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Building trust in science and evidence-based decision-making depends heavily on the cred-

ibility of studies and their findings. Researchers employ many different study designs that

vary in their risk of bias to evaluate the true effect of interventions or impacts. Here, we

empirically quantify, on a large scale, the prevalence of different study designs and the

magnitude of bias in their estimates. Randomised designs and controlled observational

designs with pre-intervention sampling were used by just 23% of intervention studies in

biodiversity conservation, and 36% of intervention studies in social science. We demonstrate,

through pairwise within-study comparisons across 49 environmental datasets, that these

types of designs usually give less biased estimates than simpler observational designs. We

propose a model-based approach to combine study estimates that may suffer from different

levels of study design bias, discuss the implications for evidence synthesis, and how to

facilitate the use of more credible study designs.
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The ability of science to reliably guide evidence-based
decision-making hinges on the accuracy and credibility of
studies and their results1,2. Well-designed, randomised

experiments are widely accepted to yield more credible results
than non-randomised, ‘observational studies’ that attempt to
approximate and mimic randomised experiments3. Randomisa-
tion is a key element of study design that is widely used across
many disciplines because of its ability to remove confounding
biases (through random assignment of the treatment or impact of
interest4,5). However, ethical, logistical, and economic constraints
often prevent the implementation of randomised experiments,
whereas non-randomised observational studies have become
popular as they take advantage of historical data for new research
questions, larger sample sizes, less costly implementation, and
more relevant and representative study systems or populations6–9.
Observational studies nevertheless face the challenge of account-
ing for confounding biases without randomisation, which has led
to innovations in study design.

We define ‘study design’ as an organised way of collecting data.
Importantly, we distinguish between data collection and statistical
analysis (as opposed to other authors10) because of the belief
that bias introduced by a flawed design is often much more
important than bias introduced by statistical analyses. This was
emphasised by Light, Singer & Willet11 (p. 5): “You can’t fix by
analysis what you bungled by design…”; and Rubin3: “Design
trumps analysis.” Nevertheless, the importance of study design
has often been overlooked in debates over the inability of
researchers to reproduce the original results of published studies
(so-called ‘reproducibility crises’12,13) in favour of other issues
(e.g., p-hacking14 and Hypothesizing After Results are Known or
‘HARKing’15).

To demonstrate the importance of study designs, we can use
the following decomposition of estimation error equation16:

Estimation error ¼ Estimator� true causal effectð Þ
¼ Design biasþModelling biasþ Statistical noiseð Þ: ð1Þ

This demonstrates that even if we improve the quality of
modelling and analysis (to reduce modelling bias through a better
bias-variance trade-off17) or increase sample size (to reduce sta-
tistical noise), we cannot remove the intrinsic bias introduced by
the choice of study design (design bias) unless we collect the data
in a different way. The importance of study design in determining
the levels of bias in study results therefore cannot be overstated.

For the purposes of this study we consider six commonly used
study designs; differences and connections can be visualised in
Fig. 1. There are three major components that allow us to define
these designs: randomisation, sampling before and after the
impact of interest occurs, and the use of a control group.

Of the non-randomised observational designs, the Before-After
Control-Impact (BACI) design uses a control group and samples
before and after the impact occurs (i.e., in the ‘before-period’ and
the ‘after-period’). Its rationale is to explicitly account for pre-
existing differences between the impact group (exposed to the
impact) and control group in the before-period, which might
otherwise bias the estimate of the impact’s true effect6,18,19.

The BACI design improves upon several other commonly used
observational study designs, of which there are two uncontrolled
designs: After, and Before-After (BA). An After design monitors
an impact group in the after-period, while a BA design compares
the state of the impact group between the before- and after-
periods. Both designs can be expected to yield poor estimates of
the impact’s true effect (large design bias; Equation (1)) because
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Fig. 1 Comparison of different study designs used to evaluate the effect of an impact. A hypothetical study set-up is shown where the abundance of
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changes in the response variable could have occurred without the
impact (e.g., due to natural seasonal changes; Fig. 1).

The other observational design is Control-Impact (CI), which
compares the impact group and control group in the after-period
(Fig. 1). This design may suffer from design bias introduced by
pre-existing differences between the impact group and control
group in the before-period; bias that the BACI design was
developed to account for20,21. These differences have many pos-
sible sources, including experimenter bias, logistical and envir-
onmental constraints, and various confounding factors (variables
that change the propensity of receiving the impact), but can be
adjusted for through certain data pre-processing techniques such
as matching and stratification22.

