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ABSTRACT PfEMP1 is the major antigen involved in Plasmodium falciparum-infected
erythrocyte sequestration in cerebrovascular endothelium. While some PfEMP1 do-
mains have been associated with clinical phenotypes of malaria, formal associations
between the expression of a specific domain and the adhesion properties of clinical
isolates are limited. In this context, 73 cerebral malaria (CM) and 98 uncomplicated
malaria (UM) Beninese children were recruited. We attempted to correlate the cy-
toadherence phenotype of Plasmodium falciparum isolates with the clinical presenta-
tion and the expression of specific PfEMP1 domains. Cytoadherence level on Hbec-5i
and CHO-ICAM-1 cell lines and var genes expression were measured. We also inves-
tigated the prevalence of the ICAM-1-binding amino acid motif and dual receptor-
binding domains, described as a potential determinant of cerebral malaria patho-
physiology. We finally evaluated IgG levels against PfEMP1 recombinant domains
(CIDR�1.4, DBL�3, and CIDR�1.4-DBL�3). CM isolates displayed higher cytoadher-
ence levels on both cell lines, and we found a correlation between CIDR�1.4-DBL�1/3
domain expression and CHO-ICAM-1 cytoadherence level. Endothelial protein C receptor
(EPCR)-binding domains were overexpressed in CM isolates compared to UM whereas
no difference was found in ICAM-1-binding DBL�1/3 domain expression. Surpris-
ingly, both CM and UM isolates expressed ICAM-1-binding motif and dual receptor-
binding domains. There was no difference in IgG response against DBL�3 between
CM and UM isolates expressing ICAM-1-binding DBL�1/3 domain. It raises questions
about the role of this motif in CM pathophysiology, and further studies are needed,
especially on the role of DBL�1/3 without the ICAM-1-binding motif.

IMPORTANCE Cerebral malaria pathophysiology remains unknown despite extensive
research. PfEMP1 proteins have been identified as the main Plasmodium antigen in-
volved in cerebrovascular endothelium sequestration, but it is unclear which var
gene domain is involved in Plasmodium cytoadhesion. EPCR binding is a major de-
terminant of cerebral malaria whereas the ICAM-1-binding role is still questioned.
Our study confirmed the EPCR-binding role in CM pathophysiology with a major
overexpression of EPCR-binding domains in CM isolates. In contrast, ICAM-1-binding
involvement appears less obvious with A-type ICAM-1-binding and dual receptor-
binding domain expression in both CM and UM isolates. We did not find any varia-
tions in ICAM-1-binding motif sequences in CM compared to UM isolates. UM and
CM patients infected with isolates expressing the ICAM-1-binding motif displayed
similar IgG levels against DBL�3 recombinant protein. Our study raises interrogations
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about the role of these domains in CM physiopathology and questions their use in
vaccine strategies against cerebral malaria.

KEYWORDS cerebral malaria, var genes, cytoadherence, dual receptor binding,
ICAM-1-binding motif

Cerebral malaria (CM) is the most severe form of Plasmodium falciparum (P. falciparum)
infection, mainly affecting children under 5 years in areas of endemicity (1). One of the

most-described pathophysiologic mechanisms of CM is the ability of P. falciparum-infected
erythrocytes (iE) to adhere to the cerebrovascular endothelium through variant surface
antigen (VSA) proteins. These proteins are expressed on the iE cell membrane and bind to
multiple endothelial receptors (2). In CM, this phenomenon causes brain swelling, coma,
and even death (3). Currently, there is no specific marker for CM, but histopathology of
malarial retinopathy (MR) (4, 5) correlates with cerebral pathology.

The major VSA involved in iE sequestration is Plasmodium falciparum erythrocyte
membrane protein 1 (PfEMP1). This parasitic protein is encoded by var genes (6), a
hypervariable multigenic family classified in four groups, A, B, C, and E, and two
intermediate groups, B/A and B/C (7). PfEMP1 proteins from A (8, 9) and B/A (10) groups
are associated with severe malaria (SM). PfEMP1 sequences are divided into two types
of hypervariable extracellular domains: cysteine-rich interdomain regions (CIDR) and
Duffy-binding-like (DBL). They have been classified into domain cassettes (DCs), com-
posed of at least two conserved domains, DBL/CIDR (11).

Several studies on laboratory P. falciparum strains selected to adhere to brain
microvascular endothelial cells have revealed preferential expression of certain PfEMP1
DCs such as DC8 (DBL�2-CIDR�1.1/8-DBL�12-DBL�4/6) and DC13 (DBL�1.7-CIDR�1.4)
(12, 13). These DCs are predicted to bind to endothelial protein C receptor (EPCR) (15)
through CIDR�1 domains (16) and are overexpressed in CM clinical isolates (10, 17–19).
Importantly, inhibition of EPCR binding did not block the adherence of iE expressing
DC8 and DC13 to brain endothelial cells, and EPCR binding alone is not sufficient to
fully explain cytoadhesion level (20). These elements suggest the implication of another
receptor in the cytoadherence mechanism.

