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Abstract Artisanal and small‐scale gold mining (ASGM) represents a significant economic activity for
communities in developing countries. In southeastern Senegal, this activity has increased in recent years
and has become the main source of income for the local population. However, it is also associated with
negative environmental, social, and health impacts. Considering the recent development of ASGM in
Senegal and the difficulties of the government in monitoring and regulating this activity, this article
proposes a method for detecting and mapping ASGM sites in Senegal using Sentinel 2 data and the Google
Earth Engine. Two artisanal mining sites in Senegal are selected to test this approach. Detection and
mapping are achieved following a processing pipeline. Principal component analysis (PCA) is applied to
determine the optimal period of the year for mapping. Separability and threshold (SEaTH) is used to
determine the optimal bands or spectral indices to discriminate ASGM from other land use. Finally,
automatic classification and mapping of the scenes are achieved with support vector machine (SVM)
classifier. The results are then validated based on field observations. The PCA and examination of spectral
signatures as a function of time indicate that the best period for discriminate ASGM sites against other
types of land use is the end of dry season, when vegetation is minimal. The classification results are
presented as a map with different categories of land use. This method could be applied to future Sentinel
scenes to monitor the evolution of mining sites and may also be extrapolated to other relevant areas
in the Sahel.

Plain Language Summary In recent years, artisanal and small‐scale gold mining (ASGM) has
become a significant source of income for communities in southeastern Senegal. However, this activity is
also associated with negative environmental and social impacts. The lack of information regarding the
constantly evolving geographical distribution and extent of the mining sites is an obstacle for the regulations
of this activity by the government. To fill this gap, we have elaborated and tested a method using publicly
available multispectral remote sensing data (Sentinel 2) and a cloud computing service (Google Earth
Engine). The objective maps of environmental impacts produced by this method shall lead to a better
knowledge of the areas affected by artisanal mining activities in the Sahelian region. This low‐cost approach,
using public data and computing resources, is designed to become a decision support tool for governments of
developing countries.

1. Introduction

Artisanal and small‐scale gold mining (ASGM) provides income for many low‐gross domestic products com-
munities. In the context of the international financial crisis, gold prices have risen to unprecedented heights.
This inflation has led to a new gold mining boom inWest Africa that has become amajor gold mining region
involving exploration and exploitation by large mining companies over the last few years (Prause, 2016). In
parallel, ASGM has grown in theWest African countries where the Paleoproterozoic gold‐bearing geological
units are exposed (Senegal, Mauritania, Mali, Burkina Faso, Ivory Coast, Ghana, Liberia, Guinea, Sierra
Leone, and Niger). ASGM has an important potential to generate social and economic benefits. It is a
poverty‐driven activity which plays an important economic role. It is a source of employment in rural areas
(Bakia, 2014; Hilson, 2009) and a direct benefit to local economies (MacDonald, 2006).
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In Senegal, ASGM takes place in the southeastern part of the country, where the Paleoproterozoic gold‐bear-
ing units are exposed in the Kédougou‐Kéniéba Inlier. This area has significant gold resources estimated at
400 tons (Persaud et al., 2017). The status of ASGM in Senegal is, in most cases, illegal. Indeed, in 2014, the
government decided to reorganize this sector by delimiting 16 official perimeters for this activity. More than
89 ASGM sites in 69 villages have been officially closed for the reorganization of the sector. Those in the
delimited corridors were reopened. The sites that were not in the delimited corridors were closed.
However, this law is poorly enforced for two main reasons: (i) The pedagogy toward artisanal miners is
not sufficient, and (ii) the definitions of corridors are not always appropriate with respect to the occurrence
and new discoveries of exploitable gold deposits. As a result, most of the old mining sites are now being illeg-
ally reopened and discovery of new deposits leads to the opening of new illegal mining sites.

ASGM has become the primary source of income for local populations progressively replacing traditional
activities such as agriculture. In Senegal, ASGM revenues were estimated at 77.6 billion franc of the
African financial community (FCFA) (XOF) in 2017 (118.5 million €, about 0.5% of the gross domestic pro-
ducts [GDP] of Senegal) (Agence Nationale de la Statistique et de la Démographie, 2018). Despite its impor-
tant contribution to the local economy, ASGM generates major social, environmental, and health impacts.
Social impacts associatedwith ASGM in Senegal include conflicts between artisanalminers andmining com-
panies about the land use (Prause, 2016), the exploitation of child labor (Hilson, 2008, 2010), the de‐emphasis
on education, the negligence of traditional livelihoods such as agriculture and farming, and the influx of out-
siders. These social impacts can lead together to health impacts aggravated by poor sanitation, increased sub-
stance abuse, and growth in sex work (Buxton, 2013). Some research in social science also links ASGM to civil
wars or conflicts, terrorism, and money laundering (Le Billon, 2006, 2008). Environmental impacts include
landscape degradation due to the accumulation of heaps of rock wastes and tailings generated as a result
of the mining activities (Ako et al., 2014), pollution through the use of mercury to amalgamate gold
(Bamba et al., 2013; Boudou et al., 2006; Niane et al., 2019), deforestation, air pollution (dust), erosion, and
other forms of land degradation (Aryee et al., 2003; Gerson et al., 2018; Hilson, 2002; Kitula, 2006), water sil-
tation (Lobo, 2015; Lobo et al., 2016, 2018), and loss of organic soil (Eludoyin et al., 2017). The regulation of
this activity is the responsibility of the government, but the necessary information about the present and past
distribution and extent of mining sites is critically missing.

To fill the gaps related to the lack of geographic information of artisanal mining sites, our approach is
inspired by researchers who have already recognized the capacity of satellite data for the monitoring of arti-
sanal mining sites and their consequences on the environment. Remote sensing has been used for the detec-
tion and/or identification of illegal exploitation zones in French Guyana (Elmes et al., 2014; Gond &
Brognoly, 2005; Laperche et al., 2008; Tourneau & Albert, 2005) and Peru (Elmes et al., 2014) and to monitor
the impact of gold mining under the forest cover in Guiana, Peru, and Amazonia (Rahm et al., 2014;
Schueler et al., 2011). It has been also used for mapping the expansion of this activity and land cover change
in Ghana (Kusimi, 2008; Manu et al., 2004; Obodai et al., 2019; Snapir et al., 2017). LaJeunesse Connette
et al. (2016) mapped the current extent and expansion of artisanal mining activities in Myanmar from
Landsat 8 satellite imagery, thus achieving the first public database of artisanal mining in this country.

