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Abstract: Long terminal repeat (LTR) retrotransposons are mobile elements that constitute the major
fraction of most plant genomes. The identification and annotation of these elements via bioinformatics
approaches represent a major challenge in the era of massive plant genome sequencing. In addition
to their involvement in genome size variation, LTR retrotransposons are also associated with the
function and structure of different chromosomal regions and can alter the function of coding regions,
among others. Several sequence databases of plant LTR retrotransposons are available for public
access, such as PGSB and RepetDB, or restricted access such as Repbase. Although these databases
are useful to identify LTR-RTs in new genomes by similarity, the elements of these databases are not
fully classified to the lineage (also called family) level. Here, we present InpactorDB, a semi-curated
dataset composed of 130,439 elements from 195 plant genomes (belonging to 108 plant species)
classified to the lineage level. This dataset has been used to train two deep neural networks (i.e., one
fully connected and one convolutional) for the rapid classification of these elements. In lineage-level
classification approaches, we obtain up to 98% performance, indicated by the F1-score, precision and
recall scores.

Keywords: LTR retrotransposons; machine learning; deep neural networks; bioinformatics; plant
genomes; genomics; InpactorDB

1. Introduction

Transposable elements (TEs) have key roles in plant genomes. They are major contrib-
utors to genomic size [1,2], rearrangement events (such as fissions, fusions, and transloca-
tions) [3], chromosome organization and structure (e.g., centromeres) [4], and evolution
and adaptation to the environment [5]. These dynamic elements can be activated under
several biotic or abiotic stresses, such as pathogens [6,7], defense-associated stresses [8],
heat, drought and salt stresses, freezing, polyploidization and hybridization events [9,10],
UV light [11], and X-ray irradiation [12]. Transposable elements are also known to partici-
pate in reproductive isolation between genotype of the same species (reviewed in [13]) [14]
and to shape the genome architecture during the process of plant speciation [15].

TE classification is still a subject of debate, despite the fact that a standard has emerged.
TE classification is generally performed hierarchically [16], whereby TEs are first divided
into classes according to their replication cycle: Class I or retrotransposons, which follow a
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copy-and-paste strategy using an RNA intermediate; and Class II or DNA transposons that
use a cut-and-paste mobility mechanism through a DNA molecule [17]. Next, TE levels
correspond to orders, superfamilies, lineages (also called families), and sub-families [18].
Among these, long terminal repeat (LTR) retrotransposons (LTR-RTs, an order of retro-
transposons) are the most abundant TEs in plant genomes [19,20] and can account for up
to 80% of the plant genome size, such as in wheat, barley, or rubber tree [21]. LTR-RTs
are characterized by the presence of one or several open reading frames involved in the
mobility of the element, flanked by a direct tandem repeat of 100 pb to more than 5000 bp,
called LTR. These LTRs are directly involved in the transcription regulation of the element
by the host’s machinery [22,23].

LTR-RT in plants are classically divided into two major superfamilies: Copia (also
called Ty1) and Gypsy (also called Ty3), based on the organization of coding domains in
the element [24,25]. Each superfamily is sub-classified into lineages or families according
to coding region similarities and phylogenetic relationships of the reverse transcriptase
(RT) domains, a combination of several domains or the complete polyprotein of the el-
ements [24,26,27]. Llorens and coworkers [28,29] classified LTR-retrotransposons based
on a phylogenetic analysis of 268 non-redundant element and in plants, 5 Copia and 2
Gypsy lineages have been identified, and further sub-classified into clades. With a bigger
sampling composed of 5410 Copia and 8453 Gypsy elements from 80 plant genomes and a
phylogenetic approach, Neumann and coworkers identified 16 Copia (that is, Ale, Alesia,
Angela, Bianca, Bryco, Lyco, Gymco-I,II,III, IV, Ikeros, Ivana, Osser, SIRE, TAR and Tork),
and 14 Gypsy lineages, sub-divided into chromovirus and non chromovirus elements (that
is, CRM, Chlamyvir, Galadriel, Tcn1, Reina, Tekay, Athila, Tat-I,II,III, Ogre, Retand, Phygy
and Selgy) [30]. Coding domains of these classified elements are available as curated
libraries (Gypsydb and RexDB) for fine annotation of elements using homology based
software such as RepeatMasker [31].