Among the randomised designs, the most commonly used are
counterparts to the observational CI and BACI designs: Rando-
mised Control-Impact (R-CI) and Randomised Before-After
Control-Impact (R-BACI) designs. The R-CI design, often
termed ‘Randomised Controlled Trials’ (RCTs) in medicine and
hailed as the ‘gold standard’23,24, removes any pre-impact dif-
ferences in a stochastic sense, resulting in zero design bias
(Equation (1)). Similarly, the R-BACI design should also have
zero design bias, and the impact group measurements in the
before-period could be used to improve the efficiency of the
statistical estimator. No randomised equivalents exist of After or
BA designs as they are uncontrolled.

It is important to briefly note that there is debate over two
major statistical methods that can be used to analyse data col-
lected using BACI and R-BACI designs, and which is superior at
reducing modelling bias25 (Equation (1)). These statistical
methods are: (i) Differences in Differences (DiD) estimator; and
(ii) covariance adjustment using the before-period response,
which is an extension of Analysis of Covariance (ANCOVA) for
generalised linear models — herein termed ‘covariance adjust-
ment’ (Fig. 1). These estimators rely on different assumptions to
obtain unbiased estimates of the impact’s true effect. The DiD
estimator assumes that the control group response accurately
represents the impact group response had it not been exposed to
the impact (‘parallel trends’18,26) whereas covariance adjustment
assumes there are no unmeasured confounders and linear model
assumptions hold6,27.

From both theory and Equation (1), with similar sample sizes,
randomised designs (R-BACI and R-CI) are expected to be less
biased than controlled, observational designs with sampling in the
before-period (BACI), which in turn should be superior to
observational designs without sampling in the before-period (CI)
or without a control group (BA and After designs7,28). Between
randomised designs, we might expect that an R-BACI design
performs better than a R-CI design because utilising extra data
before the impact may improve the efficiency of the statistical
estimator by explicitly characterising pre-existing differences
between the impact group and control group.

Given the likely differences in bias associated with different study
designs, concerns have been raised over the use of poorly designed
studies in several scientific disciplines7,29–35. Some disciplines, such
as the social and medical sciences, commonly undertake direct
comparisons of results obtained by randomised and non-
randomised designs within a single study36–38 or between multi-
ple studies (between-study comparisons39–41) to specifically
understand the influence of study designs on research findings.
However, within-study comparisons are limited in their scope (e.g.,
a single study42,43) and between-study comparisons can be con-
founded by variability in context or study populations44. Overall, we
lack quantitative estimates of the prevalence of different study
designs and the levels of bias associated with their results.

In this work, we aim to first quantify the prevalence of different
study designs in the social and environmental sciences. To fill this

knowledge gap, we take advantage of summaries for several
thousand biodiversity conservation intervention studies in the
Conservation Evidence database45 (www.conservationevidence.
com) and social intervention studies in systematic reviews by the
Campbell Collaboration (www.campbellcollaboration.org). We
then quantify the levels of bias in estimates obtained by different
study designs (R-BACI, R-CI, BACI, BA, and CI) by applying a
hierarchical model to approximately 1000 within-study compar-
isons across 49 raw environmental datasets from a range of fields.
We show that R-BACI, R-CI and BACI designs are poorly
represented in studies testing biodiversity conservation and social
interventions, and that these types of designs tend to give less
biased estimates than simpler observational designs. We propose
a model-based approach to combine study estimates that may
suffer from different levels of study design bias, discuss the
implications for evidence synthesis, and how to facilitate the use
of more credible study designs.

Results
Prevalence of study designs. We found that the biodiversity-
conservation (conservation evidence) and social-science (Camp-
bell collaboration) literature had similarly high proportions of
intervention studies that used CI designs and After designs, but
low proportions that used R-BACI, BACI, or BA designs (Fig. 2).
There were slightly higher proportions of R-CI designs used by
intervention studies in social-science systematic reviews than in
the biodiversity-conservation literature (Fig. 2). The R-BACI, R-
CI, and BACI designs made up 23% of intervention studies for
biodiversity conservation, and 36% of intervention studies for
social science.

