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Abstract: Changing land use patterns is of great importance in environmental studies and critical
for land use management decision making over farming systems in arid and semi-arid regions.
Unfortunately, ground data scarcity or inadequacy in many regions can cause large uncertainties in
the characterization of phenological changes in arid and semi-arid regions, which can hamper tailored
decision making towards best agricultural management practices. Alternatively, state-of-the-art
methods for phenological metrics’ extraction and long time-series analysis techniques of multispectral
remote sensing imagery provide a viable solution. In this context, this study aims to characterize
the changes over farming systems through trend analysis. To this end, four farming systems (fallow,
rainfed, irrigated annual, and irrigated perennial) in arid areas of Morocco were studied based on
four phenological metrics (PhM) (i.e., great integral, start, end, and length of the season). These were
derived from large Moderate resolution Imaging Spectroradiometer (MODIS) normalized difference
vegetation index (NDVI) time-series using both a machine learning algorithm and a pixel-based
change analysis method. Results showed that during the last twenty-year period (i.e., 2000–2019), a
significant dynamism of the plant cover was linked to the behavior of farmers who tend to cultivate
intensively and to invest in high-income crops. More specifically, a relevant variability in fallow and
rainfed areas, closely linked to the weather conditions, was found. In addition, significant lag trends
of the start (−6 days) and end (+3 days) were found, which indicate that the length of the season was
related to the spatiotemporal variability of rainfall. This study has also highlighted the potential of
multitemporal moderate spatial resolution data to accurately monitor agriculture and better manage
land resources. In the meantime, for operationally implementing the use of such work in the field,
we believe that it is essential consider the perceptions, opinions, and mutual benefits of farmers and
stakeholders to improve strategies and synergies whilst ensuring food, welfare, and sustainability.

Keywords: MODIS; trend; machine learning; change detection; Mann–Kendall; NDVI; phenology

1. Introduction

Accurate monitoring of land use changes in arid landscapes and understanding of
these changes drivers are crucial in arid environment research, especially since changes in
farming systems affect directly socioeconomic as well as environmental sectors. Improving
global food security will need a good understanding of the behavior of farming systems
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and their responses to climate- and human-induced factors [1,2]. In African arid and semi-
arid regions, there is a pressing need for characterizing the behavior and the distribution
of farming systems for better monitoring of agricultural lands and, thus, managing of
land resources. In this context, accurate management and monitoring of farming systems,
particularly at a large scale, can substantially benefit from geo-spatial technologies and
remote sensing data [3]. However, in semi-arid regions, phenological data are scarce and
difficult to produce due to the lack of sufficient ground information and limited studies [4].
Therefore, the use of remotely sensed phenological metrics (PhM) may provide a viable
alternative to costly and time-consuming field sampling [5,6]. In addition, the change
analysis of PhM could provide valuable information that would identify current trends
as quickly as possible and would be easily understandable by political authorities as well
as by land managers to take actions quickly for better control of agricultural lands. In the
same context, information on vegetation cover provides an insight on changes occurring
and could be a potential indicator of food security and sustainability [7–10]. To this end, the
use of remote sensing has demonstrated a strong potential for understanding and detecting
phenological changes because of consistent and frequent coverage [11]. Data from remote
sensing satellites provide large and continuous observations that characterize the changes
occurring on the earth [11,12]. Indeed, time-series of satellite data are suitable to monitor
the spatiotemporal behavior of plant phenology [13–15]. These issues motivate studying
changes in farming systems to characterize the spatiotemporal variability that has occurred
over long periods related to different drivers, i.e., short- and long-term weather events and
public policies.

Many studies have proved the existence of a consistent relationship between vegeta-
tion indices and weather indices (i.e., temperature and precipitation) [16–21]. During recent
decades, the scientific community has investigated the impact of land management on spe-
cific indices (e.g., normalized difference vegetation index, NDVI) in order to link vegetation
changes to anthropogenic actions [22]. With this in mind, many researchers went further in
studying changes in vegetation cover, based on satellite-derived products, by developing
techniques and tools for extracting and analyzing PhM, especially for monitoring farming
systems [5,23–25]. They demonstrated the ability of these metrics to monitor and differen-
tiate vegetation cover based on contrasted phenological profiles [5,26–29]. Consequently,
remote sensing-derived PhM have improved agricultural monitoring, whether it is to map
farming systems [30,31], to analyze the dependence of vegetation cover on climate events
(Cui et al. 2017), or to characterize the behavior of vegetation cover from different data
sources [32].

Indeed, the use of Moderate resolution Imaging Spectroradiometer (MODIS) data
provides an opportunity to characterize the spatiotemporal variability of vegetation cover
at a large scale [33,34]. It allows the construction of time series of vegetation indices (VIs)
(e.g., NDVI, EVI . . . ), by taking advantages of the combination of accurate reflectance,
frequent coverage, moderate spatial resolution and the relatively long period of data
availability since 2000 [35].

