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Abstract :

We try to organize the recent literature about organic-rich near-shore environments, in

which sediment, shallow waters and reparian vegetation inter-act. Wc rcvicw the publications

dealing with the effect of estuaries, and mangroves in particular, upon halieutics in the adjacent

waters.

Several recurring thernes emerge, which we shaillist without priority as:

• importance of heterotrophy, at aIl organizational and spatiallevels (the microbialloop

being only one aspect). and reduced role of autotrophs in optically deep waters,

... importance of rccycIing processes «(ratio),

... pervasive role of water body morphometry and bathymetry,

... importance of processes at the interfaces, together "ith the difficulty of spatially

defining these very interfaces,

• blurring of frontiers: between oxic and anoxie, between auto- and heterotrophy,

between autochthonous and allochthonous.
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Introduction:

Estuaries and coastal waters present the obvious featurc that film land is nearby. These

mostly shallow waters can thus he influence.d by riparian vegetation and by bottom. In several

tropical estuaries, rrumgroves represent an enviranment where (coastal) seawater is submitted to

the most varied interactions. An equally obvious teaturc of these aquatic environments is the

presence of allochthonous organic matter. Detrital food webs shouldthen he more important

than c1assîcal ones, based upon de novo photosynthesis.

We becarne aware of these features while working on tropical estuaries, during studies

aimed at the interactions between nutrients (and OI-ganiC matter), bacteria and phytoplankton.

The possible rôle of riparian vegetation was partic.ularly obvious in two ïnstanc.es, with

mangroves and with Phragmites swamps. The latter we fOWld as relics in a then hyperhaline

estuary. We started collecting reading notes, tor a purcly personal use. Once organized, these

notes happened severaI rimes to he useful to colleagues, and might find sorne use here.

Wc present a limited review of rceent publications dealing with mangrove production

and its effects upon aquatic resoW"CeS. Our aim is not to emulate exhaustive reviews such as

RolIet's (1981), or tbat done by Hatcher et al. (1989) on the conselVation aspect. We

di.scovered too Jate the fine work on e.stuarine cc.ology by Day et al. (1989). We have limîte.d

our scope to mangrove biornass and production, and to sorne features of detrital food-webs and

organic-rich environments. We shall also brietly consider the case of Phragmites swarnps.

Bcfore that, we shall treat sorne -perh.aps obvious- characteristics of estuarine and shallow

waters, încluding sorne sedimentaIy processes. In this part. wc have tried ta stress those aspects

wlùch are more characteristical of tropical marshes, and 10 skip the general estuarine ones. As a

matter of policy, wc have used our o'Pt'D cross-reference, manual card system. Use of

computerized înformation-retrieval systems (e.g. ASFA CD-ROM file) could constitutc a post

hoc complement. The fact !hat we centrered our scrutiny upon re.c.cnt literature doe.s not imply

a rejection of the pioneering studies done prior to the seventies.

A last word of caution: we did not try to write still another handbook on aquatic

ecology. Wc have egotisticaDy stressed those points wlùch seemed us farthest from the (usual

fOr us) &ep-warenfomam. We lrave lrence stipped se't'eraI -cMdent.. potms. (i.e. tbosc WC" iliink.

we know), such as rnethods, or phytoplankton physiology. On thîs latter point, for instance,

Harris (1986) Mote better than we ever could.
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1. Physics and chemistry of shaUow waters

1.1. : Physical characteristics

What follows is mastly reminders of thase features, of sediment and of water, which

may have more direct bioJogical consequences. üght climate, in itself a physical tactor, will be

considered later on.

1.1.1. Warer motions :

Tidal propagation in estuaries bas heen extensively studied. TidaI currents are

asymetric.al, owing bath to the reduced depth and to shore presence ; tbis last point îs reinforce.d

in mangroves by lateraI trapping by riparian vegetation (Hatcher et al., 1989). Mangroves a1so

.have a particular batbyrnetry, witb extensive shalJow portions and and a limited extension ot

deep, narrow tidal channels. This disttibution of depths is a1so found in coastal plain salt marsh

~tuaries (see Day et al., 1989, p. 54). This structure enhances transverse motions during a ridaI

cycle (compare ~ith Di Silvio & Fiorillo, 1981). TidaI PWl1ping (i.e. net ebb or net flood in the

deep or seconiJar)' channe1s, respectively) is frequent (Day et al., 1989, p. 62). TidaI mixing

reflects the double influence ofreduced depth (Wood, 1979; Longhurst & Pauly, 1987) and of

shore presence (Pritc.hard, 1959 ; Hatc.her et al, 1989).

High speeds, and turbulences, aDow high Joads of suspended matter (McCave, 1979;

Rucker et al., 1990). The resulting high (inorganic) turbidity bas an adverse effect on

phytoplankton photosynthesis (see § 1.5). Conversely, tides represent a physical energy input

which increases the overall estuarine productîvity (Nixon, 1988) ; theoretical considerations also

indicate that turbulence has a positive effect upon phytoplankton production ~1argalef, 1989).

Lower c.ument speeds, appearing either farther upstre.am or ne.ar the solidlliquid

interface, allow sedimentation (for inorganic particles; Petticrew & Kalff, 1991) and settling of

sessile OrganisIDS (Mullineaux. & Butman, 1990). At a stiJl lower speed scaJe, thennohaline

circulation (see a1so § 1.2.) cao appear in (relatively) shallow portions (Monismith et ai., 90). In

case of a "piston flow" (= "plug flow") regirne, thennohaline circulation may emt aIso in

~-iutb~~~Q(Qàtna~ (WoIanski. 1986).