Intercellular adhesion molecule 1 (ICAM-1) receptor has previously been proposed
to be implicated in iE adhesion, and ICAM-1 overexpression in cerebrovascular tissue
has been shown (21). Moreover, it has been demonstrated that EPCR and ICAM-1 are
coinvolved in iE binding to brain cells (22). In this context, an ICAM-1-binding amino
acid sequence, found in A-type DBL�1/3 domains and mainly associated with CM, was
recently identified (23–25). Interestingly, each DBL�1/3 domain predicted to bind
ICAM-1 is preceded by an EPCR-binding CIDR�1 domain which defines a dual receptor-
binding PfEMP1 sequence, associated with CM (23). Jensen et al. proposed a patho-
genic cascade where the iE first binds to EPCR, leading to a proinflammatory cytokine
release and increased expression of ICAM-1 (26).

Despite extensive research, few formal associations between the expression of
specific domains of PfEMP1 and the adhesion properties of clinical isolates of P.
falciparum have been demonstrated (18, 19, 27). In order to fill this gap, we conducted
a comparative study on CM and uncomplicated malaria (UM) in Beninese children, in
which we attempted to correlate the cytoadherence phenotype of P. falciparum isolates
with clinical presentation and the expression of specific domains of PfEMP1. We also
focused on the ICAM-1-binding motif and its implication in CM pathogenesis.

RESULTS
Recruitment and sample description. A total of 171 patients were included,

comprising 73 CM and 98 UM cases. Two UM cases were coinfected with Plasmodium
malariae and subsequently excluded from downstream analysis. Clinical and biological
characteristics of recruited patients are described in Table 1. Compared to UM, CM
patients presented a lower age and blood pressure and a higher pulse and respiratory
rate (P � 0.0001). Moreover, CM patients had more frequent hepatomegaly (P � 0.0001)
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and splenomegaly (P � 0.0046). Sixty-seven percent of diagnosed CM cases presented
retinopathy. CM cases had lower hemoglobin and blood glucose concentrations, lower
platelet counts, higher creatinine and bilirubin concentrations, and higher leukocyte
counts (P � 0.0001). Notably, 35% of children with CM died in our study in spite of
adequate management including parenteral treatment with artesunate. There was no
difference in multiplicity of infection (MOI) between CM and UM isolates (4 [3 to 9]
versus 4 [3 to 7]). Values in parentheses and brackets are median [10-90th percentile].

Cytoadherence of isolates on Hbec-5i and CHO-ICAM-1 cell lines. On Hbec-5i,
the cytoadherence value was 63 (27 to 203) iE/mm2 for CM isolates (n � 21) and 13 (7
to 62) iE/mm2 for UM isolates (n � 35) (P � 0.0001). The cytoadherence assay was also
performed on CHO-ICAM-1, for which the cytoadherence value was 107 (44 to 273)
iE/mm2 for CM isolates (n � 15) and 59 (4 to 108) iE/mm2 for UM isolates (n � 28)
(P � 0.01) (Fig. 1). In addition, cytoadherence levels on Hbec-5i and CHO-ICAM-1 cells
were similar in CM isolates, while cytoadherence to CHO-ICAM-1 was higher in UM
isolates (P � 0.0005). We performed cytoadherence assays with the HB3 strain selected
on Hbec-5i or CHO-ICAM-1 cell lines. HB3-Hbec-5i and HB3-ICAM-1 displayed 22- and
7-times-higher cytoadherence values, respectively, than the median cytoadherence
value of isolates. We also compared HB3-ICAM-1 cytoadherence values on both CHO-
ICAM-1 and the parental CHO cell lines and demonstrated that ICAM-1 receptor
explained at least 75% of cytoadherence on CHO-ICAM-1 cell lines.

TABLE 1 Clinical characteristics of the patients included during the studya

Cerebral malaria (n � 73) Uncomplicated malaria (n � 96) P value

Age (mo) 43.4 (29.9–63.2) 59.9 (36–70) �0.0001
Gender, no. female/total no. (% female) 44/73 (60%) 42/96 (44%) 0.033
Pulse rate (beats/min) 152 (122.2–178) 120 (100–160) �0.0001
Respiratory rate (beats/min) 48 (34.4–65.6) 40 (36–48) �0.0001
Systolic blood pressure (mm Hg) 90 (70–100) 110 (100–120) �0.0001
Parasitemia (parasites/�l) 60,900 (283–763,040) 39,180 (3,784–253,360)
Hemoglobinemia (g/dl) 5.4 (3.3–8.7) 9.4 (7–11.3) �0.0001
Leukocytes (G/liter) 12.8 (7.4–29.4) 7.2 (4.6–10.4) �0.0001
Neutrophils (G/liter) 8.1 (3.9–17.9) 3.3 (1.8–6.6) �0.0001
Lymphocytes (G/liter) 4.3 (1.7–11.1) 2.2 (1.1–4.1) �0.0001
Platelets (G/liter) 85 (42.3–214.2) 177 (79.5–346.5) �0.0001
Creatinine (mg/liter) 5 (2.8–8.2) 3 (3–4.3) �0.0001
Total bilirubin (mg/liter) 26 (9.8–70.2) 9.3 (4.7–20.9) �0.0001
Conjugated bilirubin (mg/liter) 13.4 (3.4–30.4) 4.3 (2–9.3) �0.0001
Blood glucose (g/liter) 0.8 (0.1–1.3) 1 (0.8–1.3) �0.0001
Urea (g/liter) 0.15 (0.1–0.37) NA
Lactates (mmol/liter) 6.2 (2.4–9.9) NA
Albuminemia (g/liter) 27 (21–33) NA
GPT (UI/liter)b 38 (14–114) NA
Bicarbonates (mmol/liter) 14.8 (6–23.9) NA
Hepatomegaly (positive %) 53.4 9.5 �0.0001
Splenomegaly (positive %) 37 18.1 0.0046