In the scope of farming systems monitoring, different algorithms have been used.
These include Random Forest (RF) as in Wang et al. [36], Support Vector Machine (SVM) as
in Wessel et al. [37], Artificial Neural Networks (ANNs), and K-Nearest Neighbor (KNN) as
in Yu et al. [38]. It is worth noting that all of the above-mentioned algorithms are considered
as machine learning algorithms, which are based on automatic learning from a dataset
to find the relationships between a predictor and a response [39]. Among all of them,
the Random Forest (RF) [39] provides powerful classification of farming systems. It has
several advantages, including the ability of running efficiently on a large volume of input
variables, resisting noise or over-fitting, being relatively robust concerning outliers, and
requiring fewer parameters [40,41]. These advantages make this algorithm the best choice
for running the classifications of farming systems.

At present, many studies based on limited observations over some irrigated zones
in the Oum Er-Rbia (OER) basin have been conducted, but fewer focused on large-scale
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analysis. Investigating the changes in farming systems at a large scale in the OER basin
will have a far-reaching impact on agricultural sector development and how the system is
adapting or not to climate changes. In this context, the present research sought to (i) use
phenological metrics derived from twenty years of NDVI MODIS datasets (i.e., 2000–2019)
to map and monitor changes in selected farming systems over a large arid-to-semi-arid
region in Morocco (i.e., OER basin); (ii) investigate trends in selected farming systems at a
large scale in the study area to evaluate how the systems are adapting or not to changes;
and (iii) provide information on farming systems’ changes for stakeholders to adopt more
accurate and efficient strategies.

2. Materials and Methods
2.1. Study Area

This study was conducted within the Oum Er-Rbia (OER) basin in west-central Mo-
rocco, between 31◦15′–33◦22′ N and 5◦08′–8◦23′ W (Figure 1). The OER basin covers an
area of 38,000 km2, while its administrative area is around 50,000 km2. The OER basin is
made up of five geographical units from the Atlas Mountains, the foothill areas, the plain,
the phosphate plateau, and the coastal area [4]. A combination of flat and mountain terrains
generally characterize the topography of the basin. Elevation ranges between 100 (e.g., in
the western and coastal zones) and 3890 m (e.g., in the eastern zone) above sea level [42]
(Figure 1). The OER River sources are located in the mountainous upstream zones, and
the river covers a distance of 550 km, overpassing the Tadla irrigated perimeter (TIP), the
coastal areas, and the northern zone of the Doukkala irrigated perimeter (DIP), and flows
into the Atlantic Ocean at Azemmour city [4]. The climate is variable from humid in coastal
and mountainous zones to semi-arid in the plains, with cold winters and dry summers [42].
Annual rainfall average varies from 230 to 1000 mm in the plains and the Atlas Mountains,
respectively [43]. The agricultural season generally occurs between September and June,
while the most important amount of rainfall is received between October and May (i.e.,
70% to 80% of the annual rainfall). The annual temperature varies between a maximum of
46 ◦C in August and a minimum of −3 ◦C in January. The investigated areas are primarily
agricultural, with irrigated crops (i.e., cereals, sugar beet, and alfalfa) and rainfed areas
(wheat). The study area is also dominated by tree cultivations, especially pomegranate and
citrus trees, which present a permanent activity during the season (Figure 2).

In this study, four farming system types (Figure 2A–C) have been selected to evaluate
the effectiveness of phenological metrics in the characterization of changes. The farming
systems are named (i) Irrigated Perennial Crop (IPC), (ii) Irrigated Annual Crop (IAC), (iii)
Rainfed Area (RA), and (iv) Fallow (FA).

The phenology of the IPC farming system is characterized by permanent vegetative
activity during the cropping season and high biomass production (Figure 2). IAC represents
high inter-annual variability with a high amplitude and rapid growth and senescence
moments. The IAC farming system is described with high vegetative activity with a
maximum NDVI generally in March, low dependency on climate conditions and soil type,
and a maintained growth cycle from seed to harvest time. The RA and FA farming systems
are typical on semi-arid lands, where the start of vegetative activity depends on the climate
conditions, especially the first rainfall. Figure 2 gives deep informative illustrations of the
four farming systems investigated in this study.

2.2. Multitemporal MODIS and CHIRPS Data Acquisition and Derived NDVI Processing

In this study, we used the MOD13Q1 NDVI product. A dataset of 437 images covering
the OER basin was downloaded for the period between 2000 and 2019 via the U.S. Geolog-
ical Survey (USGS) Land Processes Distributed Active Archive Center (LP-DAAC). The
MOD13Q1 NDVI data are within a spatial resolution of 250 m and a temporal frequency of
16 days in sinusoidal projection [4]. Time series data were re-projected to UTM projection
to be used further in this study. Rainfall data from Climate Hazards group Infrared Pre-
cipitation with Stations (CHIRPS) [44], available from 1981, were summed over the OER
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basin for each year within the MOD13Q1 product period. The CHIRPS data are delivered
at two spatial resolution levels, 0.05 and 0.25◦. In our study, CHIRPS data converted to
a 16-day period with a spatial resolution of 0.05◦ were used to extract rainfall data and
plotted against NDVI profile.

