as large as the one from surface heat fluxes (the flux 
feedback arises because of increased cloudiness over warm waters, and larger heat losses due 
to evaporative and longwave cooling). The anomalous contribution of TIWs heat transport is 
one of the three dominant terms in the eastern Pacific interannual heat balance (along with 
atmospheric forcing and subsurface processes). On the basis of this and other related studies, 
there has been a suggestion that TIWs could play some role in explaining the asymmetries of 
the ENSO cycle. El Niño events indeed tend to have a larger amplitude than La Niña events. 
This was suggested to be due to the TIW feedback (e.g. An 2008). The total suppression of 
TIWs (as during the 1997-98 El Niño) indeed provides an upper bound for the TIW-heat 
transort negative feedback, while TIWs activity has no such obvious upward bound during a 
La Niña.  

2.3.2.2. Predictability and prediction 
As was mentioned above, it is the ocean that provides the “memory” of the coupled 

system for ENSO. In particular, the detailed distribution of the mass field in the equatorial 
Pacific is important for the evolution of the ENSO phase (e.g. is the WWV volume large or 
depleted within the discharge oscillator paradigm; is there an upwelling equatorial Kelvin 
wave on its way to the eastern Pacific, etc…). It thus seems advisable to initialize coupled 
forecasts of ENSO with an oceanic state which is as accurate as possible. Furthermore, the 
ENSO variability is such an important piece of the climate variability, with global 
teleconnections that reliable ENSO forecasts seem to be the pre-requisite of any seasonal 
forecasting system (Palmer and Anderson, 1994).  

I spent 3 years the seasonal forecasting group at ECMWF from 1999 to 2001. I was in 
charge of the ocean data assimilation system there. That’s how I got involved in ocean data 
assimilation and seasonal forecasts. The present document is mostly concerned with 
mechanisms, so I won’t dive into the technicalities of the data assimilation and predictability 
studies. I will however give a brief account of the most significant advances I contributed to 
in this field. 

Estimating the state of the Pacific Ocean 

As underlined above, the estimate of the oceanic state needs to be as accurate as 
possible to initialize seasonal forecasts with a coupled general circulation model. The step by 
which available oceanic observations (in situ profiles, sea level, SST, etc..) are combined with 
the estimated state from the model is called data assimilation. Most of the methods used in 
ocean data assimilation are issued from Numerical weather forecast. There are, however, 
some specificities to the ocean data assimilation problem, which require some care. 
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One of these problems is that there are much more observations of temperature profiles 
than salinity profiles. In the real ocean a lot of the changes at the thermocline depth are due to 
vertical displacements (due to Ekman pumping, remote forcing, a passing eddy…) that affect 
both the temperature and salinity profiles. Assimilating temperature data only can generate 
spurious mixing in some region where salinity tends to destabilize the profile. A practical 
solution to that is to also correct the temperature profile below the mixed layer by assuming 
that T-S properties are conserved (Troccoli et al. 2002; Segshneider et al. 2001). This 
technique was also adapted and applied with a variational data assimilation approach, and 
resulted in increased consistency of the oceanic analysis (Ricci et al. 2005), and reduced 
largely the spurious features associated with univariate assimilation of temperature profiles. 

The “classical” approach to data assimilation is sequential: the model is run forward to 
obtain a new estimate of the ocean state. This state is combined with available observations 
using the so-called “BLUE” (best linear unbiased estimator) approach, either using a 
statistical approach (optimal interpolation) or variational approach (3D-Var). In this 
estimation step, it is essential to prescribe the statistical properties of the resulting analysis as 
well as possible. These statistical properties should include physical properties, which are 
desirable for the solution, such as geostrophy, or, as mentioned above, conservation of T-S 
properties below outside mixing regions. Another complementary way to obtain solutions 
with desirable physical properties is to use the model himself as a constraint in the 
assimilation step. This is done by minimizing a cost function measuring the distance between 
the model trajectory and observations, by controlling some model variables (most often the 
initial conditions). I contributed to the development and physical evaluation of such a four-
dimensional variational method (4D-Var) approach (Weaver et al. 2003, Vialard et al. 2003b). 
The 4D-Var indeed improved some aspects of the analysed solution over the 3D-Var. The 
better performance of 4D-Var is attributed to multivariate aspects of the analysis coming from 
the use of the linearized ocean dynamics as a constraint. In addition to these experiments, 
where the oceanic initial state was used as a control variable, we also experimented with 
controlling the wind forcing (Vossepoel et al. 2004). This is arguably a better approach for 
ocean large-scale circulation, which is deterministically forced by the atmosphere. However, 
in practice, because of model error, controlling initial conditions seems to remain a more 
practical approach. 

A practical approach to El Niño ensemble forecasting 

Once an oceanic initial state is available, another problem of seasonal forecast is to 
estimate correctly the uncertainties in the forecast. Seasonal forecasts are subject to various 
types of errors: amplification of errors in oceanic initial conditions, errors due to the 
unpredictable nature of the synoptic atmospheric variability, and coupled model error. 
Ensemble forecasting is usually used in an attempt to sample some or all of these various 
sources of error. How to build an ensemble forecasting system in the seasonal range remains a 
largely unexplored area. I tested and compared various ensemble generation methodologies 
for the European Centre for Medium-Range Weather Forecasts (ECMWF) seasonal 
forecasting system (Vialard et al. 2005). A series of experiments using wind perturbations 
(applied when generating the oceanic initial conditions), sea surface temperature (SST) 
perturbations to those initial conditions, and random perturbation to the atmosphere during the 
forecast, individually and collectively, was compared with the more usual “lagged-average” 
approach (e.g. starting one forecast every day, and then using one month worth of forecast as 
an ensemble). SST perturbations are important during the first 2 months of the forecast to 
ensure a spread at least equal to the uncertainty level on the SST measure. From month 3 
onward, all methods give a similar spread. This spread is significantly smaller than the rms 
error of the forecasts. There is also no clear link between the spread of the ensemble and the 
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ensemble mean forecast error. These two facts suggested that factors not presently sampled in 
the ensemble, such as model error, act to limit the forecast skill. This study hence suggested 
that methods that allow sampling of model error, such as multimodel ensembles, should be 
beneficial to seasonal forecasting. 

Generalized stability analysis of the tropical Pacific Ocean-atmosphere system 

In addition to the practical approach above to estimating predictability of the coupled 
system, some objective methods exist to estimate error growth in the coupled system. These 
methods are derived from the so-called “generalized stability analysis method’ (Farrel and 
Ioannou, 1996ab). These methods allow computing explicitly the fastest growing 
perturbations over a finite time. In systems governed by geophysical fluid dynamic equations, 
there are indeed perturbations that can grow faster than most unstable mode of the linear 
system over a finite time because of a property called “non normality”. One can even have 
transient growth in an asymptotically stable system. This method thus provides the most 
general way to qualify the patterns of fastest growing perturbations in a model, and is used 
routinely for the ensemble long weather forecasts at ECMWF (e.g. Molteni et al., 1996). This 
method requires an “adjoint” model, similar to the one used in 4D-Var data assimilation 
(Weaver et al. 2003, Vialard et al. 2003b). 

Generalised stability analysis had previously only been applied in simple coupled 
models (e.g. Moore and Kleeman, 1996). In Moore et al. (2003, 2006) we used a full Ocean 
General Circulation Model coupled to several simplified representations of the atmosphere 
(the so-called “hybrid” approach) to perform a generalized stability analysis. We found that 
the structure of the optimal perturbations was more controlled by atmospheric dynamics than 
by oceanic ones. 

I also contributed to a similar work, investigating oprimal perturbations of the 
meridional heat transport in the Atlantic ocean in a planetary geostrophic model and in a 
general circulation model (Sévellec et al., 2008, 2009).  

 



3. Indian Basin 
In the sixties and seventies, the Indian Ocean received a lot of attention from physical 

oceanographers. The strong and striking annual cycle of the winds associated with the Indian 
monsoon indeed made it an ideal ocean to test the concepts of the equatorial linear wave 
theory. And the linear equatorial wave theory indeed had brilliant successes in explaining 
many features of, e.g., the Wyrtki jet (Wyrtki, 1973) or the Somali current reversal (Lighthill, 
1969). But, with the rise of the TOGA decade, the Indian Ocean suffered from the shade from 
the powerful El Niño in the neighbouring Pacific. While the Pacific, and then the Atlantic, 
witnessed the development of a basin-scale observing system (with the basin-scale TAO and 
PIRATA mooring arrays as central pieces), the Indian Ocean became the least observed of the 
three tropical oceans.  

While this was partially due to logistical problems and vandalism in the Indian Ocean, 
this was also linked to the fact that climate scientists largely perceived the Indian Ocean as 
passive, contrary to the Pacific (and Atlantic Oceans), which clearly had identified modes of 
variability. In fact, early studies had already pointed to the existence of an independent mode 
of variability in the Indian Ocean (e.g. Reverdin et al. 1986, Hastenrath et al 1993), but it was 
not until the strong 1997 IOD (Webster et al. 1999, Saji et al. 1999, Murtugudde et al. 2000) 
that the Indian Ocean received the attention it deserves. One consequence of this was the 
design of an observing system by the CLIVAR Indian Ocean Panel, which eventually led to 
the RAMA mooring array. Another consequence was the increased number of process studies 
in the Indian Ocean, including the Cirene cruise, for which I was chief scientist. 

3.1. Background 

3.1.1. Interannual variability of the Indian Ocean 

We saw briefly in section 1.4 that the Indian Ocean has two main interannual signals: 
one which is related to El Niño, and one related to the Indian Ocean dipole.  

 
Figure 29. From Schott et al. (2009) (Top) November (year 0)–January (year 1) Niño3 SST 

correlation with SST averaged in the eastern equatorial Pacific (160–120°W, 5°S–5°N; black), 

the tropical IO (40–100°E, 20°S–20°N; red), the southwest IO (50–70°E, 15–5°S; green), and 

the eastern equatorial IO (90–110°E, 10°S–equator; blue). (Bottom) Seasonality of major 

interannual IO climate modes. The warming in the the Indian Ocean persist after the end of an 

El Niño (“capacitor effect” of the Indian Ocean) and the IOD tend to co-occur with El Niño. 
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During an ENSO, the shift in convection in the Pacific Ocean is associated with 
anomalous subsidence over the Indian Ocean. This leads to increased downward surface 
shortwave flux that raises uniformly the SST of the Indian Ocean (e.g Klein et al. 1999, Lau 
and Nath, 2000). The warming starts roughly in July before the peak of ENSO, and persists 
until the following summer, while SST anomalies in the Pacific Ocean have themselves 
disappeared (Fig. 29). This long lasting effect of the ENSO influence on the Indian Ocean has 
been referred to as the “capacitor” effect of the Indian Ocean (e.g. Xie et al. 2009). The 
tropical Indian Ocean warms in response to El Niño, and this warming continues to affect 
precipitation in the Indian Ocean and surrounding regions after the end of El Niño. 

The IOD has a tendency to co-occur with ENSO. However, 11 out of 19 IOD episodes 
between 1958 and 1997 happened independently of ENSO (e.g. Saji and Yamagata 2003). 
Similarly, many coupled general circulation models still display IOD-type variability over the 
Indian Ocean when the Pacific Ocean is constrained to climatological conditions (e.g. Fischer 
et al. 2005, Behera et al. 2006). Both observations and models hence tend to support the idea 
that the IOD is an intrinsic mode of variability of the Indian Ocean, but that El Niño can 
trigger it. 

 
Figure 30. From Xie et al. (2002). Distance-time section of climatological wind stress vectors 

(N/m2) and root-mean-square interannual variance of SST (contours; shade > 0.7°C) along the 

equator and the Indonesia coast (east of 97°E). Along Indonesia, the alongshore (across-shore) 

wind component is given by the horizontal (vertical) component of the vector. Increased 

interannual SST variability occurs when the wind favour coastal upwelling along Indonesia, 

and make the Bjerenes feedback possible.  

Southeasterly wind and elevated thermocline are present from April to October near the 
coast of Sumatra (Fig. 30). This creates a window over which wind perturbations can easily 
induce SST anomalies and activate the Bjerknes feedback. After that, the Australian monsoon 
induces westward wind components that deepen the thermocline and close the window for the 
Bjerknes feedback to act.  

During an El Niño, suppressed convection over the maritime continent is associated 
with easterly wind anomalies over the eastern Indian Ocean, as expected from the Gill model. 
This induces increased upwelling along the Sumatra coast, which reinforces the suppression 
of convection and the wind anomalies, thus triggering the Bjerknes feedback. This explains 
the tendency of the IOD to co-occur with ENSO, but it can also occur when wind or SST 
perturbations develop in the eastern equatorial Indian Ocean, independently of El Niño. 
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Figure 31. Sea level interannual anomaly in the Indian Ocean averaged between 10°S and 5°S. 

