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Abstract
1. Population time series analysis is an integral part of conservation biology in the 

current context of global changes. To quantify changes in population size, wildlife 
counts only provide estimates because of various sources of error. When unac-
counted for, such errors can obscure important ecological patterns and reduce 
confidence in the derived trend. In the case of highly gregarious species, which 
are common in the animal kingdom, the estimation of group size is an important 
potential bias, which is characterized by high variance among observers. In this 
context, it is crucial to quantify the impact of observer changes, inherent to popu-
lation monitoring, on i) the minimum length of population time series required 
to detect significant trends and ii) the accuracy (bias and precision) of the trend 
estimate.

2. We acquired group size estimation error data by an experimental protocol where 
24 experienced observers conducted counting simulation tests on group sizes. 
We used this empirical data to simulate observations over 25 years of a declining 
population distributed over 100 sites. Five scenarios of changes in observer iden-
tity over time and sites were tested for each of three simulated trends (true popu-
lation size evolving according to deterministic models parameterized with declines 
of 1.1%, 3.9% or 7.4% per year that justify respectively a “declining,” “vulnerable” 
or “endangered” population under IUCN criteria).

3. We found that under realistic field conditions observers detected the accurate 
value of the population trend in only 1.3% of the cases. Our results also show 
that trend estimates are similar if many observers are spatially distributed among 
the different sites, or if one single observer counts all sites. However, successive 
changes in observer identity over time lead to a clear decrease in the ability to 
reliably estimate a given population trend, and an increase in the number of years 
of monitoring required to adequately detect the trend.

4. Minimizing temporal changes of observers improve the quality of count data and 
help taking appropriate management decisions and setting conservation priori-
ties. The same occurs when increasing the number of observers spread over 100 
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1  | INTRODUC TION

Conservationists and stakeholders often focus on population dy-
namics to quantify the scale and significance of ecological and 
human impacts on wildlife. Estimates of state variables (abundance, 
occurrence, and species richness, Royle & Dorazio, 2008) and de-
mographic parameters are then critical. Population monitoring 
programs are therefore designed to quantify the patterns of these 
variables over time, in order to assess the present status and trends 
of the populations. National and international programs, such as the 
IUCN Species Survival Commission Red List Program (IUCN, 2019), 
U.S. Fish & Wildlife Service (Cowardin & Golet, 1995), or adaptive 
harvest management programs (Madsen et al., 2017), aim to iden-
tify those species most in need of conservation and management 
attention by using criteria such as quantified reductions in estimated 
population size (Gärdenfors, 2001; Gärdenfors et al., 2001).

However, wildlife counts only provide estimates and not ac-
tual population size, because of various sources of errors such as 
imperfect detection (Dénes et al., 2015), imperfect abilities to 
count animals that are detected (Seber, 2002; Thompson, 2002; 
Williams et al., 2002), misidentification of species or nonexhaus-
tive geographical coverage. When unaccounted for, these errors 
can introduce considerable estimation bias and obscure important 
ecological patterns (Wenger & Freeman, 2008), which can reduce 
the power to detect trends and accuracy of any trends that are de-
tected (Sanz-Pérez et al., 2020). Integration of systematic sources 
of count errors into population models can help. Nevertheless, to 
keep the model simple and avoid overparameterization (principle 
of parsimony, Vandekerckhove et al., 2015), only a selection of the 
most important errors should be modeled, according to the situa-
tion. In the specific case of highly gregarious species such as water-
birds (Tamisier & Dehorter, 1999), seabirds, and cetaceans (Barlow 
& Gerrodette, 1996), counts aim to estimate the size of groups of 
up to several tens of thousands of individuals. In this case, the es-
timation of group size is particularly likely to be biased and errors 
must be taken into account. Sources of bias in group size estimation 
include for instance the count methods, equipment, as well as ob-
server identity. Some studies have focused on measuring this latter 
source of error. The results collectively suggest that visual estimates 
of large aggregations of individuals may generally be associated with 

underestimation combined with high variances within and among 
observers (Dervieux et al., 1980; Erwin, 1982; Prater, 1979). In these 
studies, measurement of bias in observer estimation over a range 
of group sizes is generally evaluated through comparison with ae-
rial photographs (Dervieux et al., 1980; Erwin, 1982; Prater, 1979). 
However, it is recognized that photographs are far from ideal to as-
sess the true number of individuals in groups, due to other biases 
that can occur when reading the photo (e.g., definition, movement; 
Descamps et al., 2011). Studies have therefore used ground counts 
as a proxy for the "true" number of individuals (Bouché et al., 2012; 
Smith, 1995), but these are always estimated with a margin of error, 
and this is particularly the case for high group densities where indi-
viduals overlap each other.

