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abstract
Sensory organs represent the interface between the central nervous system of organisms and the

environment in which they live. To date, we still lack a true integration of ecological and evolutionary
perspectives in our understanding of many sensory systems. We argue that scientists working in sensory
ecology should expand the bridge between sensory and evolutionary biology, and, in working toward
this goal, we advocate a combination of the experimental rigor of the sensory physiologist with
population-based as well as evolutionary views.
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Introduction
the rise of sensory ecology

V IRTUALLY ALL BEHAVIORAL deci-
sions are based on information trans-

mitted through sensory systems. During
the past fifty years, numerous studies have
successfully investigated the mechanistic
bases of sensory systems using approaches
from physiology, functional morphology,
and neuroethology (e.g., Barlow and Mol-
lon 1982; Smith 2000; Barth 2002; Green-
field 2002). The increasing interest among
biologists in matters concerning sensory in-
formation in nature has resulted in the
emergence of sensory ecology—the study
of how organisms acquire and respond to
information about their environment (Ali
1978; Dusenbery 1992; Chittka and Thom-
son 2001). Visual ecology (e.g., Lythgoe
1979; Partridge 1989; Endler 1992; Bow-
maker et al. 1994; Archer et al. 1999;
Briscoe and Chittka 2001; Browman and
Hawryshyn 2001; Eckert and Zeil 2001;
Hart 2001a; Théry and Casas 2002; Land
and Nilson 2002; Cronin 2006; Zeil and
Hemmi 2006; Rosenthal 2007) and chem-
ical ecology (e.g., Sondheimer et al. 1970;
Silverstein 1981; Bell and Cardé 1984;
Pasteels et al. 1983; Hay and Fenical 1988;
Duvall et al. 1986; Vet and Dicke 1992;
Eisner and Meinwald 1995; Koehl et al.
2001; Cardé and Millar 2004; Romeo 2005;
Müller-Schwarze 2006; Dicke and Takken
2006; Avilla et al. 2008; Witzgall et al. 2008)
have played a central role in the develop-
ment of sensory ecology into its own field
of research. Other key examples of well-
studied sensory systems include echoloca-
tion in bats and dolphins (Thomas et al.
2002), electroreception in fish (Bullock et
al. 2005; Arnegard and Carlson 2005; Sny-
der et al. 2007), hearing in frogs and in-
sects (Wilczynski and Ryan 1988; Wiese
and Gribakin 1992; Fullard and Yack 1993;
Römer 1998; Stumpner and von Helversen
2001; Gerhardt and Huber 2002; Trible-
horn and Yager 2005; Neuhofer et al.
2008), mechanoreception in arthropods
(Barth 2002; Suter 2003; Fields and Weiss-
burg 2005; Triblehorn and Yager 2006),
and magnetic field reception in birds and

rodents (Kimchi et al. 2004; Biro et al.
2007), all of which have been examined in
an ecological context. Sensory ecology has
grown rapidly over the past decade, in part
because of rapid technological advances,
such as high-speed cameras (Buskey and
Hartline 2003; Dangles et al. 2007), field
portable spectrometers (Cronin and Shashar
2001; Smith et al. 2003; Johnsen 2007;
Ryan 2007), panoramic image devices (Zeil
et al. 2003), acoustic flight path tracking
(Jones and Holderied 2007), particle im-
age velocimetry (Stacey et al. 2002; Casas et
al. 2008), mathematical simulations (Hum-
phrey et al. 1993; Chittka 1996a; Magal et
al. 2006), and neural networks (Phelps
2007). Sensory ecology has also been incor-
porated into diverse areas of biology such
as conservation biology (Rabin et al. 2003;
Slabbekoorn and Ripmeester 2008) and
biomimetics (Peremans and Reijniers 2005;
Krijnen et al. 2006).

the need to bridge sensory and
evolutionary biology

Sensory ecology has traditionally fo-
cused on the experimental and mechanis-
tic study of the physiology and neuroethol-
ogy of sensory organs. In the last two
decades, the integration of ecological and
evolutionary concepts into sensory ecology
studies has been unequal among sensory
modalities. The study of some sensory mo-
dalities, such as bird and fish vision or am-
phibian audition, has been guided by evo-
lutionary biologists who have focused their
interest on interactions between organisms
and their conspecifics, food resources, and
predators (e.g., Ryan 1990; Endler 1992;
Kroodsma and Miller 1996; Gerhardt and
Huber 2002; Baugh et al. 2008). Most of
this research is concerned with the evolu-
tion of behavior, and it was performed by
comparing sensory traits among popula-
tions or species living in different habitats
(e.g., Endler et al. 2001; Cummings 2007)
within the context of animal communica-
tion rather than sensory ecology, per se.
This has resulted in the incorporation of
sensory traits into several evolutionary the-
ories, such as sexual selection and specia-
tion (e.g., Ryan 1983; Ryan 1990; Endler
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1992; Yokoyama and Yokoyama 1996; En-
dler and Basolo 1998; Boughman 2002; Si-
emers and Schnitzler 2004; Gerhardt 2005;
Stuart-Fox et al. 2007). However, this ap-
proach has so far focused mainly on vision,
audition, and echolocation in vertebrates,
and the mechanisms involved in the evolu-
tion of these sensory processes are often
poorly understood (see Fuller et al. 2005).
Research on other sensory modalities, such
as invertebrate mechanoreception or olfac-
tion, has been led by sensory physiologists
who are mostly concerned with the mech-
anisms that enable an animal to produce
and use signals in their environment (e.g.,
Barth and Schmid 2001). Comparative sen-
sory physiology has always stressed the di-
versity of sensory systems and how it relates
to behavior and ecology (e.g., Land 1989;
Hart 2001b; Manley et al. 2004; Lukowiak
and Weeks 2008), but the majority of these
studies have remained rooted in studying
how sensors function while directing less
attention to the ecological and evolution-
ary meaning of sensory-trait variability and
the role of sensors in nature (Hueter 1991;
Chittka and Briscoe 2001; Bargmann 2006;
Dangles et al. 2006b).