Strong interannual anomalies develop in this band in response to both the IOD and ENSO. 

Marked sea level variability in the 5ºS-15ºS band of the ocean has been noted long ago 
(e.g. Perigaud and Delecluse 1993, Masumoto and Meyers 1998), with clear westward phase 
propagation associated with planetary waves (Fig. 31). Such variability occurs both during an 
IOD or “pure” El Niño year, although at different latitudes. Because of local coupling in the 
Indian ocean the surface wind anomalies are more equatorial during an IOD year than a 
“pure” El Niño year, when they are shifted 5 to 10º southward (Fig. 32). As a result, Ekman 
convergence occurs mostly between 3 and 10ºS during IODs, while it is largest between 8 and 
15ºS during El Niños (Fig. 32).  
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Figure 32. From Yu et al. (2005). (Left) (a) Partial correlation of 1000 hPa winds (vectors) and 

wind curl (colors) with Indian Ocean Dipole (IOD) index. (b) As Figure 15a but for Nin˜o-3 

index. (Right) Lead/lag partial correlation for sea surface height anomalies for (left) 

September, October, and November (SON)–IOD and (right) October, November, and December 

(OND)–Niño-3, determined from output fields of the SODA assimilation model for latitude belts 

as function of calendar month and longitude. Only correlations significant at 99% level are 

shown. The sea level response to El Niño is weaker and shifted southward compared to the IOD 

response. 

 
Figure 33. From Xie et al. (2002). Annual mean depth of the 20°C isotherm (contours in m) and 

correlation of its interannual anomalies with local SST (colour shades). The influence of 

thermocline depth on the SST interannual anomalies is largest in the thermocline ridge. 

In both cases, however, the sea level anomalies persist after the end of the equatorial 
zonal dipole of SST or the SST anomalies in the Pacific Ocean. Since this region coincides 
with the thermocline ridge of the Indian Ocean (SCTR), perturbations of the thermocline 
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depth can easily modulate the connection between the cold subsurface and mixed layer, and 
hence generate SST anomalies, as demonstrated by the strong correlation between SSTA and 
20ºC depth anomalies in the southwestern Indian Ocean (Fig. 33). As a result, a SST anomaly 
persist in this region well after surface heat flux changes associated with ENSO of the 
equatorial SST dipole of the IOD have dissipated. The SST or heat content anomalies in this 
region have clear climatic impacts on tropical cyclones-days near La Réunion and 
Madagascar (Xie et al. 2002), rainfall over the western Ghats during the following monsoon 
(Vecchi and Harison 2004, Izumo et al. 2008), onset date of the southwest monsoon 
(Annamalai et al 2005b) or even circulation in the northern hemisphere (Annamalai et al 
2007). 

3.1.2. MJO and its oceanic signature 

 
Figure 34. From Wheeler and Hendon (2004). Composite analysis of the MJO in boreal winter 

(DJF). Shading levels denote OLR anomalies less than -7.5, -15, -22.5 and -30 W m
-2

, 

respectively, and hatching levels denote OLR anomalies greater than 7.5, 15, and 22.5 W m
-2

, 

respectively. Black arrows indicate wind anomalies that are statistically significant at the 99% 

level. 



Ocean-Atmosphere variability over the Indo-Pacific Basin                                                45/91 

The Madden-Julian oscillation is the leading mode of atmospheric variability at 
intraseasonal timescale. The MJO is a large-scale organised perturbation of the atmospheric 
deep convection, with energetic fluctuations of tropospheric winds at periods of 30-90 days 
(e.g. Zhang, 2005). The MJO originates from the Indian Ocean and propagates eastward at ~5 
m s-1 into the western Pacific (Figs. 34-35). Because of the strong coupling with deep 
atmospheric convection, the MJO surface signature becomes much weaker beyond the eastern 
edge of the Pacific warm pool (Figure 8). The MJO has a strong seasonality (Zhang and 
Dong, 2004): it shifts in latitude with the ITCZ, being most active at about 5 to 15ºS in boreal 
winter (December to March), and shifting north of the equator in summer (Figs. 34-35).The 
MJO however has a significant signature in the equatorial band all year long. 

The Indian monsoon is strongly modulated at the intraseasonal timescale, with active-
break cycles of about 30-60 days (e.g. Goswami, 2005). The MJO is tightly associated with 
active/break phases of the Indian summer monsoon, when northward propagation of 
convective anomalies is also evident over the Indian subcontinent, Bay of Bengal, Southeast 
Asia and South China Sea (e.g. Lawrence and Webster 2002). In addition to modulating 
rainfall over India during summer, the MJO also strongly modulates rainfall over Autralia 
during boreal winter (e.g. Wheeler and Hendon 2004). As was mentioned earlier in section 
2.3, another strong potential climate impact of the MJO is its potential role in triggering El 
Niño after having propagated to the western Pacific Ocean (e.g. McPhaden et al. 2006). 
Locally in the Indian Ocean, there is also evidence of a potential impact of the MJO on 
terminating IOD events (e.g. Rao and Yamagata 2004, Rao et al. 2007). 

A theory of the MJO should be able to explain the following features: 1) spatial scale: 
planetary-scale circultation; 2) timescale: 30-80 day timescale; 3) propagation porties: ~ 5 m 
s-1 eastward propagation; 4) coupling between dynamics and convection; 5) the observed 
structure of the MJO (westward winds and surface divergence west of and eastward wind and 
convergence east of the convective centre, Hendon and Salby 1994 Rui and Wang 1990) and 
6) the seasonal change in the MJO patterns (e.g. difference between boreal winter and 
summer MJO). There is at present no theory able to explain all of these aspects. The fact that 
many of the existing AGCMs misrepresent many aspects of the MJO variability (e.g. Slingo 
et al. 1996, Lin et al. 2006) is an additional complicating factor to derive a proper MJO 
theory. There have been many suggestions of potential mechanisms that can play a crucial 
role in the MJO: cloud-radiation feedback (e.g. Hu and Randall 1994), water vapour feedback 
(e.g. Bladé and Hartmann 1993), wind-evaporation feedback (e.g. Emmanuel 1987, Neelin et 
al. 1987) or Convective Instability of the Second Kind coupled to wave dynamics (wave-
CISK, e.g. Lau and Peng 1987). Some of these processes seem to be important in the MJO 
(e.g. the recharge time of water vapour) but some others clearly don’t match the observed 
structure of the MJO (e.g. the wind-evaporation feedback). The most satisfactory simplified 
model of the MJO is provided by the frictional convergence feedback (Wang 1988, Wang and 
Rui 1990). In this model, the coupling of the convective heating to the dynamics induces a 
coupling between the Kelvin and Rossby wave modes (a response that would look a little bit 
like the Gill model in Fig. 2, but propagating eastward). It is the convergence induced by 
surface friction to the east of the convective center that provides the moisture convergence 
and uplift that maintains the wave. This model possesses a lot of desirable features: it explains 
the spatial and temporal scale selection of the MJO, has a slow (< 10 m s-1) eastward 
propagation, and a phase relation between convection and moisture convergence, which is 
consistent with observations. This model is however largely based on equatorial wave 
dynamics and does not provide a satisfactory explanation of the seasonal cycle of the MJO. 

I will now discuss the oceanic signature of the MJO in more detail. The MJO modulates 
the convection, and hence surface wind and heat fluxes. During active phases, the increased 
cloudiness results in decreased surface downward shortwave flux, while increased surface 
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winds induce both increased evaporative cooling and mixing in the upper ocean. During 
suppressed convection, the opposite pattern occurs (increased solar heat flux, and reduced 
evaporation and mixing). In addition to that, the low wind speeds associated with suppressed 
convection allow the development of strong diurnal warming (e.g. Duvel et al. 2004). The 
strong near-surface stratification associated to diurnal warm layers during the suppressed 
phase induces an additional surface warming which contributes to about 30% of the total 
intraseasonal SST signal in the western Pacific (e.g. Bernie et al. 2005). 

 
Figure 35. From Wheeler and Hendon (2004). Composite analysis of the MJO during the 

monsoon onset (MJ). 

Up to a recent date, most of the studies of the oceanic SST signature of the MJO were 
using SST products relying heavily on satellite measurements in the infrared window. This 
type of measurements suffer from the screening effect of clouds and underestimate strongly 
the SST signals under convective clouds (e.g. Sengupta and Ravichandran 2001, Duvel and 
Vialard 2007). As a result, previous studies underestimated strongly the SST signature of the 
MJO (e.g., Jones et al. 1998; Shinoda et al. 1998; Woolnough et al. 2000).Recent studies 
using in situ data or TMI SST (which is based on microwave estimates which “see” through 
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clouds) revealed large SST variations in response to the convection. In summer, there are SST 
variations of about 2ºC peak-to-through amplitude propagating northward in phase quadrature 
with the convective perturbation in the Bay of Bengal (Sengupta and Ravichandran 2001, 
Vecchi and Harrison 2002) and South China Sea (Duvel and Vialard 2007). In winter, the 
study of Duvel and Vialard (2007) showed that the SST signature of the MJO in the western 
Pacific was quite small in comparison with the SST response in the Indian Ocean (Fig. 36). In 
the Indian Ocean, there are two regions of strong SST signature of the MJO. The first one is 
in the North-Western Australian Basin, and has up to now not been studied extensively (I’ll 
come back to this in section 4). The second one is in the SCTR, and has been discussed in a 
few studies (Harrison and Vecchi 2001, Duvel et al 2004, Saji et al 2006, Duvel and Vialard 
2007, Vinayachandran and Saji 2008). All of these studies agree on the fact that the SCTR 
exhibits maximum response to the MJO because of the shallow thermocline, which maintains 
a shallow, reactive mixed layer, but disagree on the detailed processes of the oceanic response 
(section 3.2.3.2). 

 
Figure 36. From Duvel and Vialard (2007). Amplitude of large-scale intraseasonal OLR 

variability (top) and of the SST variability (bottom) associated to it. The analysis has been made 

over the Indian Ocean (left), Maritime continent (middle) and western Pacific (right) regions. 

The SST signature of the MJO is large over the SCTR and North Western Australian Basin, but 

weak over the western Pacific. 

Because of the relatively strong SST signature of the MJO in most of the Indian Ocean 
(the generation region of the MJO), the question of the potential role of air-sea coupling in 
MJO properties arise. The distribution of intraseasonal variability of convection show a sharp 
decrease over activity over land (Fig. 8) which already indicates that MJO develops 
preferably over the sea2. Most studies that have addressed this topic used a modelling 

                                                
2 There are several hypotheses to explain this, which are not necessarily related to air-sea coupling (e.g. 
competition between intraseasonal and diurnal cycle, Zhang 2005) but one possible explanation is that the fast 
response time of continental surfaces compared to the oceanic mixed layer negatively feedbacks on intraseasonal 
perturbations (e.g. Bellon et al 2008). 
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framework and generally found that active coupling did moderately improve the structure of 
the simulated MJO (e.g. Waliser et al. 1999, Inness et al. 2003a, Maloney and Sobel 2004) or 
even hindcasts of the MJO (Woolnough et al. 2007). In this last study, it was even shown that 
considering the modulation of the diurnal cycle of the SST by the MJO further improved the 
hindcast. Most of the modelling study thus point toward a moderate, but non-negligible 
impact, of coupling on the MJO properties. None of these modelling studies, however, do 
reproduce the strong SST signals observed in the SCTR region. 

3.1.3. The RAMA array 

The Research Moored Array for African-Asian-Australian Monsoon Analysis and 
Prediction (RAMA) is a new observational network designed to address outstanding scientific 
questions related to Indian Ocean variability and the monsoons. RAMA is a multi-nationally 
supported element of the Indian Ocean Observing System (IndOOS), a combination of 
complementary satellite and in situ measurement platforms for climate research and 
forecasting (CLIVAR/GOOS IOP et al. 2006). The array was designed in order to answer the 
main ongoing scientific questions about the response of the Indian ocean to monsoons, its 
intraseasonal to decadal variability, and its climatic influence. A detailed description of the 
RAMA array, with some examples ofscientific use of its data will be found in (McPhaden et 
al. 2009). Thanks to major contributions from India, Indonesia and China, the RAMA array 
has quickly developed in 2007-2008 (Fig. 37). The target date for the completion of the array 
is 2011. Two major challemges for RAMA are to secure sufficient shi time to service the 
array and to mitigate the effect of vandalism on the moorings. 

 
Figure 37. From McPhaden et al. (2009). Status of the RAMA array in November 2009. Open 

symbols indicate a site yet to occupy. Filled symbols indicate occupied sites, with the colour 

indicating the nation that deployed the mooring there, in collaboration with PMEL. Losanges 

indicate regular moorings, boxes indicate flux references sites, circles indicate subsurface 

ADCPs and stars indicate deep current meter moorings. 