As a whole, sediment transport is now reasonably weIl understood (Lerman, 1979;

Dyer, 1979; Fisher, 1981; Falconer & Owens, 1990; West et al., 1990). Sorne difficulties may

remain, especially in the erosion/sedimentation alternances found along sorne estuaries.

Contrary to expectancies, sediment and salt may not travel in the same way (Schoer, 1990).



Grain size of suspended solids is a well-descnbed fimction of CWTent speed and tw"bulence

(Lerman, 1979). Sediment characteristics in lakes can then he predicted ta sorne detail from

morphomeay (petticrew & Kalff, 1991). The phenomenon of "sediment focussing" bas been

described for 1akes (see La. Caraco et al., 1992), but the analogous proc.ess of "shelf sweep"

may he found in coastal waters (Archer & Devot, 1992).

1.1.2. Temperature :

Shallow waters have reduced themw inertia against convective and radiative processes

(Heath, 1977; Andersson & Rahm, 1986; Horsch & Stefan, 1988). While evaporation bas a

cooling effect, shallower -and wanner- waters evaporate more during the day. Shore proximity

amplifies the "oasis effec.t" (Maglione, 1974, 1976). Intertidal se..diment may again amplifY these

local processes with the right combination of tide and daylight : clark smficial soils may reach

60°C (Webb, 1958; Harrison, 1985).

1.2. Salinity :

Salînity most ob~iously results from the water (H20) budget, when considering an

estuary as a whole. Intertidal and supratidal sediments play a role in this. While ronoff

coefficient - in its classical sense - is 10w, due to negligible slopes, rain collection is generally

100 % effective in marshes and swamps. (Gallaire, 1980; SutclifIe & Parks, 1989; Vardavas,

1989).

Conversely, low-lying soil surfaces evaporate 3Ctively (Webb, 1958; Avissar & Mahrer,

1986; Baillie, 1986; Warrick, 1988). CapillaIy evaporation may lead ID evaporitic brines (Swart

et al., 1989) and ta surface salt deposits (Hsü & Siegenthaler, 1969). Such deposits can then he

flushed back to the water at fust rains (Ridd et al., 1988). These salt muvements result in a

c.alma of sail facies: the europe.an "sc.hOITe" and "slikke" are found, with somewhat different

characteristics, under the aspect of the tropical "tannes" (the West-Afiican name for salt flats;

Marius, 1985; Twilley, 1985; sec also § 3.1). Tidal tlushing fiequency governs the general

distribution and level of salinity (13aillie, 1986; Twilley et al., 1986; Gordon, 1988). On a

smaller time-space sca1e, pore water salinity may change rapidly, in submerged sediments,

during a ri\fat cycfe (Gordon, r~; Richanfsort ~ Parr; 1933). Siftœ diffusioD is.~

also by porosit)', exchanges will be slowed down in fine-grained sediments with high water and

OM: content (see § 1.3.1). In a somewhat different environment, Agosta (1985) showed that

interstitiaJ water in creek banks bas a residence time of 1 to 15 days, with exchanges lirnite.d to a

distance of 2 to 4 m from the low-water marle
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In the free waters, salinity distribution in an estuary is controlled by tide inside an

overa1l, larger-scale framework defined by water balance, i.e. by climate. Modeling salinity

distnbution can he relativel)' simple on a srnall to medium spatial scale, although morphology

and bathymetry may in.troduc.e sorne difficulties. Box models often remain highly effective

(Officer, 1980; Miller & McPherson; 1991). A model for a whole estuary is stiIl a major

underta.king. especially with branched estuaries (Keiller & Close, 1985; Dncles & Stephens,

1990 ). Moreover, cain and evaporation may become as important as hydrodynamics in sorne

shaDow, far-strung estuaries (Pagès & Debenay, 1987; Savenije, 1988; Sutcliffe & Parks,

1989), while themlohaline circulation ean accwnulate dense deep waters (Phleger & E\\'lng,

1962; Wolanski, 1986; Stefan et al., 19&9). ~1angrove areas, which cumulate the above

difficulties, still represent an arduous modelling problem (Kjerfve, 1990).

1.3. Organic matter

The subject of aquatic and sedimentary organic matter is currently a rapidly evoluting

field, as witnesscd by the special issue of Marine ChemistIy (39/1-3, Septcmber 1992). Apart

from the reecnt controversy about DOC measrnement, some of the difficulties may he

illustrated by two citations: "... the complex and largel}' Wlcharacterized mixture of organic

compounds that makes up pore water DOC" (Burdige et al., 1992) and "50 10 70 % of bull<

organic matter remains unidentifie.d at the molecular level" (Cowie & Hedges, 1992).

1.3.1. Sedimentary organic matter :

Knowledge about marine sedirnentary hunùc substances was recently reviewed by

Francois (1990). We shall not try to emulate this thorough review, but merely try 10 have a

somewhat different \.iewpoint, also since we consider a sIightly different environrnent

Low current spe.e-ds and abundant riparian vegetation, as found in swarnps or ne.ar-shore

waters, combine to yield organic, and hence often anoxie, sediments. Sedimentation rates are

naturally most variable; a moderate tlux is about 1-5 g.m-2.d-l (dry weight), corresponding 10

10-100 mg C.m-2.d-1 (Wassmann, 84; Stoddard et al, 89; Childers & Day, 90; Fichez, 1990;

Landing et al., 1991). A reasonable range for accwnulation rates lies between 0.02 and 0.3

cm.yîl (Cooper & Brus~ 1991; Dollar et al, 1991). An antple body of literature deals with

sedimentation rate assessment from 210pb content (Carpenter et al., 1985; Bumett et al., 1989;

DeLaune et al., 1989 b). On a shorter tinte scale, depletion of 234Th is a good indica10r of

se.dirnentation rate (McKee et al., 1990). Wc may remark that, in the shaDow waters we are

dealing with, accretion (sedimentation) rates generally agree with organic fluxes at the intertace.