Scientists working in sensory ecology
should work towards the fusion of these
physiological and evolutionary approaches
by addressing how key gaps can be filled
between existing knowledge in sensory
physiology and evolutionary biology. We
argue that, for many sensory modalities
(e.g., mechanoreception in the vastly di-
verse group of invertebrates), there is a
dearth of in-depth studies uniting sensory
and evolutionary biology. In this paper, we
will propose a more integrated perspective
toward sensory ecology that focuses on the
study of variability in sensory traits at dif-
ferent levels, and, in order to do so, we will
stress three themes that represent areas for
growth: variability among species (phyloge-
netic history), variability among individu-
als/populations, and variability among de-
velopmental stages (ontogenetic changes).
Finally, we will advocate a combination of
the experimental rigor that is essential to
sensory physiology with a more population-
based view that welcomes sensory variation

as the raw material for natural selection to
operate upon.

Sensory Variability at Different
Levels

variability between species
Several studies have successfully used

phylogenetic methods to study the evolu-
tion of sensory systems, investigating, for
example, the phylogenetic position of sen-
sory organs among clades—mainly above
the family level—as well as the origin and
evolution of particular sensory features in-
herent to each lineage, such as vision and
olfaction (McFarland and Munz 1975; Chit-
tka 1996b; Briscoe 1998; Oakley and Cun-
ningham 2002; Spaethe and Briscoe 2004;
Bowmaker and Hunt 2006; Plachetzki and
Oakley 2007; Gustafsson et al. 2008), acous-
tics (Lakes-Harlan et al. 1999; Ryan and
Rand 1999; Wilczynski et al. 2001), electro-
reception (Alves-Gomes 2001; Zakon 2008),
and echolocation (Springer et al. 2001; Jones
and Holderied 2007; Gardiner et al. 2008; Li
et al. 2008). However, our knowledge about
how sensory systems have diverged in both
form and functional properties at the species
level remains fragmentary and, to date, is
limited to a handful of studies that have in-
vestigated relationships between the evolu-
tionary development of species and the effi-
ciency of their communication signals (e.g.,
Parker et al. 1998; Prum and Torres 2003;
Smith et al. 2004; Wickham et al. 2006; Cum-
mings 2007; Douglas et al. 2007; Briscoe
2008; Lavoué et al. 2008; Yager and Svenson
2008). Some of these studies have used phy-
logenetic methods to infer the ancestral sen-
sory conditions of extant species and have
then tested whether evolution has occurred
in the predicted direction upon invasion of
new habitats. For example, Cummings
(2007) quantified the evolutionary direction
of a sensory trade-off in a surfperch visual
system by examining the direction of visual
pigment divergence across extant taxa rela-
tive to the ancestral condition (Figure 1).
Sensory bias was evaluated based on the abil-
ity of surfperch to detect a major foraging
target (red algae) against background light.
The divergence of estimated sensory perfor-
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Figure 1.
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mance relative to the ancestor was predicted
by species-specific habitat characteristics:
deeper dwelling surfperch in the California
kelp forest habitat have diverged toward lu-
minance-biased visual systems, whereas spe-
cies occupying habitats with higher intensi-
ties and higher luminance variability have
diverged to favor chromatic detection. This
study supports the well-documented varia-
tion in the visual systems of aquatic species
(Levene and McNichol 1979; Lythgoe
1984). By contrast, in a phylogenetic
study of Hymenopteran visual systems,
Chittka (1996a) found relatively little
variation in photoreceptor spectral sensi-
tivity, with no obvious congruence be-
tween visual system properties and life-
style. Other research has shown relatively
high conservation of visual systems in
spite of divergent lifestyles in other ter-
restr ia l groups, such as primates
(Pichaud et al. 1999), butterflies (Frentiu
et al. 2007), and spiders (Su et al. 2007).
Evidence of both divergence and conser-
vation in animal visual systems suggests
that different habitats have yielded dif-
ferent patterns of divergence in vision. In
particular, marine and freshwater sys-
tems with different light habitats are as-
sociated with large-scale divergence,
whereas visual systems that have evolved
in terrestrial environments are less di-
verse. Almong the same line, Devara-
konda et al. (1996) and Humphrey et al.
(2001) argued that the evolution of fluid-
motion mechanoreceptors in arthropods
may differ in aquatic and terrestrial hab-

itats due to different physical constraints
associated with fluid viscosity.

Phylogenetic approaches are powerful
tools for researchers seeking to explore
how different habitats have driven the evo-
lution of sensory systems at the species
level. In light of this, it is imperative that
biologists tackle other important issues as
well, such as the concept of specialization
(see Irschick et al. 2005). In some cases,
the expansion of the number of sensory
receptors should increase the repertoire of
signals that species detect, allowing them
to occupy new niches. In other cases, evo-
lution might favor a reduction/specializa-
tion in the repertoire of sense organs, re-
ceptors, and associated components of
signal transduction when they no longer
provide a selective advantage. For exam-
ple, cavefish possess only tiny rudimentary
eyes, which in adults are deeply sunken
below the body surface after a process of
ontogenetic regression (Wilkens and Meyer
1992). Retinas of deep-sea fishes frequently
have reduced or lost the cone photorecep-
tors that are used for color vision in diur-
nal vertebrates (Warrant 2004). In jump-
ing spiders (Salticidae), the evolution of
multiple eye pairs may have enabled fron-
tal eyes to become specialized for the task
of orientation and spatial resolution, there-
fore increasing prey discrimination (Dacke
et al. 2003). The selective advantage of hav-
ing specialized versus generalized sensory
systems remains a relatively unexplored
field of sensory ecology (but see Bowmaker
1983; Morgan et al. 1992; Bernays and

Figure 1. Visual Detection Performance in FIve Surfperch Species
(A) Trade-offs in visual detection performance between luminance (i.e., brightness, in black) and chromatic