The classification of LTR-retrotransposons as deep as the classification in lineages
finds its justification in numerous studies showing the dynamics of amplification of these
elements. For example, in some plant genomes, sudden expansion of genome size is the
result of the amplification of one or a small number of lineages [32–34]. Different copy
number, amplification history and chromosomal distribution of lineages shape the genome
architecture of plants [35–37]. A better fine-scale annotation of LTR retrotransposon in
plants will likely reveal new lineage-specific mechanisms of genome size variation and
divergence. Currently, a challenge in genomics is to reliably annotate TEs. These elements
have certain characteristics that make their identification and classification a complex
task [38,39], such as repetitiveness, structural and nucleotide diversity, complex mobiliza-
tion dynamics (including nested insertions), and species specificity [18,40,41]. Although de
novo, homology-based, structure-based, and comparative genomics bioinformatics meth-
ods (or a combination of several methods) can automatically detect and classify TEs [42]
(for a review see [5,26]), all of these approaches have limitations due to the diversity of TE
structures, the quality of genome assemblies into others, and the sole use of any of these
cannot produce high quality results. Thus, the TE annotation process usually relies on
much manual work done by experts [43]. With the recent advances of sequencing tech-
nologies, many plant genomes have been sequenced and the automation of TE annotation
is needed to process the large amount of DNA sequence data [44]. Recent studies have
demonstrated that machine learning (ML) can be applied to automatically annotate or
even to both identify and annotate TEs in short times [18,45–48] using publicly available
databases such as Repbase [49], PGSB [50], RepetDB [44], among others (for a list see [5]).
Despite the available datasets, none of these attains a lineage-level classification and several
do not include plant species from certain families, which could affect the generalization
performance of the ML-based algorithms.

In this work, we present InpactorDB, a semi-curated dataset comprising more than
130,000 LTR retrotransposons from 195 plant species belonging to 108 families. These
elements are classified to the lineage level and are filtered by length, number of coding
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domains present, nested insertion of class II TEs, and other retrotransposons. In addition,
we removed the redundancy of elements through consensus creation following the same
methodology of REPET, obtaining more than 67,000 sequences. This dataset constitutes a
valuable resource for homology-based TE annotation, which is the most used approach [39],
such as in RepeatMasker. Furthermore, this database also contributes to developing
and testing ML-based algorithms for alignment-free and automatic annotation methods.
Finally, we tested InpactorDB using two currently available deep neural networks for the
classification of LTR retrotransposons to the lineage level.

2. Materials and Methods
2.1. Databases and LTR-RT Classification Processes

We collected information about LTR retrotransposons from three known TE databases:
Repbase (v. 20.05, 2017) [49], PGSB [51], and RepetDB [44]. In addition, we detected
LTR retrotransposons using different tools that follow a structure-based identification
strategy. First, we used LTR_STRUC [52], due to its low level of false positive rates in
plants (Romain Guyot, personal communication), on 69 available plant genomes to produce
a dataset named here as “LTR_STRUC”; however, LTR_STRUC can be run only under
Windows XP and takes a considerable execution time. Therefore, we used EDTA v1.9.3 [53],
which uses LTR_Finder [54], LTRharvest [55], and LTR_retriever [56], to detect LTRs in
87 additional species (Supplementary Material S1) and generated a new dataset called
“EDTA”. For Repbase, we joined the LTR domains and the internal section (concatenating
before and after) of each LTR retrotransposon into a single sequence. Plant genomes to be
analyzed were selected to target 103 different Angiosperm species families and in priority
assemblies with low genome size (Supplementary Material S1).

We applied the methodology proposed by Inpactor [57] to classify the elements of all
all the datasets. Inpactor uses a homology-based strategy with known coding domains
belonging to LTR-RTs; specifically, we used the RexDB [27] domain library as the reference.
LTR-RTs were classified into superfamilies [for example, Gypsy (RLG) or Copia (RLC)]
and sub-classified into lineages according to the similarities of five amino acid reference
domains (GAG, AP, RT, RNAseH, and INT domains [58]). In addition, we applied filters
to keep only intact elements by removing (1) predicted elements with domains from two
superfamilies (that is, Gypsy and Copia, potential chimeric elements), (2) elements with
domains belonging to two or more lineages, (3) elements with lengths different than those
reported by the Gypsy Database (GyDB) [29], with a tolerance of 20%, (4) incomplete
elements with less than three identified domains, and (5) elements with insertions of class
II TEs (reported in Repbase). Figure 1 shows a general representation of the classification
and filtering process.