The problem is much thomier in deeper waters, tbrough whieh settling particles travel for a
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certain time. Vv'hile benthic/pelagic ooupling may work (Kamp-Nielsen, 1992), there are several

instances where the flux through the water colwnn differs from the accumulation rate on the

bottom (Walsh et al., 1991; Calvert et al, 1992; Cowie & Hedges, 1992; Smith et al, 1992).

Organic matter (OM), expressed as carbon, generally represents between 0.5 and 10 %

of dry weight (Edwards, 1978; Jahnke et al., 1990; Gonzalez-Prieto et al., 1989; Cooper &

Brush, 1991; Archer & Devo~ 1992). ûM content increases with increasing water content and

in increasing1y fine sediments: in extreme cases. OM may amOlUlt to 20 % dry weight (in

carbon; Moy & Levin, 1991). Some of the recently deposited 01vl Wldergocs decomposition

(see § 2.2.1.). The OM percentage wlùch is durably preserved increases also with increasing

burial speed, i.e. increasing sedimentation rate; for a (rather low) rate of 1 rnm.yr l, Ch.am1ey

(1989) finds that 10 % ofOM is durably conserve.d. In the same vein, Cocito et al., (1990) find

high sedimentary CJN ratios al high üM percentages. Since buried OM undergoes diagenesis,

OM content decreases in deeper sedirnentary layers, while the proportion of labile components

dcereases (sec Cowie & Hedges (1992) for amino acids).

A sizable proportion of scdimentaJy 01<1 coIlSÎSls in particulate organic matter (POM),

which may he "autochthonous", i.e. stemming from settled aquatic particles (Reimers et al.,

1990). Ivfuch of sedimentaIy POM is "allochthonous", though, since terrestrial detritus i.~ less

labile (Knight & Bottorf( 1984; Hedges et al, 1988 a, b; Cowie & Hedges, 1992). In the

particular case ofmarshes or swamps, use of the terro "allochthonous" is somewhat nùsguiding,

since "riparian" vegetation (mangrove trees, or Phragmites, for instance) are a part of the said

swamp (sec Wetze~ 1992). However, the ex:treme illustration of "aDochthonous" POM

accumulation is lent by peat. Mangrove peats are fOWld in florida (Davies & Cohen, 1989) as

wen as in Senegal or in Viet Nam -among others -. The "sudds" of the Okavango delta (Ellery

et al, 1990) or the papyrus swamps are intermediate examples oflitter accwnulation.

Dissolved organic matter (DOM) mostly stems from POM through very loc.alized

processes (}Cellcy et al, 1990). We sh.all sec ($ 2.1.1) that (micro)biologïca1 processes are most

active in this transtOnnation. While overall DOM amounts are relatively low in the whole

sediment, roM concentration in pore water is about 20 mmol C.l-l (Gadel & Texier, 1986).

Highest concentration recorded in recent sediments was 70 mmol C.l-l (Javer, 1989, p. 216). Il

may tflen d'iffbse-~-t into mcrfyingwateB (Bee' ~l.4- for die'~ proœs&oÎ sediment/wateI"

exchanges).

In the se.<fiment, 02 concentrations de-.cre-ase rapidly, due to 02 consumption for OM

oxidation (Wilken et al, 1990; Sweerts, 1990; Brotas et al., 1990; see also $ 1.3.2). Vertical

profiles of sedimentary OM (he it POM or, more especially, DOM) retlcet the respective
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importance of import (=== sedimentation), decay and diagenes.is (Carignan & Lean, 1991).

Anaerobie decay causes a graduai decrease in the proportion of labile components in the deeper

layers (Francois, 1990; Cowie & Hedges, 1992), and hence a (generally slight) decrease in

overaD OM content (Martens, 1978, 1987; Klump & Martens, 1989; Kelley et at, 1990). We

shall deal below with OM decay in sorne debil (see § 1.3.2.), but anaerobie OM utilization

(oxidation) entails sorne ehemical processes which moditY sediments and correspond to loss, by

the system, of either C, Nor S. A thorough review of anaerobic carl>on metabolism bas been

donc by Capone & Kiene (1988; sec also Hansen & Blackburn, 1991). We shall hence only

briefly descnbe the three successive levels f01md at increasing depth into the sediment, i.e. at

decreasing oxidation status and decreasing Eh:

- Nitrat~ reduc.tion: dissirnilatory N03 reduc.tion differs from drnitrific.ation sensu

stricto (Seitzinger, 1988). Anyway, these processes represent a serious N loss in cultivated (and

tertilized) soils such as nce tields (Minzoni et ai.. 1988~ El-Habr & Goltennan. 1990). In

natural environments at least, Nô3 concentrations are often low (WaJWick & Hill, 1988;

Sweerts & De Beer, 1989). Twilley & Kemp (1986) showed that denitrification rate is

controlled by N03 concentration with Michaelis-Menten (fust order) kinetics. Denitrification

will th~ be rather limited : highest rates are about 100prnol N03-N.m-2.hr- t (Vanderborght &

Billen, 1975; Vanderborght et al, 1977; Kemp et al., 1990; Devo~ 1991) or 2-3 mmol.m-2.d-1

(Dollar et al, 1991). Exceptional values ofup to I,OOOpmol N03-N.m-2.hr-1 were observed by

Seitzinger (1988). TwiIley & Kemp (1986) f(nmd that maximwn (potential) denitrification rate

was a function of OC content. Sulfides (and especially the abundant FeS t()Jm) increase N03

reduction rate (Golterman, 1991 b). As other anaerobes, Nü3-reducers are highly sensitive to

02 (Bonin & Raymond, 1990); concentrations must stay below 0.2 mg 02.1-1 (Seitzinger,

1988). A remarkable point is that IÙtrification and denitrification can take place simultaneously,

at least at the human observational scale.