(i.e., color, in green) detection across five dichromatic surfperch species occupying optically diverse habitats
in the California kelp forest (see Cummings 2007 for more details on sensory bias estimation). Species that
diverged from their ancestor in a direction that enhanced chromatic detection (H. caryi, M. aurora) also
exhibited losses in the luminance channel, while species that gained in luminance detection (E. jacksoni, E.
lateralis, and D. vacca) exhibited losses in chromatic detection. (B) Surfperch color patterns exhibit biases in
detectability that match the visual detection bias of each species. For example, surfperch species with photo-
receptor sensitivity favoring luminance detection (E. jacksoni, E. lateralis, and D. vacca) have color patterns with
reflectance properties that have diverged to enhance the luminance channel. (C) A surfperch phylogenetic
tree modified from Bernardi and Bucciarelli (1999), with branch color indicating chromatic (green) or
luminance (black) visual detection performance estimates. Surfperch male color pattern signal properties are
mapped onto the extant tips of the tree and indicate reflectance property signal bias for chromatic (green, C)
and luminance (black, L). (From Cummings 2007; reproduced with permission from Blackwell.)
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Wcislo 1994), and further research in this
area is encouraged.

variability between
individuals/populations

Comparative studies on population vari-
ability in phenotypes and the performance
of sensory systems are attractive, as they
can be directly related to mechanisms and
patterns of the evolution of quantitative
traits (see Arnold 1983; Endler et al. 2001;
Raine et al. 2006). Many studies have
pointed to the existence of intraspecific
variation in the structure and/or perfor-
mance of sensory systems—such as verte-
brate vision (Lythgoe 1984; Archer et al.
1987; McDonald and Hawryshyn 1995; Fuller
et al. 2003; Siddiqi et al 2004), invertebrate
vision (Cronin et al. 2002; Spaethe and Chit-
tka 2003), vertebrate acoustics (Kroodsma
and Miller 1996; McClelland et al. 1998; Boul
and Ryan 2004), insect acoustics (von Helv-
ersen et al. 2004), insect chemoreception
(Löfstedt et al. 1985; Hansson et al. 1990;
Chapman and Lee 1991; Anderbrant et al.
2000; Opstad et al. 2004), and bat echoloca-
tion (Guillén et al. 2000; Kingston and Ros-
siter 2004)—of populations living in differ-
ent environments. With regard to vision
specifically, the role of ecological divergence
among populations has been highlighted
over the last decade through Endler’s (1992)
sensory drive hypothesis. In many taxa (e.g.,
fish, birds, lizards), vision is intimately in-
volved with mate recognition systems, and
therefore potentially under strong selection
pressure (Endler and Basolo 1998; Endler et
al. 2001; Boughman 2002; Cummings 2007,
Seehausen et al. 2008). This is also true for
olfaction in many insects (e.g., Wyatt 2003).
Assuming that easily detectable signals are
likely to be favored by natural selection, the
sensory drive hypothesis stipulates that when
populations occupy new habitats in which
the visual environment is different from
their original environment, natural selection
favors phenotypic change in the signal to
maximize the effectiveness of communica-
tion, both intra- and interspecifically (Endler
1992). Endler et al. (2001) performed artifi-
cial selection experiments on the color sen-
sitivity of the visual systems in four laboratory

populations of guppies (Poecilia reticulata).
They found a significant response to selec-
tion in all four selected populations, as well
as significant heritability for color sensitivity,
thus showing that the occupation of differ-
ent visual environments leads to diversity in
vision, which might, in turn, lead to diver-
gence in visual signals.

The influence of the sensory drive hy-
pothesis on animal sensory performance is
likely to be important outside the context
of mate choice, especially in regard to such
activities as the detection of predators or
the procurement of food, but this line of
research has barely been explored (but see
Dicke and Grostal 2001 for the chemical
detection of natural enemies by arthro-
pods; Neuweiler 1989 for the role of hear-
ing in bat foraging ecology; Dominy et al.
2001 and Regan et al. 2001 for the percep-
tion of visible light by primates to assess the
edibility of food items). Dangles et al.
(2005) quantified the natural phenotypic
variation in structure and performance of
the air-flow sensing cercal system in five
cricket populations from diverse habitats
and predator communities. These cricket
populations differed markedly from one
another, such as in the total number of
air-flow sensitive hairs and in the number
of hairs longer than 1000 �m—the hairs
most sensitive for the perception of pred-
atory air flow signals. These phenotypic
differences translated into differences in
sensory performance: the most sensitive
cricket population could perceive an ap-
proaching flying predator at a 20% greater
distance than the less sensitive popula-
tions. As a possible explanation, the influ-
ence of habitat structure on air flow signal
transmission (see Bradbury and Vehren-
camp 1998; Roemer 1998) or the inducible
response of insects to predation pressure
(e.g., Weisser et al. 1999) may act on cricket
populations that often show high degrees
of reproductive isolation (Mousseau and
Roff 1989). Sensory differences among
populations can also lead to differences in
how animals access food. Chittka et al.
(2004) found that eight different popula-
tions of bumblebees from continental and
Mediterranean Europe differ in a variety of
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behavioral traits, with no apparent relation
to differences in the environment (Figure
2). One of the traits they investigated was
the innate flower color preference of
worker bees, as it is easily quantifiable in
laboratory-raised individuals. Other studies
had found adaptive differences among spe-
cies as well as colonies. For instance, Raine et
al. (2006) observed that the nectar-robbing
visitor of hummingbird flowers, Bombus occi-
dentalis, has an innate red preference that is
not shared by any other species, and Raine
and Chittka (2007) observed that colonies
with a stronger preference for violet flowers
foraged more efficiently. While a compari-
son between populations—including several
from islands—revealed overall similarities in
color preference (i.e., all populations prefer
colors in the violet to blue range), there was
also significant variation between popula-
tions (e.g., members of the Sardinian and
Tenerife populations showed a secondary
preference for the color red [Chittka et al.
2004]) and subtle between-population varia-
tion in receptor tuning (Skorupski et al.

2007). However, this variation was appar-
ently not related to differences in the “flower
markets” in which these populations oc-
curred. The authors considered several alter-
natives—for example, the possibility that
food color preference is pleiotropically
linked to mating preference (e.g., Smith et
al. 2004)—but none of them provided con-
vincing explanations. They therefore con-
cluded that genetic drift processes, especially
on islands, might have produced the ob-
served between-population differences.