We performed NDVI time-series filtering and PhM extraction with TIMESAT soft-
ware [45], a commonly used package used for (1) data filtering and smoothing and (2)
phenological metrics extraction (Figure 3). In order to obtain high-quality time series and
to fill the gaps in data, TIMESAT implements three different smoothing methods, which are
Savitzky–Golay (SG) [46], asymmetric Gaussian (AG) [27,47], and double logistic (DL) [48].
The AG filtering method is less sensitive to noise than the other approaches [45,49]. The
study performed by Fu et al. [50] shows the robustness of this algorithm in smoothing
time series and preserving the characteristics of NDVI profile, contrary to the DL and SG
methods. The AG method can generate a smoothed NDVI profile while describing minor
changes in the NDVI sequence data [51]. Therefore, the AG method was chosen as the time
series reconstruction method to be used in this study. Table 1 shows the setting used for
NDVI time series processing in TIMESAT. More details on the filtering approach used and
phenological metrics extraction for this study can be found in Lebrini et al. [4].
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Table 1. Input setting for NDVI time series processing in TIMESAT used in this study, as recom-
mended by [52].

Parameter Description Value

Spike method Two values: 1 for median filter and 2 for
decomposition by Loess 1

Spike value Degree of spike removal 1.8
Amplitude cutoff value Data with amplitude below this value are masked. 0.1

Valid data range Data range of time series to be processed 0–1
Season parameter The study area contains one cropping season 1

Number of envelope iterations Number of iterations for envelope adaptation 2
Adaptation strength Strength of the envelope adaptation 3

The second step was PhM extraction; such measurements are usually calculated
using a common method based on value thresholds of the seasonal vegetation amplitude,
assuming that a particular phenomenon has started when the NDVI values surpass a
given threshold (Figure 3). Our study was, thus, carried out by setting the proportion
of the seasonal amplitude to 10% measured from the left and right minimum values,
respectively [45]. In general, four PhM were extracted using the TIMESAT program for
trend analysis. Definitions of the PhM used in this study are explicitly defined in Table 2.

Table 2. Definition of the computed phenological metrics (PhM) [52–54].

Phenological Metric Phenological Definition (for
Cropping Season) Unit

(1) Start of season—time (TSOS) Beginning date of photosynthesis
activity in the vegetation canopy days

(2) End of season—time (TEOS) End date of photosynthesis activity in
the vegetation canopy days

(3) Length of season (LOS) Length of photosynthetic activity
during the cropping season days

(4) Great integral (GINT) Canopy photosynthetic activity
across the entire growing season -

2.3. Statistical Analysis
2.3.1. Random Forest Classification and Change Analysis

To characterize the main cropping systems, the ground data used in this research were
collected through ground truthing exercises over farming systems during the 2018–2019
cropping season. The collected data were reported using a GPS receiver, with a positional
error of less than 2 m to generate data for classification training and accuracy assessments
for the 2018/2019 dataset. The reference points were collected in a way so as to represent
the full variety of farming system elements in the study area. Accuracy assessment of
other classification results was performed using similar or near-similar ancillary data from
MODIS and Google Earth images and high-resolution aerial photographs. A land cover
map originated from Glob Cover was used to mask the agricultural zones over the study
area [4,55]. A summary of the ground data is given in Table 3.

Table 3. Ground truthing data.

Farming System Class Number of Polygons Training Area (Ha)

Irrigated Perennial Crop (IPC) 80 1626.71
Irrigated Annual Crop (IAC) 105 1889.12

Rainfed Area (RA) 160 3617.76
Fallow (FA) 125 2661.06

Total 470 9794.65
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To classify farming systems over the OER basin, the supervised Random Forest (RF)
classifier was used based on the CARET package within R [56]. RF is a non-parametric
machine learning classifier that combines a random selection of training subsets of data
with an ensemble of trees. Recent studies reveled the effectiveness of the RF classifier in
the remote sensing field, including land phenology mapping [39,57–59]. For measuring the
accuracy of the classification results using the RF classifier, ground truth data were split
into two sets of training (80%) and testing (20%) samples using a spatial cross-validation
approach with 5 folds from the CAST package in R [60]. This spatial cross-validation
helped to make sure that the ground truth sample of the same field will be either in the
test or in the training data in order to avoid over-fitting. The accuracy assessment was
performed by calculation of many accuracy metrics for the classifications results, including
overall accuracy (OA), Kappa coefficient, producer’s accuracy (PA), user’s accuracy (UA),
and F1-score. The classification of 2000/2001 was generated using the “predict” function
from the CARET package in R [56]. In order to increase the reliability and validity of
our RF classification model, and as an additional check of the resultant information of
study area-specific classification accuracy, a second accuracy assessment was performed
for the 2000/2001 classification map using the same methods as in the accuracy assessment
for the 2018/2019 classification map. In order to update testing polygons based on the
2000/2001 situation, we used the testing polygons from the 2018/2019 data and plotted
them against the smoothed NDVI profiles from MODIS data and Google Earth images.
From the MODIS time series, we investigated the correspondence between the NDVI
profile of each testing polygon and the farming system. From imagery, we added necessary
polygons to perform the accuracy assessment. Furthermore, farming system (FS) maps
obtained from the 2000/2001 and 2018/2019 classification results were used to map changes
that occurred over the study area. The transition between FS classes revealed by comparing
the classification results was used to extract unchanged FS during the study period. In
order to have significant and robust results of the further trend analysis, we opted to
compute trend on unchanged farming systems resulted from the change analysis step.
Figure 4 shows a detailed flowchart of the adopted methodology in this study.