The data generated is available at Zenodo under doi:10.5281/zenodo.4453481 and at
DataSuds (https://dataverse.ird.fr) under doi:10.23708/QCMOUA.

2.2. Statistical Analysis

The datasets used in this study have different origins and characteristics such as the
type of sequences (that is, consensus or individual DNA sequences) and pre-processing
(that is, curated or non-curated sequences). We used ML algorithms such as logistic
regression (LR), linear discriminant analysis (LDA), K-nearest neighbors (KNN), multi-
layer perceptron with one layer (MLP), random forest (RF), decision trees (DT), naïve Bayes
network (NB), and support vector machine (SVM) to test the performance of the datasets.
We used the F1-score as the performance metric, which is the harmonic mean of precision
and sensitivity [39] and we used it as the accuracy indicator; we used k-mer frequencies
with 1 ≤ k ≤ 6 as features, and we used scaling and dimensional reduction using principal
component analysis (PCA) as pre-processing steps, according to [39].

https://dataverse.ird.fr
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Figure 1. Schematic representation of the classification and filtering process performed for InpactorDB.

We created subsets of the datasets according to their characteristics (Table 1). To avoid
bias related to the number of elements in each subset, we randomly selected the same
number of LTR retrotransposons of each lineage that was present in the smallest dataset
(Repbase; ~2842 elements).

Table 1. Datasets used in the statistical analysis of machine learning (ML) performances.

Name Observations

Repbase Curated consensus sequences.
PGSB Curated individual genomic sequences.

RepetDB Non-curated consensus sequences.
LTR_STRUC Non-curated individual genomic sequences.
Consensus Union between Repbase and RepetDB.
Genomics Union between PGSB and LTR_STRUC.
Curated Union between Repbase and PGSB.

Non-curated Union between RepetDB and LTR_STRUC.
All Union between Repbase, PGSB, RepetDB, and LTR_STRUC.

A one-way analysis of variance (ANOVA), using subset type as the variable factor,
was conducted to determine statistically significant differences between the performances
of the algorithms applied to the subsets (Table 1). Additionally, we performed the Shapiro–
Wilks normality test on the standardized residuals and a homoscedasticity test through the
Bartlett test to determine the need for a non-parametric framework, such as the Kruskal–
Wallis test.

Given significant statistical differences, a post hoc test was performed to identify
which datasets generated these differences. This test was based on pairwise comparisons
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using Bonferroni’s method in the non-parametric framework of Duncan’s method. The
pairwise comparisons were conducted as follows:

H0 : µi = µj

H1 : µi 6= µj (1)

Following the pairwise analysis, we selected a subset of the data that did not display
statistically significant differences in the performance of ML algorithms with the other
subsets, but taking into account that the average performances are the best among the
other subsets.

2.3. Post-Processing and Generalization Tests through Deep Neural Networks

Based on the results of significant differences, we removed the redundancy of LTR
retrotransposon sequences in the individual genomic datasets (PGSB, LTR_STRUC, and
EDTA). For this, we used the same methodology implemented in REPET. First, we per-
formed a BLASTN v2.4.0 (NCBI-Blast) [59] of all elements against all (separating each
dataset) using an evalue = 1 × 10−300 and an identity cutoff ≥90. Then, we clustered
the sequences using Silix v1.2.11 [60] with a minimum length of 95% and a minimum
identity of 90%. Next, we generated a multiple alignment of each group using MAFFT
v7.305b [61] and removed the columns in which all but one sequence showed gaps, using
trimal v1.2 [62]. Finally, we built consensus sequences based on the majority system using
cons (EMBOSS v6.5.7 [63]). This dataset is referred to as the non-redundant version of
InpactorDB.