Understanding why variability in percep-
tual capabilities exists could be important
for predicting ecological outcomes of op-
timal foraging theory; any delay in recog-
nition of a danger or food resource and
the perception of its energetic costs or val-
ues is likely to influence optimal decisions
by foraging individuals (Smith et al. 2003;
Weissburg 2005; Raine and Chittka 2007).
For example, flower color appears to be
correlated with energetic value, so that lo-
cal variation in flower traits could drive
selection for innate color biases in foraging

Figure 2. Biogeography of Floral Color Preference in Bombus terrestris (Hymenoptera)
Bees were individually offered the colors: V – violet (bee UV-blue); B – blue (bee blue); W – white (bee

blue-green); Y – yellow; O – orange; R – red (the latter three are bee green). Column height denotes the mean
percentage (�1 SE) of colony choices. At least five colonies were tested per population. The shaded area shows
the distribution of B. terrestris (Rasmont et al. 2008). (Data from Chittka et al. 2001, 2004; figure from Raine et
al. 2006, reproduced with permission from Elsevier.)
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bees (Raine and Chittka 2007). Raine and
Chittka (2007) found that the colony with
the strongest bias for violet—the flower
color associated with the highest nectar
production rates—brought in 41% more
nectar than the colony with the weakest
bias, implying that differences in foraging
behavior are adaptive. The association be-
tween flower color and nectar profitabili-
ty—specifically UV-blue flowers and high
nectar contents—has been shown across
years (Raine et al. 2006; Raine and Chittka
2007) as well as across several habitats (Gi-
urfa et al. 1995; Chittka et al. 2004). As a
result, the selective pressure favoring a UV-
blue preference appears to be strong but is
limited, perhaps, by frequency-dependent
selection, especially when a strong color
bias by too many colonies will cause an
over-exploitation of flowers with that color,
thereby giving an advantage to colonies
with alternative preferences (Raine and
Chittka 2007). Because foraging and feed-
ing strategies are likely to be driving forces
in the evolution of many sensory systems,
we need more studies integrating sensory
and behavioral approaches to test these
issues. At the interface of these two disci-
plines lies a promising avenue of research
by which scientists will be able to quantify
how levels of variation in sensory traits in-
fluence the performance of foraging ani-
mals and, subsequently, their overall fit-
ness (see also Goerlitz and Siemers 2007;
Greiner et al. 2007; Melin et al. 2007, 2008;
Vogel et al. 2007).

variability between developmental
stages

Ontogenetic studies may be useful in
furthering our understanding of the evolu-
tionary forces acting on sensory systems.
Key ecological processes, such as resource
use and predation risk, generally change
with body size, and species, therefore, re-
quire commensurate adjustment of their
sensory equipment as they grow (Werner
and Gilliam 1984; Beaudet and Hawryshyn
1999; Jones 1999; Savchenko et al. 2001;
Heming 2003). Several authors have tested
the hypothesis that the timing and priority
of changes in sensory system properties

throughout development is linked to func-
tional demands and ecological require-
ments (see Jaeger and Hailman 1976).
For example, an ontogenetic shift in the
spectral sensitivity and polarization of
cone photoreceptors in juvenile teleost
fish is associated with changes in either
habitat or diet (Shand et al. 1988; Hawry-
shyn et al. 1990; Wood et al. 1992; No-
vales Flamarique 2000; Job and Shand
2001; Shand et al. 2008). Shand et al.
(2008) showed that the black bream (Ac-
anthopagrus butcheri) was able to respond
to changes in environmental light by al-
tering the opsin expression in its long
wavelength-sensitive receptors, both dur-
ing growth and in mature animals reared
under laboratory conditions or caught in
the wild (Figure 3). In crickets, the on-
togeny of the air-flow sensory cercal
structure is likely related to predation
pressures. Not only does the sensitivity of
the cercal system to sinusoidal signals in-
crease as a result of the appearance of
new air-flow sensitive hairs, but the value
of the “best” tuned frequency also re-
mains fixed between 150 and 180 Hz af-
ter the second life stage (Dangles et al.
2006c). These frequencies nicely match
those emitted by natural flying predators,
thus suggesting that the development of
the cercal array of hairs may have evolved
in response to such signals.

Although sensory variation among juve-
niles is frequently ignored, we believe that
sensory ecologists should invest more en-
ergy in studying these systems (see also
Adams and Pedersen 2000 for echoloca-
tion; Dangles et al. 2006b for flow sensing).
Indeed, the impact of selection upon de-
velopmental variation is an important mech-
anism that produces phenotypic variation
among adults, and selective pressures are
likely to be greatest during early life-
history stages, as, in many species, preda-
tion more strongly affects young individ-
uals (McNamara 1997). It would also be
interesting to study variation in the de-
velopmental rate of sensory systems as
a function of ecological pressures (e.g.,
predation, habitat characteristics) experi-
enced by organisms. Whereas few species
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possess a fully operational sensory system
during their early life stages (e.g., electro-
reception in mormyrid fishes [Denizot et al.
1998], mechanoreception in crickets [Dan-
gles et al. 2006c]), most have rudimentary
sensory capabilities at birth that require sub-

stantial development (e.g., audition in mam-
mals [Rubel 1984], vision in fish [Higgs and
Fuiman 1996], audition in insects [Lakes-
Harlan and Strau� 2006]). Functional re-
quirements during the development of
early life stages may act as constraints for
the evolution of adult organs, and this re-
mains an exciting but poorly explored field
of sensory ecology (for an explicit discus-
sion of the auditory system of cicadas, see
Lakes-Harlan and Strau� 2006).