2.3.2. Variability and Trend Analysis

From the annual PhM previously retrieved, we calculated their per-pixel temporal
mean and coefficient of variation (CV). In order to assess the spatial distribution of PhM
showing improvement (positive change) or degradation (negative change), we employed
the non-parametric Mann–Kendall (MK) trend test [61] to determine trends on PhM over
the OER basin between 2000 and 2019 [34].

The Z statistic follows the standard normal distribution with zero mean and unit
variance under the null hypothesis of no trend. A positive Z value indicates an upward
trend whereas a negative value indicates a downward trend. Probability (p) represents the
measure for evidence to reject the null hypothesis, and positive p values show a negative
trend whereas positive p shows a positive trend. We calculated the MK trend test separately
for every pixel for the start and end of season, the length of season, and the great integral
over the OER basin. These parameters are crucial indicators of seasonal productivity. The
Mann–Kendall statistical trend Z was determined as follows:

S =
n−1

∑
k=1

n

∑
j=k+1

sign
(
Xj − Xk

)
, where j > k (1)

where n is the length of time series data, Xk and Xj are the observations at k and j time,
respectively, and

sign
(
Xj − Xk

)
=


1 i f

(
Xj − Xk

)
> 0

0 i f
(
Xj − Xk

)
= 0

−1 i f
(
Xj − Xk

)
< 0

(2)
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The probability linked to the Mann–Kendall statistic “S” and the selected n-data were
determined to quantify the level of significance of the trend. Var(S) was calculated, and
then the normalized test statistic Z was computed using the following equations:

Var(S) =
1

18

(
n(n− 1)(2n + 5)−∑

t
t f t( f t− 1)(2 f t + 5)

)
(3)

where t varies over the set of tied ranks and ft is the number of times that the rank t appears
(i.e., frequency). The equation used to calculate the Mann–Kendall significance Z-score is
as follows:

Z =


S−1√
Var(S)

f or S > 0

0 f or S = 0
S+1√
Var(S)

f or S < 0

(4)

where Var(S) is the variance of the dataset and n is the number of data points.
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The equation used to estimate the Theil–Sen (TS) median trend is:

TS = Median

(
Xj−Xk

tj + tk

)
(5)

This robust non-parametric trend operator is highly recommended for assessing the
rate of change in time-series data. It is calculated by determining the slope between every
pairwise combination and then finding the median value. Using the Mann–Kendall test
and Theil–Sen median trend analysis, the trends in PhM were described accordingly, and
the significance level of the changes in NDVI trends was determined using the Z-score at
p-value below 0.1 significance level.

3. Results
3.1. NDVI and Rainfall Time Series Analysis

Given the importance of the NDVI in monitoring vegetation cover, the spatiotemporal
variation of this index was assessed based on reference data collected from fieldwork over
farming system types between the 2000/2001 and 2018/2019 cropping seasons and the
average rainfall over the OER basin for the same period (Figure 5).

A visual analysis of the temporal NDVI values shows different patterns associated
with each farming system type. These patterns were characterized by a specific range of
NDVI values and represent the seasonality and the growth cycle of each farming system.
The NDVI values for IPC range between 0.45 and 0.9, which is an indicator of the permanent
photosynthetic activity of perennial systems (Figure 5). The studied irrigated tree crops
are generally carried out in intensive systems. Owing to their received quantities of water
and their long life cycle, this farming system shows a unique characteristic of persistence
during the growing season from 2000 to 2019. The IAC class has some identical patterns to
the IPC farming system such as the water supply and the high value of production. The
IAC farming system shows NDVI values that range from 0.3 to 0.8. The NDVI values start
increasing in September and decrease in May of each agricultural season. Their variability
in length of the growing season is mainly related to sowing timing, the management of
agricultural land, and other plant physiological disease problems.

For the RA farming system, the NDVI values varied from 0.2 to 0.7 for wet seasons
and between 0.2 and 0.4 for dry seasons (i.e., 2006/2007 and 2008/2009 cropping seasons).
In general, their NDVI response to rainfall is systematic. Indeed, agricultural lands in
the RA farming system are entirely dependent on rainfall, which varies in amount from
one year to the next and directly affects agricultural productivity. Indeed, in semi-arid
regions, this relationship between rainfall and NDVI has been demonstrated in numerous
research studies [62–64]. Thereby, the RA farming system shows high variability in terms
of the start and end of season and the length of season. This variability is linked to the
strong dependency of this farming system on the climatic conditions, especially the rainfall
amount. The vegetative activity begins earlier in the case of a wet season and later for a dry
season, and the same pattern could be observed for the end of the vegetative activity. A
similar pattern could be observed in the FA farming system, where the climatic conditions
have more effects on the vegetative activity. These effects of rainfall could be well spotted
in the 2009/2010 cropping season over FA and RA farming systems, and we can precisely
observe the start of the vegetative activity after receiving an important amount of rainfall
(Figure 5). Through the coming sections, the paper explores more the behavior of farming
systems using trend analysis techniques.
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3.2. Spatial Patterns of Phenological Metrics