There was also a French contribution to the array through the Cirene cruise (next 
section) in January-February 2007, and the August 2008 Marion Dufresne transit valorisation, 
during which the mooring at 8ºS, 67ºE was deployed and serviced. 
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3.1.4. The Cirene cruise 

The Vasco (Duvel et al. 2009) and Cirene (Vialard et al. 2009a) programs are 
complementary programs whose main goal is to study the ocean signature of the MJO in the 
SCTR region. More generally, the Cirene cruise aimed at documenting the processes of air-
sea interactions at various timescales (synoptic, intraseasonal, interannual) in the SCTR 
region. The Vasco component relied on deployment of atmospheric balloons from Seychelles, 
while Cirene allowed collecting oceanic, air-sea interface and atmospheric measurements 
downstream, close to 8ºS, 67ºE (see Fig. 38 for the location and route of the of the cruise). 
Cirene was comprised of two legs in January and February 2007. For most complete 
description of the cruise, the reader will refer to Vialard et al. (2009a), provided in the Annex 
of this document. I will describe briefly here the main measurements collected during the 
cruise. 

 
Figure 38. Adapted from Vialard et al. (2009a). (left) Blowup of the region framed on the plot of 

climatological January-February 0-300m average temperature (right), summarizing the Cirene 

cruise. The trajectory of R/V Suroît is shown in black (first leg) and red (second leg). The 

orange rectangles indicate the locations where groups of 3 Argo profilers were deployed. The 

blue circle indicates the location of the ATLAS and ADCP moorings. The orange circle 

indicates the location of the long CTD station (12 days during each leg). 

As a contribution to the IndOOS long-term observing system, we deployed 12 Argo-
type profilers (see Gould et al. 2004 for a description of the Argo program) and one RAMA 
mooring at 8ºS, 67ºE (with extra sensors and a subsurface ADCP during the duration of the 
cruise). Air–sea interactions are at the heart of the Vasco–Cirene program. We thus collected 
both atmospheric and oceanic observations during the cruise, with an emphasis on the upper 
ocean, atmospheric boundary layer, and air–sea interface. Surface temperature and salinity 
and currents down to 300 m were continuously recorded, and temperature profiles down to 
800 m were collected every 50 km along the ship track (Fig. 38). Air–sea fluxes were 
monitored using a dedicated flux platform installed on a mast 17 m above sea surface on the 
bow of the ship (Dupuis et al. 2003). An instrumental suite providing measurements of the sea 
surface and marine boundary layer complemented the air–sea flux estimates from the mast 
(Minnett et al. 2001). Detailed measurements of the upper-ocean and atmospheric evolution 
were collected during two long stations (from 14 January to 26 January 2007 and from 4 
February to 15 February 2007) at 8°S, 67°30’ E. In addition to the continuous measurements 
described above, we launched four radiosondes per day (at 0000, 0600, 1200, and 1800 UTC) 
and collected atmospheric temperature, pressure, humidity, and wind measurements up to 300 
hPa for most profiles. Upper-oceanic profiles (0–500 m), including temperature, salinity, and 
pressure, were performed every 20 min. One profile down to 1000 m, with additional current 
measurements and water sample collection, was performed every 6 h. The air–sea interaction 
profiler (ASIP, an autonomous high resolution profiler with emphasis on capturing near-
surface processes, Ward et al. ) was deployed on several occasions during the long stations.  
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Figure 39. Adapted from Vialard et al. (2009a). Time series of daily parameters transmitted by 

the ATLAS mooring at 8°S, 67°E since its deployment during Cirene. The panels, from top to 

bottom, show: a) downward surface shortwave radiation (W m
-2

) and rainfall (mm hr
-1

); b) wind 

speed (black), zonal wind (blue) and meridional wind (red) (m s
-1

); c) SST (blck) and SST 

climatology (blue) (°C); d) subsurface temperature (color) and anomalies (contours) (°C); 

subsurface salinity (color) and anomalies (contours) (psu). The black dashed lines indicate 

anomalies associated with two tropical cyclones going past the window in their early stages. 

The black frame highlights the subsurface anomalies associated with the consequences of the 

2006 Indian Ocean Dipole. The red dashed lines indicate two MJO events in late 2007 and 

early 2008 discussed in Vialard et al. (2008).  

We will come back in the following sections on the various results harvested during the 
Cirene cruise but will already illustrate now how the measurements collected illustrate the 
three timescales of interest (synoptic, intraseasonal, interannual). Fig. 39 shows variable 
measured by the ATLAS mooring at 8°S, 67° E during its first year of deployment. The first 
few months display large subsurface temperature and salinity anomalies which are the result 
of the 2006 IOD (section 3.3.1). There are also short-lived episodes of high rainfall, winds 
and SST decrease in January and March 2007, corresponding to tropical cyclones in their 
early stage of development (section 4.1.1). Finally, there are longer and stronger episodes of 
rainfall, cloudiness, strong winds and cool SST events in late 2007 and early 2008, 
corresponding to the oceanic signature of two MJO events (Vialard et al. 2008, section 
3.2.3.2). 
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3.2. Results: MJO oceanic signature 

In this section, I will summarize my main results about the oceanic signature of the 
MJO, obtained either through a modeling approach or observations analysis (either from the 
Cirene cruise or satellite datasets). I will first discuss the dynamical response of Indian Ocean 
to intraseasonal variability (section 3.2.1), and then describe its thermodynamical response 
(section 3.2.2). The papers relevant to section 3.2 are Duvel et al. (2004), Duvel and Vialard 
(2007), Sengupta et al. (2007), Vialard et al. (2008), Vialard et al. (2009ab), McCreary et al. 
(2009), Izumo et al. (2009) and Resplandy et al. (2009). 

3.2.1. Dynamical response 

Although its maximum intensity varies annually in latitude, the MJO has always a 
significant signature in the equatorial waveguide. Wind stress can directly accelerate zonal 
currents near the equator. The equatorial signature of the MJO thus induces an energetic 
response in terms of equatorial waves and currents (section 3.2.1.1) that can then propagate 
into the Northern Indian Ocean coastal waveguide (section 3.2.1.2). 

3.2.1.1. Equatorial waveguide 

 
Figure 40. From Sengupta et al. (2007). (Left) Evolution of the (a) zonal wind stress,(b)zonal 

current, and (c) depth of 20°C isotherm at 1.6°S, 90°E from TRITON data and the QuikSCAT 

simulation for 2002–03. (Right) Time–longitude plot of 1°S–1°N averaged (a) 10-day running 

mean QuikSCAT zonal wind stress (10
-1

 N m
-2

), (b) 0–120-m zonal current (m s
-1

). The zonal 

wind stress and currents along the equator are strongly modulated at intraseasonal timescale. 
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Satellite and in situ observations show large intraseasonal (10–60 day) variability of 
surface winds (Fig. 40) and upper-ocean current (e.g. Masumoto et al. 2005) in the equatorial 
Indian Ocean, particularly in the east. An ocean model forced by the Quick Scatterometer 
(QuikSCAT) wind stress is used to study the dynamics of the intraseasonal zonal current 
(Sengupta et al 2007). The model has realistic upper-ocean currents and thermocline depth 
variabilities on intraseasonal to interannual scales (Fig. 40). At the equator, moderate westerly 
winds are punctuated by strong 10–40-day westerly wind bursts. The wind bursts force swift, 
intraseasonal (20–50 day) eastward equatorial jets in spring, summer, and fall. In agreement 
with direct observations in the east, the spring jet is a single intraseasonal event, there are 
intraseasonal jets in summer, and the fall jet is long lived but strongly modulated on an 
intraseasonal scale (Fig. 40). 

The model allowed analysing the momentum balance associated with this intraseasonal 
current response. The zonal pressure force is almost always westward in the upper 120 m. The 
zonal momentum balance is between local acceleration, stress, and pressure, while 
nonlinearity deepens and strengthens the eastward current. The westward pressure force 
associated with the thermocline deepening toward the east rapidly arrests eastward jets and, 
subsequently, generates (weak) westward flow.  

3.2.1.2. Northern Indian Ocean coastal waveguide 

 
Figure 41. From Vialard et al. (2009b). (Left) a) Map of peninsular India and bathymetry. A red 

circle indicates the location of the ADCP on the shelf break off the state of Goa, on the western 

Coast of India. The red box (73°E to 74°E, 14°N to 16°N) indicates the averaging region for sea 

level plotted in panels b and c. b) Weekly alongshore current at 50m measured by the ADCP 

(red curve) and 55–110 day filtered sea level. c) Sea level. (Right) a) Power spectrum of the 

ADCP alongshore current at 50m. Shading highlights the 55–110 day band. b) Intraseasonal 

(55–110 day, red curve and 30-60 day, blue curve) and seasonal (110 day low-passed, black 

curve) typical offshore sea-level structurse. The 55-110 day (30-60 day) structure functions 

have been multiplied by 3.5 (5) in order to be more easily compared with the stronger signal at 

seasonal scale. Intraseasonal currents dominate the WICC variability because of the trapping 

of intraseasonal energy at the coast, while seasonal signals radiate away. 
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As mentioned above, intraseasonal wind variability drives a significant surface current 
response in the equatorial waveguide (e.g. Reppin et al., 1999, Masumoto et al., 2005, Han et 
al., 2001, Sengupta et al., 2007). While equatorial intraseasonal variability of currents and sea 
level has been addressed in several studies, studies focusing on the northern Indian Ocean are 
scarce. Sengupta et al. (2001) concluded that current fluctuations south of Sri Lanka are 
largely driven by instabilities phase locked to the intraseasonal wind forcing. Durand et al. 
(2009) used along-track satellite data to describe the variability of currents and sea level along 
the east coast of India, finding significant intraseasonal variability superimposed on the 
seasonal cycle. Shetye et al. (2008) found that remote forcing makes a significant contribution 
to the variability of observed currents at 15°N on the west coast of India at periods longer 
than 10 days. 

 
Figure 42. From Vialard et al. (2009b). Regression of 55–110 day filtered sea level (cm) and 

ERS-Quickscat winds (N.m
-2

) to normalized 55–110 day filtered sea level within the black box 

(73°E to 74°E, 14°N to 16°N). Patterns leading by 35 day (a), 21 day (b), 7 day (c) and lagging 

by 7 day (d), 21 day (e) with respect to the intraseasonal sea level off Goa. The 35-day lag 

pattern is quite similar to the pattern shown in panel (a) and has not been plotted. Values that 

are not significant at the 95% confidence level have been masked. Intraseasonal sea level 

variations in the northern Indian ocean coastal waveguide are part of a basin scale pattern. 
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In Vialard et al. (2009b) (draft provided at the end of this document), we have thus 
described intraseasonal current and sea-level variations in the coastal waveguide of the 
northern Indian Ocean, with emphasis on the forcing that drives them. Toward that end, we 
used a combination of satellite observations (sea level and wind stress), as well as a newly 
acquired current dataset at 15°N on the west coast of India, off Goa (see Fig 41 for location).  

The wind associated with the Madden Julian oscillation forces a basin-scale pattern, 
involving equatorial waves, reflection at the eastern coast and propagation of coastal Kelvin 
waves into the Bay of Bengal and along the western coast of India (Fig. 42). Although the 
amplitude of intraseasonal sea level variations are much smaller than the seasonal cycle 
(typically 6-8 cm against 15-20 cm peak-to-through), intraseasonal (55!110 day) variations 
dominate the record of alongshore upper-ocean currents at 15°N on the western coast of India 
(Fig. 41). These observations can be interpreted within the framework of linear wave theory. 
At 15°N, the minimum period for planetary waves is ~90 day. As a result, intraseasonal 
energy is largely trapped at the coast (Fig. 41) in the form of poleward-propagating Kelvin 
waves, while lower-frequency signals associated with the annual cycle can radiate away 
westward as planetary waves. This dynamical difference results in a steeper offshore slope of 
sea level at intraseasonal timescale (Fig. 41), and thus stronger geostrophic alongshore 
currents. A consequence is that the alongshore currents are in-phase with intraseasonally-
filtered sea level near the coast, and a gridded satellite product is shown to reproduce the 
current variations reasonably well (Fig. 41). This work thus underlines the importance of 
intraseasonal signals for coastal current variations on western continental margins, and opens 
potential applications for near real-time coastal currents monitoring. 

3.2.2. Thermodynamic response and air sea coupling 

3.2.2.1. Northern Indian Ocean 

 
Figure 43. From Bellon et al. (2008). Precipitation anomaly (mm day

-1
) in (b) the linear, 

uncoupled, atmospheric mode; (c) SST anomaly (°C, shaded) and precipitation anomaly 

(solid/dotted contours for positive/negative values) in the coupled mode. Coupling impacts little 

the stability or spatial structure of the forced mode, but reduces its period by 25%. 