We used the non-redundant version of InpactorDB to explore the automatic alignment-
free classification process of LTR retrotransposons to the lineage level. Then, we imple-
mented two deep neural networks (DNN) based on previously published research. First,
we tested the hyper-parameter values proposed by Nakano et al. [46] for a fully connected
DNN to classify TEs into superfamilies following a hierarchical strategy. The network
had three hidden layers with 200 neurons each. The training stage was performed using
200 epochs (times that the entire training set is used to train the network) and mini batches
of size 128, stochastic gradient descent (SGD) with a learning rate of 0.01, and Adam as
the optimizer with a learning rate α = 0.001, β1 = 0.9, β2 = 0.999, and ε = 10−8, where β1
and β2 are the first and second exponential decay rate of the moment vector, respectively.
The loss function used was the mean squared error and the activation function was ReLu
(Figure 2).
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We also implemented a convolutional neural network (CNN) using the hyper-parameters
proposed in DeepTE [48], which was previously used to classify TEs from all classes (that is,
retrotransposons and DNA transposons) into superfamilies. This CNN consisted of three
layers with 100, 150, and 225 filters with a kernel size of 3. Max pooling was used after
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each convolutional layer with a window size of 2. A dropout of 0.5 was used after the last
convolutional layer. Finally, a fully connected layer with 128 units was used, and a softmax
output layer was set to calculate the probabilities of the predicted classes. ReLu was used
as the activation function in the three convolutional layers and the fully connected layer.
Furthermore, we used a categorical_crossentropy loss function and an ADAM optimizer
with a learning rate of 0.001 (Figure 3). The implementation of these DNN architectures in
Python and Tensorflow 2 (Keras) can be consulted in Supplementary Material S2.
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As features, we used k-mer frequencies with 1 ≤ k ≤ 6. We also applied scaling
and reduction of dimensionality using principal components analysis (PCA) as suggested
by [39]. Each dataset was partitioned into 80% for training, 10% for validation, and 10% for
testing. We measured the generalization performance using LTR retrotransposons from
the genomes of Gardenia jasminoides [64], Daucus carota [65], Abrus precatorius [66], and
Asparagus officinalis [67], which were not included in the training dataset. These LTR
retrotransposons were detected using EDTA and were processed with the same pipeline
used for the elements in InpactorDB (Figure 1). These genomes were downloaded from
NCBI (assemblies: ASM1310374v1, ASM162521v1, Abrus_2018, and Aspof.V1). We used
all lineages, except those absent from Angiosperms, like Chlamyvir, Tcn1, Phygy, Selgy,
TatI,II,III, Osser, Bryco, Lyco, GymcoI,II,III, and IV. In addition, considering their close
relationships, we decided to merge Tar and Tork groups into the Tar/Tork group, Ivana
and Oryco into the Ivana/Oryco group, and Ogre and Retand into TAT groups [27]. For a
better visibility of the lineage names, we renamed Ale as Ale/Retrofit, Tekay as Del/Tekay
and Ivana as Ivana/Oryco.

All the experiments were performed using Python 3.6, Scikit-Learn library 0.22 [68] for
pre-processing, data partition, and ML algorithms, and tensorflow 2 (keras) [69] for deep
neural networks, installed in an Anaconda environment in a Linux operating system over
GPU. We ran our tests using the HPC clusters of the Institut Français de Bioinformatique
(https://www.france-bioinformatique.fr), IRD (https://bioinfo.ird.fr/), and Genotoul
Bioinformatics platform (http://bioinfo.genotoul.fr/), managed by Slurm, and in the
BiRD platform (https://pf-bird.univ-nantes.fr/) and Migale Bioinformatics facility (http:
//migale.jouy.inra.fr/), managed by Sun Grid Engine (SGE).

3. Results

First, we downloaded 9278, 61,730 and 16,137 plant LTR-RT sequences from Rep-
base, PGSB, and RepetDB, respectively. Additionally, we identified 49,896 elements using
LTR_STRUC and 221,052 elements using EDTA. However, EDTA did not predict full-length
LTR-RT in eight plant genomes, namely Calotropis procera, Spergula arvensis, Diospyros lotus,
Magnolia ashei, Moringa oleifera, Passiflora edulis, Rafflesia leonardi, and Aristotelia chilensis. It
is likely due to low N50 of some assemblies (below 10kb for S. arvensis, D. lotus, M. ashei,
P. edulis, R. leonardi, and A. chilensis) and/or the absence of full-length copies of LTR-RT.

https://www.france-bioinformatique.fr
https://bioinfo.ird.fr/
http://bioinfo.genotoul.fr/
https://pf-bird.univ-nantes.fr/
http://migale.jouy.inra.fr/
http://migale.jouy.inra.fr/
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A lineage-level classification process was performed for all identified elements and
a filtration process was applied. The final redundant library of InpactorDB comprised
130,439 elements from 195 plant species belonging to 108 Angiosperm families (Figure 4,
Supplementary Material S3).
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3.1. Analysis of Significant Differences