To mutually characterize PhM behavior (i.e., TSOS, TEOS, LOS, and GINT) and their
variability, we combined them with their coefficients of variation (CVs), which are used as
a measure of reliability, into the bivariate maps shown in Figure 6. These bivariate maps
simultaneously provide a spatial representation of (1) where high or low variability in PhM
is expressed for each farming system and (2) the risk involved in the future management
and seeding in these farming systems. This combination of factors can assist in developing
knowledge about which farming systems can be cultivated in an average year while
considering that in such regions, farming system choices are largely based on the potential
for attaining good yields and the risk of season failure [65].
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Figure 6D shows that areas located inside the irrigated perimeters with a start of
the season (TSOS) that occurred between February and June generally have a CV below
0.1. Encouraged by the availability of irrigation water throughout the year, farmers in
these areas are diversifying and intensifying their agriculture, thus putting a larger area
under crops with high added value, whatever their water consumption [66]. Outside the
irrigated perimeters, especially the center of the study area, strong variability is apparent
(i.e., variability above 0.2). This high variability is more accentuated by moving towards
the mountainous zones. Farmers prefer not to invest excessively in these zones in order to
avoid the risks associated with drought, related mainly to the lower stability of TSOS and,
therefore, the rainfall amount and distribution. Areas outside the irrigated perimeters with
TSOS between August and September have CV values between 0.1 and 0.3 for practically
all locations. Nonetheless, the declining availability of water during the studied period
causes a decrease in productivity and leads farmers to opt for crops that require less water
but offer good margins in order to maximize their profits and avoid the risk of season
failure. Other regions outside the irrigated perimeters with a TSOS between days 242 and
365 of the year have a CV below 0.15. Since these areas may present a low-risk investment
opportunity, they could be a good choice for the implementation of new farming systems.
Towards the western part of the basin, low variability is apparent (Figure 6D).

On the other hand, areas located outside the irrigated perimeters with an end of season
(TEOS) that occurred between the day of year (DOY) 33 and 177 express two degrees of
variability, the first with a CV below 0.15 and the second with a CV above 0.35. The
majority of the area that has a TEOS between DOY 178 and 241 has low variability, with
a CV below 0.15. Inside the irrigated perimeters, low variability is expressed, with a CV
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below 0.15 for areas having the TEOS between DOY 178 and 241 and between 242 and 273.
The high variability in terms of CV observed for the TSOS and TEOS could be related to
the dependence of the start of a cropping season to climatic conditions—in rainfed farming
systems, the season could not start without the first rainfall. Adversely, the end of the
cropping season depends on the climatic conditions but also depends on the physiological
properties of the plant and its persistence (Figure 6C).

Considering the phenological metric LOS, the results of this research show that the
variability is inversely proportional to the value of the length of the season, without regard
to particulars or exceptions. Hence, the areas with an LOS value below 160 days generally
have a CV value above 0.35, and the areas with an LOS value between 160 and 192 days
have CV values between 0.15 and 0.35, especially in the center of the study area. However,
these areas may express a deficit in agricultural production during years with low rainfall
amounts. The low variability is mostly located inside the irrigated perimeters where the
LOS is above 224 days. These zones shows CV values of below 0.15. Various areas in the
western part of the basin also show high CV values which are above 0.28 (Figure 6B).

Finally, by combining the fourth phenological metric explored during this study
with its CV values (GINT), our results can help in the characterization of the biomass
variability of farming systems encountered in this study area (Figure 6A). The areas having
GINT values below four have CV values above 0.35. These zones are generally rainfed
areas and fallow, where climatic conditions have an effect. Generally, these areas are not
recommended for the seeding of plants with high values of production. Instead, areas with
GINT values above eight have CV values between 0.15 and 0.25. This moderate variability
in biomass productivity could be considered as normal, considering the differences in crop
types over the irrigated parameters (i.e., alfalfa, sugar beet, wheat, etc.). Other zones in the
OER basin remain with low to moderate biomass productivity with high variability of the
GINT metric.

3.3. Determination of Unchanged Farming Systems’ Area

RF classification offers a powerful algorithm to classify the spatial patterns of farming
systems in the study area. In this study, the classification of farming systems was produced
from the implementation of the Random Forest (RF) classifier based on PhM. The classifier
was applied and the accuracy assessment results are summarized and provided in the
Supplementary Materials (Figures S5–S7). In terms of the individual accuracy, the results
present higher overall accuracy and much more balanced producer/user accuracy. The
overall accuracy for RF was 97% and 93% with a kappa value of 0.95 and 0.91 for the
2018/2019 and 2000/2001 cropping seasons, respectively. In general, all farming system
classes achieved over 90% user accuracy. The RF classifier also produced over 90% producer
accuracy for most farming system classes. The change detection results from 2000 to 2019
reveal an important dynamic between the different FSs in the studied region. The transition
between FSs from 2000/2001 to 2018/2019 shows that there has been a marked change in
FS classes over the study area (Figure 7). To evaluate trends over the study area, we only
considered the unchanged classes during the studied period.