Sources of error that change over time, like observer identity, 
can generate incorrect estimates if they are not properly taken into 
account (Barker & Sauer, 1992). In particular, it is common over long 
time series that the staff in charge of counts changed over time. The 
magnitude of observer differences in estimation error of groups 
therefore can induce additional variability (Dervieux et al., 1980; 
Erwin, 1982; Prater, 1979), potentially leading to wrong conclusions 
regarding trends (McCain et al., 2016). Indeed, the lack of detection 
of a trend with a given statistical test may correspond to a real ab-
sence of a trend or an important type II error (β), hence a lack of 
statistical power (1−β) which can be due to short time series and/or 
changes of observers (Gerrodette, 1987; White, 2019). Short time 
series are potentially misleading: at least 10–20 years of continuous 
monitoring are generally necessary to achieve a high level of sta-
tistical power depending on species, trend strength, and study de-
sign (Reynolds et al., 2011; Rueda-Cediel et al., 2015; White, 2019). 
However, since both time and resources available for conservation 
are finite, time series are often shorter than statistically desirable 
(Field et al. 2007; Hughes et al. 2017). Therefore, managers need to 
know how much they can trust the apparent trend of a population 
to reliably identify the sites or species for which conservation ac-
tion is really needed, and take management decisions (Giron-Nava 
et al., 2017; Martin et al., 2012, 2017). Earlier studies have thus ex-
amined potentially important trade-offs between spatial and tem-
poral replication to minimize uncertainty in trend estimates (Rhodes 
& Jonzén, 2011) and measured the impact of sampling (i.e., count) 
frequency on trend estimates (Wauchope et al., 2019). However, we 

sites. If the population surveyed is composed of few sites, then it is preferable to 
perform the survey by one observer. In this context, it is important to reconsider 
how we use estimated population trend values and potentially to scale our deci-
sions according to the direction and duration of estimated trends, instead of set-
ting too precise threshold values before action.

K E Y W O R D S

group size estimation error, population monitoring, sampling design, statistical power, time 
series
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are not aware of any study that has assessed the impact of changes 
in observers, taking into account group estimation error, on the min-
imum length of population time series (Tmin) required to detect sig-
nificant trends in abundance. This is what we propose to do here, 
through a simulation study with different scenarios of changes in 
observers. We also evaluated the effect of observer change on the 
accuracy (bias and precision) of the trend estimate given the error 
in estimating group size, with the hypothesis that observer changes 
reduce confidence in trend estimates.

2  | METHODS

2.1 | Population simulation

We simulated a population strictly distributed over 100 sites with 
initial numbers per site being randomly sampled from a Negative 
Binomial Distribution with mean mu = 300 individuals and the dis-
persion parameter size = 2. Thus, these parameters allow to sample 
initial group size within the range of values of the 120 group sizes 
used in the simulation software (see part 2. Group size estimation 
error). From the initial group size at each site, we simulated the 
change in “true total population size” (summed over the 100 sites) 
over time. We considered a simple deterministic model describing 
density-independent growth:

where Nt is population size in year t, and λ the population growth rate. 
Population size in year t + 1 depends on population size in year t, and 
the population growth rate remains constant over the entire monitor-
ing period, representing a population evolving in a constant environ-
ment. This is an obvious simplification of reality, but not a problem 
for the present study, which aims at measuring the relative impact of 
scenarios of changes in observers on Tmin required to detect signif-
icant trends in abundance, and the accuracy of the trend estimates. 
The same growth rate was used for all sites. We applied 3 scenarios to 
the population, that is, declines of 1.1%, 3.9%, or 7.4% per year over 
25 years. In this way, we covered most of the thresholds used in con-
servation programmes: the IUCN Red List applies the criteria of "10% 
decline over 10 years or 3 generations" (−1.1% per year) to identify 
Declining species, "30% decline over 10 years or 3 generations" (−3.9% 
per year) for Vulnerable species, and "50% decline over 10 years or 
3 generations" (−7.4% per year) for Endangered species (IUCN, 2019).