Influence of different study designs on study results. In non-
randomised datasets, we found that estimates of BACI (with
covariance adjustment) and CI designs were very similar, while
the point estimates for most other designs often differed sub-
stantially in their magnitude and sign. We found similar results in
randomised datasets for R-BACI (with covariance adjustment)
and R-CI designs. For ~30% of responses, in both non-
randomised and randomised datasets, study design estimates
differed in their statistical significance (i.e., p < 0.05 versus p >
=0.05), except for estimates of (R-)BACI (with covariance
adjustment) and (R-)CI designs (Table 1; Fig. 3). It was rare for
the 95% confidence intervals of different designs’ estimates to not
overlap – except when comparing estimates of BA designs to (R-)
BACI (with covariance adjustment) and (R-)CI designs (Table 1).
It was even rarer for estimates of different designs to have sig-
nificantly different signs (i.e., one estimate with entirely negative
confidence intervals versus one with entirely positive confidence
intervals; Table 1, Fig. 3). Overall, point estimates often differed
greatly in their magnitude and, to a lesser extent, in their sign
between study designs, but did not differ as greatly when
accounting for the uncertainty around point estimates – except in
terms of their statistical significance.

Levels of bias in estimates of different study designs. We
modelled study design bias using a random effect across datasets
in a hierarchical Bayesian model; σ is the standard deviation of
the bias term, and assuming bias is randomly distributed across
datasets and is on average zero, larger values of σ will indicate a
greater magnitude of bias (see Methods). We found that, for
randomised datasets, estimates of both R-BACI (using covariance
adjustment; CA) and R-CI designs were affected by negligible
amounts of bias (very small values of σ; Table 2). When the R-
BACI design used the DiD estimator, it suffered from slightly
more bias (slightly larger values of σ), whereas the BA design had
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very high bias when applied to randomised datasets (very large
values of σ; Table 2). There was a highly positive correlation
between the estimates of R-BACI (using covariance adjustment)
and R-CI designs (Ω[R-BACI CA, R-CI] was close to 1; Table 2).
Estimates of R-BACI using the DiD estimator were also positively
correlated with estimates of R-BACI using covariance adjustment
and R-CI designs (moderate positive mean values of Ω[R-BACI
CA, R-BACI DiD] and Ω[R-BACI DiD, R-CI]; Table 2).

For non-randomised datasets, controlled designs (BACI and
CI) were substantially less biased (far smaller values of σ) than the
uncontrolled BA design (Table 2). A BACI design using the DiD
estimator was slightly less biased than the BACI design using
covariance adjustment, which was, in turn, slightly less biased
than the CI design (Table 2).

Standard errors estimated by the hierarchical Bayesian model
were reasonably accurate for the randomised datasets (see λ in
Methods and Table 2), whereas there was some underestimation
of standard errors and lack-of-fit for non-randomised datasets.

Discussion
Our approach provides a principled way to quantify the levels of
bias associated with different study designs. We found that ran-
domised study designs (R-BACI and R-CI) and observational
BACI designs are poorly represented in the environmental and
social sciences; collectively, descriptive case studies (the After
design), the uncontrolled, observational BA design, and the
controlled, observational CI design made up a substantially
greater proportion of intervention studies (Fig. 2). And yet R-
BACI, R-CI and BACI designs were found to be quantifiably less
biased than other observational designs.

As expected the R-CI and R-BACI designs (using a covariance
adjustment estimator) performed well; the R-BACI design using a
DiD estimator performed slightly less well, probably because the
differencing of pre-impact data by this estimator may introduce
additional statistical noise compared to covariance adjustment,
which controls for these data using a lagged regression variable.
Of the observational designs, the BA design performed very
poorly (both when analysing randomised and non-randomised
data) as expected, being uncontrolled and therefore prone to
severe design bias7,28. The CI design also tended to be more
biased than the BACI design (using a DiD estimator) due to pre-
existing differences between the impact and control groups. For
BACI designs, we recommend that the underlying assumptions of

Table 1 Pairwise comparison of estimates obtained using different study designs.

Design 1 Design 2 No overlap (95%
Conf. Ints.)

>100% difference in
magnitude (P.E.)

Different significance
(95% Conf. Ints.)

Different
signs (P.E.)

Significantly different sign
(95% Conf. Ints.)