- Sulfate re.duction : fre.shwater environments are relatively poor in S04, and sulphate

reduetion may he seasonally substrate-limited (Hordijk et aL, 1989). In estuarine or marine

environments, su1tate reduction can account tor up to haIt" of aM oxidation (Valiela, 1984, p.

300; Westrich & Berner, 1984; Martens, 1987; Sînke et al., 1992). With a rate of about 3

mmol.m-2.d-l , Dollar et al., (1991) estimate that sulfate reduction drives about li30fbenthic

carbon metabolism in TomaIes Bay. Strictfy spea.king, red'uction OrS042- does not fead oufy to

sulfides (S2-), but to a whole assortment of reduced sulfur compowl<is, among which pyrite

(FeS2)(Fossing et al, 1992; Stoesse~ 1992). Loosely speaking, then, "sulfide" production is a

geochemic.al dead end (at least in a stable anoxie soil) sinc.e metals build insoluble c.ompounds ~

this can he interestïng for heavy-metal scrubbing (Mc Lerran & Hohnes, 1974; Silva et al.,

1990). Humic substances increase Metal irnrnobilization in anoxie sediments (Francois, 1990).. .
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Sulfide accwuulation is indirectly important as a potential source of acidity in the case of

ulterior aeration of sedimen4 or soil (1\-farius, 1985; Stoessel, 1992). Neutralizing this acidity is

one of the major problems in mangrove soit management (van der Watt et al., 1991). Other

reduced sulfur compounds ("carbon-bonded suIfur") are mostly re.cyclable (Hordijk et al.,

1989; Sprat! & Morgan, 1990), while sorne ofthem (thiophenes) are refractory, and constiMe

biological marlcers of hypersalinity (Damsté et al., 1990). A recent paper points out that S04

reduction may take place in oxic (hypersaline) environments (Cmilield & Des Marais, 1991);

we saw above an analogous case with denitrification, with the probable juxtaposition of

oxic/anoxic "micro-niches" (see below).

- Methanuroduction : this process is 1inùted br availability of electron donors (volatile

fany acids, ID), for whkh sulphate re.duc.ers are more competitive. Methane production is

hence most active in freshwater sediments (Sînke et al., 1990), although it may he found in

brackish and marine environnments (Harris et al., 1982; Crifl & Martens, 1983; see also

reviews by Hobbie, 1988 and by Capone & Kiene, 1988). In hypersaline environments,

specialized rnethane producers skip competition br utilizing methyl amines (King, 1988). In

every case, a portion of CH4 may he re-oxidized in the overlying oxic waters ; the main part,

though, escapes from the system together \\;th sorne ~ermentatÎ\'eC02. A somewhat peculiar

example ofCH4 production in reasonably oxygenated waters ofRed Sea was recently found by

Owens et al. (1991).

1.3.2. Organic matter at the interlace :

The limit between dissolved and particulate is rather arbitraIy (Ogura, 1970; Koike et

al., 1990). TIùs is particularly truc in the case of the various conoids (Whitehouse et al., 1990;

Benner et al., 1992), "flocs", "slimes" (Fry, 1987 ; Kirchrnan & Duc1dow, 1987) and "marine

snow" (Alldredge et al., 1990; Kamer & HendI, 1992). These amorphous jellies make the

frontier betwe.en solid and liquid a somewhat murky zone, especiaUy fre.quent in marshes.

Damnas (1990) bas reviewed the characteristics ofthis water-sediment interface. Conversion of

OOM mto POM is often biological (Camilleri & Ribi, 1986), but abiotie processes are possible:

flocculation of high molecular weight (MW) DOM in oligo-haline estuarine waters is weIl

known (Mantoura & Woodward, 1983). DOIvl cao he converted into POM by bubbling under

constant salinity and pH (Kepkay & Johnson, 1989). Bacteria synthetize lùgfl-l\tfW" compounds

(Fry, 1987; Brophy & Carlson, 1989; Couch & Meyer, 1992). Settling particles add sorne

PO?\1. Conversely, PO?...! is partly tranfonned into DOM (see § 1.3.2. and § 2.2.1.). The

resulting üM accumulation - evidently more frequent in low-circulation waters - results in low

oxygen content (Cappenberg, 1988). Oxygen gradients are steep (Archer & DevoL 1992); even

in relatively quick-tlowing waters, the oxygenated sediment layer is very thin (Sweerts, 1990;
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Sweerts et al., 1986, 1989, 1991~ Brotas et al, 1990). Despite these 10w 02 1evels, bacterial

aCtÎ\lity can he highest at the inteIface (Stephens, 1981; Craven et al., 1986; Archer & Devo~

1992); cellulose decomposition is most rapid in this interface (Schroeder, 1987). :Micro

aerophilic bacteria occupy a very thm sediment layer (Ferrara-Guerrero & Bianchi, 1990);

analogous micro-aerobic niches are fOlmd aroWld POM (paerl & Carlton, 1988; Paerl &

Bebou!, 1988; Boto et al., 1989). The switch from aerobic to anaerobic processes entails

differing transformations of OM (Hansen & Blackbwn, 1991; sec also fig. 2.1.1 J. The floc

layer at the water-sediment interface thus appears a very special environment, seerningly with

even spec.i.aliz.ed bacteria (Beier et al., 1991; Orem et al., 1991).