2.2 | Group size estimation error

Group size estimation error data were obtained by an experimental 
protocol using animal counting simulation software Wildlife Counts 
(version 2.0.; Hodges, 1993). In this study, 24 experienced observers 
from the Camargue, Southern France, conducted counting simula-
tion tests on group sizes ranging from 2 to 1,098 individuals with 

various spatial configurations. The 24 experienced observers sam-
pled in our study are part of several institutions with conservation 
professionals involved in the counts in Camargue. These profession-
als have counted in several countries under different field conditions 
and have to estimate groups with very large numbers of individuals 
in a relatively short period of time (especially during airplane counts 
and during ground counts when birds are taking off). Each observer 
was subjected to 60 tests at average speed (2–21 s to count individu-
als depending on the size of the groups), and 60 tests at a maximum 
speed (1–7 s), for a total of 120 tests, identical in group size for all 
observers. Before each series of 60 tests, two practice tests were 
performed to prepare the observer. Obviously, display times in the 
field can be much longer than the times used in the computer tests, 
but the aim of such tests was only to expose a range of observers 
to standardized situations, without the aim of measuring their ac-
tual observation efficiency in realistic conditions. However, the very 
short display times for groups of individuals is also a reality in the 
field, particularly during aerial surveys but also during ground counts 
to some extent (e.g., when birds are disturbed and take flight).

2.3 | Simulation of observed population size

Here, the term “observed population size” referred to the sum of 
count estimates at the 100 sites. We fitted a local polynomial regres-
sion (loess regression, Cleveland et al., 1992) for each observer to 
compute observed group sizes as a function of actual group sizes. For 
this study, we kept the default parameters of the function, namely 
a degree of smoothing α = 0.75, type-2 polynomials and a Gaussian 
family. We applied the predicted loess regression to the simulated 
population adding a random noise extracted from the observer spe-
cific loess regressions, because a given observer may underestimate 
or overestimate group size. For the 24 observers, the standard de-
viation (SD) extracted from the loess regression varied from 43 to 
103 with an average of 66 ± 18 SD. In this way, for each observer, 
we simulated 100 observed group sizes from each of the 100 sites, 
over 25 years (Figure 1a; Table 1: scenario O1 T1). Based on these 
data, five scenarios of changes in observers were run (Table 1). Three 
gradual scenarios of temporal changes in observers were applied: 
(T1) the same observer performed the counts for the 25 years of the 
monitoring; (T5) observers identity changed every five years, that 
is, 4 observer changes over the entire monitoring period; and (T25) 
observers identity changed annually, that is, 24 observer changes. 
Each of the 24 experienced observers was randomly selected, with-
out replacement, to perform monitoring over one year (T25) or for a 
period of five years (T5). Note that for T25, we randomly re-selected 
one of the 24 observers to complete the 25th year of the monitoring.

Two scenarios of spatial changes in observers were applied: 
(O1) the same observer performed the counts at all sites; (O24) ob-
servers differed at each of the sites. These spatial scenarios may 
reflect the aerial counts of wildlife (O1), where one person usually 
carries out the complete survey of many sites (Carretta et al., 2000; 
Jachmann, 2002). Conversely, (O24) may be more representative of 

(1)Nt+1 = Nt�
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the ground counts or national scheme, with some turnover in nature 
reserve staff, for example. For O24, the 24 experienced observers 
were randomly spread over the 100 sites, that is, 20 observers ran-
domly counted four sites and four additional observers randomly 
counted five sites, respectively. Finally, a total of six scenarios were 
run for each of the three simulated trends (−1.1%, −3.9% and −7.4% 
per year, Table 1). In the five scenarios where observers’ identity 
changed, 100 random selections of observers were performed for 
each of the scenarios (Figure 1b). The flow diagram in Figure 2 sum-
marizes the different simulation steps.