Malarial retinopathy NA
Yes 35 (48)
No 17 (23)
Not evaluated 21 (29)

Blantyre score
0 1 (1.4) NA
1 22 (30.1) NA
2 50 (68.5) NA
3 0 NA
4 0 NA
5 0 NA

Mortality (%) 34.8% NA
aNonparametric results were represented as median (10th to 90th percentile) and proportions as n (%). Statistical differences between UM and CM were calculated
using the Mann-Whitney U-test or the �2 test. Only significative P values of �0.05 were indicated. NA, nonattributable.

bGlutamate-pyruvate transaminase.

A-Type ICAM-1-Binding Domains in Cerebral Malaria ®

November/December 2020 Volume 11 Issue 6 e02103-20 mbio.asm.org 3

https://mbio.asm.org


var gene expression quantification. Our primer set displayed good coverage on the
CIVIC and Pf3K data sets (see Table S1a and b in the supplemental material). All CM and UM
isolates were typed for var gene expression (Table 2). CM isolates overexpressed EPCR-
binding domains (CIDR�1.1, CIDR�1.4 to 1.8), ICAM-1-binding domain (DBL�5), and double
domains (CIDR�1.4-DBL�1/3, CIDR�1.6-DBL�1/3, CIDR�1.7-DBL�1/3) as well as domains
without predicted binding characteristics (CIDR�1.2, DBL�3, DBL�2, DBL�1) compared to
UM isolates. No difference was observed for CD36-binding domains (CIDR�2.3/5/6/7/9/10),
CIDR	- and ICAM-1-binding DBL�1/3 domain. Primers targeting DBL�2/1.1/2/4/7 domains,
predicted to precede EPCR-binding CIDR�1, reported a higher level in CM isolates
(P � 0.0001). We did not observe any difference in var genes domain expression between
positive and negative MR patients (Table S2).

Associations between var genes expression were also evaluated. Expected connec-
tions (such as CIDR�1.7 and CIDR�1.7-DBL�1/3) were observed. Interestingly, a signif-
icant correlation was shown between DBL�3 expression and double domains in CM
isolates (Fig. 2 and Table S3).

FIG 1 Cytoadherence of UM and CM isolates. Median and interquartile range of bound infected
erythrocytes (iE) are indicated. Hbec-5i cytoadherence was evaluated for 21 CM and 35 UM isolates.
CHO-ICAM-1 cytoadherence was evaluated for 15 CM and 28 UM isolates. P values were calculated with
Mann-Whitney U-test. *, P � 0.05; **, P � 0.01; ***, P � 0.0001; NS, nonsignificant.

TABLE 2 Relative quantification of var gene transcript levelsa

Domain Group Predicted receptor

CM UM

P valuen Median (10th–90th percentile) n Median (10th–90th percentile)

CIDR�1.1 B/A EPCR 68 0.056 (0–1.16) 96 0.0041 (0–0.53) 0.0052
CIDR�1.8 B/A EPCR 70 0.00071 (0–0.075) 95 0 (0–0.018) 0.0029
CIDR�1.4 A EPCR 70 0.17 (0–3.7) 96 0.012 (0–1.1) 0.0020
CIDR�1.5 A EPCR 70 0.0057 (4.4 � 10�5–0.071) 95 0.00063 (0 to 0.014) �0.0001
CIDR�1.6 A EPCR 69 0.01 (0–0.13) 96 0.0020 (0–0.017) 0.00027
CIDR�1.7 A EPCR 69 0.0057 (0.00015–0.057) 85 0.001 (2.3 � 10�5–0.0094) �0.0001
CIDR�1.2 69 0.0072 (0–0.036) 96 0.0033 (0–0.013) 0.010
CIDR	 A 69 0.0088 (0–0.42) 96 0.0032 (0–0.12)
CIDR�2.3/5/6/7/9/10 B CD36 70 0.00063 (0–0.0069) 95 0.00026 (0–0.0043)
DBL�1.7 A 66 0.14 (0–8.6) 92 0.12 (0–4.94)
DBL�2/1.1/2/4/7 A 70 0.43 (0.077–2.35) 95 0.15 (0.030–0.61) �0.0001
DBL�1/3-motif A ICAM-1 68 6.9 � 10�5 (0–0.19) 93 0 (0–0.088)
DBL�5 B ICAM-1 69 0.022 (0–0.19) 96 0.0026 (0–0.11) 0.00062
DBL�2 69 0 (0–0.0034) 96 0 (0–0.0034) 0.011
DBL�3 70 0.0025 (0–0.019) 96 0 (0–0.009) �0.0001
DBL�1 70 0.0016 (0.0002–0.0081) 93 0.00042 (0–0.0032) 0.001
CIDR�1.4-DBL�1/3 A EPCR � ICAM-1 70 0.038 (0–0.31) 92 0.0046 (0–0.062) �0.0001
CIDR�1.6-DBL�1/3 A EPCR � ICAM-1 70 0.017 (0–0.12) 95 0.0022 (0–0.040) �0.0001
CIDR�1.7-DBL�1/3 A EPCR � ICAM-1 66 0.065 (0.00043–0.58) 90 0.0033 (0–0.059) �0.0001
aResults are expressed after normalization with P90 quantification. Nonparametric results are presented as median (10th to 90th percentile). Results were considered
significative when P value was �0.05. P values were calculated with Mann-Whitney U-test. Only significant P values of �0.05 are indicated. Number of isolates (n) in
the analysis is specified.
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FIG 2 Chord diagram. Correlations between var genes expressions were calculated with Spearman rank test for
CM isolates (A) and UM isolates (B). Only correlations with P value adjusted with Benjamini-Hochberg correction
�0.1 are represented.
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Partial correlation between cytoadherence and var gene expression. Since
expression of no more than one var gene was associated with Hbec-5i cytoadherence
(Table S3), partial correlation only was studied for CHO-ICAM-1. Expression levels of
CIDR�1.4 and DBL�1/3 in CM isolates and CIDR�1.4-DBL�1/3 and CIDR�1.6 in UM
isolates were associated independently with CHO-ICAM-1 cytoadherence. Partial-
correlation results are summarized in Table S4.