Randomised (R-)
BACI DiD BACI CA 0.01 0.68 0.27 0.32 0.00
BACI DiD CI 0.01 0.69 0.27 0.32 0.00
BACI DiD BA 0.01 0.68 0.29 0.34 0.00
BACI CA CI 0.00 0.04 0.05 0.01 0.00
BACI CA BA 0.16 0.82 0.33 0.47 0.06
CI BA 0.16 0.82 0.30 0.47 0.07
Non-randomised
BACI DiD BACI CA 0.04 0.58 0.31 0.27 0.00
BACI DiD CI 0.05 0.61 0.28 0.30 0.01
BACI DiD BA 0.04 0.61 0.22 0.25 0.01
BACI CA CI 0.00 0.18 0.08 0.08 0.00
BACI CA BA 0.14 0.74 0.34 0.36 0.03
CI BA 0.12 0.71 0.33 0.37 0.02

This shows the proportion of responses in which there were differences in the magnitude (by > 100%) and sign of estimates, and differences in the significance, sign and overlap between associated 95%
confidence intervals. For randomised datasets, BACI and CI labels refer to R-BACI and R-CI designs (denoted by ‘R-’). The 100% difference in magnitude criterion is set relative to the smaller estimate.
BA before-after, BACI before-after-control-impact, CI control-impact, DiD difference in differences, CA covariance adjustment, 95% Conf. Ints. refers to 95% confidence intervals, P.E. point estimate.
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DiD and CA estimators are carefully considered before choosing
to apply them to data collected for a specific research question6,27.
Their levels of bias were negligibly different and their known
bracketing relationship suggests they will typically give estimates
with the same sign, although their tendency to over- or under-
estimate the true effect will depend on how well the underlying
assumptions of each are met (most notably, parallel trends for DiD
and no unmeasured confounders for CA; see Introduction)6,27.
Overall, these findings demonstrate the power of large within-study
comparisons to directly quantify differences in the levels of bias
associated with different designs.

We must acknowledge that the assumptions of our hierarchical
model (that the bias for each design (j) is on average zero and
normally distributed) cannot be verified without gold standard
randomised experiments and that, for observational designs, the

model was overdispersed (potentially due to underestimation of
statistical error by GLM(M)s or positively correlated design bia-
ses). The exact values of our hierarchical model should therefore
be treated with appropriate caution, and future research is needed
to refine and improve our approach to quantify these biases more
precisely. Responses within datasets may also not be independent
as multiple species could interact; therefore, the estimates ana-
lysed by our hierarchical model are statistically dependent on
each other, and although we tried to account for this using a
correlation matrix (see Methods, Eq. (3)), this is a limitation of
our model. We must also recognise that we collated datasets using
non-systematic searches46,47 and therefore our analysis poten-
tially exaggerates the intrinsic biases of observational designs (i.e.,
our data may disproportionately reflect situations where the
BACI design was chosen to account for confounding factors).
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We nevertheless show that researchers were wise to use the BACI
design because it was less biased than CI and BA designs across a
wide range of datasets from various environmental systems and
locations. Without undertaking costly and time-consuming pre-
impact sampling and pilot studies, researchers are also unlikely to
know the levels of bias that could affect their results. Finally, we
did not consider sample size, but it is likely that researchers might
use larger sample sizes for CI and BA designs than BACI designs.
This is, however, unlikely to affect our main conclusions because
larger sample sizes could increase type I errors (false positive rate)
by yielding more precise, but biased estimates of the true effect28.

Our analyses provide several empirically supported recommen-
dations for researchers designing future studies to assess an impact
of interest. First, using a controlled and/or randomised design (if
possible) was shown to strongly reduce the level of bias in study
estimates. Second, when observational designs must be used (as
randomisation is not feasible or too costly), we urge researchers to
choose the BACI design over other observational designs—and
when that is not possible, to choose the CI design over the
uncontrolled BA design. We acknowledge that limited resources,
short funding timescales, and ethical or logistical constraints48 may
force researchers to use the CI design (if randomisation and pre-
impact sampling are impossible) or the BA design (if appropriate
controls cannot be found28). To facilitate the usage of less biased
designs, longer-term investments in research effort and funding are
required43. Far greater emphasis on study designs in statistical
education49 and better training and collaboration between
researchers, practitioners and methodologists, is needed to improve

the design of future studies; for example, potentially improving the
CI design by pairing or matching the impact group and control
group22, or improving the BA design using regression discontinuity
methods48,50. Where the choice of study design is limited,
researchers must transparently communicate the limitations and
uncertainty associated with their results.