2.4 | Power and accuracy analysis

One approach to determining Tmin required to detect significant 
trends in abundance under the different scenarios of changes in 
observers is through repetitive simulations (Gerrodette, 1987; 
Gibbs et al., 1998; White, 2019). Under each scenario, for each 

random selections of observers, we calculated the proportion of 
simulations (hereafter statistical power) in which the slope pa-
rameter from linear regression was significantly different from 
0, at the 0.05 threshold. Although there are many approaches to 
studying population trends, we used log-linear regression on the 
observed population size because this is the simplest and most 
commonly applied method (Thomas, 1996). The Tmin required 
to be confident with the detection of a trend in abundance was 
considered to be obtained when statistical power was equal or 
greater than 0.8. The significance level 0.05 and statistical power 
0.8 were used here as these are historically and commonly used 
thresholds (Cohen, 1992). When Tmin was greater than 25 years, 
we set Tmin at 25 years to avoid missing data when compiling the 
results.

We also evaluated the effect of observer change on the accu-
racy (bias and precision) of the trend estimate given the error in 
estimating group size. After checking the normality of the data, 
we performed t-tests to evaluate the bias of the trend estimate 

F I G U R E  1   Change in observed and true population size. Population size refers to the total number of individuals over all sites. (a) 
Example of 100 simulations with random noise of observed population size for one observer in the O1T1 scenario (same observer 
throughout the study period). In this case sample size N = 24 which corresponds to the 24 experienced observers (the 23 other observers 
are not represented here). (b) Example of one random selection of observers with 100 simulations with random noise of observed population 
size in the O1T5 scenario (observer changes every 5 years). In this scenario, 99 other random selections were also made (but not represented 
here), therefore sample size N = 100 random selections of observers

TA B L E  1   All scenarios tested for the three simulated true population trends (−1.1% per year, −3.9% per year, −7.4% per year)

Spatial changes (O)

Temporal changes (T)

Same observer throughout 
the study period (T1)

Observers’ identity change every 
5 years (T5)

Observers’ identity change every 
year (T25)

Same observer at all sites (O1) O1 T1 (N = 24) O1 T5 (N = 100) O1 T25 (N = 100)

Observers differ for each of the 
sites (O24) O24 T1 (N = 100) O24 T5 (N = 100) O24 T25 (N = 100)

Note: N corresponds to the sample size; that is, for all scenarios involving observer changes, 100 random selections of observers were performed. 
For the scenario where the same observer counted all sites over the entire monitoring period, sample size was 24 which corresponds to the 24 
experienced observers who completed the counting simulation tests. The plane icon was used to represent monitoring carried out by one single 
observer on all sites, as it is often the case during aerial surveys. The observer with binoculars icon was used to represent monitoring carried out by 
several observers distributed over the sites. Silhouettes reproduced from Flaticon (https://www.flati con.com/).

https://www.flaticon.com/
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in relation to the simulated theoretical value in the model (1). 
For example, for a population growth rate of 0.93 (i.e., a trend 
equal to –7.4% per year), we compared the average of the trend 
estimates (100 simulations with random noise) for each random 
selections of observers under the different scenarios to the the-
oretical value −0.074. To assess the impact of the bias in terms 
of conservation measures, we had set limits, according to IUCN 
status, from which the estimated trends are biased. An estimated 
trend was then considered biased when it leads to a change in 
conservation status. For example, for the theoretical decline of 
Endangered species (−7.4%/year), all estimated trends higher 
than −7.4%/year and lower than −16.4%/year (that corresponds 
to Critically Endangered species, −80% over 10 years) are biased 
since the conservation decisions would not be adequate to the 
actual status of the species.

Normalized root-mean-square deviation (NRMSD) was used to 
measure and compare the precision of the trend estimate between 
the different scenarios (Hyndman & Koehler, 2006).

where ŷ corresponds to the value predicted by the model in year t of 
monitoring. y corresponds to the count done in year t of monitoring. T 
is the number of monitoring years, and ӯ is the mean of counts done 
on the number of corresponding monitoring years. NRMSD was calcu-
lated for all the number of monitoring years between 3 and 25 years 
for each of the 100 simulations (random noise) for each random selec-
tion of observers under the different scenarios. The lower the NRMSD 
value, the more precise the trend estimate, because lower values indi-
cate less residual variance.

All analyses were conducted in R (R Core Team, 2017).

3  | RESULTS

3.1 | Group size estimation error

The computer exercises showed a frequent underestimation of 
group size by the observers. On average, they underestimated group 
sizes by 13% ± 28 (SD). Such underestimation was greater when 
there were more individuals to be counted. The data showed inter- 
and intra-observer variability in the estimates. For the 24 observers, 
average individual margin of error ranged from –0.31 (underestima-
tion of 31%) to +0.21 (overestimation of 21%). Only two of the 24 
experienced observers showed a persistent tendency to overesti-
mate the counts on average. The average standard deviation of the 
mean margin of error for the 24 observers was 0.275, ranging from 
0.185 to 0.379 (see data in Data Availability Statement).