ICAM-1-binding motif sequencing. Sanger sequencing was performed on isolates
with ICAM-1-binding DBL�1/3 domain expression in reverse transcription-quantitative
PCR (RT-qPCR) (34 CM and 38 UM). We obtained 32 DBL�1/3 sequences (17 CM and 15
UM) with an ICAM-1-binding motif (Table S5). We successfully sequenced 11 CIDR�-
ICAM-1-binding DBL�1/3 dual domains and found that all CIDR� domains were pre-
dicted to bind EPCR. A phylogenetic analysis showed no clear association between
clinical groups and ICAM-1-binding motif sequence (data not shown).

Recombinant protein sequences and binding property validations. PfEMP1
recombinant domains purity was evaluated by SDS-PAGE and Coomassie blue staining
(Fig. S1a) and the domains’ sizes were as expected (35 kDa for CIDR�1.4, 65 kDa for
DBL�3, and 100 kDa for the CIDR�1.4-DBL�3 double domain). To ensure the amino acid
sequences of our recombinant proteins, a mass spectrometry analysis was carried out
(Text S1 and Fig. S1b). All identified peptides matched and covered 70% of the
sequence. Furthermore, for the CIDR�1.4-DBL�3 domain, a single peptide overlapping
both CIDR�1.4 and DBL�3 domains was detected (blue highlighting). We validated the
interactions between the recombinant domains and the receptors by ligand receptor
assay (29) and far-Western blotting (30) (see Text S1 and Fig. S2 and S3).

Assessment of the immune response of children against PfEMP1 subdomains
by ELISA. A total of 71 CM and 96 UM plasma samples were tested against ICAM-1-
binding motif DBL�3PF3D7_1150400, CIDR�1.4PF3D7_1150400, and dual receptor-binding
CIDR�1.4-DBL�3PF3D7_1150400 recombinant domains. Significantly, higher IgG levels
against DBL�3PF3D7_1150400 (57 [12 to 107] arbitrary units (AU) versus 44 [0 to 103] AU)
(P � 0.01) and CIDR�1.4-DBL�3PF3D7_1150400 (49 [5 to 101] AU versus 33 [5 to 101] AU)
(P � 0.009) domains were observed in UM children than in CM children. No difference
was found for IgG against CIDR�1.4 domain (Fig. 3). Among isolates that displayed
ICAM-1-binding DBL�1/3 expression in RT-qPCR, no significant difference in IgG levels
was found in CM compared to UM (Fig. 4). Moreover, no difference was observed for
UM isolates that expressed or did not express ICAM-1-binding DBL�1/3 in RT-qPCR. In
the same way, UM children carrying a high CIDR�1.4 level of expression did not have
a higher IgG level against CIDR�1.4PF3D7_1150400 than did other children (data not
shown).

IgG levels were lower for children with an MR compared to normal fundus (NF)
children for both CIDR�1.4PF3D7_1150400 (38 [10 to 65] AU versus 65 [6 to 102] AU)
(P � 0.044) and CIDR�1.4-DBL�3PF3D7_1150400 (33 [0 to 66] AU versus 59 [5 to 101] AU)
(P � 0.028). Comparing IgG plasma levels between the day of inclusion (D0) and

FIG 3 Children’s IgG levels against DBL�3PF3D7_1150400, CIDR�1.4PF3D7_1150400, and CIDR�1.4-DBL�3PF3D7_1150400. Mann-Whitney U-test was used to
compare IgG levels for CM and UM patients. Values on y axis show ELISA arbitrary units (see Materials and Methods). Scatter plots with median
and interquartile range are represented (UM, n � 96; CM, n � 71). *, P � 0.05; **, P � 0.01.
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21 days later (D21) for CM children, IgG levels were significantly higher in D21 plasma
(Fig. 5).