Consumption of oxygen by sediment (including here the interface and the sediment

itself) JTh1Y amount to 40 nunol Û2.m-2.d-1 above organic shaDow sediments (Officer et aL,

1985; Sweerts, 1990). For comparison, Zeitsche1 (1981) found uptakes of 1-2 nunol O:!.m

2.hr""1 above profimdal sediments. Archer & Devol (1992) tound that 02 consumption is

controlled by 02 concentration, but also by supply of labile organic carbon. This 02 uptake

corresponds mainly to direct bacterial uptake of the 02 diffusing from water into sediment ;

recent nùcro-electrode studies have shown that 02 diffusion is linùted to some millimeters

(Sweerts et al., 1986, 1989). Solid/liquid interfaces in general are thus high-gradient zones (31

the scale of micro-organisms), even under high turbulence (considered at the human scale). The

fre.quency of micro-niches, whkh was rather hypothetical (se.e i.a. Horrigan et ai., 1990), MS

been proven by using micro-electrodes; for instance, nitri:fying and denitrifying sites May he

about 50 lm apaIt (Seitzinger, 1988). We have seen above (S 1.3.1) several instances of

"typically anaerobic" reactions in oxic waters.

An indirect 02 consumption by sediment stems from chemica1 oxygen demand by

reduced compoWlds (H2S. CH4. NH4, ... ; Berounsl-y & N"IXOn, 1990; Hansen & Blackbwn,

1991; Archer & Devol, 1992; Roden & Tuttle, 1992).

A last remark may he made here: 1\.fost of what we saw about 02 exchanges, or about

nutrient flmœs betwe.en se.dimC!lt.and water (se.e below) has been anived at under rather statie

experimental conditions. Medium-scale water movements do exist in nature. Archer & Devo1

(1992) show !hat inigation of sediments happen, the more so in presence of macrobenthic

organisrns, and can arnount to sorne 10 cm3.crn-2.d-1.

1.3.3.Or~ Il1atœ[ in the water :

Particulate organic matter in the (oxygenated) water co1umn comprises aIso the living

organisms, to he logical. In most cases, though, "POM" is e.quated with tIypton. With this

viewpoint, POM generally represents about 1110 of total OM, with DOM making up the bulk

of aquatic OMo A high DOM concentration is typically sorne 10 - 40 mg DOC-C.l-l, found in
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the forest "black waters" (Tan et al., 1990) and in the bogs (Davies-Colley & Vant, 1987;

\Vrigley et al., 1988).

The chernical nature of DOM is still vague; "hurnics" and "fulvics" are rather general

operative tenns. About half of DOM cornponents are identifiable (Moran & Hodson, 1990 a).

Even extracting OOM trorn water is a delicate task (Amador et al., 1990). DOM reacts a

biotically as a chelator (De Haan et al., 1990) and as a substrate for photolysis (Kieber et al.

1990). 118 biological role, as nutrient poo~ is weil studied (!vIoran & Hodson, 1989, 1990 a;

some references in Pagès & Gade}, 1990). The multi-facetted chenùcal properties of hunùc

substances have been reviewed by Francois (1990).

Depending upon catchment are.a and vegetation, c.ompare.d with the importanc.e of the

aquatic domain itself, the bulk of aquatic OM may he allochthonous or autochthonous

(Mantoura & Woodward, 1983~ Levine & Weibezahn, 1986). Sorne DOM may also ooze back

from the sediment; re-suspension by wind action is another possible source of ÛM, both POM

and DOM.

lA. Nutrients (inorganic -) :

In the systems we have in mind, inorganic nutrients are often found in relatively

negligible concentrations, compared with those of OM and those of biomass. In a somewhat

symetrical arrangement are tound "high nutrients, low chIorophyll" upweDing systems (Probyn,

1988). Here, we would have "low nutrients, high biomasses" systems, al least when considering

the custonwy inorganic nutrients. We have already stressed the importance of OMo Apart from

the very nature of the substrates to he considered, studjing the nutrients as controlling - or

lirniting - factors of production meets two kinds of problerns. The ficst series of problerns is the

observational seale. Most (miero) organisms fOWld here have developped an r.adaptation, to

relatively ephemereal nutrient patches, which may he highly localize.d (Kilham & Heclcy, 1988).

The sarne problem bas hampered the understanding of high-sea oligotrophic zones, with the

additionnai ditliculty of swindJingly low nutrient concentrations (Slawyk et al., 90). The second

series of problems - which îs related to the first one - is the utmost importance of assessing

dynamical (or kinctic) fluxes, and not statie concentrations. As an example of this second point,

photosynthesis bas been shown to increase witrl remineraIization rùle, and not witfl Oltf

concentration (Kolber et al., 1990).

Another kind of problem in defining (primary) production control stems from

physiology. Liebig defined bis "law of minimum"; several authors have studied phytoplankton's

reaetion to one "limiting nutrient" (see i.a. review by Morrison et al., 1987). This 1imiting

nutrient concept, though useful and tertile, may provide a skewed perspective under natura]
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conditions. Between N and P, for instance, the important point is not so much their absolure

concentration, but rather their ratio (Hecky & Kilham, 1988; Da'vies & Sleep, 1989; Quiros,

1990). In another settin& the same N:P ratio has been shawn to control denit:rifYing bacteria

(Twilley & Kemp, 1986). We shall not dwell upon the distinction betwe.en 'lirniting' and

'controlling' factors.