3.2 | Effect of observer changes on the Tmin required 
to detect significant trends

For each of the scenarios, Tmin results show that steeper decreas-
ing trends required less time to be detected (Figure 3). Temporal 
changes in observers influenced the number of years required 
to detect a trend when the same observer counted all sites in a 
given year (scenarios O1, Figure 3). The gradual increase in Tmin 
values under the various O1 scenarios was the consequence of 
additional variability in the counting data due to more frequent 
temporal changes of observers. However, Tmin remained similar 
to that of scenario O1 T1 when observer changes occurred spa-
tially (scenario O24 T1) and both spatially and temporally (sce-
narios O24 T5 and O24 T25; Figure 3). In this configuration (20 
observers randomly counted 4 sites and 4 additional observers 

NRMSD =

√

∑

T
t = 1

(ŷt − yt)
2

T

y

F I G U R E  2   Diagram representing the set of steps used to obtain the observed population sizes for each of the scenarios

Scenario without changes in 

observers

3 true total population (summed
over 100 sites) declines over 25
years justifying :
• Declining status

• Vulnerable status

• Endangered status

Modelling of group size estimation

as a function of actual group sizes

for the 24 observers with a random

noise (100 simulations)

Simulation of the change of 24

observed total population sizes,

corresponding to the sum of the

counts of the 100 sites over 25 years

for each of the observers

Scenarios with temporal and/or 

spatial changes in observers

100 random selections of observers

were performed for each of the

scenarios

24 observers conducted 120

counting simulation tests on group

sizes ranging from 2 to 1098

individuals
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randomly counted 5 sites), observer spatial changes reduced the 
influence of observer temporal changes on Tmin values. In scenario 
O1 T1, the differences in the capacity to estimate group size (val-
ues of random noise extract from the observer specific loess re-
gressions, see Method section 3) among observers did not have 
a strong impact on the standard deviation. In this scenario, for 
the example of a trend of –7.4% per year, the observers needed 
6 years to detect the trend when the random noise value was the 
highest, because of greater variability of the counts. For scenar-
ios where observer changes occurred only temporally, the wide 
standard deviation highlighted the high variability of Tmin values 
induced by the 100 random selections of observers (Figure 3). 
Changes of observers every five years (O1 T5) induced greater 
variability in Tmin values compared to an annual change of ob-
server (O1 T25; Figure 3).

3.3 | Effect of observer changes on the accuracy 
(bias and precision) of the trend estimate

3.3.1 | Trend bias analysis

In general, for all scenarios and trends, observers did not appear to 
be able to accurately estimate the actual rate of change in population 
size. However, the direction of the trend was detected in 94% of all 
cases considered (Table S1). Figure 4 shows the results of the t-tests 
for Tmin and for 25 years of monitoring, respectively. The propor-
tion of trends accurately detected was extremely low for each of the 
scenarios and trends (Figure 4). For all trends and all scenarios com-
bined, 2% of simulations accurately detected the trends for Tmin and 
0.8% of simulations accurately detected the trends for 25 years of 
monitoring. In addition, according to IUCN status, for all trends and 

F I G U R E  3   Minimum time required 
(in years) to detect significant trends 
in abundance (mean Tmin ± SD) under 
the different scenarios of changes in 
observers

T1 T5 T25

O
1

O
24

−7.4 −3.9 −1.1 −7.4 −3.9 −1.1 −7.4 −3.9 −1.1

10

20

10

20

Trend

Tm
in

Trend
−7.4
−3.9
−1.1

F I G U R E  4   t-test results for Tmin and 25 years of monitoring. The results are expressed as the number of nonsignificant (detection of the 
correct estimation of the actual trend value) and significant tests. Tests compared the average of the trend estimates (100 simulations with 
random noise) of each of the samples of the different scenarios to the actual values of trends
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all scenarios combined, 16.6% of simulations are unbiased (81.3% 
underestimates and 2.1% overestimated the actual trend value) for 
Tmin (Figure 5) and 5.8% of simulations are unbiased (94.2% underes-
timates the actual trend value) for 25 years of monitoring (Figure 6).