In order to investigate the potential influence of coupling on the boreal summer 
intraseasonal oscillation, we used a simple coupled model in a zonally symmetric aquaplanet 
configuration (Bellon et al. 2008). The model consists of a linear atmospheric model of 
intermediate complexity based on quasi-equilibrium theory coupled to a simple, linear model 
of the upper ocean. This model has one unstable eigenmode with a period in the 30–60-day 
range and a structure similar to the observed northward-propagating intraseasonal oscillation 
in the Bay of Bengal/west Pacific sector (Fig. 43). The ocean–atmosphere coupling is shown 
to have little impact on either the growth rate or latitudinal structure of the atmospheric 
oscillation, but it reduces the oscillation’s period by a quarter. At latitudes corresponding to 
the north of the Indian Ocean, the sea surface temperature (SST) anomalies lead the 
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precipitation anomalies by a quarter of a period (Fig. 43), similarly to what has been observed 
in the Bay of Bengal (e.g. Sengupta and Ravichandran 2001, Vecchi and Harrison 2002). The 
mixed layer depth is in phase opposition to the SST: a monsoon break corresponds to both a 
warming and a shoaling of the mixed layer. This behaviour results from the similarity 
between the patterns of the predominant processes: wind-induced surface heat flux and wind 
stirring. The instability of the seasonal monsoon flow is sensitive to the seasonal mixed layer 
depth: the oscillation is damped when the oceanic mixed layer is thin (about 10 m deep or 
thinner), as in previous experiments with several models aimed at addressing the boreal 
winter Madden–Julian oscillation. This suggests that the weak thermal inertia of land might 
explain the minima of intraseasonal variance observed over the Asian continent (Fig. 8). 

3.2.2.2. Thermocline ridge 
As shown in Fig. 44, the SCTR region frequently witnesses strong convection and 

surface wind fluctuations associated with the MJO. In many instances, this forcing induces a 
large-scale SST cooling in this region. This SST cooling often exceeds 1ºC in amplitude (up 
to 3ºC more locally, Duvel et al 2004) and lasts about 20-40 days. Large intraseasonal SST 
cooling in response to the MJO does not happen every year, and was absent during 2003-
2007, for reasons that I will discuss below. 

 
Figure 44. From Vialard et al. (2009a). Time series of average a) SST, b) Outgoing longwave 

radiation (OLR, a proxy for convection, low values indicating intense convection) and c) sea 

level interannual anomaly over the SCTR region (60°E-80°E, 5°S-10°S). In a) and b) a 30-day 

low pass filter has been applied and the climatology is shown in red. Only austral summer OLR 

are shown to improve readability. The grey bar indicates the timing of the Vasco-Cirene 

experiment. Dashed lines indicate the strongest intraseasonal SST cooling events. 
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Figure 45. From Duvel et al. (2004). (Left) Time–latitude diagrams of the evolution of (top) 

wind stress in Pa, (middle top) net surface flux in W m22, (middle bottom) temperature of the 

mixed layer in 8C, and (bottom) mixed layer depth in m for the OGCM. Values are averaged 

between 80° and 90°E. (Right) Correlation between the JFM average mixed layer depth of each 

year from an OGCM simulation (1990–2000) with (top) the average upper-300-m ocean 

temperature, (bottom) the wind stress. (Left) The strong deepening of the MLD near the equator 

prevents a strong SST signature there. (Roght) The mixed layer depth in the SCTR is modulated 

by the thermocline depth at interannual timescale. 

 
Figure 46. From Duvel and Vialard (2007). (left) Correlation between the derivative of the TMI 

SST and the NCEP net surface fluxes for the 30–90-day band in JFM. Solid contours represent 

a correlation of 0.5 and dashed contours one of 0.7. (right) Scatter diagrams for regions with a 

correlation coefficient larger than 0.5 between the amplitude of 30-90 day SST variability and 

the amplitude of flux variability scaled by the mixed layer depth. The value of the line slope c, 

the corresponding time scale !, and the linear correlation coefficient (Pr) are also indicated. 

SST intraseasonal variations seem to be driven by fluxes in large region of the tropics, and the 

SST spectrum is reddened compared with the atmospheric forcing. 

Role of the thermocline ridge. The spatial distribution of the SST response to the MJO 
matches the elongated structure of the thermocline ridge very well (Figs. 36 and 6a). Thanks 
to OGCM simulations that reproduced correctly the spatial structure of the SST signature of 
the MJO (albeit with smaller amplitude), we could understand the reason of the spatial 
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distribution of the SST response (Duvel et al 2004). Although the surface flux perturbation 
associated with the MJO spans a wider latitudinal range (roughly 8ºS to 5ºN in the case of 
Fig. 45 left), the surface response is largest in the SCTR region. This is because the shallow 
thermocline in the SCTR region prevents mixed layer deepening, whereas the mixed layer 
deepens strongly north of the SCTR because of the combined effect of wind stirring and 
negative buoyancy forcing.  

 
Figure 47. From Vialard et al. (2008). November 2007-February 2008 time series from the 

ATLAS mooring at 8°S, 67°E. a) Wind speed (m s
-1

, black) and accumulated TRMM rainfall 

(mm, red); b) Surface heat fluxes (W m
-2

): surface shortwave flux (net: red dashed; absorbed by 

the mixed layer: red), latent heat flux (blue), sensible + longwave flux (green) and net heat flux 

(dashed orange); c) SST (°C, black) and SSS (psu, red); d) mixed layer depth (m) with one 

standard-deviation error bar (shading); e) Mixed layer heat budget in °C month
-1

 as in equation 

(1): mixed layer temperature tendency (red), atmospheric forcing heating rate (black), 

horizontal advection (green) and residual (blue), with shading indicating the one standard-

deviation error bar. The grey (black) overbars indicate warming (cooling) periods 

corresponding to suppressed (active) convection that are used to indicate average values in the 

text. For this event, air-sea fluxes are the primary drivers of the SST signature of the MJO. 

Mechanisms: fluxes or entrainment? In the modelling results of Duvel et al. (2004), 
analysis of the mixed layer budget suggested that the SST response in the SCTR was almost 
entirely driven by air-sea fluxes (latent and shortwave anomalies linked to the convective 
perturbation). In an analysis using satellite SST data and re-analysed fluxes, Duvel and 
Vialard (2007) found that over large regions of the tropics, there’s a strong correlation 
between between air-sea fluxes and SST variability at intraseasonal timescale (Fig. 46). They 
further demonstrated that there is a reddening of intraseasonal SST variability spectrum 
compared to the heat flux spectrum, as expected from an ocean integrating atmospheric fluxes 
(e.g. Hasselman 1976). This behaviour explains the larger response of SST to MJO forcing 
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(~30-80 day timescale) than to quasi-biweekly intraseasonal oscillations (e.g. Chatterjee, and 
Goswami 2004). It is only after the Cirene cruise that in situ data became available in the 
region and allowed to compute the mixed-layer heat budget in the region from observations. 
Once again, the observational results suggested that the upper ocean SST changes were 
largely controlled by air-sea fluxes. Lateral advection and entrainment, while making a 
significant contribution to the surface layer heat budget, do not have systematic variations at 
the MJO timescale (Fig. 47).  

x

x

 
Figure 48. Adapted from Resplandy et al. (2009). January 1998-December 2007 time series 

averaged over the SCTR region. a) Surface SeaWiFS Chl median (black line) over the domain 

superimposed with 98-05 SeaWiFS climatological values (dashed line) and first to third quartile 

interval (grey shading). c) Sea Level Anomaly (SLA) (m). Highlighted MJOs correspond to 

active MJO phase over the Indian Ocean with amplitude greater than 1 and wind speed greater 

than (from Wheeler and Hendon 2004 index): blue indicates events with a response in Chl while 

orange indicates events with no response in Chl. The last panel shows a scatterplot between the 

amplitude of the Chlorophyll intraseasonal variability in the SCTR region and the thermocline 

depth anomaly in a forty years coupled biogeochemical-ocean general circulation model 

simulation. Larger intraseasonal Chl response to the MJO occurs when the thermocline is 

shallow. 
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Modulation of the MJO oceanic signature by interannual variability. The results we 
obtained seem to be at odds with other studies suggesting a significant contribution from 
either mixing/entrainment or Ekman pumping at intraseasonal timescale (Harrison and Vecchi 
2001, Saji et al. 2006, Vinayachandran and Saji 2008, Lloyd and Vecchi 2009). In fact, this 
contradiction is only apparent. The importance of subsurface processes (mixing/entrainment 
and/or Ekman pumping) seems itself to be modulated by the interannual variability, as 
illustrated by a study of the biogeochemical response to the MJO in the SCTR region 
(Resplandy et al. 2009). This study shows that some MJO events are associated with surface 
chlorophyll blooms, while some others aren’t. In observations, all the blooms happen during 
year of anomalously shallow thermocline associated with a negative IOD or La Niña, 
suggesting a control of intraseasonal blooms in response to the MJO by interannual variability 
(Fig. 48). This can be tested in a 40 years coupled ocean – biogeochemical model simulation 
(Fig. 48). Positive anomalies of thermocline are associated with very low values of Chl 
intraseasonal variability. On the contrary negative anomalies are mainly associated with 
relatively high intraseasonal variability of Chl. The spread of Chl intraseasonal response for 
anomalously shallow thermocline can be explained by the fact that shallow thermocline is a 
necessary but not sufficient condition for having a surface Chl response. I.e there can be a 
shallow thermocline associated with a shallow nutricline favourable to phytoplankton growth 
at the surface, but the biological response will occur only in cases where active MJO over the 
Indian Ocean induces strong winds over the SCTR.  

Since a bloom is indicative of subsurface nutrient rich input water to the surface, this 
demonstrates that mixing with subsurface occurred and that it consequently probably played a 
role in cooling the SST (as also suggested by Vinayachandran and Saji, 2008). However, we 
demonstrate in Resplandy et al. (2009) that Chl intraseasonal events, and hence the 
contribution of mixing/upwelling, are modulated by the thermocline depth, with larger events 
when the thermocline is shallow in the SCTR, but weaker events otherwise. For example, the 
weak positive SLAs during the december 2007-January 2008 event directly observed by 
Vialard et al. (2008) might explain the relative weak contribution of the mixing and upwelling 
for this event. When the thermocline is anomalously shallow, on the other hand, the 
atmospheric forcing will combine with vertical processes to produce stronger cooling, and 
also a strong Chl response. It is also this modulation of the response by interannual variability 
which explains the relatively modest amount of significant Chl intraseasonal events in the 
SCTR (only 4 in 10 years, see figure 8), while significant MJO-related atmospheric forcing 
events occur almost every year. 

 
Figure 49. From Izumo et al. (2009). Regression between SST (colour, °C), wind stress (vector, 

N m
-2

) interannual anomalies in September-November and an index of the MJO activity in 

December-March. The 90% confidence interval is indicated. Positive IOD years are followed by 

a decrease in MJO activity over the Indian Ocean and western Pacific. 
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Modulation of the MJO at interannual timescale. The fact that thermocline depth 
variability could modulate the SST signature of the MJO was first suggested by Harrison and 
Vecchi (2001) and Duvel et al (2004). Duvel et al (2004) further suggested that this change of 
the SST response could feedback on the MJO itself and modulate its activity. In a study 
currently in revision (Izumo et al 2009), we demonstrated that there is indeed a modulation of 
the MJO activity at interannual timescale. Fig. 49 shows that increased MJO activity in boreal 
winter tends to be preceded by a negative IOD. There are two possible explanations for that. 
The first one is that shallow thermocline following the IOD in the SCTR region (Fig. 32) 
induces a shallow, more reactive mixed layer (Fig. 45 right) and hence a larger SST signature 
of the MJO. This SST signature might feedback on the MJO, increasing its amplitude. 
However, this hypothesis does not explain the increase of the MJO activity in the western 
Pacific after an negative IOD (Izumo et al 2009), since the SST response to the MJO is much 
weaker in the western Pacific than in the Indian Ocean (Fig. 36). Another hypothesis to 
explain the modulation of the MJO at interannual timescale is the change in the atmospheric 
background state. The subsurface thermal anomalies in the SCTR region persist until March-
April after and IOD, and induce changes in the convective and wind pattern over the Indian 
Ocean, and the western Pacific (e.g. Kug and Kang 2006, Annamalai et al 2005a). In 
particular the anomalous westerlies that develop over the Indian Ocean and western Pacific 
after a negative IOD have been suggested to be favourable breeding ground for the MJO (e.g. 
Inness et al. 2003b, Zhang and Dong 2004, Watterson and Syktus 2007). Understanding this 
interannual modulation of the MJO activity will require further research (section 4). 