In order to reduce the number of sequences in InpactorDB without losing represen-
tativeness and to increase data quality, we used datasets with different characteristics
(that is, consensus versus individual genomic sequences and curated versus non-curated
sequences) to train the ML algorithms. Using the sequences retained after filtering, we
performed an analysis of significant differences to determine if the dataset characteristics
(Table 1) affected the performance of eight ML algorithms (LR, LDA, KNN, MLP, RF, DT,
NB, and SVC) using k-cross validation with k = 10 (Supplementary Material S4). We could
not assume normality of the data or homogeneity of variances; therefore, a non-parametric
Kruskal–Wallis test was conducted.

The Kruskal–Wallis test showed a p-value lower than 2.2 × 10−16. Due to the non-
normal distribution of the data, a non-parametric pairwise comparison test was applied
using Bonferroni’s method through a Duncan’s range test (Table S1). Table 2 shows the
results from the subsets with the best performances. We found no differences between
the curated, consensus, PGSB, and RepetDB subsets regarding the performance of the ML
algorithms. Since the curation process is more complex than building consensus sequences,
we concluded that it is better to remove redundancy through consensus.

Table 2. p-values obtained using pairwise comparison through Bonferroni’s method.

Curated Consensus PGSB RepetDB
Curated

Consensus 1
PGSB 1 0.188

RepetDB 1 0.162 1

3.2. Post-Processing and Classification Using Deep Neural Networks

The methodology used by REPET to build consensus sequences from TEs was applied
to our full dataset. Since two datasets are already consensus sequences, we only applied
this process to PGSB, LTR_STRUC, and EDTA datasets of InpactorDB. After consensus
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creation, we reduced the number of elements to 9608 (6X reduction), 22,530 (6X reduction),
and 26,915 (8X reduction) for PGSB, LTR_STRUC, and EDTA subsets, respectively.

The final non-redundant version of InpactorDB consists of 67,241 LTR retrotrans-
posons. Both redundant and non-redundant versions of InpactorDB are available in FASTA
format, in which the sequence identifiers have the following general identification code:

>Superfamily-Lineage-plant_family-specie-source-length-ID,

where Superfamily is either RLC (for Copia) or RLG (for Gypsy), Lineage (or family)
following the RexDB nomenclature, source (Repbase, RepetDB, PGSB, LTR_STRUC or
EDTA datasets), length, and ID, a unique number that identifies each element in InpactorDB.
All those fields are separated by a dash character and composed names (as in species) are
separated by an underscore character.

The number of consensus sequences for each lineage is unbalanced, probably reflecting
the diversity of subfamilies for several lineages (Table 3). Ivana, and Ikeros are the most
frequently found lineages in InpactorDB, while TAT, Retrofit and DEL are lineages with
the greatest number of elements.

Table 3. Number of elements for each lineage in the non-redundant version of InpactorDB.

Superfamilies Lineages Number of Sequences (Redundant) Number Sequences (Non-Redundant)

Copia ALE/RETROFIT 19,888 12,026
Copia ANGELA 6889 1458
Copia BIANCA 2872 1827
Copia IKEROS 149 84
Copia IVANA 88 68
Copia ORYCO 6135 3468
Copia SIRE 10,892 3130
Copia TORK/TAR 11,460 6161

Total Copia 58,373 28,222
Gypsy ATHILA 6611 3499
Gypsy CRM 4811 2134
Gypsy DEL/TEKAY 18,330 10,383
Gypsy GALADRIEL 1715 549
Gypsy REINA 6387 4531
Gypsy TAT 34,212 17,923

Total Gypsy 72,066 39,019

Using the non-redundant version of InpactorDB, we tested two published deep neural
networks, which were used to classified TEs from all orders into superfamilies. First, we
used an FNN architecture that applied a hierarchical approach to classify TEs [46]. We
also tested a CNN published by [48]. We implemented these architectures using Python 3,
Tensorflow 2, and Keras (Supplementary Material S2) with hyper-parameters published by
their authors. Both architectures require only 25 epochs to achieve high performance.