After having tried to show that inorganic nutrients should he unfit as predictors of

production, we must though remind that these small molecules are generally the obligate

intermediary fonn of uptake. Since they also are tllose forms for which sensitive analytica1

methods have developped, they are - also in methodology, which is not a very scientific point of

view - an obligate check-point.

1.4.1. Nitrogen :

Organic nitrogen, under the fonn of anùno-acids (Am Ac), may he uptaken as such by

bacte.na, or they may he split and used either as energy (carbon) source or as nitrogen source

(Hollibaugh & Azam, 1983; Tupas & Koike, 1990). Few studies were able to yield funl proofs

ofaxenic ArnAc uptake by ph}1oplanl..--ton (palenik & More~ 1990). Dissolved orgarùc nitrogen

(OON) in general is often neglected in N budgets, and not soleley because of methodological

problems. lX)N may though be a key c.omponent, as shown by two examples from high-sea

studies: The fust one is the "secondary bloom" developing on DON released by N2-fixing blue

greens (Capone & Fenier, 1992); the second one is the tact that DON re-exsudation is the only

possible explanation for the gap between N03 disappearance and paN synthesis (Eppley &

Renger, 1992).

In sediments - whieh we saw to he mostly anoxie -, annnonium represents about 5 % of

total N (Simon & Kennedy, 1987; GOIl7..a1ez-Prieto et al, 1989). Pore water concentrations

range between 1 and 10 mmol NJ-l (Klurnp & Martens, 1989; Wtlken et al., 1990). Vertic.al

profiles result from simultaneous production and uptake (WJlken et al., 1990). Ammoniwn

production appears ta he - aJso - temperature-sensitive (Hines et al.. 1982; Klump & Martens,

1989). Uptake of NH4 in the sediment is wrought by baeteria and by plant roots. Mangrove

trees extract sorne 250 kg N ha- l .yr-l , according to Hatcher et al. (1989).

Exehanges between water and sediment (not eonsidering N03 reduction) 'val)' widely

(Day et al., 89, p. 112 & 128; Daumas, 1990; Carignan & Lean, 1991). Gardner et al. (1991)

showed an increased NH4 diffusion in salt water, compared to that in freshwater. Under

moderate to null stining, NH4 fluxes range between 10 and 300jhnol N.rn-2.hr-1 in near-shore

waters (Kemp et al., 1990 ; Falcao & Yale. 1990); deep-sea sediments, tor comparison, release
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5-30 plInol N.m-2.hel (Zeitsche~ 1981). After a period ofwind-less weather, a wind event may

propellarge atnOlU1ts of NH4 (ofien mixed with C02 and mS) from SW"ficial sediment and

hypolirnnion into the whole water column. Wc have mentioncd above denitrification a'l the

dùef proc.ess in N cycle. Actual processes are more complicated, especiaDy in poorly

oxygenated environments al the scdiment-water interface (Jorgensen et al., 1984; Downes,

1988). Inter-eonversions between oxidized and reduced tOnns may lead 10 the apparent

nonsense of NH4 reduction into N2 (Goltennan, Wlpubl results).

The l'-.1-I4 fOWld in the water can then originate from sediment, or be produced from

decomposing DOM (Holhoaugh & Azam, 1983). Another source of aquatic NH4 is excretion:

zooplankton produces about Itls NH4 - N.hr""1 pee mg dry-weight (Capblancq, 1990). Fishes

excrete about 50fn01 NH4-N pet' g dry wright pee day (Durbin & Durbin. 1983; Bray et al.,

1986).

In the (mostly oxygenated) waler column, the various forms of nitrogen (NH4, N02,

N03) can coexist. Their interconversion happens mainly through biological processes. Horrigan

et al. (1990) showed th.at fluxes between the various dissolved compartments may he much

higher than uptake into POM. AnYW3Y, l\"H4 may he found in oxygenated waters 10gether \\ith

N03. ln what regards "primary" (autotrophic) production, the "conventionnaI wisdom" was that

NH4 is preferentially uptaken. and thus inhibits N03 uptake (Wheeler & Kokkinakis, 1990). A

particularly fertile notion is that NH4 fuels the "regenerated" production while N03 fuels the

"new" (exportable) production. The "f ratio" descnbes the relative contribution of "new" and

"regenerated" building of POM (Eppley & Koeve., 1990; Dugdale et al, 1990, 1992). While

upwelling areas have typicalfvalues of 0.8 or more, the regeneration-based systems can show

negliglble f values (Harrison, 1990). Such a perception of the importance of "regenerated"

production stems frorn studies of pelagic nitrogen metabolism. It seerns th.at a similarly

fonnalized, explicit view is rather wlUsual in other environments (Caraco et al., 1992).

Biological fixation of atmospheric N2 (be it in the water or in the sediment) may he an

important item in nitrogen budget. Howarth et al. (1988) cite sorne impressive figures, from 1 g

N (m2.yrr1 in sorne sediments to 2 g N (m2.yrtl in mangrove swamps, with an extreme value

of 50-70 g N (m2.yrr1 in cyanophyte mats.