3.4. Trend Analysis Results

This research further analyzed the inter-annual trends for the four PhM (i.e., SOST,
EOST, LOS, and GINT). The Mann–Kendall test was used to identify significant trends at
90% confidence level and Sen’s slope estimator was applied to compute the magnitude of
trends for the period between 2000 and 2019, alternating between increasing and decreasing
trends over the study area. For the start of season (TSOS), Figure 8 displays its trends as
obtained using Mann–Kendall and Sen’s slope tests. Positive and negative values refer to
delayed and advanced dates of TSOS, respectively.
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Most areas in the OER basin did not show a significant trend during the past twenty
years for the TSOS, LOS, and GINT metrics (p > 0.1). On the contrary, the TEOS shows a
significant trend over most parts of the study area (p < 0.1). In this section, only significant
trend pixels are considered for description and analysis. A significant negative TSOS
trend was discovered across small parts of the Doukkala irrigated perimeter, the Tadla
irrigated perimeter, and in parts of the rainfed area. For the pixels with negative trends,
over irrigated perimeters, Sen’s slope shows an average decrease in TSOS of approximately
−0.2 day/year; outside the irrigated perimeters, the TSOS shows a decrease between −0.2
and −0.4 day/year. The early start of the agricultural season in these zones could explain
these results, especially the irrigated annual crops where we found different crop types and
irrigation systems. Hence, this implies that over the studied period of 20 years, the TSOS
has been delayed by more than 6 days (−6 day/20 years). Other regions of the OER basin
showed a non-significant trend. These regions are not interpreted since the significance
level is above 0.1.

On the other hand, we found a significant positive trend for the TEOS across large
parts of the OER basin and in a part of the Tadla irrigated perimeter. However, we found a
significant negative trend in the rainfed and fallow farming systems (Figure 9).
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For the pixels with positive trends, Sen’s slope shows an average increase in TEOS
above 0.2 day/year in the TIP and between 0 and 0.2 in the rainfed area. The TEOS
shows a decrease between 0 and −0.2 days/year in numerous parts of the OER basin,
especially in the southern part. These results could be explained by the satisfaction of
plants requirements in the irrigated zones, whereas in other areas, the negative trend is
essentially linked to climatic conditions and poor land management. This signifies that
over the studied period of 20 years, the TEOS has changed by more than 3 days/20 years
in irrigated areas and by −3 days/20 years in rainfed and fallow areas.

After the trend analysis of the TEOS metric, we directed our studies towards the
analysis of trends in the length of season (LOS) (Figure 10) to investigate the link between
TEOS and TSOS with the LOS, since the LOS is the result of the difference between the
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TEOS and the TSOS. The results show a significant positive trend in LOS over the south
parts of the Doukkala irrigated perimeter and in the north parts of the Tadla irrigated
perimeter. In addition, we found a significant negative trend in the rainfed and fallow
farming systems.
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For the pixels with positive trends, Sen’s slope gives an average increase in LOS
above 0.1 day/year in the Tadla irrigated perimeter and approximately between 0 and 0.1
days/year in the DIP. The LOS shows a decrease between 0 and−0.1 day/year in numerous
parts of the OER basin. This signifies that over the studied period of 20 years, the LOS has
changed by more than 1.6 days/20 years in irrigated areas and by −1.6 days/20 years in
rainfed and fallow areas.

Comparing these results with trends in TSOS and TEOS indicates that increases in
TEOS and decreases in TSOS dates are mostly responsible for the positive LOS trends in
irrigated perimeters of Doukkala and Tadla. Negative LOS trends in the rainfed area and
fallow farming systems are related to a delay in TSOS dates and an early TEOS.

Finally, considering the GINT metric, the trend of this index was obtained using
Mann–Kendall and Theil–Sen median trend tests (Figure 11). We found significant positive
trends over large farming systems. These areas are specially located in the irrigated
perimeters of Tadla and Doukkala, in addition to some zones with improved agricultural
management practices.

Generally, significant positive trends are located in the western and eastern parts of
the OER basin. The central region is dominated by insignificant negative trends, while
stable farming systems are dispersed over the study area. Irrigated perimeters show an
increase in GINT by 0.2/year, while the rainfed area shows an increase between 0 and
0.1/year. Generally, the trend results reveal an important variation between the different
FSs in the studied region.
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4. Discussion

In this study, we have demonstrated that the phenological pattern of vegetation cover
across different farming systems and across different regions over the last 20 years has an
important implication in vegetation dynamics and climate change. It provides an insight
of the vegetation cover status of a region affected by climate risks. To our knowledge, this
study is the first to demonstrate the ability of annual phenological metrics (PhM) and RF
modeling to map and characterize changes over the major farming systems in Morocco.
The use of TIMESAT for NDVI time-series processing and analysis has provided a more
comprehensive investigation of the NDVI behavior from a phenological perspective. As
far as we know, this study is the only one that has explored phenological farming systems’
variability over North Africa at 250-m spatial resolution.

Overall, the accuracies obtained in this study for the classification of farming systems
were reliable and consistent with those revealed for other MODIS-based land cover classi-
fications [30,31]. For comparison, the resulting overall accuracy of the RF classifications
obtained over the OER basin scale (i.e., 90–96%) is similar to that obtained using MODIS
time series for mapping cropping intensity in China at a regional scale (i.e., 92%; [31]).
On the side of classification performance, the confusion between rainfed area and fallow,
which was the main source of error, reflects the strong similarity between these two farming
systems, especially when the climatic conditions are critical. Consequently, our findings
have confirmed the advantage of using a combination of PhM from MODIS time series and
an RF classifier to discriminate between farming systems [67]. In addition to the influence
of climate conditions on phenological changes, changes in crop type were also an important
determinant of phenological changes and trends in the OER basin. For this reason, in this
study, we used a mask layer to mask only unchanged areas and ejected the effect of annual
land use change over farming systems.