Figure 5 shows the training curves for the FNN and Figure 6 for the CNN. Using the
FNN, we obtained 98% accuracy, F1-Score, recall, and precision with the validation and
test datasets. On the other hand, the CNN had a performance of 97% for the same metrics
using the validation and test datasets.
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Most lineages were correctly classified by both DNN architectures, which achieved
performances of up to 99–100% (Tables 4 and 5). The lowest F1-Score was found for the
Ikeros lineage, likely given the low number of sequences of this lineage in InpactorDB (7).
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Table 4. Performance obtained for each lineage using the FNN architecture.

Superfamilies Lineages/Families Precision Recall F1-Score Support

Copia ALE/RETROFIT 0.99 0.99 0.99 1220
Copia ANGELA 0.96 0.98 0.97 145
Copia BIANCA 0.99 0.99 0.99 166
Copia IKEROS 0.67 0.57 0.62 7
Copia IVANA/ORYCO 0.95 0.97 0.96 319
Copia TORK/TAR 0.98 0.95 0.96 575
Copia SIRE 0.99 0.98 0.99 325
Gypsy CRM 0.98 0.97 0.97 201
Gypsy GALADRIEL 1.00 0.93 0.96 58
Gypsy REINA 0.99 1.00 0.99 497
Gypsy TEKAY/DEL 0.99 0.99 0.99 1059
Gypsy ATHILA 0.97 0.98 0.97 372
Gypsy TAT 0.99 0.99 0.99 1787

Table 5. Performance obtained for each lineage using the CNN architecture.

Superfamilies Lineages/Families Precision Recall F1-Score Support

Copia ALE/RETROFIT 0.97 0.99 0.98 1220
Copia ANGELA 0.96 0.94 0.95 145
Copia BIANCA 1.00 0.95 0.98 166
Copia IKEROS 1.00 0.43 0.60 7
Copia IVANA/ORYCO 0.96 0.93 0.95 319
Copia TORK/TAR 0.94 0.94 0.94 575
Copia SIRE 0.99 0.97 0.98 325
Gypsy CRM 0.97 0.92 0.94 201
Gypsy GALADRIEL 1.00 0.74 0.85 58
Gypsy REINA 0.98 0.99 0.98 497
Gypsy TEKAY/DEL 0.98 0.98 0.98 1059
Gypsy ATHILA 0.97 0.99 0.98 372
Gypsy TAT 0.99 1.00 0.99 1787

To test the accuracy of the FNN and CNN under more realistic conditions of LTR-RT
classification, we downloaded four plant genomes from species and genera that were not
present in our dataset. We selected Gardenia jasminoides, a plant from the Rubiaceae
family (Asterids), Daucus carota from Asterids, Abrus precatorius from Rosids, and As-
paragus officinalis from monocots. EDTA detected 2648, 1167, 851, and 4692 intact LTR
retrotransposons, respectively, and 1010, 628, 579, and 2677 were kept after applying filters,
respectively. Using the parameters learned using InpactorDB, the FNN and CNN displayed
F1-scores of 97.8% and 86.5% for Gardenia jasminoides, 98.8% and 95.5% for Daucus carota,
99% and 98.1% for Abrus precatorius, and 93.4% and 86.4% for Asparagus officinalis,
respectively.

4. Discussion

Given the increasing amount of sequencing data in plants, there is a need to find an
automated and rapid way to annotate transposable elements that make up the main part
of their genomes. More particularly, LTR retrotransposons constitute the majority of plant
DNA (up to 85%) [70] and have crucial roles in genome evolution size, dynamics [71,72]
and chromosome organization [3,73]. Furthermore, the high quality detection of TEs
improves the accuracy of coding region annotations and functional gene studies [5,74].
Moreover, each lineage of LTR retrotransposons has different dynamics and chromosomal
distribution [24,75], and represents different fractions of the genome [5]. For instance, Copia
elements are more frequently observed in euchromatin [73,76] and Gypsy retrotransposons
are mainly found nested in heterochromatin regions [77,78]. Thus, the classification of
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TEs, especially, LTR-RTs, into superfamilies and lineages is crucial to better understanding
genome dynamics.