The majority of these studies demonstrated promising results, using image resolutions much lower than
present‐day available imagery. To apply these land classification techniques in West Africa, one must over-
come several obstacles. In Senegal, the first difficulty is related to the size of the sites. Their spatial footprints
are small in comparison with the artisanal mining sites cited above. A resolution higher than that of the
Landsat data will be necessary for mapping artisanal mining sites in Senegal and, more generally, in West
Africa. The second difficulty is related to the similarity between bare soils related to gold mining and other
natural soils such as agricultural crops or habitats and deforested areas for the exploitation of wood
(Isidro et al., 2017). The normalized difference vegetation index (NDVI) is often used to distinguish gold
mining sites from other land uses (LaJeunesse Connette et al., 2016). However, the use of this index can
be problematic in the Sahelian context, in contrast with the tropical one. Indeed, in densely vegetated tropi-
cal areas, bare soils are more generally linked to human activities such as artisanal mining, excessive cutting
of wood, and installations for the habitats and tracks. On the other hand, in the Sahelian zone, the vegetation
cover is less dense and there are more types of natural soils, thus increasing the confusion (Mhangara
et al., 2020). Considering these challenges, the methodology for the detection and mapping of ASGM sites
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need to be adapted and tested in the Sahelian context. In addition, the limited financial resources and
technical aspects must be considered for its potential use and implementation by the governments of
Sahelian countries.

This paper aims to remedy to the incomplete information about ASGM sites in Senegal by elaborating a
methodology for the detection and mapping of ASGM sites in this region using the multispectral, multi‐tem-
poral, and high‐resolution Sentinel 2 data and the Google Earth Engine (GEE) cloud computing platform.
These technical choices have been motivated by their decisive advantage with respect to a future implemen-
tation in Senegal, as they are cost effective (public data and freely available computing platform) and allow
us to overcome the difficulty that could be posed by the download of large volumes of Sentinel data. Only
results of computations may be downloaded, leading to data volumes adapted to common internet band-
width (2 Mbit/s to 30 Mbit/s at the time of writing) and storage capacity in research laboratories or govern-
mental agencies in Senegal. Given the reduced spatial footprint of the sites and the possible confusions
between mining sites and other land cover types (such as bare soil, urban, or agricultural areas), we have
performed a training phase on a subset of multispectral images for two known mining sites named
Bantakokouta and Kharakhena, Eastern Senegal. The methodology, tested at known mining sites, is devel-
oped for the purpose of nationwide identification and mapping of active (officially or not officially known)
mining sites.

2. Study Area

The study area is located in southeastern Senegal in the region called Kedougou (Figure 1). It covers an area
of 16,896 km2 and borders Mali and Guinea. Its climate is Sudano‐Guinean. It is characterized by two major
periods of thermal regime: a period of mild temperatures, from July to February, with more freshness in the
months of December and January (19°C to 34°C) and a period of high temperatures (34°C to 42°C) between
March and June. With a rainy season of 5 months (June to October) and a rainfall of at least 1,300 mm/year,

Figure 1. Presentation of study area. Localization of artisanal mining site on the Sentinel 2 image of the Kedougou
region. Sentinel 2 color‐composite (RGB = 432). The Sentinel 2 data is provided from Google Earth Engine cloud.
Artisanal mining site locations are from the database of the Direction of Mines and Geology (DMG) of Senegal
(Diop, 2008).
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it is one of the rainiest regions in Senegal. The dry season, from November to May, experiences very little
precipitations (<20 mm).

With a population of 172,482 habitants in 2017, the Kedougou region is essentially rural and considered as
one of the poorest of the country. The practice of ASGM is perceived as a mean to fight against poverty. The
population of at least 69 villages lives from the income of this activity. We have selected the Bantakokouta
(12°46′08.85″N, 12°13′09.57″W) and Kharakhena (12°55′25.79″N, 11°30′44.31″W) sites, which are among
the best known in Senegal, to test and validate our detection methodology. Official corridors are assigned
within each of these areas (Figure 3), but sometimes, there are groups of gold panners working outside these
corridors. Accessibility was also a criteria to select the two sites to facilitate the validation of our remote sen-
sing results in the field.

The mining site of Bantakokouta is located near a village of the same name. It extends across both sides of
the Gambia River. Gold is disseminated in quartz veins that are oriented NNE. The ore is extracted via wells
with a diameter of about 1 m and depth up to 60 m. These wells are installed along the quartz veins. The
NNE orientation of the vein induces a progressive extension of the mining site in this direction, which facil-
itates its identification in satellite data or Google Earth imagery. Located at the border areas with Mali,
Kharakhena, was a small village, which was affected between 2008 and 2015 by the development of impor-
tant ASGM. The deposit is alluvial, and the gold is distributed there in the form of nuggets. Gold is exploited
thanks to galleries or wells whose depth can reach up to 30 m at some places. The entire corridor that has
been delimited for this area has been exploited. The activity develops now outside the corridor, often leading
to conflicts between artisanal miners and contractors of a licensed company with exploitation permits near
the corridor. The gold mining boom of the recent years has largely affected these two sites, with population
growth and expansion of urban area, whereas the pressure on the resource is causing extension of the
exploited surface.