DISCUSSION

We conducted a field study in Benin and included children presenting CM and UM.
We evaluated the association between var gene expression and in vitro cytoadherence
to Hbec-5i and CHO-ICAM-1 cell lines as well as the prevalence of ICAM-1-binding
DBL�1/3 domain expression.

CM isolates showed higher cytoadherence levels to both cell lines than did UM
isolates. Hbec-5i is a well-described but complex cellular model of CM (12, 13) express-

FIG 4 IgG level against DBL�3 domain in CM and UM isolates expressing ICAM-1-binding DBL�1/3
domain in RT-qPCR. Mann-Whitney U-test was used to compare IgG levels for CM and UM children.
Scatter plots with median and interquartile range are represented (UM, n � 38; CM, n � 34).

FIG 5 Children’s immune kinetics between D0 and D21 to D28 and comparison between malarial retinopathy and normal fundus children. (A)
IgG levels of CM with normal fundus or malarial retinopathy. Mann-Whitney U-test was used to compare IgG levels between malarial retinopathy
children (n � 35) and normal fundus children (n � 19). *, P � 0.05; **, P � 0.01; ***, P � 0.0001. (B) IgG level against CIDR�1.4PF3D7_1150400,
DBL�3PF3D7_1150400, and CIDR�1.4-DBL�3PF3D7_1150400 of CM children at D0 versus D21 (n � 39). Wilcoxon matched-pairs signed-rank test was used
to evaluate difference between D0 and D21. *, P � 0.05; **, P � 0.01; ***, P � 0.0001.
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ing different membrane receptors such as EPCR, ICAM-1, and PECAM, which could
explain a more pronounced variation of cytoadherence than CHO-ICAM-1. These results
might be the consequence of the ability of CM isolates to bind to multiple receptors.
Higher cytoadherence on CHO-ICAM-1 may result from the nature of transfected cell
lines, which express more cell membrane receptors than native ones (31). Our results
are consistent with a previous study from Storm et al. (18). However, Hbec-5i and
CHO-ICAM-1 are not physiological models of endothelial cells. In addition, although we
have validated the cytoadherence assay protocol with a selected HB3 strain, we
emphasize that the experiments were performed at room temperature, which could
have influenced proteins interaction at the interface between iE and the cellular model.

To investigate the higher cytoadherence capacity of CM isolates, we quantified the
expression levels of var gene domains. As expected, we did not observe increased
CD36-binding domains (CIDR�2.3/5/6/7/9/10) expression in CM isolates compared to
UM isolates. Indeed, CD36-binding properties are a common feature shared by CM and
UM isolates and have been rarely described as an explanatory factor in severe malaria
pathophysiology (28). Then, we focused on var gene domains previously described as
overexpressed in CM isolates analyzed by RT-qPCR (18) and transcriptome sequencing
(RNA-seq) (32) techniques. CM isolates overexpressed EPCR-binding domains
(CIDR�1.1, CIDR�1.4-8) and DBL� domains upstream (DBL�2/1.1/2/4/7) in accordance
with the literature, confirming the major role of EPCR in CM pathophysiology (15, 17,
18). Interestingly, DBL�2, DBL�3, and DBL�1 domains were also overexpressed in CM
isolates while no binding properties to endothelial receptors have been described for
these domains. However, we assume that they could have an impact on the folding or
maintenance of PfEMP1 three-dimensional structure as well as in IgM and �2-
macroglobulin binding (33, 34). We might not focus only on domains with known
endothelial receptor-binding properties to fully understand CM pathophysiology.

Surprisingly, we did not find any difference in ICAM-1-binding DBL�1/3 domain
expression in RT-qPCR between CM and UM, contrary to previous publications (18, 23).
Respectively, 50% and 41% of CM and UM isolates had ICAM-1-binding DBL�1/3
domain expression in RT-qPCR. As a confirmation, we sequenced the ICAM-1-binding
motif in isolates with ICAM-1-binding DBL�1/3 domain expression and found it in both
CM and UM isolates (see Table S5 in the supplemental material). We successfully
sequenced the CIDR upstream ICAM-1-binding DBL�1/3 domain in 11 isolates (9 CM
and 2 UM), all predicted to bind EPCR. These results, combined with those of RT-qPCR,
pointed out that the ICAM-1-binding DBL�1/3 domain and dual receptor-binding
domains are expressed in both CM and UM isolates, questioning their role in CM
physiopathology. Further studies are needed to investigate it more precisely.

In order to quantify the expression and understand the role of dual receptor-binding
domains, we successfully designed primers for CIDR�1.4-DBL�1/3, CIDR�1.6-DBL�1/3
domains and CIDR�1.7-DBL�1/3 domains. We had a good coverage on double domains
with or without ICAM-1-binding DBL�1/3 domains (Table S1a). We compared CM and
UM isolates with no ICAM-1-binding DBL�1/3 domain expression in RT-qPCR, and CM
isolates had 5-, 13-, and 22-times higher expression of CIDR�1.4-DBL�1/3, CIDR�1.6-
DBL�1/,3 and CIDR�1.7-DBL�1/3, respectively, than UM isolates, suggesting a possible
role of CIDR�1-DBL�1/3 domains without ICAM-1-binding motif in CM physiopathol-
ogy. Inhibition cytoadherence tests of selected P. falciparum strains with recombinant
CIDR�1-DBL�1/3 proteins with or without ICAM-1-binding motif should help to under-
stand the role of this double domain.