Future Challenges
taking the lab to the field

The need to quantify sensory perfor-
mance of organisms in nature presents a
major challenge for sensory ecologists. For-
tunately, the last decade has witnessed an
explosion of mobile and wireless technol-
ogy that enables researchers to literally
take the “laboratory into the field,” and
some sensory ecology research has already
felt the advantage of these technological
changes (e.g., vision research [Fleishman
et al. 1998; Chiao et al. 2000; Warrant
2001; Endler and Day 2006; Jordão et al.
2007; Cummings et al. 2008], echolocation
research [Triblehorn and Yager 2005; Hold-
eried et al. 2005], audition research [Ro-
emer and Bailey 1986; Narins et al. 2003],
and flow sensor research [Barth et al. 1995;
Dangles et al. 2007]). This potential distinc-

Figure 3. Eye Cone Class Frequency and the
Developmental Stages of the Black
Bream (ACANTHOPAGRUS BUTCHERI)

Frequency of eye cone classes were measured at
different developmental stages in wild–caught black
bream (Acanthopagrus butcheri) reared under two dif-
ferent lighting conditions. The first lighting condi-
tion was “standard,” consisting of broad spectrum
fluorescent lighting with an intensity at approxi-
mately 70 �/cm�2, 400–700 nm. The second lighting
condition was produced through the use of a yellow
acetate filter, thereby providing a reduced transmis-
sion of short wavelengths (short wavelength–reduced
lighting is typical in estuarine conditions). Data from
all four stages for fish reared under standard condi-
tions are shown. No data were available for wild–
caught larval fish or for adult yellow filter fish. (From
Shand et al. 2008; reproduced with permission of the
Company of Biologists.)
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tion between field and laboratory perfor-
mance is not a trivial issue for sensory biolo-
gists, because many animals are difficult to
study in natural settings while maintaining
suitable experimental control. Animals often
exhibit fundamentally different behaviors in
the field compared to standardized labora-
tory environments. For example, laboratory
studies on locomotion assume that the level
of performance expressed under “optimal”
conditions accurately reflects the level of per-
formance used in nature, but this assump-
tion is not always borne out (Irschick and
Garland 2001; Irschick 2003).

More than twenty years ago, Römer’s pio-
neering field work on cricket acoustic com-
munication emphasized the importance of
studying animals under natural stimulus con-
ditions in order to properly investigate sen-
sory system performance (Rheinlaender and
Römer 1986; Römer and Bailey 1986; Römer
and Lewald 1992). In particular, this re-
search showed that the loss of sound signals
outdoors, especially when insects call within
stands of vegetation, has forced insects to
compensate by adapting specific behaviors
such as redundancy calls or chorusing. More
recently, Dangles et al. (2007) used a porta-
ble simulator of spider air-flow signals to
measure the sensory-mediated escape perfor-
mance of crickets under field conditions
(Figure 4A, B). This experiment revealed
that both the behavior and performance of
evading crickets in nature, as well as the sen-
sory pathways involved in such escape behav-
ior, differ in several ways from observed lab-
oratory performance. A majority of crickets
escaped running predators only after physi-
cal contact, and not by using their wind-
detection system as generally assumed in the
literature (Figure 4C, D). Besides providing
for the crucial role of cercal touch percep-
tion during cricket escapes, these results re-
inforced the importance of considering the
issue of multimodality in sensory ecology
studies based upon the fact that many ani-
mals use a hierarchy of cues (e.g., visual,
odour, touch) to establish risk, and these
cues may change over time, as animals learn
to ignore irrelevant stimuli (e.g., Bell 1990;
Hern et al. 1996; Dukas 1998; Rowe and

Guilford 1999; Cronin 2005; Conover 2007;
Catania et al. 2008).

Engaging in sensory ecology fieldwork
also forces us to devote our attention to
so-called “background noise” in natural en-
vironments, as detection thresholds may
often be so low that they are within the
range of natural noise. Sensory processing
in animals is shaped by the ubiquitous
presence of background noise, requiring
the separation of signal from noise (Dusen-
bery 1992). As a further step, the concept
of stochastic resonance deals with the use
of noise to increase the sensitivity of sensory
systems (Osipov et al. 2007). For example,
electrosensitive paddlefishes use stochastic
resonance for homing in on Daphnia prey
(Russell et al. 1999). Thus, the popular view
of a passive external world in which organ-
isms can easily sense one another is a simpli-
fication of a more complex reality. Field
studies of both the intrinsic qualities of back-
ground noise and its interaction with organ-
isms are therefore highly necessary. For in-
stance, mate selection through vision or
hearing in the “noisy” field environment may
be quite different from that which occurs
within quieter and more controlled labora-
tory settings (Gerhardt and Huber 2002).
For animals sensing in the active mode, in-
terference from conspecifics is reduced by
rapid attenuation of the signals, spacing be-
tween conspecifics, and individual differ-
ences in the emitted signals that serve to
avoid interference when in close proximity
(the jamming avoidance response) (see Hei-
ligenberg 1991). However, this background
noise may present a problem for animals
using active sensing systems, such as electro-
location or echolocation, as these systems
may experience jamming from the signals of
neighboring conspecifics. Most species of
weakly electric fishes show a jamming avoid-
ance response, achieved by adjusting the dis-
charges of individuals, thus emphasizing dif-
ferences between emissions in response to
the signals of neighbors. For all of these rea-
sons, we need more information on sensory-
mediated behavior (e.g., mate choice, preda-
tion) that takes into account both natural
abiotic and biotic environmental conditions.

60 Volume 84THE QUARTERLY REVIEW OF BIOLOGY

http://www.jstor.org/page/info/about/policies/terms.jsp


investigating both viewpoints:
sender and receiver

Because sensory systems are crucial for
many interspecific interactions, the evolu-
tion of these systems and their variability in
performance should be considered in a
co-evolutionary context (see Searcy and
Nowicki 2005; Bargmann 2006). Since a
complete understanding of sensory ecol-
ogy needs to take into consideration the
sensory responses of potential prey, pred-
ators, and conspecifics, it is useful for
sensory ecologists to establish differences
among sensory signals when the interests
of the two partners overlap, diverge, or
oppose (Searcy and Nowicki 2005).