3. Data and Method
3.1. Data

The Sentinel 2 multispectral data, publicly released by the European Space Agency (ESA), are used for this
study. They are acquired through two twin satellites (Sentinel 2A and Sentinel 2B), launched separately in
synchronous polar orbit at an altitude of 786 km and evolving 180° apart. Each satellite is equipped with
a Multi‐Spectral Imager (MSI) sensor including 13 spectral bands (from 443 to 2,190 nm) with a field of
view of 290 km and a spatial resolutions of 10 m (four bands in the visible and near infrared domains),
20 m (six bands in the near and short wavelength infrared domain, NIR and SWIR), and 60 m (three atmo-
spheric correction bands). The main purpose of these satellite data is to monitor the variability of the Earth's
surface, including vegetation changes with seasons, in a high return time (10 days at the equator with one
satellite and 5 days with the constellation of the two satellites). The Sentinel 2A and 2B data are globally
available on GEE as top of atmosphere reflectance (level‐1C, not processed for atmospheric correction).
Level‐2A data (bottom of atmosphere), derived from level‐1C scenes, are available for the study areas on
the platform since the end of 2018. Sentinel 2 multispectral scenes from January to December 2018 are used
for this study; these data are in digital number (DN) and have not been submitted to atmospheric correction.
The data are first extracted by a query submitted to GEE. This query includes a tile identifier (the two train-
ing sites are not covered by the same Sentinel 2 granule), according to the Military Grid Reference System
(MGRS) naming convention (T28PGV for Bantakokouta and T28PHV for Kharakhena); a time interval, start
date = 2018/01/01 and end date = 2018/12/31; a subset, that is, the vector file for Bantakokouta and
Kharakhena areas; and a band selection, as bands 1, 9, and 10 were not used in this study. Those with high
cloud cover, acquired during the rainy season (up to 30%) on the study sites, were then filtered out in the
GEE code. We obtained a time series of 38 images for the Bantakokouta site with no useful data from July
to mid‐November. For the site of Kharakhena, 46 images were found, with no useful data between
mid‐August to the end of September. Figure 2 shows the position in time of all useful Sentinel 2 images
for these two mining sites in 2018.

3.2. Field Work

Field campaigns were achieved in February 2017 and 2018. The primary objective of field work is to map the
boundaries of the two known mining sites and the locations of other types of land use in their vicinity for
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training (see section 3.4 land classification algorithm) and validation (section 3.5). GPS points are collected
for comparison with the georeferenced satellite data. The GPS points are taken at the approximate center of
each type of land use, and we checked that each site extends over tens of meters in each direction allowing
the use of buffers in the training and validations steps. The different types of land use are identified based on
field observations. Land uses are labeled either as bare soil, vegetation, gold‐mining areas, abandoned
mining areas, roads, tracks, watercourses, and other bodies of water (swamp and wetland). Georeferenced
pictures are taken in support of the interpretation of the satellite imagery. Field work also aims at
characterizing the type of gold deposit (e.g., gold‐bearing veins and supergene deposits) in each site and
describing the lithologies encountered at the surface (geological mapping). These observations are useful
for exploring and interpreting the possible correlation between surface reflectance and lithologies and for
interpreting the shape of the artisanal mining sites. The collection of a total of 252 GPS points for
Bantakokouta and 164 points for Kharahena is then randomly separated into one set comprising three
quarters of the GPS points for training whereas the remaining quarter is used for validation.

Figure 3. Extract of Sentinel 2 scene of 2 May 2018, Bantakokouta (left) and Kharakhena (right). RGB color composite approaching natural colors, R = band 4
(red, 664.6 nm), G = band 3 (green, 559.8 nm), and B = band 2 (blue, 492.4 nm). The red rectangles indicate artisanal mining areas.

Figure 2. Position in time of Sentinel 2 images used in this study for Bantakokouta (a) and Kharakhena (b).
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3.3. Interpreting of Satellite Images—Optical Properties of Mining Sites

The objective of this step is to make a preliminary assessment of the capability of on Sentinel 2 images to
discriminate artisanal mining sites against other types of land use. For this purpose, it is necessary to deter-
mine if mining sites exhibit specific optical properties in the visible domain and to understand the causes of
these specific properties. This step is achieved from the pictures taken in the field. In addition to color, these
pictures allowed us to define additional criteria for interpreting satellite images, such as the shape of the
mining sites or shapes of other types of land use. ASGM sites may differ from their environment due to
the strong contrast of bare soil, on which the activity is practiced, with respect to areas covered by vegetation
or water. This contrast may indeed result from the release of materials that are extracted from wells and
stacked on the sites, the scraping of soils, or the absence of vegetation. The intensity of the contrast may
change depending on the nature of the ore deposits and their environment. In the sites where the minera-
lization is concentrated in structurally oriented quartz veins, the gold miners settle and work according to
the orientation of the structure. This criterion may facilitate the recognition of a structurally controlled
ASGM site that tend to be linear and aligned with the orientation of the vein. However, it is of note that
not all individual veins are parallel to the mineralized structure. The use of a shape criteria is not relevant
for the recognition of an alluvial gold mining since the alluvial sites are not associated with a specific shape
(see section 4.1).

Extracts from satellite images of the Bantakokouta and Kharakhena sites are given in Figure 3. Artisanal
mining areas are framed in red and official corridors in yellow. For example, if gold occurs within a vein,
as in the case of Bantakokouta, the rocks extracted from the ore zone are essentially composed of quartz.
Quartz has a high reflectance in the entire visible domain, and as a consequence of surface exposure of
quartz‐bearing rocks, the mining site appears as white spot on the satellite image. When gold occurs as nug-
gets on lateritic profiles, as occasionally in Kharakhena, the superficially scraped areas will have orange hues
on the image, associated with the color of the lateritic cover. This coloring will tend to turn white as exploi-
tation intensifies and excavates material below the lateritic cover.