In terms of PhM variability and trends, our study revealed substantial variability
over the studied PhM. Generally, TSOS and TEOS show high and low variability inside
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and outside the irrigated perimeters, respectively (Figure 6). The TSOS inside irrigated
perimeters displayed earlier onset trends than other zones, which could be due to the
sowing date and irrigation (Figure 7). On the other hand, delayed TEOS could be explained
by the variability of harvest time and biological factors and the climatic conditions that
occurred during the cropping seasons. These delays and early onsets in time of occurrence
between TSOS and TEOS were translated to a longer cropping season over the irrigated
perimeters (Figure 9). The remarkable shift expressed by GINT and LOS over the irrigated
perimeters is the result of an intensification plan and a change of agricultural practices with
the encouragement of farmers to plant perennial crops. The question raised here is how
sustainable are the water and soil resources supporting this mode of production under the
growing pressure applied?

Our study has also revealed that annual variability outside the irrigated perimeters
is strong, especially in the center of the study area, where fallow and rainfed farming
systems extend. This high variability can be explained by the changes in rainfall amount
and distribution received in these regions during the cropping season and the changes
to the agricultural production potential. As identified by Ouatiki et al. [68], climatic
stations located in these regions experienced a significant decreasing trend and received
a low rainfall amount during the season. Other factors leading to the high variability of
PhM in these regions were the depletion of groundwater and the quality of agricultural
management, since these regions are considered as rainfed and fallow areas where the
accessibility to irrigation supplies is absent [4]. A similar situation was observed in the
variability of the GINT metric (Figure 6A) as the same regions experienced high variability
and low values of GINT, which signify low biomass production and an unbalanced field
for agricultural planning. Regarding the trend results, GINT increased during the studied
period by 0.1/year in most areas of the basin, while for certain regions of FA and RA, it
decreased by −0.1/year (Figure 11). Therefore, we believe that all of these factors affect
the productivity of these two farming systems, which are translated in the short cropping
season and the low biomass production (Figure 6A,B, respectively).

The wide spatial distribution of annual variability of PhM found in this study is
reliable and comparable with the outcomes from previous studies [65,69,70]. For instance,
Vrieling et al. [65] identified that a higher variability of Length of Growing Period (LGP)—
represented in our study by the length of season metric (LOS)—is generally found in arid
and semi-arid areas, with coefficients of variation above 0.25 ( i.e., LOS in our study varied
from 0.15 to 0.35). This slight difference between our studies could be due to the higher
spatial resolution of MODIS data (i.e., 250 m). Contrarily, in the irrigated perimeters, where
land receives significant amounts of water and fertilizer, the variability of PhM remained
lower. Furthermore, the variability in crop types may have had some influence on the
variability of PhM. However, this hypothesis is uncertain as our study focused only on
unchanged farming systems of the OER basin.

Weather extremes and consecutive droughts in this region strongly affected the veg-
etation cover dynamics and resulted in adaptations of farming system management in
response to climatic variation. Socio-economic policies and improving farm practices were
also dominant drivers of farming system changes in addition to climate conditions. These
factors could all have affected the variability of the start, the end, and the productivity
of the cropping season, resulting in phenological changes over time. A good example of
agricultural planning that made great changes in the agricultural sector in Morocco is the
Green Morocco Plan strategy, which aimed to encourage tree-growing extensions that led
to a high variability over some parts of the perennial farming system.

Notably, our findings showed that the variability of PhM is varied and related to
farming system types. The results from this study are expected to constitute a background
to other research about drought monitoring and desertification studies in arid regions. The
PhM datasets and the trend results could be integrated with climate data to perform an
estimation of crop water requirements and offer a tool for managers and stakeholders to
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make decisions for the extension of agricultural areas according to the available water
resources in a context of water stress.

5. Conclusions

Finally, variation in phenological metrics over FSs was estimated at the OER basin
level during 2000–2019 seasons using MODIS NDVI data and trend analysis tests. Our
study findings are the following:

(1) Over-irrigated perimeters’ (TIP and DIP) mean LOS, GINT, and TEOS values
showed low variability. On the other hand, moderate variability was observed for the
mean TSOS values during the studied period. Contrary to the irrigated zones, PhM over
the rainfed and fallow farming systems showed high variability. This variability over
RA and FA is justified by the irregularity of rainfall amounts received over these farming
system areas.

(2) Trends over farming systems are not uniform at the OER basin level. Most areas in
the OER basin did not show a significant trend during the past 20 years for the TSOS, LOS,
and GINT metrics (p > 0.1). Contrary to the TEOS, where a significant trend was observed
(p < 0.1), TSOS shows early onset over the IPC and IAC (i.e., 0.2 days/year), while over
RA and FA, it was delayed by −0.2 days/year, especially in the center of the basin. Other
regions of the FA and RA showed extended TSOS by 0.2 days/year. TEOS shows early
onset (i.e., −0.4 days/year) over the FA, RA, and part of the IPC. Other regions of the
basin showed a TEOS extended by 0.2 days/year. LOS generally slightly increased over
the farming systems, except in particular zones of the FA, and did not advance markedly
during the study period. GINT increased during the studied period by 0.1/year in most
areas of the basin, while for certain regions of FA and RA, it decreased by −0.1/year.