To investigate the role of immune response against var gene domains in cerebral
malaria protection, we measured IgG levels against three recombinant proteins. We
hypothesized that UM children infected with parasites expressing ICAM-1-binding
DBL�1/3 domain in RT-qPCR were immunized against that domain and against dual
receptor-binding domains. Surprisingly, they did not have a higher IgG level than CM
children infected with parasites expressing ICAM-1-binding DBL�1/3 domain in RT-
qPCR, meaning that those UM patients did not seem to be more protected against
those domains than CM patients (Fig. 4). However, we tested a single recombinant
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protein (PF3D7_1150400, reference sequence) for each domain, and these results must
be confirmed with several recombinant proteins with various amino acid sequences.

We carried out fundus examination for each cerebral malaria patient within 1 day of
inclusion (35). Of note, 67% of cerebral malaria children had MR. No difference in var
gene expression and cytoadherence level was evidenced between children with MR
and NF (Table S2), as previously described (28). Interestingly, MR children had lower IgG
levels against CIDR�1.4PF3D7_1150400 and CIDR�1.4-DBL�3PF3D7_1150400 than did NF
children (Fig. 5). All together, these results suggest the role of immune response against
EPCR-binding domains, such as CIDR�1.4, in MR physiopathology. Finally, we focused
on the 10% of CM patients with the highest IgG level against each recombinant protein.
We did not find any difference in var gene expression compared to the remaining CM
patients.

This work showed that CM is associated with parasites presenting a higher level of
cytoadherence and EPCR-binding domain expression. Contrary to previous studies, the
ICAM-1-binding DBL�1/3 domain was not overexpressed in CM isolates in comparison
to UM isolates. Those isolates expressed dual receptor-binding domains as well as CM.
Besides, no difference was found in IgG against DBL�3PF3D7_1150400 between CM and
UM isolates that express ICAM-1-binding DBL�1/3 in RT-qPCR. To conclude, this study
raises questions about the role of the A-type ICAM-1-binding domain in CM patho-
physiology and finds a potential interest in CIDR�1-DBL�1/3 double domains without
the ICAM-1-binding motif.

MATERIALS AND METHODS
Recruitment. Ethical clearance has been obtained from Comité National d’Ethique pour la recherche

en santé au Benin (N°67/MS/DC/SGM/DRFMT/CNERS/SA; 17 October 2017) and by Comité consultative de
déontologie et d’éthique of Institut de Recherche pour le Développement (IRD; 24 October 2017).
Patients were enrolled at Cotonou in southern Benin from December 2017 to November 2018. We
included children between 2 and 6 years displaying either CM or UM. Briefly, we defined UM by fever at
inclusion or within 24 h before and positive thick or thin blood smear, without clinical or biological sign
of severe malaria. We defined CM by a Blantyre score at diagnosis of 
2 and a confirmed presence of P.
falciparum infection with exclusion of other causes for coma, particularly meningitis (35). Peripheral
venous blood samples have been collected from all study individuals in a Vacutainer tube containing
EDTA. Giemsa-stained thick blood film confirmed P. falciparum infection, and parasitemia was quantified
by counting against 1,000 leukocytes. We separated plasma from total blood by centrifugation and
stored it at �20°C. Ring-stage parasites were conserved in TRIzol LS reagent (Life Technologies). Finally,
parasites were cultured for 18 h to 24 h in vitro to obtain mature forms (Fig. 6) for cytoadherence assays.

DNA extraction. To confirm P. falciparum infection by PCR, DNA extraction of isolates was required.
Blood samples were extracted with the QIAamp DNA blood minikit (Qiagen) following the manufactur-
er’s instructions. Briefly, 200 �l of whole blood cells from each patient was incubated for 10 min at 56°C
with 20 �l of Qiagen protease and 200 �l of lysis buffer. After incubation, 200 �l of ethanol was added
and the mix was transferred on silica columns. After several washes with Qiagen buffers, DNA was eluted
with 100 �l of elution buffer.

Confirmation of Plasmodium falciparum infection and assessment of the MOI. P. falciparum
identification was confirmed by quantitative PCR (qPCR)-TaqMan (Fast-Track; Launch Diagnostic) follow-
ing manufacturer’s instructions. The MOI was estimated with a fragment analysis method using the P.
falciparum msp2 polymorphic gene (36).

RNA collection. Plasmodium falciparum RNA preserved in TRIzol LS reagent (Life Technologies) was
extracted using the phenol-chloroform method as previously described (37). Briefly, 0.2 ml chloroform
was added to 1 ml blood-TRIzol sample, mixed, and then centrifuged at 4°C for 30 min at 12,000 � g.
Supernatants were precipitated with ice-cold isopropanol and centrifuged as previously described.
Pellets containing RNA were recovered with 20 �l RNase-free water. To clean our samples of any
potential DNA contamination, RNA samples were digested and purified using the RNeasy minikit
(Qiagen) following the manufacturer’s guidelines. qPCR on the Rotor-Gene system (Qiagen) was carried
out on seryl-tRNA synthetase gene (P90 primers [38]) to assess the absence of remaining parasite
genomic DNA. RNA samples were reverse transcribed to cDNA using SuperScript II (Invitrogen; Thermo
Fisher Scientific Inc.).