Current computational tools apply several strategies to detect and classify TEs, which
can be grouped into homology-based, structure-based, de novo, and those based on
comparative genomics [42,46,79,80]. Nevertheless, all these strategies have limitations,
such as the dependance on high quality species-specific TE libraries for a homology-based
strategy, the incorporation of host multigene families as repeats [26], and the low quality
identification for partial or degenerated elements with a structure-based strategy, as well
as others [5]. Indeed, the quality of the genome assembly can deeply influence the quality
of the detection and the classification.

For detecting LTR-RTs, current tools commonly use structure-based searches in or-
der to take advantage of the well-established features of these kinds of elements. For
deep annotation and classification (specifically, classification into linages/families), the
homology-based approaches are actually the most frequently used [46]. Since homology-
based methods detect TEs based on their similarity to reference TE sequences [81], the
quality of the entire process depends on the utilization of a well curated and extensive
library or database of TEs. Different plant TEs databases are available (for a list, see [5]),
which contain consensus [44,49,82] or genomic [51,83] TE sequences and peptides of coding
domains [27,84].

Although there are several databases comprising thousands of TEs, the great structural
diversity of these repetitive elements and their species-specificity requires a library with
reference LTR retrotransposons from a high number of species from different plant families.
For example, PGSB contains 50,000 LTR-RTs from ~60 plant families, RepetDB has ~16,000
from 13 plant species, and Repbase contains ~9700 LTR-RTs from ~70 plant species.

Unlike Repbase, PGSB, and RepetDB, InpactorDB only contains intact full-length
LTR-RTs. All elements in this dataset have passed several filters to keep as much as
possible LTR retrotransposons that can be used as references. We removed sequences
shorter or larger than lengths published by the Gypsy Database (with a tolerance of 20%)
to discard incomplete sequences (due to internal deletion for example) and LTR-RTs with
nested insertions. Then, we deleted elements with combined domains reported in LTR-RTs
from different superfamilies (Copia or Gypsy), suggesting chimeric elements. We also
removed ambiguous classified elements with the same number of domains from two or
more different lineages (for example, those with two domains from DEL and two domains
from REINA lineages). These filters were designed to keep as much as possible LTR-RTs
with no nested insertions by other LTR retrotransposons. Finally, we discarded elements
with insertions of class II TEs (present in Repbase) to retain putative intact sequences of
LTR-RTs.

The currently available databases are valuable resources to annotate LTR-RTs in plant
genomes; however, they constitute a small fraction of all sequenced plant species that are
representative of plant families. In the data-driven science era, the creation and release
of datasets are considered crucial tasks due to their importance in the performance of
ML algorithms. A dataset containing repetitive elements from a high diversity of plant
species and families is required for tasks regarding LTR retrotransposons, given their
natural properties. Thus, more extensive datasets, for training a ML model, could improve
its performance and, especially, its generalization because using a data set with more
samples for each class (family/lineage) gives the algorithm more information about how
the sequences of the LTR-RTs are regardless of the species they come from, reducing the
probability of overfitting the model to a certain set of species. Therefore, the algorithm
will be more likely to make accurate predictions in genomes that it has never seen before.
In an automatic-annotation tool of LTR-RTs, generalization is required since it will be
trained using currently sequenced genomes, but it will be used to annotate elements
from newly sequenced plant species, which were potentially absent in the training set.
Consequently, datasets that include species from a higher number of plant families and
genera could improve the probability of the ML algorithm to predict LTR-RTs from new
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species. Given this, our main aim was to create a dataset comprising LTR-RTs from different
plant species and families; accordingly, InpactorDB contains LTR retrotransposons from 25,
13, and 64 plant species from PGSB, RepetDB, and Repbase, respectively, with additional
elements from 69 and 84 plant species using LTR_STRUC and EDTA, respectively. By
joining all of these libraries, our dataset consists of more than 130,000 LTR retrotransposons
in the redundant version. We observed that consensus and curated databases have the
best performance on average for training ML algorithms, with no significant differences
between the two. Thus, we applied the process for consensus creation implemented by
REPET to build a non-redundant version of InpactorDB with 67,241 elements.