3.4. Land Classification Algorithm

The image collection being determined (section 3.1), the detection and mapping are achieved in four main
steps. The overall objective of this processing pipeline is to determine the best period of the year and the best
spectral indices to identify and map mining sites against other types of land use and to use these inputs to
achieve an automatic classification of the scene. The four steps are presented using a flow chart
(Figure 4), which include methods and expected results, and are described in detail in the text below.
3.4.1. Computation of Spectral Indices (Step 1)
Due to elevated likelihood or confusion between ASGM sites, urban areas, and natural bare soils, a series of
indices were calculated and their interest for the detection of ASGM sites was evaluated. The objective of this
multiple use of spectral band and indices is to define the index or indices and band(s) that are eventually the
most useful to distinguish ASGM sites with the minimum confusion with other types of land use. The equa-
tions used to generate these indices are presented in Table S1 in the supporting information. These different
indices are sensitive to vegetation (NDVI), soil moisture (normalized difference water indices, NDWIa and
NDWIb), brightness of surface material (brightness indices, BIa and BIb), color of surface material (color
indices, CI and RI), or occurrence of bare ground and built‐up areas (normalized difference built‐up index,
NDBI; bare soil index, BSI; normalized built‐up area index, NBAI; and band ratio for built‐up area,
BRBA). Two different moisture indices and two different brightness indices have been calculated; the letters
(a and b) are used to differentiate them.
3.4.2. Construction of a Training Data Set and Extraction of the Spectral Information of These
Samples (Step 2)
This step has the objective to optimize the method for automated recognition of mining sites
(see section 3.4.3.3 support vector machine [SVM] classifier), based on a training set of samples (region of
interest, ROI) comprising all the different classes of land use: water, urban, ASGM site, bare soil, and vegeta-
tion. Each ROI consists of a set of polygons of same sizes, corresponding to a given type of land use, based on
field observations. These polygons were constructed on the basis of points collected in the field and geoloca-
lized pictures. A 20m‐wide buffer has been added around each point to obtain a training sample with a suffi-
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ciently large number of pixels whereas we made sure that these polygons include exclusively a single type of
land use, based on observations made in the field.
3.4.3. Analytical Tasks (Step 3)
The analytical tasks include a direct inspection of the evolution of the spectral profile of the different bands
and indices over time, a Principal Component Analysis (PCA), a Separability and Threshold approach, and a
classification using SVM.
3.4.3.1. PCA
The objective of the application of a PCA to the multispectral time series is to determine the best period of
the year for the identification of the different classes of land use, based on reflectance values or spectral
indices, or the period of time that minimizes the risk of confusion between the different classes of land
use. The PCA consists of replacing a family of correlated variables with new uncorrelated variables. These
new variables are called principal components. The initial observations may be then projected into the
new space of principal components. Our data are represented in the matrix illustrated in the Figure S1.
The variables (in column) are the reflectance values and spectral indices, and each observation (in row) cor-
responds to a vector of reflectance values and spectral indices for a class of land use at a given time. The data
are centered and reduced to attribute the same numerical weight to each variable (reflectance value or spec-
tral index). The new axes resulting from the diagonalization of the covariance matrix are obtained as a linear
combination of the initial variables, the spectral bands and indices. The first principal component is asso-
ciated with the largest variance, and each succeeding component in turn has the highest variance possible

Figure 4. Flow chart describing the different steps for land classification and the expected results of these different steps. The four main steps for detection and
mapping of a mining site are as follows: (a) computation of spectral indices, (b) construction of a training samples and extraction of the spectral information of
these samples, (c) analytical tasks, and (d) support vector machine classification and validation. The four main expected results are as follows (see dark green
cells): (a) the times series of spectral bands and indices, (b) the training data set, (c) the results of analytical tasks, and (d) the maps of ASGM areas.
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under the constraint that it is orthogonal to the preceding components. The interpretation of our PCA is lim-
ited to the first three axes (PC1–PC3), as these axes include most of the information (or variance), which is
verified by calculating the total fraction of variance contained in these three axes. The projection of variables
(a given land use at a given time) on the new coordinate system (PC1–PC3) shall help us to determine at
which period of time AGSM is most distant from other types of land use. Particular attention will be made
on themost plausible source of confusion, such as natural or human‐made bare soils. This analysis is done in
R and for more information about the package used in this analysis; see Husson et al. (2017) and
Kassambara (2017).
3.4.3.2. Separability Between Classes
After having determined the most appropriate date for the identification of ASGM sites, we aim to determine
bands or spectral indices that allow the most reliable separation of the ASGM class from the others. For this
purpose, we estimate the separability of each class using spectral bands or indices at the appropriate period
of time, as determined from the PCA. In statistics, the separability is a measure of the similarity of two prob-
ability distributions. Based on the spectral information of each object class, the probability distribution for
each class can be estimated and used to calculate separability between two classes. Under the assumption
of normal probability distributions, the Bhattacharyya (B) distance is commonly used as a measure of the
separability (Nussbaum et al., 2006). For two classes (C1 and C2) and one characteristic (the spectral values
of an index or band), the Bhattacharyya distance B is given by

B ¼ 1
8
m1-m2ð Þ2 2

σ21 þ σ22
þ 1
2
ln

σ21 þ σ22
2σ21 σ

2
2

� �
(1)

withm1 and m2 being the respective average values of the chosen characteristic for each class and σ1 and
σ2 are the corresponding standard deviations for each class. Considering the fact that B has the disadvan-
tage of growing continuously even when the distributions are well separated, it is possible to use a more
convenient measure of separability, which is related to B according to the following expression:

J ¼ 2 1 − e−B
� �

: (2)

J is named the Jeffries‐Matusita distance, which is the most commonly used in remote sensing community
(Ifarraguerri & Prairie, 2004). J varies between 0 and 2. A value of near 2 indicates complete separability
between the two classes. After calculating the separability, the indices and bands with the greatest
Jefferies‐Matusita distance may be selected for subsequent classification.
3.4.3.3. SVM Classifier
Themost discriminating variables found by the separability index will be used as input variables for the clas-
sification algorithm. The classification algorithm is based on a machine learning method, named SVM. The
SVM method is used in remote sensing to solve a large number of a classification problems (Bruzzone
et al., 2006; Foody & Mathur, 2004; Mantero et al., 2005; Mathur & Foody, 2008). The SVM classification
algorithm aims to find a hyperplane that separates the data set into a discrete predefined number of classes
using training examples (see section 3.4.2 for the construction of the training samples). SVM classifier is a
widely used statistical tool for classification and regression and an efficient method to model complex data.
A “kernel” is usually used to refer to the kernel trick, a method of using a linear classifier to solve a nonlinear
problem. In this study, themodel was built with the parameters by default of the SVM algorithm proposed by
GEE; in particular, the kernel type is set to linear.

3.5. Validation (Step 4)

The results of the classification are validated with the points that were collected during our various field
campaigns. These points are integrated on the GEE platform and labeled in the same way as training sam-
ples. A buffer of 30 m is added around each point to have more validation pixels. A matrix of confusion is
produced to assess the quality of the classification. It is used to calculate the overall accuracy which tells
us what proportion of all reference classes has been correctly mapped and the percentages of error of omis-
sion and commission between the various classes as well as the Kappa index (generated from a statistical test
to evaluate the accuracy of a classification) (Banko, 1998). Errors of omission refer to reference class that was
left out (or omitted) from the correct class in the classified map. Errors of omission are in relation to the
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classified results. These refer to classes that are classified as to reference class that were left out (or omitted)
from the correct class in the classified map. The Kappa coefficient uses all the cells of the confusion matrix
and thus accounts for both commission and omission errors, reason why it is reliable for evaluating the clas-
sification. The Kappa Coefficient can range from −1 to 1. A value of 0 indicated that the classification is no
better than a random classification. A negative number indicates that the classification is significantly worse
than random. A value close to 1 indicates that the classification is significantly better than random. See
Lewis and Brown (2001) for the calculation operations of these accuracy metrics.