3.3.2 | Trend precision analysis

Similar values of NRMSD were obtained for a given scenario, regard-
less of the trends tested. For example, for scenarios O1 T1, initial mean 

values of NRMSD were between 0.01 and 0.025 for each of the trends 
and increased up to 25 years of monitoring to reach mean values 
between 0.02 and 0.08 (Figure S3). In this scenario, the increase of 
NRMSD over the time (Figure 7, O1 T1) reflected the increasing re-
sidual variance induced by variations in the counting abilities of the 
24 experienced observers (values of random noise extracted from the 
observer specific loess regressions, see Method section 3).

On the other hand, changing the identity of observers over 
time (scenarios O1 T5 and O1 T25, Figure 7) led to a decrease in 
the precision of the slope parameter estimate. Mean NRMSD values 

F I G U R E  5   Plot representing the 
percentage of overestimated, unbiased, 
and underestimated trends for all 
scenarios and trends tested. These 
results are extracted from Tmin to detect 
significant trends
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F I G U R E  6   Plot representing the 
percentage of overestimated, unbiased, 
and underestimated trends for all 
scenarios and trends tested. These results 
are extracted from 25 years of monitoring
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increased (greater residual variance) as temporal changes became 
more frequent. For example, for a trend of −7.4% per year, we ob-
tained: (a) Scenario O1 T1: mean NRMSD between 0.01 and 0.04 for 
5 years of monitoring (the average Tmin); (b) Scenario O1 T5: mean 
NRMSD between 0.02 and 0.19 for 7 years of monitoring (the av-
erage Tmin); and (3) Scenario O1 T25: mean NRMSD between 0.07 
and 0.23 for 10 years of monitoring (the average Tmin) (Figure 7). The 
differences between the scenarios became clearer if the slope pa-
rameters were estimated over 25 years of monitoring. Very frequent 
changes of observers, such as in scenario O1 T25, induced high aver-
age NRMSD values (range 0.13–0.23) with a smaller amplitude than 
in scenario O1 T5 (range 0.03–0.34) (Figure 7). When observers’ 
identity changed every fifth year, random draws of observers could 
induce low mean NRMSD values (Figure 7). However, the majority 
of the values remained high: 76% of the values were between 0.10 
and 0.34 (Figure 7).

When observers’ identity changed spatially (scenarios O24 
T1, O24 T5, O24 T25), the temporal changes did not influence the 
NRMSD mean values, regardless of the trend value (Figure S4).

4  | DISCUSSION

This study shows that under realistic field conditions where observ-
ers’ identity changes temporally and spatially, wildlife population 
size and trend estimates are similar if many observers are spatially 
distributed between the different sites, or if one single observer 
counts all sites. Our results also show that successive changes in ob-
server identity over time reduce our ability to precisely estimate a 
given population trend and increase the number of years of monitor-
ing required to adequately detect the trend.

In our study, the counting data were analyzed by log-linear re-
gression and do not include statistical practices that adjust for varia-
tion among observers such as random-effect intercepts for individual 
observers (Link & Sauer, 1997). Techniques that fail to take into ac-
count the variation between observers remain popular among moni-
toring programs (Klvaňová & Voříšek 2007; Rosenstock et al., 2002). 
Indeed, the analysis of data that allows accounting for variations in 
inter-observer group size estimates is not always straightforward, 
and coordinators of monitoring programs are sometimes skeptical 

F I G U R E  7   Mean NRMSD according to the number of years of monitoring for the trend – 7.4% per year and for all scenarios with only 
temporal changes in observers (100 simulations with random noise for each of the 24 observers for the scenario O1 T1 and for each of the 
100 random selections of observers for scenarios O1 T5 and O1 T25)
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about accounting for it because they find the analyses too complex. 
One example is the Pan-European Common Bird Monitoring Scheme 
(PECBMS), which produces national and supranational indexes by 
using the TRIM software (TRends and Indices for Monitoring data; 
Klvaňová & Voříšek, 2007). TRIM is also used to assess conservation 
status for IUCN Red List assessments (Criterion A; Maes et al., 2015). 
While frequent changes in observers are inherent to monitoring, this 
study advocates for considering the identity of the observers in 
order to take into account the variations in inter-observer group size 
estimates during the statistical analysis.