In the case of converging interests, Chittka
and Menzel (1992) quantified the evolution-
ary “tuning” between floral coloration and
the color vision of flower-visiting Hymenop-
tera by evaluating the information transfer
from the signaling flower to the perceiving
pollinator. The analysis of 180 reflection
spectra of angiosperm blossoms revealed
that sharp contrasts occur precisely at those
wavelengths at which pollinators are most
sensitive to spectral differences. Based on
evolutionary theory (see Fordyce 2006), we
can predict that adaptive evolution of sen-
sory system phenotypes in response to recog-
nition of food is favored when individuals
within a population interact with a small ar-
ray of signals. In case of opposing interests,
such as predator-prey interactions, sensory
systems have likely evolved in an environ-
ment presenting dynamic evolutionary inter-
actions (e.g., an evolutionary arms race; see
Endler 1991 for an explicit discussion). A
classic example of the co-evolution of prey
and predators within a sensory ecology con-
text is the interaction between insectivorous
bats and Arctiid moths (Roeder and Treat
1957; Fullard 1987; Hoy 1992; Miller and
Surlykke 2001). While bats emit high-
intensity ultrasonic pulses and use echoes to
locate and track flying prey, some Arctiid
moths can direct ultrasonic clicks back at the
echolocating bat. The function of these
clicks remains unclear; they may serve either
to warn the bat that the moth is distasteful
(Spangler 1988) or to jam its echolocating

system (Fullard et al. 1979), or perhaps both
(Ratcliffe and Fullard 2005). In more gen-
eral terms, the remarkable diversity in insect
ears suggests that predator-prey interactions
between bats and insects have played a key
role in the evolution of insect auditory sys-
tems (Hoy and Robert 1996). Further studies
incorporating bat acoustics and moth palat-
ability and acoustics in a phylogenetic frame-
work would be useful for refining evolution-
ary hypotheses in the moth-insect system
(Barber and Conner 2006).

Much remains to be learned about the
manner in which other sensory systems
have co-evolved, and equal attention to
both partners in sensory co-evolution is es-
sential. By integrating the sensory ecology
of both predator and prey, Dangles et al.
(2006a) and Casas et al. (2008) have shown
that the hunting strategies of wolf spiders
are constrained by the air displacements
these predators generate when running to-
wards cricket prey. These authors argued
that studying the role of signals produced
by predators and perceived by prey sheds
light on our understanding of foraging
strategies typically studied in terms of en-
ergetics, biomechanics, or escape success
rates (Casas et al. 2008). Understanding
the sensory interplay between interacting
species may also provide insights on broad
patterns of sensory system evolution (see
Robert et al. 1992 on the evolution of hear-
ing in a parasitoid fly and its host). In this
context, the asymmetry of predator-prey
interactions may have important conse-
quences for the evolution of sensory system
performance. For example, viscous cou-
pling between air-flow sensory hairs may be
undesirable for predators (e.g., spiders) in
the detection of their prey but desirable
for prey (e.g., cockroaches) in the detec-
tion of their predators (Humphrey and
Barth 2008). Whereas predators might
need independent information from many
hairs for proper target localization, prey
might need to have many hairs moving
simultaneously to trigger an efficient es-
cape. Similarly, predator eyes are often
adapted for high performance in specific
directions, whereas prey visual systems
seem better designed for detecting the
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presence of predators at almost any loca-
tion (see Cronin 2005; Siemers and Güt-
tinger 2006). The importance of asymmetry
in the characteristics of sensory modalities
used by interacting species therefore consti-
tutes a promising field of research for sen-
sory ecologists.

investigating the adaptive nature of
sensory systems

Because sensory systems are not neces-
sarily fixed entities, plasticity in these sys-
tems enables individuals to adapt to differ-
ent environments (see Fleishman et al.

Figure 4.
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1997; Wilczynski and Ryan 1999; Cronin et
al. 2001; Boughman 2002; Leal and Fleish-
man 2002; Linkenhoker and Knudsen
2002; Doberfull et al. 2005). For example,
in the mantis shrimp (Haptosquilla trispi-
nosa), which occupies a range of depths in
the ocean, the maximum spectral sensitiv-
ity of long-wavelength photoreceptors is
adjusted by individuals to the local light
environment, indicating a significant de-
gree of plasticity in tailoring their visual
systems to different habitats (Cronin et al.
2001). As pointed out earlier, many sen-
sory systems are not fully developed at
birth, and organisms have the capacity to
make adjustments in neural connection
patterns depending on environmental con-
ditions. In the case of the mantis shrimp,
Cronin et al. (2001) have experimentally
demonstrated that the occurrence of dif-
ferent filter sets in adult populations was
influenced by light conditions during de-
velopment. In an evolutionary context,
Frederiksen and Warrant (2008) have ar-
gued that the visual systems of inverte-
brates seem sufficiently flexible so as to
evolve to be matched and optimized for a
particular intensity window. At a species

level, the spectral tuning of vertebrate vi-
sual pigments is also generally considered
to be adaptive (Archer et al. 1999). Be-
cause environmental conditions are fre-
quently highly variable, it is likely that de-
velopmental stages, populations, and species
will exhibit a high level of plasticity in a
wide variety of sensory modalities, but fur-
ther study will determine the generality of
this hypothesis.

The magnitude of plasticity in sensory
systems has important evolutionary impli-
cations, as plastic sensory systems may fa-
cilitate fluctuating selection and reduce
the potential for divergence among popu-
lations (Lande 1981). We believe that sen-
sory ecologists should devote more effort
toward investigating the adaptive nature of
sensory systems in populations living in dif-
ferent environments. This would inject
new energy into our understanding of both
the relative amounts of genetic and/or envi-
ronmental variation in sensory system prop-
erties (see Fuller et al. 2005; Lavagnino et
al. 2008) as well as the occurrence of indi-
vidual adaptation, or short-term physiolog-
ical receptor adaptation. To achieve these
goals, sensory ecologists can borrow tools

Figure 4. Flow-Mediated Escape Performance of Wood Crickets (Orthoptera) Measured Under
Field Conditions