4. Results
4.1. Interpretation of Satellite Images Based on Field Observations

Sentinel images of the Bantakokouta and Kharakhena mining sites and their interpretations based on field
observations are presented in Figures 5 and 6, respectively. A few representative pictures of these sites taken
in the field are also presented to illustrate the different types of land use. In natural colors, the bare soil is
most often associated with the lateritic cover and has therefore a brown color, contrasting with the green
vegetation. Mining sites appear as brown to whitish areas, as a consequence of the exposure of quartz, occur-
ring naturally beneath the lateritic cover. The small, semi‐industrial operations, occurring in the vicinity of
gold panning sites, may be also easily identified on satellite images (Figure 6). Tracks or dirty roads, urban,
and scraped areas have also an orange hue. Bare soil, fields of crops, and areas used for housing are therefore
easily confused with gold panning sites based on natural colors and contrasts only. At this stage, field obser-
vations revealed that the main difficulty for the distinction of ASGM sites in Senegal would be the similarity
between the optical properties of these sites with habitats (urban areas) and natural bare soils. However, we
postulate that the evolution during the year of the optical properties of natural bare soils, habitats, and
mining sites may follow different trajectories and may be therefore more easily distinguished at certain per-
iods of the year. For example, certain types of bare soils, such as lateritic duricrusts, do not revegetate during
the rainy season, whereas other types, such as dry land, may revegetate during the rainy season. When
mining sites do not occur on lateritic duricrust, they may be, at least partially, revegetated during the rainy
season, when mining activities are reduced or inexistent. The methodology applied below is taking advan-
tage of the multispectral time series provided by the Sentinel 2 data to reduce the confusion between mining
sites, bare soils, and urban areas to the minimum.

4.2. Extraction of the Training Sample

ROI were drawn around the locations of the point taken in the field, with a 20 m‐wide buffer zone. The char-
acteristics of each ROI are summarized in tables presented in Tables S2 and S34, and their location is illu-
strated in Figure 7. For each image of the time series and each ROI, the average values of the reflectance
from all the bands of interest and the spectral indices were calculated. These data were assembled into a
csv file (the training sample) for subsequent use in multivariate data analysis.

4.3. PCA Application: Optimal Date for Optical Identification of ASGM Sites

The PCAwas first applied to the entire data set (all spectral bands and spectral indices for all cloud‐free avail-
able satellite scenes over the entire period of study). The three first axes (PC1 to PC3) contain 98% of the var-
iance for Bantakokouta and 95% forKharakhena, confirming that it is possible to restrict the dimension of the
space of variables to 3. To interpret the results of the PCA,wefirst represent the correlation circles for each site
(PC1 versus PC2 in Figures 8a and 8c and PC1–PC3 in Figures 8b and 8d), which allows to visualize (i) the
value of the variance associated with each axis (in brackets on the axis labels in Figure 8), (ii) the vector
(arrows) for each variable (band or spectral index) corresponding to the coordinates of the variable in the
PC1–PC2 or PC1–PC3 planes, and (iii) the contribution of each variable (colors of the arrows) to either
the PC1–PC2 or PC1–PC3 planes. The colors of arrows are related to the value of this contribution (given
in percentage; see color bar). The correlation circles show that a large majority of variables are correlated
with PC1–PC3 and are therefore well represented on the axes. The contribution of variables to PC1– PC3 is
nearly uniform, indicating that there is no reason to remove any variable from the following steps of the
analysis. Figure 8 shows that 69.49% of the total variance is explained by PC1, 17.05% for PC2, and
11.4% for PC3 for Bantakokouta. The reflectance values and indices exhibit very high intragroup correla-
tion (formation of a group of variables that are correlated with each other) on the two representations: for
example, B6, B7, B8, and B8a are always correlated, and the same situation is noted for the group including
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the bands B11 and B12 and the spectral index BSI. For Kharakhena, the results of PCA (Figure 8) applied on
the subset data show that 52.9% of the total variance was explained by PC1, 36.1% for PC2, and only 5.9% for
the PC3. Considering that on the latter representation (PC1–PC3), the quality of representation of the
variables is not satisfactory; we limit ourselves to the representation (PC1–PC2). On the latter, we notice

Figure 5. Interpretation of the Sentinel level‐2A image for the mining site of Bantakokouta, based on geolocalized pictures taken during the field campaign in
February 2017 and 2018. Black arrows point to the location of the pictures in the Sentinel level‐2A image.

Figure 6. Interpretation of the Sentinel level‐2A images for the mining site of Kharakhena, based on geolocalized pictures taken during the field campaign of
February 2018. Black arrows point to the location of the pictures in the Sentinel level‐2A image.
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that there is no intragroup correlation for Kharakhena but the variables remain correlated to the axes. Those
which contribute the most to the PC1–PC2 planes are as follows: BIb, BIa, B8, B4, B6, B5, NDVI, B7, NDBI,
BSI, and CI.

The observations projected in the new space are given in the Figure S2. Ellipses are drawn for each class,
according to the average and 2 standard deviations of the projected values in the principal directions of
the ellipse. The length of the major and minor axes of the ellipses indicates the amplitude of variations of
the projected values during the year. The orientations of the ellipses and their degree of overlap provide a
preliminary idea of the separability of the classes. The confusion is minimal for the period of time when dots,
representing the observations at different epochs, are as far as possible form each other. The time associated
which each observation is not represented to avoid overloading the Figure S2, but once there is evidence for
separability at a certain period of time, it is possible to retrieve that chronological information for each dot
(see also Figures 9 and 10 where PCAs are represented for specific intervals of time). For Bantakokouta, for
instance, water and vegetation classes appear to vary more widely with time than urban and bare soil classes
and, in different directions, on the PC1–PC2 projections. The variations of water and vegetation take also
place in perpendicular directions with respect to urban and bare soil classes in the PC1–PC3 planes. Bare
soil, urban, and artisanal mining site classes do overlap in the PC1–PC2 planes, but the ASGM class varies
in opposite direction with respect to urban and bare soil classes on the PC1–PC3 planes. This behavior sug-
gests that ASGM sites may be easier to distinguish from bare soils and urban areas during some specific per-
iods of the year and using this PC1–PC3 planes. For Kharakhena, we should note first the absence of the
class “water.” The degree of dispersion and overlap between observations is much larger, and the separation
of classes is more difficult to achieve. However, it is of note that several dots representing the ASGM class are
clearly distinct from the other fields at a given period of the year in the PC1–PC2 projections.