3.3. Results: the Indian Ocean dipole 

3.3.1. Cirene: interannual anomalies in the thermocline ridge region 

 
Figure 50. From Vialard et al. (2009a). Large scale situation during the Cirene cruise, in 

January-February 2007. a) SST interannual anomaly, b) Sea level interannual anomaly, c) 

Temperature difference between Cirene 67°E section and World Ocean Atlas 2005 climatology 

(Locarnini et al. 2006). The thick line on a) and b) shows the location of panel c) section. There 

was a large subsurface temperature anomaly during Cirene because of the 2006 IOD. 

The large sea level anomaly in the SCTR region after an IOD (or further south after an 
ENSO) has been documented in many modelling studies or studies using remote observations. 
The Cirene dataset is the first one to offer in situ observations in this climatologically 
sensitive region. This dataset is presently still being analysed, but I’ll try to give a flavour of 
the first results that it produced in this section. 

The Cirene cruise happened after a strong IOD in 2006 (e.g. Vinayachandran et al. 
2007). The equatorial zonal wind anomaly associated to this IOD induced, as usual, strong 
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Ekman convergence within the 5-10°S band (Fig. 32) which induced a large positive sea level 
anomaly in the SCTR region from late 2006 to late 2007 (Figs. 31, 50b). Because of the 
strong correlation between thermocline depth and SST anomalies in this region (Fig. 33), this 
translated into a warm SST anomaly in early 2007 (Fig. 50a). The Cirene cruise, in January 
February 2007, was crossing the regions of largest sea level anomaly, and recorded 
subsurface temperature anomalies up to 7°C at the thermocline level (Fig. 50c). The cold 
anomalies around 150 to 250m and 4°S-5°S in this region are probably linked to decadal 
subsurface cooling accompanying long-term surface warming in the tropical Indian Ocean 
(e.g. Trenary and Han 2008). 

 
Figure 51. From Vialard et al. (2009a). Average profiles over whole cruise (14

th
 January to 15

th
 

February) at 67°30’E, 8°S. a) Cirene Temperature (black) and climatology (red). b) Cirene 

Salinity (black) and climatology (red). c) Cirene zonal (continuous line) and meridional (dashed 

line) currents. d) Cirene chlorophyll content (estimated from the fluorescence profile, in black). 

On d) the vertical density gradients from Cirene (blue) and climatology (red) are also shown. In 

addition to the large temperature anomalies, the upper ocean was also unusually fresh during 

Cirene, and there was a significant waestward current anomalydown to 800m.  

The station data allowed to confirm the large subsurface temperature anomaly, but also 
indicated anomalous freshening of the upper 200m of the ocean, a depressed nutricline 
(Wiggert et al. 2009) and deeper than usual subsurface chlorohyll maximum (Fig. 51d). The 
zonal surface currents during the whole cruise were westward at ~ 0.35 m s-1, at a location 
where they are normally very weak (the thermocline ridge is normally the transition region 
between the SEC and SECC, Figs. 6-7). The surface current anomaly actually extends deep 
downward (Fig. 51) with 0.2 m s-1 currents at 600 m (comparison with geostrophic currents 
computed from climatology suggest that currents are normally near-zero at this depth). To 
understand the nature of the vertical distribution of current anomalies, we performed a normal 
mode decomposition of the currents (Fig. 52). The vertical structure of the Cirene currents is 
relatively well approximated by one vertical mode, but the second mode makes a 
contribution, especially near the surface. Two modes are sufficient to describe the Cirene 
currents. This has potential useful applications for understanding the large-scale patterns of 
sea level anomalies and transport in late 2006 and 2007 using a simplified projection model 
based on two vertical modes (work in progress). 

Another ongoing work with my PhD student P. Kumar is the analysis of the causes of 
the warm and fresh mixed layer that prevailed in the mixed layer during Cirene. 
Understanding the causes of the SST anomalies in this region is particularly important in view 
of their multiple climatic consequences (cf end of section 3.1.1). To that end we developed a 
method to diagnose the mixed layer temperature and salinity budget from a combination of in 
situ (mostly Argo, which provides an estimate of the mixed layer depth) and satellite data (a 



 
 

62/91                                              Ocean-Atmosphere variability over the Indo-Pacific Basin 

blend of several data is used to estimate air-sea fluxes and horizontal advection terms, the 
vertical processes being estimated as a residual).  

 
Figure 52. Courtesy of S. Kennan. (left) Cirene mean Brunt-Vaisala frequency. (Middle) 

Horizontal currents normal modes 1-4(1 black, 2 red, 3 blue, 4 green). (Right) Cirene zonal 

current (red) and its projection on mode 1 (black), 1-2 (blue) and 1-2-3 (green). The Cire 

current vertical profile is very well approximated by a combination of the first two baroclinic 

modes. 

 
Figure 53. (Top) Estimates of interannual anomalies of tendency terms within the SCTR region 

(60-80°E, 10-5°S): mixed layer temperature tendency (red), air-sea fluxes (black), lateral 

advection (green) and subsurfaces processes (entrainment and upwelling, blue). (Bottom) 

Interannual anomalies of SST (red), mixed layer depth (black) and sea level (blue). 

The analysis of this heat budget indicates that lateral advection contributed significantly 
to the initial warming in the SCTR region from August to November 2006 (Fig. 53). The 
breakup of the advective terms indicates that this advective warming was mostly contributed 
by zonal advection, consistent with the westward current anomalies observed during Cirene 
(Figs. 51, 52) and with the seasonal cycle of  zonal SST gradients in this region (Fig. 5). Part 
of the high correlation between thermocline depth and SST anomalies in this region (Fig. 33) 
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could hence be explained by the zonal current anomalies in balance with the sea level 
anomaly, rather by than direct modulation of the subsurface cooling term. At a later stage 
(from April to December 2007), however, there is a decrease in subsurface cooling that 
maintains the positive SST anomaly throughout 2007 (Fig. 53). The influence of thermocline 
depth anomalies on the subsurface-surface connection hence seems to be seasonally 
dependent. We’re currently trying to analyse this effect with a combination of in situ data 
analysis and modelling. 

The analysis of the causes of the interannual upper ocean salinity anomaly also 
harvested interesting results. The time-series from the Argo mooring salinity (Fig. 39) showed 
a fast salinity change of ~ 0.5 psu over the upper 60 m in July 2007 and February 2008. 
Modelling experiments (not shown) displayed a similar quick salinity change and suggested 
the existence of a salinity front with large zonal displacements in the 5-10°S band. Analysis 
of Argo data confirmed the existence of this front (Fig. 54). Detailed analysis of mixed layer 
budget terms estimated from observations suggest that the zonal westward migration of this 
front occurs as a result of zonal advection by the South Equatorial Current, and that the rapid 
retreat around july is associated with meridional advection: the southward Ekman drift 
associated with the easterlies replaces the fresh water by saltier water originating from the 
equatorial band. Rainfall does not seem to play a strong role in controlling the front zonal 
movements, but is propably important in maintaining it at long timescales (most of the rainfall 
at this latitude occurs near the maritime continent and allows to maintain fresher water there). 
On the basis of this analysis, it is likely that the upper ocean freshwater anomaly in early 2007 
was linked to anomalous zonal advection. 

 
Figure 54. Time-longitude section of mixed layer salinity along 8°S in the Indian Ocean. The 

data is from the objective analysis of Argo data of Gaillard et al. (2009). There is a salinity 

front whose movements are primarily driven by advection in the SCTR latitude band. 
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3.3.2. The IOD: a trigger to El Niño? 

Before moving to the next section, where I will discuss perspectives of my work, I 
would like to finish this result sections by very exciting and recent results that we are about to 
submit. This work has been done in collaboration with T. Izumo, M. Lengaigne, S. Cravatte, 
C. de Boyer Montegut, S. Masson, J-J. Luo, S. Behera and T. Yamagata. 

We have discussed in section 3.1.1 some results of previous studies concerning 
interactions between ENSO and the IOD. It is for example known that ENSO is a possible 
trigger for the IOD: the easterly wind anomalies associated with change in Walker circulation 
pattern due to a developing ENSO in summer can start the Bjerknes interaction and result in 
an IOD (e.g. Annamalai et al 2003). But other studies suggest that the IOD and/or the Indian 
Ocean warming can also influence the termination of ENSO, because of the Pacific surface 
wind anomalies remotely induced by the changes in convection patterns over the Indian 
Ocean (e.g. Annamalai 2005a, Kug and Kang 2006, Behera and Yamagata 2003). I.e. up to 
now, most studies have focussed on the synchronous interaction between ENSO and the IOD. 
In our study, we go one step further and suggest that an IOD can influence the course of the 
ENSO in the Pacific during the following year. 

 
Figure 55. Anomalies of SST (colours) and OLR (contours) in September-November regressed 

with Niño3.4 index in December-February 14 months later. Only statistical significant signals 

at the 90% confidence level are plotted. A negative IOD tend to occur 14 months before an El 

Niño. Tests show that SST anomalies in the eastern Pacific are a much less performing 

predictor than the IOD index. 

We show that El Niños (La Niñas) tend to be preceded by negative (positive) IODs 
peaking in October, 14 months before ENSO mature phase (Fig 55). We propose the 
following mechanism to explain the IOD influence on subsequent year’s ENSO conditions, 
here discussed for the case of El Niño development. During a negative IOD, warm SST 
anomalies develop in the southeast Indian Ocean and maritime continent, increasing local 
convection, the ascending branch of the Walker circulation and inducing easterly wind 
anomalies in the western and central Pacific (Fig 56). Easterly wind anomalies favour the 
buildup of WWV (e.g. Meinen and McPhaden 2000), providing an efficient preconditioning 
for El Niño to develop. After November, the eastern pole of the IOD quickly recedes and 
induces a sudden collapse of these anomalous easterlies (Fig 56). The important role of wind 
anomalies in the western to central Pacific in ENSO transition has been noted before. We 
suggest here that it is more specifically the sudden relaxation of anomalous easterlies induced 
by the quick IOD demise that results in a sudden imbalance between zonal wind stress and 
pressure gradient. This imbalance propagates eastward as a Kelvin downwelling wave which 
pushes the western Pacific warm pool edge eastward and deepens the thermocline in the 
eastern Pacific (Fig. 56), thus triggering the Bjerknes feedback and leading to ENSO 
development. 
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Figure 56. Heat content anomaly (left) and zonal wind anomaly (right) partially regressed on 

year 0 IOD index, with the influence of El Niño removed. The contours show the time-

derivatives of the fields for October-March. The sudden demise of the positive IOD induces a 

switch from easterlies to westerlies and triggers a downwelling Kelvin wave. 

 
Figure 57. a) Correlation score of statistical forecast of ENSO peak using the Pacific WWV 

(black), the WWV and winds in the western Pacific (blue), the WWV and an IOD index (red). b) 

Observed (black) and predicted (red) SST anomaly at the peak of ENSO using the WWV/IOD 

bilinear regression model. c) Black curve as in b and contributions of IOD (green) and WWV 

(blue) to the bilinear forecast shown in b).  

The validity of this mechanism, and of the influence of the IOD on ENSO is supported 
by a simple statistical forecast of the ENSO peak. In agreement with the “recharge oscillator” 
theory for ENSO, the WWV provides an efficient predictor of the ENSO peak up to 9 months 
in advance (Fig. 55). While the predictive power of the WWV alone decreases steeply beyond 
11 months of lead-time (correlation below 0.3), IOD indices are good predictors (correlation 
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of ~0.6) in autumn 13-15 months before the ENSO peak. The Indian Ocean contribution for 
example improves significantly the hindcasts of the 1997-98 El Niño, 1998 La Niña and 
2007-08 La Niña (Fig. 57c). Over the whole 1981-2009 period the simple hindcast model 
results in a spectacular increase in skill score for leads of 13-15 months (Fig. 57a). This 
corresponds to a backward extension of the 0.8 skill score limit of more than 4 months. 
Whereas predictors of ENSO based on Indian Ocean variables had been suggested before, this 
study is the first one to identify clearly the IOD as an essential precursor/trigger of ENSO, 
and to provide a skill score above 0.8 before the so-called winter-spring predictability barrier 
(e.g. Jin et al. 2008). It highlights that the Indian Ocean is not completely slave to the 
powerful ENSO cycle from the neighbouring Pacific, but has degrees of freedom on its own 
and even partially controls ENSO state the following year. 