1.4.2. Phosphorus

Since sedimentary OM is mostly detritkal (in ne-.ar-shore or estu3rinC waters al least), its

C/P ratio is very high (WassmaI1I1, 1984; Matson & Brinson, 1990). On whole sediment of

natural environments, available ("exchangeable") P ranges hetween 1 and 20 g P.m-2 (Holdren
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et al., 1977; GWlatîlaka, 1988; Slnke et al., 1990). Proportions of organic P vs inorganic P are

highly variable (De Groot, 1990). As with NH4, higher plants represent the ooly export

(neglecting for now recycled litter) of P : Hatcher et al., (1989) mention a figure of 20 kg

PIha.yr. Phosphate may diffuse through anoxie. se.dirnent (Den Ourle & Gulati, 1988; Sïnke et

al., 1990), although sorne exceptions have been observed (Krom & Berner, 1980). The

traditional view is that phosphate becomes practicaDy sequestered in oxic sediments (Cerco,

1989; Curtis, 1989; Staudinger et al., 1990), but instances are known where aerobic sediment

can act as a P source (Twinch & Peters, 1984; Jensen & Andersen, 1992). In the "classical"

view, microphytobenthos and alga1 mat.~ would then have a twofold blocking action upon P04

diffusion from sediment (Sundback & Granéli. 1988). Moreover, phosphate diffusion back into

water is aIso hindered by S04 (Caraco et al., 1989).

Despite the above hindranc.es, phosphorus can become exported from sediments (Boers

& van Heese, 88). Diffusive P flux toward water is often low: Caraco et al.(1992) estimate

sedirnentary contribution to 0.5-20 rIm01 P.m-2.d-1 in an oligotrophic lake. In other

environments, P flux can reach 2 rnmol.m-2.d-1 (Twinch &. Peters, 1984; Sinke et al., 1990;

Carignan & Lean, 1991; Jensen & Andersen, 1992). This diffusion is controlled by S04, and is

hence more active in salt- or brackwater sediments (Jordan et al., 1991). Adsorption of P04

upon partic1es is a very active, and rapid, process (review by Froelich, 1988; Engle & Samelle,

1990). Combination of P04 with aquatic humics, aIso an active and frequent. process, can have

t'wo opposite effec.ts: Pü4-Ca-humîc.s effectively trap P04. wlule P04-Fe-humic complexes

are weakly sequestering (Francko & Heath, 1983; Francois, 1990; De Haan et al., 1990). The

high reactivity of P04 is also apparent in the various "Oi-ganiC P" compounds, in which P is 

theoretically - not biologically available ; the answer to this problern are phosphatases, the fust

well-studied extracellular enzymes (Chrost et al., 1986).

In european (or westemized) countries, P04 is considered as the major cause of

eutrophication in fresh water systems, with a major rôle of detergents (Goltennan, 1991 a). In

the Third World countries wc saw (mostly West Niica), detergents are not yet phosphate

based, and sewage bas relatively low P04 concentrations. The possible consequences of other

anthropic P04 sources are otlset or rnasked by other contarninants (tluorides in the case of

phosphate rnining).

1.4.3. Potassium

Aquatic biologists, and especially marine ones, never consider K as a possible limiting

nutrimt since it is always present in seawater at concentrations sorne orders of m.1gnitude higher

than N or P. In continental freshwaters, though, Goltennan (1991 a) reminds that

concentrations of practically an necessary elements (among which K) are much )ower than algal
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requirements. Waters \\'ith (relatively) high N and P loads could then he K-limited; this may

happen, for instance, in effluent treatment ponds (Kroon et al., 1989).. Rice fields are another

problem, sinee reaped biomass experts about the same weight of P20S and of K20; this

amounts to about 50 mmol K.m-2.~I,whic.h must be replenishe.d.

1.4.4. Siliciwn

Silicates are found in "average" organic matter at about the same atomic concentration

as N (Day et al., 1989). Diatoms are the aquatic organisms most liable to he Si-limited. River

waters show Siû3 concentrations of 100-500 rm0l.SU-1, while a typical "high" scawater

concentration is 5-20fbnol Si.l-l (Harris, 1986 i.a.). Estuaries are often a sink for Siü3, through

biotie and amotie processes. Sediments act as buffers, rec.eivi.ng partic.ulate silicates (sand grains

or diatoms) and releasing dissolved Siü3 (Schink et al., 1975; Yarnada & d'Elia, 84; Falcao &

Vale, 1990). Sorne Si May be sequestered as opal, under interaction with hunùc acids.

1.4.5. Sulfur :

Sulfur, like K, is practically never limiting in marine or brackish waters (about 40 mmol

S04-S.1-1 in seawater) but might bec.ome limiting in very dilute, N- or P-enriched continental

waters. Sulfur is necessmy; it is found in organic matter al about the concentration of P

(Harris, 1986). Aerobic 35S04 uptake bas been proposed as an alternative to 14C uptake tor

prirnary production measurement (Monheimer, 1978). We have mentioned above that S04

concentration regu1ates (directly or not) both N2 fixation and P04 diffusion.

Sedimentary sulfur cycle is dominated by sulphate reduction, as seen above. Among the

reduced compoWlds thus produced, carbon-bonded S and thiosulfates are recyclable in low

sulphate enwonments (Hordijk et al, 1989; Spratt & Morgan, 1990; Jorgemen, 1990).

Sulfate flux toward the sediment is highIy variable; one of the numerous factors is organic

matter content and decay rate. Typical values are about 1 mmol.m-2.hr"'1 (Kelley et al., 1990).

Reduced organic sulfur compounds released in the water are potential electron donOl"S

ror oxidation by bactefÏa anS ror anoxygenic photosyn1flesis, by sorne C}-anobacteria (Javor-,

1989) and by bacteria (Steenbergen & van den Hoven, 1990; Ovennan et al., 1991).
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1.4.6: Carbon:

Life (on Earth) is based upon carbon, wlùch constitutes about 50 % of üM dry weight

(sec also $ 3.2.2 and 4.1). Availability of inorganic carbon (he if C0:2, HCOJ- or CO)--) is

most often taken for granted. Dissolved inorganic carbon is never limiting in seawater.