Currently, there is no definitive consensus regarding the LTR-RT classification and
naming systems for RT-LTRs. Although many studies use the hierarchical classification of
Wicker et al. [16] there is still debate and disagreement on the taxonomy and naming of LTR-
RT at different levels of classification [27,29]. Common initiatives are needed for a single
classification and naming system at the international level. Our study is based on a robust
phylogenetic approach using protein domains for classification [27]. However, as that study
used only 56 different plant genomes for the phylogeny of LTR-RT, it cannot be excluded
that the diversity of LTR-RT is more complex in plants. An incomplete classification
could probably impact automatic classification approaches. Recently, Neumann et al. [27]
proposed the separation of several lineages of LTR-RTs based on phylogenetic analyses
done with 80 plant genomes. Some of the new lineages appear unevenly distributed among
plants families. Clamyvir and Osser are specific of Chlorophyta (a taxon of green algae),
while Phygy and Bryco, are specific to Bryophyta (non-vascular land plants), Selgy TatI,
Lyco are specific to Lycopodiophyta and finally Gymco is specific to Acrogymnospermae.
These lineages are not present in Angiosperm species and as a consequence were not
studied here. Interestingly, other lineages show a low number of predicted copies in
angiosperm species like Ikeros (84), in the non-redundant version of InpactorDB (Table 3).

Ivana (68) demonstrated very few copy numbers in plant species in the non-redundant
version of InpactorDB. In contrast, ALE/Retrofit, TAT, and DEL/Tekay accounted for a
large number of samples in the dataset with 12,026, 17,923, and 10,383, respectively. This
large unbalance is inadequate for ML algorithms since the model will learn how to classify
LTR-RTs from the most frequent lineages, but the performance will reduce in less frequent
lineages (Tables 4 and 5). Lineages present in non-angiosperm species were not considered
in our DNN tests due to the few number of genomes available in the databases (69 until
2019, where 55 corresponded to green algae [85]), compared with 323 angiosperm genomes
found in the databases until 2019 [85]. In the future, it will be essential to include more
lineages from non-angiosperms when more genomes will be available for exhaustive
classification in plants.

In the current (post) genomic era [86,87], there is a need for automating TE anno-
tation [39,44] to quickly analyze the huge amount of genomic data. Machine learning
algorithms have become popular in bioinformatics because they provide promising results
in complex tasks and given the availability of large databases. InpactorDB is designed
to be a useful tool in the detection and annotation of LTR retrotransposons using both
homology-based software (such as RepeatMasker, Supplementary Material S5) and novel
free-alignment algorithms based on ML. Using InpactorDB to train two DNN architectures,
we obtained up to 98% F1-Score, precision and recall in the problem of classifying LTR retro-
transposons into lineages. Additionally, we highlight that only 25 epochs were needed to
achieve a good training performance and hyper-parameter tuning was not required. Using
more than 4000 LTR-RTs from four plant species that were not included in InpactorDB, we
achieved up to a 99% F1-Score using the FNN model, demonstrating good generalization
performance. As future work, we propose the use of InpactorDB to generate a new DNN
architecture that can improve the performance of the classification of LTR retrotransposons
in plant genomes.
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5. Conclusions

InpactorDB is a semi-curated dataset of LTR retrotransposons from 195 plant species
representing 108 plant families. It comprises more than 130,000 (redundant) and over
60,000 (non-redundant) elements that are classified to the lineage level. InpactorDB was
designed to be a tool to annotate LTR-RTs in plant genomes using homology-based algo-
rithms, such as RepeatMasker, and to support automatic, ML-based, and alignment-free
software, which is needed to process the large amount of genomic data produced by
massive sequencing projects in the current post-genomic era. Given the high diversity of
plant species and families contained in the dataset and the filters applied to the LTR-RT
sequences, InpactorDB can be used as a basis to train ML algorithms or DNN architectures
towards the implementation of automatic TE annotators in plant genomes.

Supplementary Materials: The following are available online at https://www.mdpi.com/2073-442
5/12/2/190/s1, Figure S1. Boxplot of F1-Score performance of all algorithms used different subsets,
Table S1. Values obtained by pairwise comparisons using Bonferroni’s method. The colored cells have
a p-value < 0.05, Supplementary Material S1: Assemblies used to find LTR-RTs with LTR_STRUC and
EDTA, Supplementary Material S2: Jupyter Notebook of the implementation of both deep neural
networks, Supplementary Material S3: Plant species and families of each dataset. Supplementary
Material S4: F1-Scores of ML algorithms trained with each subset used in the statistical analysis.
Supplementary Material S5: Repeat Masker annotation results of Coffea canephora, Ananas comosus,
and Oryza sativa using as custom library InpactorDB, Repbase, and RepetDB.
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