A lot of studies have illustrated the potential role of intraseasonal wind anomalies in the 
western Pacific on ENSO development through the generation of Kelvin waves (e.g. Kessler 
2000, McPhaden et al. 2006, Vialard et al. 2001). These anomalies include westerly wind 
bursts (WWBs) and the Madden-Julian Oscillation (MJO). The detailed evolution of WWBs 
and the MJO cannot be predicted beyond a couple of weeks. This sounds at odds with the 
present study, which shows that the ENSO peak is highly predictable as far as 14 months in 
advance. But it turns out that the envelope of the MJO itself is modulated by variability in the 
Indian Ocean, as discussed in section 3.2.2.2. Negative IODs are followed by more energetic 
MJOs in the Indian Ocean and western Pacific (Izumo et al 2009). The IOD index we use 
hence contains information on both interannual wind anomalies in the western-central Pacific 
and modulation of intraseasonal wind activity that precede El Niños. In this scenario, the 
changes in intraseasonal wind variability in the western Pacific could either be a consequence 
of interannual changes of the background state with no real role on the ENSO development, 
or alternatively contribute actively to the growth of ENSO together with the lower frequency 
wind anomaly.  

This study claims for a better understanding of the links between the Indian and Pacific 
oceans. This is a necessary step to delineate the necessary physics to resolve in coupled 
ocean-atmosphere forecasting systems, which eventually represent the most complete way 
forward for seasonal forecasting. For achieving this improved understanding and a better 
constraint on dynamical forecasting systems, a necessary step forward is the achievement of a 
similar observing system in the Indian Ocean as those already established in the tropical 
Pacific and Atlantic oceans. 

 



4. What’s next? 
Up to this point, I’ve presented my past or present areas of research and their context. In 

this last shorter section, I will present the main axes I have in mind for future (section 4.1). 
Those include brand new topics of research (like the climatic role of cyclones or processes in 
the North-Western Australian Basin), but also pursue of age-old science questions like 
processes of the MJO or the IOD-ENSO interactions. Observations are the drivers of science: 
in section 4.2, I’ll give an overview on my projects in terms of observational programs. I’ll 
finish with a few concluding words in section 4.3. 

4.1. New areas to explore… 

4.1.1. Tropical cyclones 

 
Figure 58. Trajectories of Tropical-Cyclones for 1985-2005. The red frame highlights the 5°S-

12°S band. The SCTR is also a region of generation of tropical storms. Some of these tropical 

storms will become cyclones further south: do the oceanic stratification in the SCTR influence 

them during their early life? 

Most of the cyclones that hit Australia or Madagascar / La Réunion were first developed 
as tropical storms in the 5-10°S band. It seems that air-sea interactions in this region can 
modify their future characteristics: an anomalous heat content in the SCTR region can 
influence the number of cyclone-days in the Madagascar-La Réunion sector (Xie et al 2002). 
In addition to this modulation of cyclonic activity by interannual variability, there’s also a 
clear modulation of tropical cyclones in this region by the MJO (e.g. Liebmann et al. 1994, 
Bessafi and Wheeler 2006). 

Cyclones can influence the ocean in mainly two ways: they are associated with heat 
uptake by evaporative cooling, and they induce additional mixing and Ekman pumping. On 
the other hand the upper ocean heat content along the cyclone track has long been known as 
an important parameter for controlling the evolution of the cyclone intensity (e.g. Goni and 
Trinanes 2003). 
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During the Cirene cruise, a tropical storm that would then become cyclone Dora passed 
almost exactly over the location of the long station and ATLAS mooring (Vialard et al 
2009a). The detailed analysis of the upper ocean thermal response to the cyclone is underway 
in collaboration with G. Foltz and M. McPhaden. Similarly, the dynamic response to the 
cyclone (generation of near-inertial oscillations and associated mixing) is also ongoing (in 
collaboration with P. Bouruet-Aubertot, Y. Cuippers and X. Vaillant). But in addition to these 
punctual process studies, a more systematic study of the cyclone influence on the climate on 
this region and of the influence of the SCTR on cyclogenesis is underway, in collaboration 
with M. Lengaigne and C. Menkes. I am mostly interested by the following questions in this 
framework:  

• Document better the oceanic response to tropical storms and cyclones in the 
Southern Indian Ocean from Cirene and RAMA data. 

• Is the response to tropical cyclones in the SCTR region modulated at interannual 
timescales by ENSO / the IOD? 

• How much do cyclones and tropical storms contribute to heat uptake and mean 
oceanic state in the Indian Ocean ? 

• How much do tropical cyclones / storms contribute to the MJO induced cooling 
events in the SCTR and North Western Australian Basin regions? 

• Is there an interannual modulation of the cyclone activity in the South Western 
Indian Ocean? Is rather related to large-scale atmospheric environment (e.g. 
vertical shear)? Is it related to change in the oceanic conditions? 

I will try to address these questions in future, using both existing datasets (Cirene data 
and RAMA dataset) and modelling (both forced and coupled). The TRIO cruise and 
contribution to RAMA (section 4.2) also has some specific objectives in terms of cyclone 
observations.  

4.1.2. Questions about the MJO 

There is flourish of unresolved questions about MJO mechanisms (e.g. multi-scale 
nature of the MJO, interactions between the large scale subsidence and recharge of moisture 
in the planetary boundary layer, role of extra-tropical perturbations, cloud-radiation 
feedbacks, etc.; see Wang 2005 and Zhang 2005 for reviews). My objective here is not to 
summarize all these questions but to pinpoint those on which I would like to work on the 
coming years. 

Role of coupling and diurnal cycle. There have been many studies of the role of 
coupling of the MJO. Most of these studies suggest that taking air-sea coupling into account 
result in a moderate improvement of the MJO simulated properties. However, existing 
coupled models largely underestimate the SST signature of the MJO in the SCTR and NWAB 
regions (Xavier et al 2008), and only a few studies did take into account the diurnal cycle of 
the SST (Woolnough et al 2007, Bernie et al 2008). There is a real need to re-assess the role 
of the coupling in the MJO in coupled models with a more realistic response in these two key 
regions. Analysis of a recent simulation with the Sintex-F model (Luo et al. 2003) that 
includes the diurnal cycle show a reasonable amplitude of the SST response in the SCTR and 
NWAB regions and can for example be used to re-assess the impact of coupling on the MJO. 

Interannual modulation of the MJO. In Izumo et al (2009), we have demonstrated that 
the IOD modulates the amplitude of the MJO activity in the Indian Ocean and Western 
Pacific. But the mechanism explaining the control of the change in MJO activity by the mean 
state remains to be elucidated. As we discussed earlier, two possible tracks to follow are the 
modulation of intraseasonal air-sea coupling by the ocean subsurface interannual anomaly or 
the interannual changes in the Atmospheric basic state. I think that the second option is most 
likely, and it could be tested by examining composites of the MJO structure (and in particular 
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moisture convergence in the atmospheric boundary layer) from re-analyses after negative or 
positive IOD years. Sensitivity experiments with a coupled model are another possible route 
to follow to examine this issue. 

The MJO as an off-equatorial process. The dominant MJO theory (frictional 
convergence feedback) is largely an equatorial theory (i.e. based on equatorial Kelvin and 
first meridional mode Rossby waves, which are symmetric and have maximum signature at 
the equator or within 10°N-10°S). Inclusion of mean state in the frictional convergence 
feedback theory has had some success in explaining the summer intra-seasonal oscillation 
(Wang 2005), but has not been applied to the boreal winter MJO. The MJO is largely shifted 
to the south of the equator in boreal winter. Friction in the boundary layer is much less 
efficient in producing convergence at around 10°S than in the equatorial beta-plane. Most of 
the analyses of the MJO structure and associated moisture convergence use an equatorial 
MJO index (e.g. Hendon and Salby 1994). It would be extremely useful to re-assess the three-
dimensional patterns associated with the MJO without restricting the analysis to the equatorial 
band, in particular for the Boreal winter MJO. In the past, I have mostly concentrated on 
mechanisms of the oceanic response to the MJO, but I have become more and more familiars 
with the concepts of tropical meteorology over the years. In the coming years, I’m planning to 
get more involved in the analysis of the atmospheric structure of the MJO. I would like to 
start by examining the 4D structure of the MJO specifically for winter, and try to relate the 
observed features to the existing MJO theories. 

4.1.3. The North-Western Australian basin (NWAB) 

Duvel and Vialard (2007) demonstrated that the region with strongest SST signature of 
the MJO is found northwest of Australia, between Australia and Indonesia. This region is also 
a region of very strong diurnal cycle of the SST, and very strong modulation of this diurnal 
cycle by the MJO (Bellenger and Duvel 2009). The SST signature in this region is even 
stronger than in the SCTR region, possibly because of the intraseasonal SST response 
rectification by the diurnal cycle proposed by Bernie et al. (2005). To my knowledge, the 
impact of this large SST signal on the MJO characteristics over Australia and Indonesia has 
not been studied, and deserves such a study because of the strong modulation of rainfall by 
the MJO over northern Australia (Wheeler and Hendon 2004). The ocean response to the 
MJO in this region, and the potential feedback on the MJO properties thus deserves to be 
better studied, both from an observational and modelling point of view. 

There is presently no mooring planned within the RAMA framework in this region. I 
proposed within the framework of the IOP to deploy an ATLAS mooring (in collaboration 
with PMEL) in this region in the framework of the TRIO cruise (see 4.2). This mooring will 
remain at this location for about two years in the framework of a process study dedicated to 
the study of the ocean signature of the MJO in this region. The potential inclusion of this 
mooring in the RAMA design will then be discussed within the IOP depending of the results 
harvested during this process experiment phase. This mooring data will allow to document 
better the surface flux signature of the MJO in this region, the contribution of the diurnal 
cycle to the total intraseasonal variability and the processes of the SST signature of the MJO.  

This observational analysis will have to be completed by a modelling approach to 
evaluate the impact of coupling on the MJO in this region. I am also presently seeking 
collaborations in Australia to study the impact of the large SST signals in the North-Western 
Australian Basin region, in particular in terms of potential predictability of the rainfall. 

4.1.4. Indo-Pacific as a single basin 

Some of our recent work suggests a potential influence of the IOD on next year’s 
evolution of the ENSO cycle in the Pacific basin (section 3.3.2). Although the suggestion of 



 
 

70/91                                              Ocean-Atmosphere variability over the Indo-Pacific Basin 

this impact from the statistical forecast approach is very strong (including an IOD index 
spectacurly increases forecasts of the ENSO peak in the 11-15 months lead time range), the 
exact mechanism by which the IOD could influence El Niño still has to be studied in more 
detail. A few examples of questions, which have to be addressed through a mix of 
observational analysis and GCM experiments follow: 

• Does a negative (positive) IOD induce an increase (decrease) of Easterlies 
over the Pacific during July-November? Observations seem to show that 
(section 3.3.2) but some previsous modelling studies suggest otherwise 
(e.g. Annamalai et al. 2005a). 

• How much does such increased easterlies contribute to WWV recharge 
(and ENSO preconditioning) in the Pacific Ocean? Does the delayed-
oscillator mechanism also contribute to ENSO triggering by the IOD? 
(Anomalous easterlies force downwelling Rossby waves in October-
November, which come back as downwelling Kelvin Waves 3-6 months 
later; the zonal current anomalies associated with these waves can help 
initiating an eastward movement of the warm pool). 

• What is the forced oceanic response to easterlies relaxation such as those 
documented in figure 56? By how much does the resulting eastward 
advection push the warm pool eastward? 

• What are the respective roles of the low frequency wind perturbations and 
of the modulation of MJO / WWB activity in the eastward extension of the 
warm pool (although they seem to be difficult to separate: Marshall et al. 
2009)? 

Investigating these questions will help confirming or infirming the mechanism proposed 
in section 3.3.2 and to ascertain the influence of the IOD on the ENSO cycle. All in all, the 
Pacific and Indian oceans appear as highly interactive systems. Indeed, El Niño induces an 
overall long-lasting warming of the Indian ocean and sometimes triggers an IOD (section 
3.1.1). An IOD or basin-wide Indian ocean warming seem to influence the synchronous 
ENSO, in particular during its decaying phase (e.g. Annamalai et al. 2005a, Kug and Kang 
2006). And our results now suggest that an IOD can influence the following year ENSO. This 
“closing of the loop” is a potential explanation to the biannual tendency of the western Pacific 
and Indian Ocean (e.g. Clarke et al. 1998, Meehl 1997): an ENSO tends to induce a 
synchronous IOD, which tend to favour an opposite phase ENSO the following year, etc… In 
this respect, it seems to be advisable to study the Indian and Pacific oceans as one, rather as 
separate systems. 

Another strong argument for studying Pacific and Indian Oceans together is the facct 
the MJO develops in the Indian ocean and propagates in the Pacific. The results in this 
document also show that interannual anomalies in the Indian Ocean can modify the MJO 
characteristics both in the Indian Ocean and Western Pacific, making one more case to 
consider to study these two basins together. In fact, this is a rather obvious case, considering 
the fact that these two basins share the area of warm water responsible for the ascending part 
of the Walker circulation, one of the fundamental ingredients of our Earth’s climate.  