It is also possible to represent simultaneously the observations and the variables in a bi‐plot representation
(Figure S3). A few additional lessons may be gained from this representation. For Bantakokouta, we first
notice that the group of variables B2, B3, B4, B5, BIa, and Bib that have significant contribution values
and are oriented in the same direction as the ASGMobservations. B11, B12, and BSI are of the same direction
as the urban class while bare soils and NDBI and NBAI indices fall on the same part of the biplot. For
Kharakhena group, B5, B4, and BIa fall on the same part of the biplot as the ASGM class. For urban and bare
soil classes, the contributing variables are the same as for Bantakokouta. The NDVI is always oriented to the
vegetation side for both sites. We will therefore inspect in the next section some of these variables and ana-
lyze their evolution over time.

Figure 7. Illustration of the selection of training samples at selected sites. (left) Bantakokouta ASGM site. (right) Kharakhena ASGM site. Green squares:
vegetation, yellow squares: urban areas, blue squares: water, orange square: bare soils, and red squares: mining sites.
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The results of the PCA on the global data sets suggest that separation of the artisanal mining site from
other classes may be achieved at certain periods of time. In order to determine this optimal period of time
to separate the classes, the PCA is now applied to a series of subsets of the original data, groups in four
periods of times, namely, T1 (January to March), T2 (April to June), T3 (July to September), and T4
(October to December). There is no data for the period from July to September (rainy season) for the
Bantakokouta area.

Figure 9 shows the results of the PCA for Bantakokouta, for the three periods. The results are presented in the
PC1–PC3 planes following the earlier conclusion that this plane is most appropriate to separate the artisanal
mining sites fromother classes. Examination of the Figure 9 reveals that for the Bantakokouta site; the separa-
tion of thewater and vegetation classes between the other types of land use is possible during all the periods of
the year. However, the separation betweenASGM class and other land use is not possible betweenNovember
and December. The separation is possible and optimal during the period T2 (April to June, dry season).

Figure 10 shows the results of the PCA, projected on the PC1–PC2 planes, as suggested by the PCA applied
on the entire data set, and for the four specific periods of time, for Kharakhena. As for Bantakokouta, the
period following the rainy seasons and the rainy seasons for which data were available here are not suitable
for the separation of classes and especially for the separation of artisanal mining sites from bare soils. The

Figure 8. Representation of the variables on the correlation circles for Bantakokouta (a and b) and Kharakhena
(c and d), with contributions of variables to PC1 and PC2 axes (a and c). And contributions of variables to PC1 and PC3
axes (b and d). Numbers in brackets on the x and y labels are the variance for each PCA axis; the colors of the vector
indicates the contribution of the variable to either the PC1–PC2 planes or PC1–PC3 planes in % with values
given by the color bar on the bottom of each figure panel.
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end of the dry season (April to June), as for Bantakokouta, appears to be the most appropriate period of the
year for the separation of the artisanal mining sites from all other classes.

The analysis of these observations over different periods shows very clearly that the end of the dry season is
ideal to proceed with the identification and mapping of sites with the least possible confusion. Before apply-
ing classification algorithm to images from that period of time (section 4.5), we discuss in section 4.4 the spe-
cific spectral evolution with time of AGSM and the reasons why this period of time are optimal for detection.

Figure 9. Results of the PCA (observations projected on the PC1–PC3 planes) on specific periods of time: T1 (a), T2 (b), and T4 (c) for the Bantakokouta area.
Numbers in brackets on the x and y labels are the variance for each PCA axis. Concentration ellipses are drawn based on the average and 2 standard
deviations of the projected values in the principal directions of the ellipse.

Figure 10. Results of the PCA (projection on the PC1–PC2 planes) on specific periods of time T1 (a), T2 (b), T3 (c), and T4 (d) for the Kharakhena area. Numbers
in brackets on the x and y labels are the variance for each PCA axis. Concentration ellipses are drawn based on the average and 2 standard deviations of the
projected values in the principal directions of the ellipse.
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4.4. Illustration of the Spectral Evolution With Time

The results of the PCA confirm our working hypothesis that the optical properties of the artisanal mining site
follow a different evolution with time than other classes and, in particular with bare soil, that is similar at
certain periods of the year, during the rainy season and during the period following the rainy season. The
PCA and the representation of the circle of correlations have also revealed which are themost relevant bands
and spectral indices to distinguish the different types of land use. In this part, we present the spectral beha-
vior of some of these variables for each site. The selection of variables results from the examination of the
PCA biplots. We aim here to illustrate how some of the variables evolve in parallel or deviate from each other
with time, especially at the end of the dry season, and discuss the reasons for the observed behaviors. For
Bantakokouta, the spectral evolution of indices following BI, NDVI, NDBI, and NDWI is presented in
Figure 11. For Kharakhena, the evolution of band 5, CI, NDBI, and NBAI is presented in Figure 12. The
dashed parts correspond to periods with non‐exploitable data (cloud cover). For each of these figures, the
x axis corresponds to the dates and the y axis to the reflectance/spectral index values. Based on the PCA ana-
lysis, we focus on the evolution of spectral indices and reflectance values between April and June (indicated
by a black ellipse in Figures 11 and 12) as some of them are expected to follow different paths as a function of
land use. These graphs show that the ASGM class is particularly distinct from other land use types on BI for
Bantakokouta (higher BI values in March) and on band 5 (higher reflectance value) and color index (larger
fluctuations) for Kharakhena. This difference can be explained by the presence of quartz at Bantakokouta
which has a strong spectral response on the brightness index. It should be noted that the spectral response
at mine sites is largely related to stacked on‐site releases and scraped surfaces. At Kharakhena, the activity
generally takes place on a lateritic surface, so the scraped surfaces will have orange hues and will be more
sensitive to the CI. The high values on band 5 on both sites can be explained by the fact that the sites have
high reflectance values at the transition between the visible and the NIR domain (red edge 1). ASGM class
does not have high values of the NDBI index for both sites, whereas the NBAI index is low for Kharakhena.
These two indices are generally used for the distinction of buildup area and are most relevant for bare soil
and urban area. The NDVI and NDWI indices separate well vegetation and water from other classes,
respectively.