A drawing (A) and photograph (B) of the portable equipment used to measure the flow-mediated escape
performance of freely behaving wood crickets (Nemobius sylvestris) taken from wild populations, under the
natural conditions (i.e., leaf litter substrate, slow breeze, natural acoustic environment, temperature and
humidity conditions) of a European oak forest. The use of a halogen lamp, which was necessary for our
high-speed camera recordings, supplied an artificial light environment. To simulate a spider attack, a “spider
operator” used an original device activated by the displacement of an actuator-triggered “piston” (A, part A)
(see Dangles et al. 2006b) and controlled by a portable computer (A, part B). The use of the piston in the field
was facilitated by a 1.5 m wire (A, part C) that ran between the actuator and the tip of the piston. Cricket escape
behavior was recorded using a high-speed digital video camera (A, part D) with a frame rate of 1000 frames per
second and resolution of 1280 � 512 pixels. The camera was mounted on a ramp (A, part E) fixed on the
rotating head of a stable tripod 0.5 m above the ground (A, part F). A red laser pointer (A, part G) was focused
on the cricket body and enabled us to center the cricket in the camera�s field of vision. The ground was
illuminated by a halogen lamp (A, part H), and the video acquisition was controlled using a laptop (A, part I).
(C) Escape distances normalized to total body length of wood crickets for three different instars—juvenile I
(Juv. 1), juvenile II (Juv. 2), and adults (Ad.)—at three piston velocities (40 mm/s, 150 mm/s and 300 mm/s).
Numbers indicate two or three crickets escaping at similar distance values. Data for air-evoked escapes are
presented in the top row of graphs, and data for touch-evoked escapes are presented in the bottom row. Note
that the range of values displayed in the touch-evoked graphs is of a lower magnitude than the range displayed
in the air-evoked graphs. (D) The tip of the cricket’s cerci lines up with the x-axis. An escape distance of zero
corresponds to the tip of the cerci being touched by the piston. Bold arrows represent the direction of piston
movement. Positive and negative values of escape distances correspond to air- and touch-evoked responses,
respectively. (Figure from Dangles et al. 2007; reproduced with permission of the Company of Biologists.)
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from evolutionary biologists, such as recipro-
cal transplant experiments, in which individ-
uals from populations from two or more en-
vironments are each introduced into the
other’s environment(s) (e.g., Reznick et al.
1990; Endler et al. 2001; Chittka et al. 2004).
This would allow scientists to compare the
sensory performance of native organisms
with those arising from populations oper-
ating in different environments, and to
thereby determine whether variation is at-
tributable to genetics, environment, or the
interaction between them (see Fuller et al.
2005; Raine et al. 2006). Preferably, the po-
tential adaptation in sensory performance
within relevant temporal and spatial scales
for species should be studied (e.g., Cronin
and Shashar 2001; Fuller et al. 2003; Beckers
and Schul 2008), as environmental factors in
both natural and disturbed ecosystems are
often stochastic.

sensory ecology in a changing world
Recent reviews have stressed that, in the

context of a dramatically changing world,
rapid evolution may become a hallmark of
the 21st century (Carroll et al. 2007). At
first glance, sensory biologists may think
that such changes are unlikely to affect
their study organisms, yet we argue that
this is far from true (see also Endler 1997;
Rabin et al. 2003; Lim et al. 2008). In order
to survive, animal populations may have to
undergo morphological and functional ad-
aptations to cope with rapidly changing
conditions, and sensory systems may be a
key source of increasing variability. We ar-
gue that understanding sensory mecha-
nisms maybe a useful starting point for a
variety of practical ecological applications
(see Weissburg 2005), and we provide some
examples of these as follows.

One of the most dramatic examples of
human impact on species sensory ecology
may be the case of sympatric Cichlid fish
species in the Great Lakes of Africa. In-
creases in water turbidity due to eutrophi-
cation threaten the reproductive isolation
of these species, which is usually main-
tained via mate choice based on the bright
species-specific coloration of males (See-
hausen et al. 1997; Salzburger et al. 2006).

In Lake Victoria, light quality has declined
to the point where female choice is com-
promised as a result of changes in the spec-
tral composition of male nuptial colora-
tion. Males are becoming increasingly dull-
colored, and species diversity in areas
of recent eutrophication is more related
to light availability than to any other an-
thropogenic stressor. More generally, any
change in illumination and turbidity is of
serious concern in many aquatic environ-
ments (including coral reefs) and has po-
tential consequences for vision-mediated
activities such as predation or mating
(Johnsen 2005). Light pollution also af-
fects the sensory ecology of terrestrial
species, with consequences for foraging,
reproduction, migration, and communica-
tion (see Longcore and Rich 2004). Some
of the first selection experiments ever con-
ducted were performed on Drosophila pho-
totaxis (del Solar 1966), and these showed
strong genetic effects in relatively few gen-
erations, thus indicating that there might
be a genetic scope for coping with light
pollution.

Sensory modalities other than vision,
such as olfaction or audition, may be af-
fected in ecosystems where natural physical
properties are modified by human activi-
ties. Fish olfaction, for example, is altered
by water chemical pollution (e.g., Bertmar
1982; Hansen et al. 1999), with potential
impacts on natural water discrimination
along chemical gradients, such as salinity
or home stream odor (Hubbard et al.
2000), or social recognition (Ward et al.
2008). There is also concern that increas-
ing noise levels in the oceans (produced by
sonars and shipping, for example) confuse
the acoustic signals that cetaceans and
other aquatic organisms use to navigate,
communicate, and locate food (e.g., Rich-
ardson et al. 1998; Frantzis 1998; Doak et
al. 2007). Ross (1987) has estimated that
increases in ship traffic over the past fifty
years have led to a 15 dB increase in am-
bient noise levels in the low-frequency
bands used by many marine mammals. Al-
though our knowledge on lethal and sub-
lethal effects of anthropogenic sound on an-
imals in the wild remains poor (Gisiner
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1998), it is likely that increasingly noisy hab-
itats will have significant effects on both ter-
restrial and aquatic organisms (Klump 1996;
Rabin and Greene 2002; Sun and Narins
2005; Schaub et al. 2008). Animals have the
ability to discriminate among various types of
natural background noise (both auditory
[Brumm and Slabbekoorn 2005] and visual
[Ord et al. 2007]), but the ecological and
evolutionary adaptations of populations and
species living in increasingly noisy habitats
remain poorly known (see Slabbekoorn and
Ripmeester 2008 for a discussion on the ef-
fects of anthropogenic noise on birdsong)
and constitute a promising area of research
for both sensory and conservation ecologists.