Cytoadherence of isolates on Hbec-5i and CHO-ICAM-1. Static binding assays were carried out on
Hbec-5i (cerebral microvascular endothelium from Homo sapiens brain, ATCC CRL-3245, USA) and
Chinese hamster ovary (CHO) cell lines transfected with ICAM-1 receptor (ATCC CRL-2093, USA). Blood
was centrifuged at 800 � g for 20 min for peripheral blood monocellular cell removal. Two hundred to
four hundred microliters of ring-stage iE was matured in vitro during 24 to 36 h until they reached the
mature stages in the first developmental cycle to avoid var switching (39). Briefly, isolates were cultured
at 10% hematocrit in complete RPMI medium (RPMI 1640 with 0.2 mM hypoxanthine, 0.5% AlbuMAX II
[Gibco], 200 �M L-glutamine [Gibco], 25 mM HEPES [Gibco], 10 �g/ml gentamicin [Gibco], and 2% human
serum). Mature stages were purified using magnetic columns (MACS cell separation column; Miltenyi
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Biotec). All binding assays were performed in triplicate on two different petri dishes (60 � 16 mm, TPP).
Thirty-five thousand cells were plated on each spot the day before the cytoadherence experiment. Fifty
microliters of an iE suspension of 20% parasitemia and 1% hematocrit in binding buffer (RPMI 1640 with
3% bovine serum albumin [BSA]) was added to each spot and incubated 30 min at room temperature.
Unbound erythrocytes were washed off with PBS under 30-rpm agitation on an orbital shaker. Bound
erythrocytes were fixed with 1.5% glutaraldehyde in PBS for 1 h and counted microscopically. The
number of iE bound to cells was determined by counting 10 fields and expressed as the number of iE
bound per square millimeter. Results are expressed as the mean binding level of triplicate spots per
sample.

We selected the HB3 strain on Hbec-5i and CHO-ICAM-1 cell lines as previously described (13, 40) and
measured their cytoadherence value to validate this assay. We also measured the HB3-ICAM-1 cytoad-
herence value on CHO parental cell lines to ensure ICAM-1-binding specificity.

var gene expression quantification. Nineteen var gene domains were chosen based on previous
publications (10, 17, 18, 32), and 122 degenerated primers were designed based on var gene sequences
assembled (41) from whole-genome sequencing (WGS) of field isolates previously collected in 2014 and
2016 in the same geographical region (1131-Pf-BJ-Bertin, CIVIC study) (32). We evaluated our primer
sensitivity on African countries from the MalariaGEN Pf3K data set (Table S1) (42). RT-qPCRs were
performed using the SensiFAST Sybr No-ROX kit (Bioline) on the Rotor-Gene qPCR system (Qiagen)
following these PCR conditions: 95°C for 2 s; 40 cycles of 95°C for 2 s, 50 to 60°C for 10 s, and 72°C for
10 s; and a dissociation phase from 60°C to 90°C. var gene transcript levels were calculated using the
relative standard curve method with several plasmid dilutions (GenScript). Quantified domains were
normalized with the quantification of the seryl-tRNA synthetase gene expression (38). Human and P.
falciparum genomic DNAs were used as negative and positive controls, respectively, at each qPCR run.

Sanger sequencing. We looked for the ICAM-1-binding motif (I[V/L]x3N[E]GG[P/A]xYx27GPPx3H)
(23) in DBL�1/3 RT-qPCR-positive isolates. The first PCR was performed to amplify ICAM-1-binding
DBL�1/3, and the second PCR was performed to amplify CIDR� preceding DBL�1/3 (Fig. 7). Sanger
sequencing of CIDR�-DBL�1/3 dual receptor-binding domains was performed after purification by gel
electrophoresis (NucleoSpin gel and PCR cleanup; Macherey-Nagel).

PfEMP1 domain recombinant protein production. Codon-optimized sequences coding for
CIDR�1.4, DBL�3, and CIDR�1.4-DBL�3 domains from the Pf3D7_1150400 gene were synthesized for
Escherichia coli (E. coli) expression (GenScript). Following the manufacturer’s guidelines, these three
domains were subcloned in pET100/d-TOPO vector (Invitrogen; Thermo Fisher Scientific) and used to
transform TOP10 E. coli bacteria. Purified plasmid constructions (PureLink HQ mini-plasmid purification
kit; Invitrogen) were confirmed in Sanger sequencing. These plasmids were used to transform Schuffle
T7 competent E. coli (New England Biolabs). Protein expression was induced by addition of 1 mM IPTG
when OD600 reached 0.7 (in LB plus 100 �g/ml ampicillin). Then, cultures were incubated for 4 h at 30°C.
Recombinant proteins were purified as previously described (43). Briefly, bacteria were incubated for 2 h
at room temperature in lysis buffer (250 mM NaCl, 20 mM Tris, 1 mM DTT, 1� protease inhibitor cocktail