In order to confirm or update the list of spectral indices or bands that are optimal for detection of AGSM, an
analysis of the separability between classes is carried out and presented in section 4.5.

4.5. Assessment of Best Indices and Bands to Classify ASGM Sites Versus Other Classes

The efficiency of separation based on spectral bands or spectral indices may be evaluated with the “separabil-
ity measure” J (Equation 2). For each class, the index with the highest value of J is interpreted as the best
index. Values of J higher than 1.9 are qualified as very good separability and values between 1.5 and 1.9
are qualified as good separability. Figure 13 presents the results of the calculation of separability measures
between the ASGM class and the other land use for Bantakokouta and Kharakhena. All spectral bands
and indices, for the period T3 (April–June), were included in this analysis. For each figure, the horizontal
axis intersects the vertical axis at the fixed threshold value of 1.5. Thus, for each band and index, the classes
whose separability threshold is greater than 1.5 appear above the x axis and those whose separability is less
than 1.5 appear below the x axis. For the Bantakokouta site (Figure 13a), the bands 3, 4, 5, 11, and spectral
index BIa have separability measures with bare soils above the threshold value. This is explained by the pre-
sence of quartz (which constitutes the main part of mining waste) which increases the brightness of the soils.
For the urban class, all separability measures are below the threshold, and therefore, confusion will remain
possible in all cases. As for the water and vegetation classes, the high values of J mean that there is no pos-
sibility of confusing these classes with artisanal gold mining sites. For the Kharakhena site (Figure 13b), the
BSI and CI, B4, and B5 remain the most relevant index to separate the mining site from all other classes. B6,
B7, and B8 and BI can also be used to avoid confusion between the urban class, bare soil, and artisanal
mining site. The indices of soil redness (RI) and the NDVI may be used to refine the classification. The most
relevant variables differ between these two sites, and we can explain this by the fact that the types of land
(ore zone) are different (quartz veins for Bantakokouta and lateritic duricrust for Kharakhena). We also
examined the J values between bare soils and urban classes, to determine how the confusion may be avoided
between these two classes. After a complete analysis of the separability between the different classes for each
site, the following variables are taken as an input to our classification algorithm: B4, B5, B6, B7, B8, B8A,
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B11, NDVI, NDWIa, CI, BIa, NDWIb, and NDBI for Bantakokouta and B4, B5, B6, B7, B8, B11, CI, BIa, RI,
BIb, and BSI for Kharakhena. The maps that are produced by the classification process are presented in
section 4.6.

4.6. Maps of ASGM Areas

Thefinal classification is therefore based on the use of the set of training samples for each site and considering
satellite data acquired during the period of April to June. Only bands and indices with high values of separ-
ability are used. The classification is achieved using the SVM as explained in section 3. The result of the clas-
sification was exported in tiff format into a Google Drive. The Figure 14 presents the results of the
Bantakokouta (left) andKharakhena (right) classification. Once exported, thisfile is opened inQGIS, and site
mapping is completed manually. This step consists of doing a quality control and vector editing to eliminate
major/ubiquitous misclassification of mining areas. The vector editing was straightforward and concerned
only a few pixels in the villages that were clearly not related to mining sites (see Figures S4–S6). Minimal
knowledge of the terrain would be required for such manual editing in other areas where automatic classifi-
cation is achieved with the same performance. On the maps shown in Figure 14 (after vector editing), artisa-
nal mining sites are labeled in red and official corridors are framed in black. The final result of this study is
therefore a map of ASGM sites. By cross validating with the field reality, an overall accuracy of 0.89 is found
for the Bantakokouta site (Kappa = 0.85) and 0.80 for Kharakhena (kappa = 0.73). According to the valida-
tion matrix presented in Tables 1 and 2, the mining areas are well identified (no omission error for

Figure 11. Spectral evolution over time of BI, NDVI, NDBI, and NDWI for Bantakokouta. The circled part corresponds to the period from April to June (T2).
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Bantakokouta and 11% for Kharakhena) by the approach developed here. The remaining sources of confu-
sion occur between artisanal mining sites, urban, and bare soils.

Once these results are obtained, we can perform a vector editing and extract only the gold mining sites. All
areas erroneously classified as ASGM are erased after vectorization. This step depends on our knowledge of
the terrain and the validation step.

5. Discussion

Considering that until now, no methodology has been developed for monitoring artisanal gold mining in
Senegal; this research proposes a fast, robust, and inexpensive technique for accurate identifying and map-
ping sites. This methodology is adapted to the context of developing countries by focusing on free data
(Sentinel 2), open access software (R and QGIS), and cloud computing (GEE). The selection and download
of Sentinel 2 data that would take a long time is avoided by the cloud computing alternative option on the
GEE Platform. The calculation and extractions of the spectral information and the results of the calculations
can be obtained in a few minutes. (This only includes computation time, not the time for the analyses of
separability and threshold results and selection of spectral bands and indices.) This represents a decisive
advantage in a context where there are limited computing resources and internet bandwidth dedicated to
such applications.

The methodology relies on a series of statistical methods that can be implemented elsewhere in West Africa,
to determine, in each particular case, the optimal period of the year and the optimal spectral indices or

Figure 12. Spectral evolution over time of B5, CI, NDBI, and NBAI for Kharakhena. The circled part corresponds to the period from April to June (T2).
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spectral bands to discriminate artisanal mining sites from other land use. Field observations are needed at
the first step, but the optimized parameters may be applied to the neighboring regions with similar
vegetation, land use, and climatic conditions. The separability of classes shows that soil indices such as
brightness, color indices, and bare soil indices are much more relevant for identifying sites, in the context
of our case of study where there is a lot of difficulty in identifying the different types of bare soil including
those related to artisanal mining. The thresholds obtained with the calculation of the Jeffries‐Matusita
distances can be used in case we want to automate the detection of sites. The optimal spectral parameters
may partly change over short distance, as it was observed to be the case between Bantakokouta and
Kharakhena. However, it is of note that for the neighboring sites in Eastern Senegal, the optimum period
is the end of the dry season, and these results are probably valid for the Sahelian region characterized by
one rainy season. The fact that the end of the dry season is the best to identify mining site appears to be
the confirmation of an intuitive result; as for the geologist, the vegetation cover during the rainy season is
generally an obstacle to discriminate between geology units; the same would apply to the capacity to discri-
minate between other types of land use.