Our study highlighted a general trend for observers to underes-
timate group size during counts (as found by Dervieux et al., 1980; 
Erwin, 1982; Prater, 1979), and their difficulty in precisely detecting 
the value of the trend (in this study the theoretical trend is detected 
in 1.3% of the cases). The computer tests also showed a wide vari-
ation in count ability among the observers, even though all of them 
were experienced fieldworkers. This observation is in line with stud-
ies on human counting capacities (Erwin, 1982; Prater, 1979). The ex 
situ protocol used in this study was however novel in that it allowed 
us to focus only on the intrinsic ability of observers to estimate 
group size, while standardizing other regular sources of group count 
errors such as habitat type, weather conditions, species behavior, 
time, and equipment available (Barker & Sauer, 1992) which may 
confound similar studies conducted on field data.

Our simulations show that keeping the same observer over time 
did not remove bias in the detection of a trend value. For all the 
scenarios tested in this study, observers performed very poorly at 
detecting the theoretical value of the population trend, regardless of 
the steepness of the trend tested and the number of years of mon-
itoring. Trends tested in this study correspond to indicators com-
monly used in national and international monitoring programs (e.g., 
30% decline over 10 years or three generations to classify species as 
having a Vulnerable status, Hearn et al., 2018; IUCN, 2019). Given 
these results, such threshold values used to assess the conservation 
status of a species or a population seem inappropriate when relying 
on counting data of highly gregarious species such as birds, in view of 
the biases caused by group size estimation error. Whether underes-
timated or overestimated compared to the real value, misestimating 
trends in population size is costly, either ecologically if this causes 
inaction where it would be desirable (in the case of underestimation 
of population declines) or financially if overestimation of population 
declines leads to conservation intervention where it is not a priority.

Although the estimated trend values remain highly biased, our 
results show that the gap between estimated and real population 
sizes decreased over longer monitoring periods, in the case of declin-
ing populations. This did not simply reflect a gradual improvement 
in observer accuracy over time, which could arise through learning 
(Garel et al., 2005; Williams et al., 2006), since this was not taken 
into account in our simulations. At the beginning of the counts when 
the population was still relatively large, there was a wide gap be-
tween estimated and actual population sizes, which decreased as 
the population gradually declined following the negative trends we 
used. Indeed, such improvement in the quality of the counts was 

due to the fact that, on average, observers tended to underestimate 
smaller group sizes to a lower extent (for group sizes between 2 and 
201 individuals observers underestimated by 0.34% ± 10.5 (SD); for 
group sizes between 208 and 1,098 individuals observers under-
estimated by 26.4% ± 13.0 (SD)). Similarly, trend estimates would 
become increasingly underestimated over time in the case of a pop-
ulation increase.

In addition to the effect of group size, the number of years of 
monitoring appeared to improve trend precision (Supporting 2), al-
though this occurred through a greater precision rather than a less 
biased mean estimated value (see also Yates, 1953). Some studies 
highlight that longer time series are needed to obtain smaller confi-
dence intervals, and to detect a decline when it is of low magnitude, 
that is, −1% per year (Connors et al., 2014; Tománková et al., 2013; 
Wauchope et al., 2019; Wilson et al., 2011). Accordingly, we found 
that it is most challenging to detect the direction of a slight trend 
(sensu Wauchope et al., 2019) when temporal changes in observ-
ers occur (Table S1). Thus, for a large decrease in an initially abun-
dant population, counts unadjusted for error in estimating groups 
may still allow detection of the direction of the trend, although not 
the precise value of the trend itself, even in the context of frequent 
changes of observers in time series as is often the case in the field 
(example of the Common Pochard, Folliot, 2018).