4.2. Observational programs 

4.2.1. The TRIO program 

TRIO can be seen of a follow-up to Vasco-Cirene, with extended science goals. I won’t 
describe the TRIO project in detail here, but just give an overview. The reader craving for 
more details can access the TRIO science plan and ship time proposal from my webpage 
(http://www.locean-ipsl.upmc.fr/~jv). 
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The TRIO (Thermocline ridge of the Indian Ocean) project aims at analysing the 
coupled processes associated with prominent phenomena in the 5°S-12°S band of the Indian 
Ocean (i.e. cyclones, MJO, IOD), their scale interactions and their predictability. TRIO is an 
integrated project that continues and expands the Vasco-Cirene programme. TRIO will 
combine modelling, analysis of past observations and a new field experiment. The field 
experiment is mostly based on a cruise in the 5°S-12°S band and will be interact with three 
satellite programs (Altika, SMOS and Megha-tropiques) and with the development of a 
mooring Array in the Indian Ocean (the RAMA array). The TRIO cruise will cover the 5°S-
10°S band in the Indian Ocean and the northwestern Australian basin. These two regions have 
recently been identified as the two regions with the strongest surface temperature signals 
associated with the MJO. The TRIO cruise plans include a deployment of a mooring in the 
NWAB region (cf 4.1.3), study of strong intraseasonal Rossby waves along 12°S (see TRIO 
science plan), study of the salinity front, study of ocean mixing at selected sites, and a long-
term station to complete the SWICE measurement network, and more targeted on the MJO 
and cyclones. 

 
Figure 59. Overview of the TRIO cruise. The cruise starts from Padang Bai in Bali (Indonesia), 

deploys two new moorings in collaboration with PMEL (red circles) and services up to 4 more 

RAMA moorings, depending on the state of the network. There is strong intraseasonal 

variability of the sea level along 12°S, and TRIO will sample one Rossby wave oceanic 

structure (within the region highlighted in yellow). TRIO will repeat partially one WOCE 

section (region highlighted in red), allowing for an estimate of interannual to decadal 

variability in this region, and allowing sampling the salinity front in this region. The main 

process study of TRIO, in collaboration with SWICE follows: the Atalante, located at the 

magenta square, will perform a ~25-day long station with intense atmospheric, surface, and 

oceanic measurements. Autonomous profiling instruments (ASIP, Glider, microstructure 

measurements) will be deployed during that station.  All along the cruise, Argo profilers will be 

deployed to fill gaps in the Argo network, and continuous measurements will be acquired (TSG, 

S-ADCP, Flux mast, Radiosondes, WBTs, XCTDs). The stars indicate the departure port 

(Padang Bai in Bali) and the arrival port (Victoria in Seychelles). The last star indicates the 

Diego Garcia Island, where a port call might be organized. 

The initial plan was to coordinate TRIO with SWICE (South West Indian Ocean 
Cyclone Experiment, a French project targeting Cyclone analysis in the southwestern Indian 
Ocean). The SWICE project targets the period in early 2011. Unfortunately, the TRIO ship 
time proposal has not been selected in late 2009 and it seems now unlikely that the TRIO 
cruise will happen in early 2011, but rather in late 2011 or early 2012. We will explore the 
following option with the SWICE investigators: SWICE could be rescheduled one year later. 
This would have several advantages: TRIO could thus contribute and benefit from the 
intensive radiosonde network set up during SWICE. In addition, TRIO and SWICE could join 
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an international effort to study the MJO in late 2011 / early 2012 (the Japanese CINDY cruise 
by K. Yoneyama, the US lead DYNAMO cruise by C. Zhang and the Australian cruise). If 
this synchronization happens, this international effort would lead to an intensive 
meteorological and oceanographic effort during the convection / cyclonic season in the Indian 
Ocean with an intensive radiosonde network (from Island and ships), one plane (SWICE) and 
up to 4 oceanographic ships (Japanese, US, Australian and French with TRIO). This will be 
discussed among the main players of this proposal at the next IOP meeting in June. 

4.2.2. French contribution to the RAMA array 

The RAMA array is an international effort. Up to now, the largest contributions have 
been from US (PMEL), Japan (JAMSTEC), India (Ministry of Earth Sciences and INCOIS), 
China, Indonesia and South Africa. The French contribution has only been punctual 
(deployment of the 8°S, 67°E mooring during the Cirene cruise in January 2007; re-
deployment of this mooring during a transit of the Marion Dufresne in August 2008). The 
TRIO cruise will also contribute to RAMA, but again in a punctual way. I’m now trying to 
organise a more permanent contribution of France to the RAMA array, by taking opportunity 
of the presence of the Marion Dufresne in the Indian Ocean. Making reasonable assumptions 
based on previous years port calls and routes, the minimum number of days that seem 
necessary to perform sufficient interventions on the array every year is 15 days of ship time 
(either as dedicated cruises or as piggyback-cruises). 

This has several incentives. First, there is mounting evidence that suggests that climatic 
anomalies in the Indian Ocean not only have impact locally around the Indian Ocean, but also 
at the global scale (see Schott et al. 2009 for a review). Second, France (through Météo 
France) is responsible of the cyclone forecasts in the southwest Indian Ocean sector. The 
cyclones that develop over the thermocline ridge can indeed affect French territories like La 
Réunion. In this respect, data from the RAMA array have two strong potential benefits: 1) 
they will contribute to the improved understanding of air-sea interactions associated with 
tropical storm and cyclones; 2) surface meteorological data from the RAMA array can 
contribute to improved forecast by assimilation of surface wind and pressure data in weather 
forecast models.  

I have thus started a dialog with the potential parties involved in setting up this 
contribution to RAMA: IPEV (who owns the Marion Dufresne), INSU (the French 
coordinating organism for this kind of action), Météo France (responsible of cyclone forecasts 
over the south-western Indian Ocean sector) and IRD (who has historically contributed to 
TAO and PIRATA arrays and has the expertise to help in such deployments). All the parties 
sounded interested by the project. IPEV could contribute some dedicated ship time from the 
Marion Dufresne. Météo France has proposed to fund extra pressure sensors on all the RAMA 
morings at 5°S and southward. INSU and IRD could contribute with manpower to second the 
PMEL personnel with deployments. The next step is now for me to compile a formal proposal 
for this plan (maybe as an “ORE”), aiming at a memorandum of understanding between 
NOAA, IPEV, IRD, Météo France and INSU. 

4.3. Concluding remarks 

For my first steps in climate science, I worked on the tropical Pacific, mostly from an 
oceanographic perspective, and using mostly modelling tools. After a parenthesis in data 
assimilation and seasonal forecasting at ECMWF, my work as an IRD researcher has been 
attracted more towards tropical meteorology, focussed on the Indian Ocean, and largely based 
on observational analysis. This involvement in observations culminated in the Cirene cruise. 
Now, it seems to me that instead of this thematic movement I had over the last few years 
(from ocean to atmosphere, from modelling to observations and from the Pacific to the Indian 
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Ocean), I need to try to take more height in order to combine both perspectives at the same 
time (ocean and atmosphere, modelling and observations, Pacific and Indian, cheese and 
dessert). I tried to illustrate this in section 4.1.4: when it comes to interannual variability, the 
Indian and Pacific Oceans probably cannot be studied as separate basins… In this respect, it 
also seems quite important to remain curious and read a lot, about one’s research topics, but 
also about connected ones. There is a permanent flow of ideas within climate research: for 
example, the wind evaporation feedback idea was initially developed to explain the MJO, but 
does not really apply to it. On the other hand, a slight alteration of this idea (wind-
evaporation-SST feedback) is quite successful in explaining meridional dipole anomalies that 
sometime occur in the Atlantic Ocean (Xie and Philander 1994). 

The synergy between observations and modelling is also very important. Observations 
are the drivers of science. This is particularly true in the poorly observed Indian Ocean where 
every new type of observation seems to allow the discovery of a new and potentially 
important feature. The TMI satellite data allowed discovering that the MJO SST signature 
was much larger than previously thought, thanks to the ability of this instrument to “see” 
below convective clouds (section 3.1.2). The Argo data allowed to discover a zonally moving 
salinity front at 10°S in the Indian Ocean (section 3.3.1). Even revisiting old datasets (like 
altimetry dataset) allow the discovery of new features, like the basin scale intraseasonal 
circulation discussed in section 3.2.1. The models then take their full dimension when it 
comes to analyse the processes responsible for these features. For example, I am now using a 
modelling approach (combination of linear continuously stratified model and OGCM) to 
investigate the details of the intraseasonal response of the Northern Indian Ocean coastal 
waveguide to winds variations associated with the MJO. This modelling approach makes it 
much easier to e.g. distinguish the respective contributions of local and remote forcing than a 
purely observational analysis. 

I will thus try to adopt this synergistic approach combining observations and modelling 
in the next few years. But observations, and in particular oceanographic cruise, will probably 
be my main emphasis. I enjoyed tremendously being the chief scientist on Cirene and can’t 
wait to be back on the deck of a research vessel for TRIO. Organizing an oceanographic 
campaign is a long and hazardous task, especially in those times where funding becomes 
sparse. This is especially the case in the Indian Ocean, where French R/Vs are difficult to 
bring. But in the end, it is such a rewarding feeling to be at the heart of the problem: there, 
somewhere in the Indian Ocean, floating at the interface between the ocean and the 
atmosphere, listening to their secret conversation and dreaming about what happens above 
and below… 

 



Abbreviations 
AGCM. Atmospheric General Circulation Model. A model constructed from primitive equations.  

Argo. Array for Real-Time Geostrophic Oceanography. This program has lead to the deployment of 

~3000 autonomous profilers in the world ocean, that nominally provide a 0-2000m profile of 

conductivity, temperature, pression every 10 days.  

CLIVAR. Climate variability and predictability. One of the WCRP programs.  

ECMWF. European Centre of Medium-Range Weather Forecast. European organization based in 

Reading (United Kingdom) and performing routinely ensemble long lead forecasts at several 

lead times, up to 6 months seasonal forcasts. 

EICC. East Indian Coastal Current. Seasonally reversing current flowing along the East Coast of 

India. 

ENSO. El Niño Southern Oscillation. The leading mode of climate variability at interannual 

timescales. 

EUC. Equatorial Under-Current. Eastward flowing subsurface current at the thermocline level found 

in the Atlantic and Pacific oceans. A transient EUC can also form in the Indian Ocean 

(Sengupta et al 2007). 

GCM. General Circulation Model. A model constructed from primitive equations. See OGCM and 

AGCM. 

IOD. Indian Ocean Dipole. The little brother of El Niño. Air-Sea coupled interannual phenomenon in 

the Indian Ocean Basin.  

IOP. Indian Ocean Panel. One of the expert panels from CLIVAR. 

ITCZ. Inter Tropical Convergence Zone. The seasonally migrating region of maximum deep 

atmospheric convection in the tropics.  

MJO. The Madden-Julian Oscillation, named after its discoverers, is the leading mode of Atmospheric 

variability at intraseasonal timescale, and involves coupling between deep atmospheric 

convection and dynamics. 

MLD. Mixed layer depth. The upper ocean layer that exchange properties with the atmosphere. 

NCEP. U.S. National Centers for Environmental Prediction. The NCEP has produced a widely used 

re-analysis of the atmospheric conditions over the last 50 years. 

NEC. North Equatorial Current. The westward current that flows at ~10°N in the Pacific ocean, on 

the northern flank of the thermocline ridge associated with ITCZ wind convergence. 

NECC. North Equatorial Counter-Current. The eastward current that flows at ~6°N in the Pacific 

ocean, on the southern flank of the thermocline ridge associated with ITCZ wind convergence. 

NOAA. The National Oceanic and Atmospheric Administration is US a federal agency focused on the 

condition of the oceans and the atmosphere. They are the main contributors to the TAO, RAMA 

and PIRATA programs. 

NWAB. North Western Australian Basin. The region of strongest signature of the ocean to the MJO 

(Duvel and Vialard 2007), located between Australia and Indonesia. 

OLR. Outgoing longwave radiation at the top of the Atmosphere (in W m
-2

). Indicates the temperature 

of the surface (clear sky) or cloud top (cloudy scenes) and is hence a proxy of atmospheric 

convection. 

OGCM. Ocean General Circulation Model. A model constructed from primitive equations. 
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PIRATA. Prediction and Research Moored Array in the Atlantic. A basin-scale moored array 

monitoring in near real time the state of the Atlantic Ocean subsurface ocean and surface 

meteorological parameters. 

PMEL. Pacific-Marine Environment Laboratory. A NOAA laboratory in Seattle (US) that has played 

a key role in the three tropical mooring arrays (TAO, PIRATA, RAMA) development. 