As mentioned in section 1, remote sensing has been used since 2004 in West Africa (Kusimi, 2008; Manu
et al., 2004; Obodai et al., 2019; Snapir et al., 2017) but these studies were all focused on Ghanaian mining

Figure 13. Bantakokouta (a) and Kharakhena (b) area separability measurements between the mining site and other classes, estimated for all spectral bands and
spectral indices for the period T2 (April–June). The x axis represents the spectral bands and indices and y axis the values of J.
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sites and used pre‐Sentinel imagery. The approaches used in these studies share similarities: use of time
series, supervised classification, calculation of vegetation loss, mapping extent and expansion of ASGM,
land use and land cover change etc. The locations of Ghana's mining districts are well known, which can
facilitate the detection of change over several years over large areas. The novel aspects of this study with
respect to previous ones are as follows: the application to mining sites in Senegal, in a region with
Sahelian climate, rather than tropical climate, the use of Sentinel data (more frequent images, larger number
of spectral channel with high resolution), and the application to small mining sites.

Snapir et al. (2017) are the only study to our knowledge that used UK‐DMC2, a multispectral imaging satel-
lite operating in green, red and near infrared at 22 m resolution (better than Landsat resolution) to map the
extent and expansion of illegal gold mining from 2011 to 2015. This study could be completed by using the
Sentinel 2 data available since the end of 2015, taking advantage of the extended multispectral capabilities
and resolution (pixel size of 10 m). It is of note that other classification approaches are possible such as max-
imum likelihood, minimum distance and spectral angle mapper. For instance, Obodai et al. (2019) and
Boakye et al. (2020) used the spectral angle mapper in Ghana. The performance of this classification meth-
ods has been qualitatively estimated in our ROI, and we found that these alternative approaches do not sur-
pass the SVM classifier (see Figures S7 and S8). Indeed, this study demonstrates the added value of including
spectral indices in addition to spectral band.

Figure 14. Results of classification derived by the application of the SVM on selected spectral bands in indices on Sentinel 2 scenes from April to June and after
manual vector editing. (left) Bantakokouta and (right) Kharakhena. Official corridors are framed in black.

Table 1
Confusion Matrix According to Validation Data for Bantakokouta Area

Reference data

ASGM Bare soil Urban Vegetation Water Total

Classified Pixels? ASGM 289 2 5 0 0 296
Bare soil 0 489 29 0 0 518
Urban 0 112 178 0 0 290
Vegetation 0 28 0 335 0 363
Water 0 0 0 8 226 226
Total 289 631 212 343 226 1,693

Note. For instance, the 212 pixels corresponding to urban areas based on field work were classified as ASGM (5 pixels), bare soils (29 pixels), and urban (178
pixels).
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Extrapolation of these results to tropical areas, for instance, in Southern
Ghana, Guinea, and Côte d'Ivoire where artisanal mining activities are
also important. At this stage, it is not clear which part of the year would
be the best to identify mining sites in these regions, although all of the stu-
dies cited were done with data acquired in dry season, to avoid cloud cov-
erage. The high frequency of sentinel acquisition would certainly allow to
analyze scenes acquired during the rainy seasons (with occasional
cloud‐free skies) to apply our quantitative approach to determine the best
season for mapping ASGM sites. New field observations would be neces-
sary to adapt the current method to these sites, but an overall similar
methodology could be applied. Recently, Forkuor et al. (2020) used
Sentinel 1 data (radar) for mapping and monitoring small‐scale mining
activities in Ghana (2015–2019). An approach based on detection of sur-
face properties modifications has allowed the detection of new illegal sites

on an annual basis at the beginning and end of the rainy season. This approach can be combined with optical
imagery in future studies to continue monitoring ASGM areas even during the rainy season. The use of
higher resolution optical data (Pleiades, planet) or Radar (Radarsat‐2, CosmoSkymed, ALOS‐2) can be con-
sidered for more precise site detection (especially new sites in the early stages of formation).

Also, the classification which can take a lot of time with GIS software is done very quickly on GEE. SVM has
many advantages because it can complete an accurate classification with little training data. However, the
very low separability index found between urban and bare soil means that there is always a risk of confusion
influencing our global kappa (validation) index.

This methodology can be easily automated for the detection of other artisanal gold mining sites. Once
detected, these sites can be vectorized and these vectors can feed a GIS database where all the necessary
information for the follow‐up of the gold mining would be included. It should also be noted that once
detected, the sites could be superimposed on the legal perimeters, which would allow the authorities in
charge of monitoring this activity to better localize legal and clandestine activities. Some legal sites also
extend beyond the permits and become illegal, hence the need for decision makers to better review the areas
granted for artisanal mining. Assuming that it always exists at least one appropriate and optimal period of
the year to identify artisanal mining sites, it is possible to initiate a database of mining site maps with a 1 year
step between two consecutive maps.

6. Conclusion

This article presents a method for detecting and mapping ASGM sites in eastern Senegal. It is based on the
use of Sentinel 2 data, GEE cloud computing, and multivariate statistical methods. The method requires two
sessions of field work for collecting training samples and validation data. The novel aspects of this research
are the mapping of small mining sites in Senegal and the use of Sentinel 2 time series and statistical methods
to determine the optimal period of the year and the most efficient bands or spectral indices for mapping
ASGM sites. With respect to the current issues with the regulation of artisanal mining in Senegal, this study
provides a solution to build objective knowledge regarding the past and recent development around legal
and illegal artisanal mining sites in Senegal. Finally, this study could stimulate the development of similar
cost‐effective approaches in other West African countries facing the same challenges for the monitoring
and regulation of artisanal gold mining activities.
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Table 2
Confusion Matrix According to Validation Data for Kharakhena Area

Reference data

ASGM
Bare
soil Urban Vegetation Total

Classified
Data

ASGM 362 13 56 0 431
Bare soil 18 319 62 4 403
Urban 27 66 282 0 375
Vegetation 4 52 4 288 348
Total 411 450 404 292 1,557

Note. For instance, the 411 pixels corresponding to ASGM based on field
work were classified as ASGM (362 pixels), bare soils (18 pixels), urban
(27 pixels), and vegetation (4 pixels).
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