Our findings also have wider implications for evidence synthesis,
specifically the exclusion of certain observational study designs from
syntheses (the ‘rubbish in, rubbish out’ concept51,52). We believe
that observational designs should be included in systematic reviews
and meta-analyses, but that careful adjustments are needed to
account for their potential biases. Exclusion of observational studies
often results from subjective, checklist-based ‘Risk of Bias’ or quality
assessments of studies (e.g., AMSTRAD 253, ROBINS-I54, or
GRADE55) that are not data-driven and often neglect to identify the
actual direction, or quantify the magnitude, of possible bias intro-
duced by observational studies when rating the quality of a review’s
recommendations. We also found that there was a small proportion
of studies that used randomised designs (R-CI or R-BACI) or
observational BACI designs (Fig. 2), suggesting that systematic
reviews and meta-analyses risk excluding a substantial proportion
of the literature and limiting the scope of their recommendations if
such exclusion criteria are used32,56,57. This problem is com-
pounded by the fact that, at least in conservation science, studies
using randomised or BACI designs are strongly concentrated in
Europe, Australasia, and North America31. Systematic reviews that
rely on these few types of study designs are therefore likely to fail to
provide decision makers outside of these regions with locally rele-
vant recommendations that they prefer58. The Covid-19 pandemic
has highlighted the difficulties in making locally relevant evidence-
based decisions using studies conducted in different countries with
different demographics and cultures, and on patients of different
ages, ethnicities, genetics, and underlying health issues59. This
problem is also acute for decision-makers working on biodiversity
conservation in the tropical regions, where the need for conserva-
tion is arguably the greatest (i.e., where most of Earth’s biodiversity
exists60) but they either have to rely on very few well-designed
studies that are not locally relevant (i.e., have low generalisability),
or more studies that are locally relevant but less well-designed31,32.
Either option could lead decision-makers to take ineffective or
inefficient decisions. In the long-term, improving the quality and
coverage of scientific evidence and evidence syntheses across the
world will help solve these issues, but shorter-term solutions to
synthesising patchy evidence bases are required.

Our work furthers sorely needed research on how to combine
evidence from studies that vary greatly in their design. Our
approach is an alternative to conventional meta-analyses which
tend to only weight studies by their sample size or the inverse of
their variance61; when studies vary greatly in their study design,
simply weighting by inverse variance or sample size is unlikely to
account for different levels of bias introduced by different study
designs (see Equation (1)). For example, a BA study could receive a
larger weight if it had lower variance than a BACI study, despite our
results suggesting a BA study usually suffers from greater design
bias. Our model provides a principled way to weight studies by both
their variance and the likely amount of bias introduced by their
study design; it is therefore a form of ‘bias-adjusted meta-analy-
sis’62–66. However, instead of relying on elicitation of subjective
expert opinions on the bias of each study, we provide a data-driven,
empirical quantification of study biases – an important step that
was called for to improve such meta-analytic approaches65,66.

Future research is needed to refine our methodology, but our
empirically grounded form of bias-adjusted meta-analysis could
be implemented as follows: 1.) collate studies for the same true
effect, their effect size estimates, standard errors, and the type of
study design; 2.) enter these data into our hierarchical model,

Table 2 Results of hierarchical Bayesian model for
randomised and non-randomised datasets.

Term Posterior mean 95% Credible Interval

Randomised (R-)
σβ 0.746 [0.679, 0.813]
λ 1.119 [0.980, 1.276]
σ[BACI DiD] 0.029 [0.005, 0.097]
σ[BACI CA] 0.005 [0.002, 0.008]
σ[CI] 0.005 [0.002, 0.008]
σ[BA] 0.773 [0.699, 0.846]
Ω[BACI DiD,
BACI CA]

0.268 [0.152, 0.379]

Ω[BACI DiD, CI] 0.239 [0.122, 0.354]
Ω[BACI DiD, BA] 0.849 [0.770, 0.914]
Ω[BACI CA, CI] 0.995 [0.994, 0.996]
Ω[BACI CA, BA] −0.168 [−0.332, 0.002]
Ω[CI, BA] −0.184 [−0.349, −0.015]
Non-randomised
σβ 0.700 [0.628, 0.776]
λ 1.822 [1.595, 2.098]
σ[BACI DiD] 0.017 [0.004, 0.049]
σ[BACI CA] 0.049 [0.005, 0.128]
σ[CI] 0.091 [0.008, 0.137]
σ[BA] 0.645 [0.573, 0.720]
Ω[BACI DiD,
BACI CA]

0.140 [0.010, 0.263]

Ω[BACI DiD, CI] 0.036 [−0.106, 0.176]
Ω[BACI DiD, BA] 0.798 [0.718, 0.865]
Ω[BACI CA, CI] 0.939 [0.923, 0.954]
Ω[BACI CA, BA] −0.127 [−0.285, 0.026]
Ω[CI, BA] −0.229 [−0.397, −0.061]