FIG 6 Flowchart of the study.
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[Roche] and 2% Sarkosyl). Samples were then sonicated and centrifuged at 3,000 � g for 30 min to pellet
cellular fragments. Supernatants were purified on nickel-agarose resin, which specifically binds the
histidine tag. Finally, proteins were eluted three times with 2 ml of buffer containing 300 mM imidazole.
The purity and the specificity of all our constructions were assessed by mass spectrometry with an
Orbitrap Fusion Tribrid (3P5 Cochin Facility) and SDS-PAGE/Coomassie blue staining. We tested the
interaction between recombinant proteins and endothelial receptors (ICAM-1 and EPCR) in a ligand
receptor assay (29) and a far-Western blotting assay (30) (Text S1).

Mass spectrometry analysis. Digestion was carried out using an S-trap micro spin column. Briefly,
samples were heated, reduced, and alkylated at the same time for 5 min at 95°C in a buffer containing
100 mM tetraethylammonium bicarbonate, 2% SDS, 10 mM Tris(2-carboxyethyl)phosphine hydrochloride
(TCEP), and 55 mM chloroacetamide. Then, samples were loaded on S-trap columns and incubated with
sequencing-grade-modified trypsin (Promega) overnight at 37°C, and after digestion, peptides were
eluted. Mass spectrometry analyses were performed on a Dionex U3000 RSLC nano-LC system coupled
to an Orbitrap Fusion Tribrid mass spectrometer (Thermo Fisher Scientific). After drying, peptides were
solubilized in 10 �l, and 1 �L was loaded, concentrated, and washed for 3 min on a C18 reverse-phase
precolumn. Peptides were separated on a C18 reverse-phase resin with a 1-h gradient ending in 90% of
solvent B containing 80% acetonitrile (ACN), 0.085% formic acid (FA) in H2O. The mass spectrometry data
were analyzed using Mascot v2.5 (Matrix Science) jointly on a homemade data bank and on bacteria
(333,999 sequences) from the Swiss-Prot data bank containing 560,537 sequences (July 2019). The
enzyme specificity was trypsin, and up to 1 missed cleavage was tolerated. Carbamidomethylation of
cysteines was set as variable modifications, and oxidation of methionines was set as fixed modifications.

ELISA. Enzyme-linked immunosorbent assays (ELISAs) were performed to measure the total IgG
responses against the different PfEMP1 recombinant domains. Briefly, 1 �g/ml of CIDR�1.4PF3D7_1150400,
DBL�3PF3D7_1150400, or CIDR�1.4-DBL�3PF3D7_1150400 recombinant proteins was applied as a coating to
MaxiSorp plates (Nunc, Thermo Fisher Scientific) overnight at 4°C. After each step, wells were washed 3
times with PBS-0.1% Tween using an ELISA plate washer. Plates were blocked for 2 h at room temper-
ature with PBS-4% BSA. Then, PBS-diluted plasma samples (1:100) were incubated for 1 h at room
temperature and bound IgG was detected using a horseradish peroxidase (HRP)-conjugated mouse
anti-human IgG antibody (1:5,000) [IgG(H�L) F(ab=)2-goat anti-human–HRP; Invitrogen]. The HRP sub-
strate 3,3=,5,5=-tetramethylbenzidine (TMB Plus2; Eco-Tek) was added for exactly 3 min in darkness, and
the reaction was stopped by adding 0.2 M H2SO4. Optical densities were measured at 450 nm using the
Tecan system. ELISA arbitrary units (AU) were calculated using the following equation: AU � (OD of
sample � OD of negative control)/(OD of positive control � OD of negative control) (44). The positive
control was a pool of pregnant Beninese women, and the negative control was a pool of plasma from
pregnant French women.

Statistical analysis. We compared UM and CM in terms of clinical and biological characteristics,
cytoadherence, var gene expression, and immune response levels. Nonparametric variables were pre-
sented by median (10th to 90th percentile).

Mann-Whitney U-test was used to compare medians of clinical and biological characteristics, cytoad-
herence, var gene expression, and IgG levels and Chi-2 test was used to compare proportions of selected
clinical characteristics. Correlations between cytoadherence and var gene expression level and between
var gene expression levels were assessed calculating Spearman’s rank correlation coefficient rho, and P
values were adjusted (p-adj) for multiple testing using the Benjamini-Hochberg correction (45). For a
given cytoadherence, when several var gene expressions were associated (correlations with a p-adj of
�0.35), partial correlations were calculated to control for complementary var gene expression (46).

FIG 7 Sanger sequencing analysis of dual receptor binding. We performed PCR targeting the ICAM-1-binding motif in DBL�1/3 domains with F1, R1, and R2
primers. We sequenced in Sanger sequencing with either R1 or R2 primer (sequence 1). On the basis of sequence 1, we designed a specific primer for each
isolate. We performed the second PCR targeting CIDR� ahead of DBL�1/3 with F2 primer (10) and the primer based on sequence 1 and sequenced with this
primer. We looked for dual receptor binding on the reconstruction of CIDR�-DBL�1/3 sequence.
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