The investigation of changes in PhM over twenty years (19 cropping seasons) proved
the ability of these metrics to characterize the spatiotemporal changes over the OER
basin. Nevertheless, the need to take into account the perceptions and opinions of local
populations is essential in order to reduce the process of vegetation cover degradation and
to better manage natural resources.
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58. Belgiu, M.; Drăguţ, L. Random forest in remote sensing: A review of applications and future directions. ISPRS J. Photogramm.
Remote. Sens. 2016, 114, 24–31. [CrossRef]

59. Immitzer, M.; Atzberger, C.; Koukal, T. Tree Species Classification with Random Forest Using Very High Spatial Resolution
8-Band WorldView-2 Satellite Data. Remote. Sens. 2012, 4, 2661–2693. [CrossRef]

60. Meyer, H.; Reudenbach, C.; Hengl, T.; Katurji, M.; Nauss, T. Improving performance of spatio-temporal machine learning models
using forward feature selection and target-oriented validation. Environ. Model. Softw. 2018, 101, 1–9. [CrossRef]

61. Kendall, M.G. Rank Correlation Methods; Charles Griffin; Oxford University Press: London, UK, 1975; Volume 35.
62. Davenport, M.L.; Nicholson, S.E. On the relation between rainfall and the Normalized Difference Vegetation Index for diverse

vegetation types in East Africa. Int. J. Remote. Sens. 1993, 14, 2369–2389. [CrossRef]
63. Barbosa, H.A.; Kumar, T.L.; Paredes, F.; Elliott, S.; Rejas, J.G. Assessment of Caatinga response to drought using Meteosat-SEVIRI

Normalized Difference Vegetation Index (2008–2016). ISPRS J. Photogramm. Remote. Sens. 2019, 148, 235–252. [CrossRef]
64. Lotsch, A.; Friedl, M.A.; Anderson, B.T.; Tucker, C.J. Coupled vegetation-precipitation variability observed from satellite and

climate records. Geophys. Res. Lett. 2003, 30. [CrossRef]
65. Vrieling, A.; De Leeuw, J.; Said, M.Y. Length of Growing Period over Africa: Variability and Trends from 30 Years of NDVI Time

Series. Remote. Sens. 2013, 5, 982–1000. [CrossRef]
66. Lionboui, H.; Benabdelouahab, T.; Hasib, A.; Boulli, A. Analysis of Farms Performance Using Different Sources of Irrigation

Water: A Case Study in a Semi-Arid Area. Int. J. Agric. Manag. Dev. 2016, 6, 145–154.
67. Nitze, I.; Barrett, B.; Cawkwell, F. Temporal optimisation of image acquisition for land cover classification with Random Forest

and MODIS time-series. Int. J. Appl. Earth Obs. Geoinf. 2015, 34, 136–146. [CrossRef]
68. Ouatiki, H.; Boudhar, A.; Ouhinou, A.; Arioua, A.; Hssaisoune, M.; Bouamri, H.; Benabdelouahab, T. Trend analysis of rainfall

and drought over the Oum Er-Rbia River Basin in Morocco during 1970–2010. Arab. J. Geosci. 2019, 12, 128. [CrossRef]
69. Luo, Z.; Yu, S. Spatiotemporal Variability of Land Surface Phenology in China from 2001–2014. Remote. Sens. 2017, 9, 65.

[CrossRef]
70. Yuan, M.; Wang, L.; Lin, A.; Liu, Z.; Qu, S. Variations in land surface phenology and their response to climate change in Yangtze

River basin during 1982–2015. Theor. Appl. Clim. 2018, 137, 1659–1674. [CrossRef]

http://doi.org/10.3390/rs6032024
http://doi.org/10.1109/TGRS.2002.802519
http://doi.org/10.3390/rs10030449
http://doi.org/10.1109/LGRS.2007.907971
http://doi.org/10.2307/3235884
http://doi.org/10.1080/01431161.2017.1385108
http://doi.org/10.3390/rs70505347
http://doi.org/10.1016/j.isprsjprs.2016.01.011
http://doi.org/10.3390/rs4092661
http://doi.org/10.1016/j.envsoft.2017.12.001
http://doi.org/10.1080/01431169308954042
http://doi.org/10.1016/j.isprsjprs.2018.12.014
http://doi.org/10.1029/2003GL017506
http://doi.org/10.3390/rs5020982
http://doi.org/10.1016/j.jag.2014.08.001
http://doi.org/10.1007/s12517-019-4300-9
http://doi.org/10.3390/rs9010065
http://doi.org/10.1007/s00704-018-2699-7

	Introduction 
	Materials and Methods 
	Study Area 
	Multitemporal MODIS and CHIRPS Data Acquisition and Derived NDVI Processing 
	Statistical Analysis 
	Random Forest Classification and Change Analysis 
	Variability and Trend Analysis 


	Results 
	NDVI and Rainfall Time Series Analysis 
	Spatial Patterns of Phenological Metrics 
	Determination of Unchanged Farming Systems’ Area 
	Trend Analysis Results 

	Discussion 
	Conclusions 
	References