In randomised datasets, BACI and CI terms refer to R-BACI and R-CI designs (denoted by ‘R-’).
The σ terms are the standard deviations of the bias of each design, so larger σ values correspond
to more biased designs. σβ refers to the standard deviation of the true effect across all datasets.
Ω represents the within-response correlations between study design estimates, and λ models
systematic underestimation (λ > 1) or overestimation (λ < 1) of the statistical error using GLM
(M)s. See methods for more details on the model.
BA before-after, BACI before-after-control-impact, CI control-impact.
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where effect size estimates share the same intercept (the true
causal effect), a random effect term due to design bias (whose
variance is estimated by the method we used), and a random
effect term for statistical noise (whose variance is estimated by the
reported standard error of studies); 3.) fit this model and estimate
the shared intercept/true effect. Heuristically, this can be thought
of as weighting studies by both their design bias and their sam-
pling variance and could be implemented on a dynamic meta-
analysis platform (such as metadataset.com67). This approach has
substantial potential to develop evidence synthesis in fields (such
as biodiversity conservation31,32) with patchy evidence bases,
where reliably synthesising findings from studies that vary greatly
in their design is a fundamental and unavoidable challenge.

Our study has highlighted an often overlooked aspect of
debates over scientific reproducibility: that the credibility of stu-
dies is fundamentally determined by study design. Testing the
effectiveness of conservation and social interventions is
undoubtedly of great importance given the current challenges
facing biodiversity and society in general and the serious need for
more evidence-based decision-making1,68. And yet our findings
suggest that quantifiably less biased study designs are poorly
represented in the environmental and social sciences. Greater
methodological training of researchers and funding for inter-
vention studies, as well as stronger collaborations between
methodologists and practitioners is needed to facilitate the use of
less biased study designs. Better communication and reporting of
the uncertainty associated with different study designs is also
needed, as well as more meta-research (the study of research
itself) to improve standards of study design69. Our hierarchical
model provides a principled way to combine studies using a
variety of study designs that vary greatly in their risk of bias,
enabling us to make more efficient use of patchy evidence bases.
Ultimately, we hope that researchers and practitioners testing
interventions will think carefully about the types of study designs
they use, and we encourage the evidence synthesis community to
embrace alternative methods for combining evidence from het-
erogeneous sets of studies to improve our ability to inform
evidence-based decision-making in all disciplines.

Methods
Quantifying the use of different designs. We compared the use of different study
designs in the literature that quantitatively tested interventions between the fields
of biodiversity conservation (4,260 studies collated by Conservation Evidence45)
and social science (1,009 studies found by 32 systematic reviews produced by the
Campbell Collaboration: www.campbellcollaboration.org).

Conservation Evidence is a database of intervention studies, each of which has
quantitatively tested a conservation intervention (e.g., sowing strips of wildflower
seeds on farmland to benefit birds), that is continuously being updated through
comprehensive, manual searches of conservation journals for a wide range of fields
in biodiversity conservation (e.g., amphibian, bird, peatland, and farmland
conservation45). To obtain the proportion of studies that used each design from
Conservation Evidence, we simply extracted the type of study design from each
study in the database in 2019 – the study design was determined using a
standardised set of criteria; reviews were not included (Table 3). We checked if the

designs reported in the database accurately reflected the designs in the original
publication and found that for a random subset of 356 studies, 95.1% were
accurately described.

Each systematic review produced by the Campbell Collaboration collates and
analyses studies that test a specific social intervention; we collated
systematic reviews that tested a variety of social interventions across several fields
in the social sciences, including education, crime and justice, international
development and social welfare (Supplementary Data 1). We retrieved systematic
reviews produced by the Campbell Collaboration by searching their website (www.
campbellcollaboration.org) for reviews published between 2013‒2019 (as of 8th
September 2019) — we limited the date range as we could not go through every
review. As we were interested in the use of study designs in the wider social-science
literature, we only considered reviews (32 in total) that contained sufficient
information on the number of included and excluded studies that used different
study designs. Studies may be excluded from systematic reviews for several reasons,
such as their relevance to the scope of the review (e.g., testing a relevant
intervention) and their study design. We only considered studies if the sole reason
for their exclusion from the systematic review was their study design – i.e., reviews
clearly reported that the study was excluded because it used a particular study
design, and not because of any other reason, such as its relevance to the review’s
research questions. We calculated the proportion of studies that used each design
in each systematic review (using the same criteria as for the biodiversity-
conservation literature – see Table 3) and then averaged these proportions across
all systematic reviews.