RAMA. Research Moored Array for African-Asian-Australian Monsoon Analysis and Prediction. A 

basin-scale moored array monitoring in near real time the state of the Indian Ocean subsurface 

ocean and surface meteorological parameters. The Indian Ocean counterpart to TAO and 

PIRATA. 

SCTR. Seychelles-Chagos Thermocline Ridge. A thermocline ridge within 5-10°S in the Indian ocean, 

induced by climatological Ekman pumping. It has strong climatic impacts, and variability at 

several timescales (cyclones / MJO / IOD). 

SEC. South Equatorial Current. In the Pacific, the South equatorial current has two branches (one 

slightly north of the equator, one between 2°S and 10°S). In the Indian Ocean, the South 

Equatorial current is on the southern Flank 0f the SCTR, southward of 10°S. There’s also a 

SEC in the Atlantic ocean. 

SL or SLA. Sea level or sea level anomaly. Elevation of the sea surface due to ocean dynamics. In this 

manuscript, SL always refer to anomalies / mean circulation and SLA to anomalies / mean 

seasonal cycle. 

SST or SSTA. Sea Surface temperature or Sea Surface Temperature anomaly. In this manuscript, 

SSTA refers to anomalies / mean seasonal cycle. 

TAO. Tropical Atmosphere Ocean array. A basin-scale moored array monitoring in near real time the 

state of the Pacific Ocean subsurface ocean and surface meteorological parameters. 

TIWs and TIVs. Tropical Instability Waves or Vortices. Vortices and associated undulations of the 

SST front north of the equatorial tongue in the Eastern Atlantic and Pacific oceans. 

TOGA. Tropical Ocean Global Atmosphere. The precursor to the CLIVAR program. The TAO array 

was built during the TOGA decade. 

WCRP. World Climate Research Program.  

WICC. West Indian Coastal Current. Current flowing along the East Coast of India. The WICC was 

though to be seasonally reversing but we demonstrated that it is in fact dominated by 

intraseasonal fluctuations (Vialard et al. 2009b). 

WJ. Wyrtki Jet. Named after its discoverer Klaus Wyrtki. Strong westward jet (often more than 1 m s
-1

) 

that occurs in the equatorial Indian Ocean during the Inter-monsoons (May and October-

November). 

WWB. Westerly Wind Bursts. Synoptic to intraseasonal wind events in the Indian Ocean and Western 

Pacific. WWBs occur more frequently (but not always)  during the active phase of the MJO. In 

the western Pacific, they can contribute to trigger an El Niño. 

WWV. Warm water volume. The volume of water above 20°C within 5°N-5°S, 120°E-80°W in the 

Pacific Ocean. The WWV is an efficient predictor of El Niño. 
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A.2 Scientific advisory and training activities 
 

PhDs : 
 

Luciano Pezzi (Brazil) (University of Southampton, 2001-2003, Advisor: K. Richards) 
• Topic: «Equatorial Pacific dynamics: Lateral mixing and tropical instability 

waves.» 
• Role: 4-months visit to LOCEAN to work with me on the effect of coupling on 

TIWs 
• Co-signed publications: 1 

 

Sophie Ricci (Université Toulouse 3, 2002-2004, Advisor: A. Weaver) 
• Topic: «Assimilation variationelle océanique : modélisation multivariée de la 

matrice de covariance d'erreur d'ébauche.» 
• Role: Thesis committee, contribution to PhD tutorship.  
• Co-signed publications: 1 

 

Clément de Boyer Montégut (Université Paris 6, 2003-2005, Advisor: G. Madec) 
• Topic: «Couche mélangée océanique et bilan de chaleur et de sel dans le Nord de 

l’Océan Indien.» 
• Role: Contribution to PhD tutorship.  
• Co-signed publications during the PhD: 1 (+ 2 since) 

 

Thomas Gorgues (Université Paris 6, 2003-2006, Advisor: Y. Dandonneau) 
• Topic: «Modélisation biogéochimique du Pacifique tropical.» 
• Role: Contribution to PhD tutorship.  
• Co-signed publications: 1 

 

Florian Sévellec (Université de Bretagne Occidentale, 2004-2007, Advisor: T. Huck) 
• Topic: «Variabilité basse fréquence endogène et exogène de la circulation 

thermohaline.» 
• Role: Contribution to PhD tutorship. 
• Co-signed publications: 2 

 

Anne-Charlotte Peter (Université Toulouse 3, 2005-2007, Advisor: Y. duPenhoat) 
• Topic: «Variabilité de la température de la couche de mélange en Atlantique 

équatorial aux échelles saisonnières à interannuelles.» 
• Role: Collaborative work on tropical Atlantic seasonal heat budget.  
• Co-signed publications: 1 

 

Laure Resplandy (Université Paris 6, 2006+, Advisor: M. Lévy) 
• Topic: «Biogeochemical processes in the Arabian Sea» 
• Role: Contribution to PhD tutorship. 
• Co-signed publications: 1 publication currently in revision. 

 

I. Suresh (Inde) (Indian Institute of Science, 2007+, Advisor: P.N. Vinayachandran) 
• Topic: «Intraseasonal variability in the Arabian Sea» 
• Role: Contribution to PhD tutorship. 
• Co-signed publications: not yet. 

 

Praveen Kumar (Inde) (Andhra University, 2008+, Advisor: V.S.N. Murty) 
• Topic: «Intraseasonal to interannual heat budget of the tropical Indian Ocean» 
• Role: Main PhD advisor. 
• Co-signed publications: not yet. 
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Thesis committees: 

 
Arthur Vidard (Université Joseph Fourier, Grenoble, Décembre 2001) 
• Topic: «Vers une prise en compte de l'erreur modèle en assimilation 4D-

Variationnelle - Application à un modèle réaliste d'océan » 
 
Sophie Ricci (Université Paul Sabatier, Toulouse, Mars 2004) 
• Topic: «Assimilation variationelle océanique : modélisation multivariée de la 

matrice de covariance d'erreur d'ébauche.» 
 
Hugo Bellenger (Ecole Polytechnique, Palaiseau, Mars 2007) 
• Topic: «Rôle de l'interaction océan-atmosphère dans la variabilité intrasaisonnière 

de la convection tropicale.» 
 

 

 

Masters training period that lead to publications: 

 
Pierre Dutrieux (LOCEAN, 2002) 
• Topic: «Lagrangian analysis of Atlantic ocean Tropical Instability Vortices» 
• Co-signed publication: 1  

 

 

Post-docs & other : 

 
Fabien Durand 
• Topic: «Barrier layer formation in the Southeastern Arabian Sea» 
• Postdoc in NIO, Goa (2003) 
• Co-signed publications during the postdoc: 1 (+ 1 since) 

 
Retish Senan (Inde)  
• Topic: «Intraseasonal to interannual variability of the tropical Indian Ocean» 
• Postdoc (2004-2005) 
• Co-signed publications: 1 (+ 1 in preparation) 
 

Florian Sévellec  
• Topic: «Generalised stability analysis of the tropical Pacific Ocean» 
• Postdoc in the framework of the ENSEMBLES European project (2007) 
• Co-signed publications: 2 (+ 1 in preparation) 
 

Charles Deltel and then Bruno Luong 
• Development of the altimetry assimilation into the OPAVAR system 
• Engineers (CNES funding; May 2002-May 2004 and June 2004-May 2005) 
• Delivered: the system is now able to assimilate altimeter observations. 
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A.3 Research projects / cruises 

 
Research projects 

 

Funded : 

• ENACT (FP5 2002-2004) «Enhanced ocean data assimilation and climate 
prediction», co-I 

• ENSEMBLES (FP6 2004-2009) «Ensemble seasonal to multi-decadal predictions», 
co-I 

• Projet CNES «Climate variability and altimeter data : toward a global approach of 

seasonal-to-interannual climate predictability and ocean variability», financement 

d’un poste d’ingénieur sur 2002-2005. 
• Co-I des projets PNEDC puis LEFE sur la variabilité de l’Océan Indien (LOTI, 

OCTAVIE) 2004-2008 
• PI du projet TRIO soumis à LEFE (projet d’accompagnement de la campagne en mer 

TRIO) 
 
Oceanographic cruises 

 

Past:  

• Valorisation de transit Cirene, Marion Dufresne, 10 jours en Octobre 2005, chef de 
mission. 

• Campagne Cirene, Suroît, 44 jours en Janvier-Février 2007, chef de mission 
• Valorisation de transit Cirene, Marion Dufresne, 12 jours en Août 2008 

(remplacement d’un mouillage ATLAS du réseau RAMA), chef de projet 
 

 
Future:  

• Le projet TRIO de campagne dans l’Océan Indien en fin 2010 ou début 2011 a été 
positivement évalué par le comité inter-organismes LEFE. Le projet de campagne a 
été soumis à la commission flotte et est en cours d’évaluation. 
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A.4 Curriculum Vitæ 

 
 
 

Jérôme VIALARD 
 

Born the 04th of June, 1972 in Cahors (France), French nationality 
Married with Marie-Luce Vernay (26th of May, 2007), one child (Capucine Vialard, born 6th December, 2008 in 

Assagao, Goa) 
 

22, rue Nicolas Berthot, 21000 Dijon, France Sagar Society plot 4, Dona Paula, Goa 403004, India 
Phone: +33 3 80 43 84 66    +91 96 57 89 73 31 
E-mail: jv@locean-ipsl.upmc.fr   vialardj@nio.org  
 

Education 
 

1997  PhD in Physical Oceanography 
LODYC, University of Paris VI, Paris 
Dissertation title: “Influence of salinity on ocean-atmosphere interactions in the Tropical 
Pacific Ocean” 

 

1994  M. Sc. in physical oceanography and meteorology 
   Engineer diploma from Ecole Nationale Supérieure de Technique Avancées (ENSTA) 
 
 

Research experience 
 

2002+  IRD scientist at LODYC (Laboratoire d’Océanographie Dynamique et de Climatologie, Paris) 
Research interests: Mechanisms and predictability of intraseasonal to interannual variability 

of the ocean-atmosphere system in the Indo-Pacific Region. Madden-Julian oscillation. 
Tropical instability waves. Ocean-atmosphere coupling at intraseasonal timescale in the 
Indian Ocean. Ocean data assimilation. 

 

1999-2001 Scientist in charge of the oceanic data assimilation system at ECMWF, in the seasonal 
forecasting group 
Topic: Improve the quality of ocean re-analyses and the skill of seasonal forecasts. 

 

Nominated member of the CLIVAR Indian Ocean Panel since 2006. 
 

Reviewer for Journal of Physical Oceanography, Journal of Atmospheric Sciences, Journal of Geophysical 

Research (Oceans), Quarterly Journal of the Royal Meteorological Society, Journal of the Meteorological 

Society of Japan, Annales Geophysicae, Geophysical Research letters, Ocean Modelling, Current Science 

(Indian Academy of Sciences Bangalore) 
 
 

Publications (refereed papers) 
 

A total of 40 accepted or published refereed papers. Visit http://www.researcherid.com/rid/C-2809-

2008 for citation metrics and h-index. A complete publication list is available earlier in this 
manuscript. 
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Appendix B. Selection of articles 
 
The following selection of articles is representative of some of the studies I have undertaken 
since my PhD on the following subjects: 
 
TIWs 
Menkes, C., J. Vialard, S.C. Kennan, J-P. Boulanger, G. Madec and K. Rodgers, 2006, A modelling 

study of the three-dimensional heat budget of Tropical Instability Waves in the Equatorial 
Pacific, Journal of Physical Oceanography, 36, 847–865. 

 
El Niño 
Vialard, J., C. Menkes, J-P. Boulanger, P. Delecluse, E. Guilyardi and M. McPhaden, 2001: A model 

study of the oceanic mechanisms affecting the equatorial SST during the 1997-98 El Niño. 

Journal of Physical Oceanography, 31, 1649-1675. 
 

Oceanic signature of the MJO 
Vialard, J., S.S.C Shenoi, J.P. McCreary, D. Shankar, F. Durand, V. Fernando and S.R. Shetye, 2009: 

Intraseasonal response of Northern Indian Ocean coastal waveguide to the Madden-Julian 
Oscillation, Geophys. Res. Lett., in revision. 

Vialard, J., G. Foltz, M. McPhaden , J-P. Duvel and C. de Boyer Montégut, 2008, Strong Indian 
Ocean sea surface temperature signals associated with the Madden-Julian Oscillation in late 
2007 and early 2008, Geophys. Res. Lett.,35, L19608, doi:10.1029/2008GL035238. 

 

Interannual variability in the Indian Ocean 
Vialard, J., et al., 2009, Cirene: Air Sea Interactions in the Seychelles-Chagos thermocline ridge 

region, Bull. Am. Met. Soc., 90, 45-61. 
 
 