Conclusion
In this review, we have attempted to

demonstrate that sensory systems are not
only amenable to an integrative approach
at different levels of variability, but also
that this integrative approach is crucial for
advancing the field of sensory ecology. The
complementary nature of studies on the

variation in structure and function of sen-
sory systems allows a more complete under-
standing of the sensory-mediated interac-
tions that occur between organisms and
the evolutionary forces acting upon them.
Many taxonomic groups present spectacu-
lar diversity in the arrangement, number,
or size of their sensory structures, but the
causes and consequences of this variation
remain largely unexplored. The investiga-
tion of variation in the performance of
sensory systems among species, popula-
tions, and developmental stages, especially
under natural conditions, represents a
promising field of research that may serve
not only to refine our understanding of the
past evolution of sensory systems, but also
to predict how animal behavior and sen-
sory capabilities will continue to adapt to a
changing world.
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Bell W. J., Cardé R., editors. 1984. Chemical Ecology of
Insects. Sunderland (MA): Sinauer Associates.

Bernardi G., Bucciarelli G. 1999. Molecular phylog-
eny and speciation of the surfperches (Embioto-
cidae, Perciformes). Molecular Phylogeny and Evolu-
tion 13(1):77–81.

Bernays E. A., Wcislo W. 1994. Sensory capabilities,
information processing, and resource specializa-
tion. Quarterly Review of Biology 69(2):187–204.

Bertmar G. 1982. Structure and function of the olfactory
mucosa of migrating Baltic trout under environmen-
tal stresses, with special reference to water pollution.
Pages 395–422 in Chemoreception in Fishes, Develop-
ments in Aquaculture and Fisheries Science, Volume 8,
edited by T. J. Hara. Amsterdam (The Netherlands):
Elsevier, Scientific Publishing Company.

Biro D., Freeman R., Meade J., Roberts S., Guilford T.
2007. Pigeons combine compass and landmark
guidance in familiar route navigation. Proceedings
of the National Academy of Sciences USA 104(18):
7471–7476.

Boughman J. W. 2002. How sensory drive can pro-
mote speciation. Trends in Ecology and Evolution
17(12):571–577.

Boul K. E., Ryan M. J. 2004. Population variation of
complex advertisement calls in Physalaemus petersi
and comparative laryngeal morphology. Copeia
2004(3):624–631.

Bowmaker J. K. 1983. Trichromatic colour vision: why
only three receptor channels? Trends in Neuro-
sciences 6:41–43.

Bowmaker J. K., Govardovskii V. I., Shukolyukov S. A.,
Zueva L. V., Hunt D. M., Sideleva V. G., Smirnova
O. G. 1994. Visual pigments and the photic envi-
ronment: the cottoid fish of Lake Baikal. Vision
Research 34(5):591–605.

Bowmaker J. K., Hunt D. M. 2006. Evolution of verte-
brate visual pigments. Current Biology 16(13):
R484–R489.

Bradbury J. W., Vehrencamp S. L. 1998. Principles of
Animal Communication. Sunderland (MA): Sinauer.

Briscoe A. D. 1998. Molecular diversity of visual pig-
ments in the butterfly Papilio glaucus. Naturwissen-
schaften 85(1):33–35.

Briscoe A. D. 2008. Reconstructing the ancestral but-
terfly eye: focus on the opsins. Journal of Experimen-
tal Biology 211(11):1805–1813.

Briscoe A. D., Chittka L. 2001. The evolution of color
vision in insects. Annual Review of Entomology 46:
471–510.

Browman H. I., Hawryshyn C. W., editors. 2001. Biol-
ogy of ultraviolet and polarization vision. Journal of
Experimental Biology 204(14):2383–2596.

Brumm H., Slabbekoorn H. 2005. Acoustic commu-
nication in noise. Advances in the Study of Behavior
35:151–209.

Bullock T. H., Hopkins C. D., Popper A. N., Fay R.,
editors. 2005. Electroreception. New York: Springer.

Buskey E. J., Hartline D. K. 2003. High-speed video
analysis of the escape responses of the copepod
Acartia tonsa to shadows. Biological Bulletin 204(1):
28–37.
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Narins P. M., Hödl W., Grabul D. S. 2003. Bimodal
signal requisite for agonistic behavior in a dart-
poison frog, Epipedobates femoralis. Proceedings of the
National Academy of Sciences USA 100(2):577–580.

Neuhofer D., Wohlgemuth S., Stumpner A., Ronacher
B. 2008. Evolutionarily conserved coding properties
of auditory neurons across grasshopper species. Pro-

ceedings of the Royal Society of London, Series B: Biological
Sciences 275(1646):1965–1974.

Neuweiler G. 1989. Foraging ecology and audition in
echolocating bats. Trends in Ecology and Evolution
4(6):160–166.

Novales Flamarique I. 2000. The ontogeny of ultravi-
olet sensitivity, cone disappearance and regenera-
tion in the sockeye salmon Oncorhyncus nerka. Jour-
nal of Experimental Biology 203(7):1161–1172.

Oakley T. H., Cunningham C. W. 2002. Molecular
phylogenetic evidence for the independent evolu-
tionary origin of an arthropod compound eye.
Proceedings of the National Academy of Sciences USA
99(3):1426–1430.

Opstad R., Rogers S. M., Behmer S. T., Simpson S. J.
2004. Behavioural correlates of phenotypic plastic-
ity in mouthpart chemoreceptor numbers in lo-
custs. Journal of Insect Physiology 50(8):725–736.

Ord T. J., Peters R. A., Clucas B., Stamps J. A. 2007.
Lizards speed up visual displays in noisy motion
habitats. Proceedings of the Royal Society of London,
Series B: Biological Sciences 274(1613):1057–1062.

Osipov G. V., Kurths J., Zhou C. 2007. Synchronization
in Oscillatory Networks. Berlin (Germany): Springer.

Parker A. R., McKenzie D. R., Ahyong S. T. 1998. A
unique form of light reflector and the evolution of
signalling in Ovalipes (Crustacea: Decapoda: Por-
tunidae). Proceedings of the Royal Society of London,
Series B: Biological Sciences 265(1399):861–867.

Partridge J. C. 1989. The visual ecology of avian cone
oil droplets. Journal of Comparative Physiology A:
Neuroethology, Sensory, Neural, and Behavioral Physi-
ology 165(3):415–426.
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