Within-study comparisons of different study designs. We wanted to make
direct within-study comparisons between the estimates obtained by different study
designs (e.g., see38,70,71 for single within-study comparisons) for many different
studies. If a dataset contains data collected using a BACI design, subsets of these
data can be used to mimic the use of other study designs (a BA design using only
data for the impact group, and a CI design using only data collected after the
impact occurred). Similarly, if data were collected using a R-BACI design, subsets
of these data can be used to mimic the use of a BA design and a R-CI design.
Collecting BACI and R-BACI datasets would therefore allow us to make direct
within-study comparisons of the estimates obtained by these designs.

We collated BACI and R-BACI datasets by searching the Web of Science Core
Collection72 which included the following citation indexes: Science Citation Index
Expanded (SCI-EXPANDED) 1900-present; Social Sciences Citation Index (SSCI)
1900-present Arts & Humanities Citation Index (A&HCI) 1975-present;
Conference Proceedings Citation Index - Science (CPCI-S) 1990-present;
Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH)
1990-present; Book Citation Index - Science (BKCI-S) 2008-present; Book Citation
Index - Social Sciences & Humanities (BKCI-SSH) 2008-present; Emerging Sources
Citation Index (ESCI) 2015-present; Current Chemical Reactions (CCR-
EXPANDED) 1985-present (Includes Institut National de la Propriete Industrielle
structure data back to 1840); Index Chemicus (IC) 1993-present. The following
search terms were used: [‘BACI’] OR [‘Before-After Control-Impact’] and the
search was conducted on the 18th December 2017. Our search returned 674 results,
which we then refined by selecting only ‘Article’ as the document type and using
only the following Web of Science Categories: ‘Ecology’, ‘Marine Freshwater
Biology’, ‘Biodiversity Conservation’, ‘Fisheries’, ‘Oceanography’, ‘Forestry’,
‘Zoology’, Ornithology’, ‘Biology’, ‘Plant Sciences’, ‘Entomology’, ‘Remote Sensing’,
‘Toxicology’ and ‘Soil Science’. This left 579 results, which we then restricted to
articles published since 2002 (15 years prior to search) to give us a realistic
opportunity to obtain the raw datasets, thus reducing this number to 542. We were
able to access the abstracts of 521 studies and excluded any that did not test the
effect of an environmental intervention or threat using an R-BACI or BACI design
with response measures related to the abundance (e.g., density, counts, biomass,
cover), reproduction (reproductive success) or size (body length, body mass) of
animals or plants. Many studies did not test a relevant metric (e.g., they measured
species richness), did not use a BACI or R-BACI design, or did not test the effect of
an intervention or threat — this left 96 studies for which we contacted all
corresponding authors to ask for the raw dataset. We were able to fully access 54

Table 3 Definitions used to categorise studies based on the study design they used.

Study design Controlled? Sampling before impact occurs? Randomised allocation of replicates
to the impact group and control group?

After No No No
Before-after (BA) No Yes No
Control-impact (CI) Yes No No
Before-after control-impact (BACI) Yes Yes No
Randomised control-impact (R-CI) Yes No Yes
Randomised before-after control-impact (R-BACI) Yes Yes Yes

See also Fig. 1 for visual illustration and comparison of designs. Reviews from the database were not included.
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raw datasets, but upon closer inspection we found that three of these datasets
either: did not use a BACI design; did not use the metrics we specified; or did not
provide sufficient data for our analyses. This left 51 datasets in total that we used in
our preliminary analyses (Supplementary Data 2).

All the datasets were originally collected to evaluate the effect of an
environmental intervention or impact. Most of them contained multiple response
variables (e.g., different measures for different species, such as abundance or
density for species A, B, and C). Within a dataset, we use the term “response” to
refer to the estimation of the true effect of an impact on one response variable.
There were 1,968 responses in total across 51 datasets. We then excluded 932
responses (resulting in the exclusion of one dataset) where one or more of the four
time-period and treatment subsets (Before Control, Before Impact, After Control,
and After Impact data) consisted of entirely zero measurements, or two or more of
these subsets had more than 90% zero measurements. We also excluded one
further dataset as it was the only one to not contain repeated measurements at sites
in both the before- and after-periods. This was necessary to generate reliable
standard errors when modelling these data. We modelled the remaining 1,036
responses from across 49 datasets (Supplementary Table 1).