Our results show that having different observers counting differ-
ent sites did not induce overall losses of statistical power and pre-
cision of estimated trends compared to a theoretical ideal situation 
where one single observer would count all sites. When the number 
of sites is large, the large number of observers allows for a high 
variability of estimation capabilities that actually buffer each other, 
leading to a lower uncertainty in the estimation of the trend. If the 
number of sites monitored remains large and the number of observ-
ers decreases, that is, fewer observers count more sites each, more 
time is needed to detect the trend (2 observers each monitoring 50 
sites: mean Tmin: 7 ± 1 (SD) years, which is on average two year lon-
ger than when 24 observers are spatially distributed between 100 
sites) and a loss of precision of estimated trends is induced in some 
cases (Figure S5). This pattern likely arises because there are fewer 
individual processes to buffer each other, so that the poor abilities of 
one given observer are more likely to lead to biased overall results. 
In addition to this, when counts are carried out over smaller areas 
where fewer sites are counted, such as the 40 sites counted from the 
ground in Camargue nature reserves, in Southern France (Tamisier & 
Dehorter, 1999), spatial changes in observers decrease confidence in 
the estimation of derived trends (24 observers monitor each one site: 
mean Tmin: 6 ± 1 (SD) years, which is on average one year longer than 
when 24 observers are spatially distributed over 100 sites and a loss 
of precision of estimated trends is induced, see Figure S6). In this con-
text, it is preferable to favor a single observer for all sites where only 
a few sites need to be sampled frequently, especially if spatial auto-
correlation in population dynamics is high (Rhodes & Jonzén, 2011).

To achieve an optimal balance between cost-effectiveness 
and precision of wildlife monitoring programmes, our study 
showed that the most important thing to avoid is temporal change 
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in observer identity. Indeed, a greater frequency of observer 
change gradually increased the period necessary to detect a sig-
nificant trend, and decreased the precision of estimated trends 
for a given monitoring duration, although the direction of the 
trend was generally adequately detected (See also supporting 1). 
Wildlife management however depends on long-term monitoring 
databases, especially so for species with longer generation times 
(White, 2019). The collection of such data can be difficult, expen-
sive, and labor-intensive (Williams et al., 2002). Consequently, 
many monitoring programs often require the use of a large num-
ber of observers, both instantaneously to cover the many sites 
used by the animal population, and over time as people change job 
or retire (Schwarz & Seber, 1999), which introduces an additional 
source of variability into observations. The results of this study 
therefore first call for sufficient and sustained funding of moni-
toring schemes, so that staff can receive the appropriate similar 
qualification and remain involved in monitoring for prolonged pe-
riods, instead of relying on successive volunteers of very unequal 
count abilities. Equally, our results suggest that long time series 
can help to compensate for some of the biases introduced by 
changing observer identity. In such cases, interpretation of short-
term monitoring (e.g., 3–5 years for birds species) could be highly 
misleading. Ultimately, these results can help to design future 
counting protocols with the aim of finding the best compromise 
between high precision (minimizing temporal changes in observers 
to maximize the precision of the trend estimate), cost-effective-
ness (minimizing temporal changes of observers to achieve high 
statistical power and decrease the monitoring period), and logistic 
feasibility (temporal changes of observers are inherent to popula-
tion monitoring). This compromise must be adapted to the species 
in question (Ficetola et al., 2018), for example owing to its gregar-
iousness and consequent difficulty to be counted, to the manage-
ment objectives (Lindenmayer & Likens, 2009; McDonald-Madden 
et al., 2010) and adapted to time period to match those used in 
conservation schemes, such as IUCN criteria, while achieving high 
statistical power (White, 2019).

5  | CONCLUSIONS

In order to make the right management decisions, population 
trend analysis should be based on the highest possible quality of 
count data. Building a count protocol adapted to conservation ob-
jectives, minimizing temporal changes of observers trying to main-
tain staff positions, and considering the importance of the number 
of observers distributed spatially according to the number of sites 
monitored all improve the quality of count data. In addition, it is 
important to reconsider how we use estimated population trend 
values, and potentially to base our decisions on the direction and 
duration of estimated trends without requiring these to cross pre-
defined, precise thresholds. Ensuring that we collect reliable count 
data will provide help taking appropriate management decisions 
and setting conservation priorities in this context. Alternative 

methods based on imagery have been gaining ground over the 
last decades (Akçay et al., 2020; Hodgson et al., 2018; Lyons 
et al., 2019), and more particularly with automated computer vi-
sion software (Chabot & Francis, 2016; Hollings et al., 2018). 
However, computer vision software may work under some par-
ticular conditions but they are generally biased and known to fail 
in several situations (Chabot & Francis, 2016; Hollings et al., 2018) 
even if considerable improvements are underway (González-Villa 
& Cruz, 2019). We expect that the continuing technological devel-
opments (sophisticated image analysis software and advances in 
camera and drone technology) in the analysis of remotely sensed 
data will control the error in estimating groups’ size in many more 
situations than at present, where observers remain the most 
widely used means to monitor animal populations.
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