We applied each study design to the appropriate components of each dataset
using Generalised Linear Models (GLMs73,74) because of their generality and ability
to implement the statistical estimators of many different study designs. The model
structure of GLMs was adjusted for each response in each dataset based on the
study design specified, response measure and dataset structure (Supplementary
Table 2). We quantified the effect of the time period for the BA design (After vs
Before the impact) and the effect of the treatment type for the CI and R-CI designs
(Impact vs Control) on the response variable (Supplementary Table 2). For BACI
and R-BACI designs, we implemented two statistical estimators: 1.) a DiD
estimator that estimated the true effect using an interaction term between time and
treatment type; and 2.) a covariance adjustment estimator that estimated the true
effect using a term for the treatment type with a lagged variable (Supplementary
Table 2).

As there were large numbers of responses, we used general a priori rules to
specify models for each response; this may have led to some model
misspecification, but was unlikely to have substantially affected our pairwise
comparison of estimates obtained by different designs. The error family of each
GLM was specified based on the nature of the measure used and preliminary data
exploration: count measures (e.g., abundance) = poisson; density measures (e.g.,
biomass or abundance per unit area) = quasipoisson, as data for these measures
tended to be overdispersed; percentage measures (e.g., percentage cover) =
quasibinomial; and size measures (e.g., body length) = gaussian.

We treated each year or season in which data were collected as independent
observations because the implementation of a seasonal term in models is likely to
vary on a case-by-case basis; this will depend on the research questions posed by
each study and was not feasible for us to consider given the large number of
responses we were modelling. The log link function was used for all models to
generate a standardised log response ratio as an estimate of the true effect for each
response; a fixed effect coefficient (a variable named treatment status;
Supplementary Table 2) was used to estimate the log response ratio61. If the
response had at least ten ‘sites’ (independent sampling units) and two
measurements per site on average, we used the random effects of subsample
(replicates within a site) nested within site to capture the dependence within a site
and subsample (i.e., a Generalised Linear Mixed Model or GLMM73,74 was
implemented instead of a GLM); otherwise we fitted a GLM with only the fixed
effects (Supplementary Table 2).

We fitted all models using R version 3.5.175, and packages lme476 and MASS77.
Code to replicate all analyses is available (see Data and Code Availability). We
compared the estimates obtained using each study design (both in terms of point
estimates and estimates with associated standard error) by their magnitude
and sign.

A model-based quantification of the bias in study design estimates. We used a
hierarchical Bayesian model motivated by the decomposition in Equation (1) to
quantify the bias in different study design estimates. This model takes the estimated
effects of impacts and their standard errors as inputs. Let β̂ij be the true effect
estimator in study i using design j and σ̂ij be its estimated standard error from the
corresponding GLM or GLMM. Our hierarchical model assumes:

β̂ij ¼ βi þ γij þ εij;

βi � N 0; σ2β

� �
; γij � N 0; σ2j

� �
; εi � Nð0; ΛÞ;

ð2Þ

where βi is the true effect for response i, γij is the bias of design j in response i, and
εij is the sampling noise of the statistical estimator. Although γij technically
incorporates both the design bias and any misspecification (modelling) bias due to
using GLMs or GLMMs (Equation (1)), we expect the modelling bias to be much
smaller than the design bias3,11. We assume the statistical errors εi within a
response are related to the estimated standard errors through the following joint
distribution:

Λ ¼ λ � diag σ̂ið ÞΩdiag σ̂ið Þ; ð3Þ

where Ω is the correlation matrix for the different estimators in the same response
and λ is a scaling factor to account for possible over/under-estimation of the
standard errors.

This model effectively quantifies the bias of design j using the value of σ j (larger
values = more bias) by accounting for within-response correlations using the
correlation matrix Ω and for possible under-estimation of the standard error using
λ. We ensured that the prior distributions we used had very large variances so they
would have a very small effect on the posterior distribution — accordingly we
placed the following disperse priors on the variance parameters:

σβ; σ1; ¼ ; σJ � Inv-Gammað1; 0:02Þ; λ � Gammað2; 2Þ; Ω � LKJð1Þ ð4Þ
We fitted the hierarchical Bayesian model in R version 3.5.1 using the Bayesian

inference package rstan78.

Data availability
All data analysed in the current study are available from Zenodo, https://doi.org/10.5281/
zenodo.3560856. Source data are provided with this paper.

Code availability
All code used in the current study is available from Zenodo, https://doi.org/10.5281/
zenodo.3560856.
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