Freshwater plants may though he C-limited (see Day et al.• 1989. their fig. 4.12). In Datural

brackish or fresh waters, DIe depletion can become apparent from pH increase in late

aftemoon. An extra supply of DIC can he necessary in high-density microalgal cultures

(Goldman et al., 1981; Moulton et al., 1987).

The recent preoccupations about greenhouse gases have furthered the study of global

carbon cycle(s). Sedirnented POC represents a sink for carbon; there are though sorne leaks,

since CH4 and C02 may find their way back into the 3tmosphere (Carignan & Lean, 1991).

1.5. Ught:

In terrestrial ecosystems, water and nutrients are the mos! evident limiting factors. In

aquatic ecosystems, light was very soon identified as possibly limiting. We shall deal later on

with photoS}nthesis-light mode1s; we shall limit the present chapter to a quick description of

underwater light field.

The laws of underwatCf light propagation are well known (Kirk, 1983; Spïnrad, 1989).

Waters in swamps, mangroves or estuaries are natmally not qualitatively different, but sorne

quantitative aspects are particular. As a whole, these waters are optically deep, although their

frequent shallowness may bring a portion of the bottom into the euphotic zone.

1.5.1. Components oflight attenuation :

In c1ear waters, where absorption is more effective than diffusion, undenvater irradiance

de..creases exponentially with increasing depth.

The simplest - and yet highly effective - description of transparency is Secchi disk depth,

Zs' An altemate way is assessment of underwater irradiance distribution (Jewson et al., 1984).

Vertical anenuation coefficient for downweDing light, 1<.d (using Kirk's notation), is the most

often measured coefficient. It results from the sum of i) K", biological attenuation by

pf1j'1optam.1on ) il) ICp' by totaT suspendeet soli<fs (TSS', mostf}- inorganic} amt Hi) Kw, br
dissolved substances (sec Gallegos et al., 1990, for a general treatment). The relative

importance of each component allows a classification of water types (M:orel & Prieur, 1977;

Kirk, 1983; Hojerslev, 1985; MueDer & Lange, 1989). The relationship between Zs and Kd is

characteristical of a given water type. A very rougit approximation for inland waters is given by
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Zs.Kd = 1.44 (Kirk, 1983, p. 96; see also KoeIÙllgS & Edmoodson, 1991); for oceanic waters,

Balch et al. (1992) arrive at Zs.~ - 1.7.

A: Biological component:

The ratio KlIKd represents the part of incident hight actually lwvested by

phytoplankton. Absorption spectIUm by phytoplankton shows two peaks, a major one at about

450 nm, a secondaIy one al 660 nm (al least in the mast frequent case when chlorophyll a is

the main pigment). Absorption in the PAR range (400-700 nrn) is rough1y proportionnai to

biomass, but chlorophyll-specific attcnuation, Kg, is not reaRy constant. Bannister (1974)

proposed a median value of 0.015 m 2.mg-l. Ulterior work bas shown that Ks is influence<! by

several factors, among which the "package effect" (Berner et al., 1989; Bricaud & Stramski,

1990; Gons & Rijkeboer, 1990; Sathyendranath et al., 1991).

B: Suspended solids

Suspended sediments have predominantly scanering properties (Bannister, 89; Gallegos

et al., 1990).

Transparency, expressed by Zs, is weil correlated with TSS (total suspended solids)

load across severa! orders of magnitude (Nlanheim et al., 1972). A turbid water may contain a

TSS load of 50-200 mg.l-1 (Froelich, 1988; Kirk., 1983), which gives a ~ value of 0.3-0.8 m.

UndeIWater irradiance measurements, though, may give unclear re.sults in vet}' turbid waters.

This is due to high back-scattering diffusion, which leads to high reflectance coefficients (Kirk,

1983; Bannister, 1990 a; Gallegos et al., 90). Determination of actua! available light, and of

euphorie depth, is thus complicaled.

C: Dis.'K>1ved oomponents

Among the optically active dïssolved substances, the most effective are humic

substances (= OO!\'f). Their collective names of "Gelbstotr' or "giJvin" (Kirk, 1983) reflect

their (transmined) yeilowish colour when dilute. The high-DOM forest or bog waters appe.ar

reddish-black (Tan et al., 1990). This is due to a strong absorption in the blue-violet region (and

a still stronger one in the UV range; Bricaud et al., 1981). A highIy-eoloured water contains 10

50 mg lX)C C.I-1 (Pagès & Gade~ 90). Several components of DOM are fluorescent. This

allows a detailed and sensitive assessment ofDOM (Coble et al., 1990; Ferrari & Tassan, 1991;

l\tforan et aI., 199r a).

1.5.2. Remote sensing applications :

Remote sensing generally·demands high investments, but is often cheaper titan tradirionnal
ground !mrveYl;, even on relatively easy ground. Tropical manlheR and mangrove~,
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sensing techniques. \Ve shall lirnit our present scope to passive sensors. Near-lR radiation can

yield reasonably accurate surface temperature values (sec Reynolds et al. (1989) for possible

bias; for results on a global scale, sec Î.3. Strong (1989». What fol1ows is restric.te.d to use. of

visible range radiation.

We have mentioned that high TSS loads cause high reflectances. Turbidity is probably

the water feature which is mûst easily asscssed by remote sensing (Stwm, 1981 ; Undell et al.,

1986; CUITan & Novo, 1988; Stumpf & Pennock, 1989).

The upward radiance of a water body is also modified by bottom reflectance in optically

shallow waters (Mobley, 1989). Exploration is limited ta a water layer of about llKJ

(remembering that light transmission is generally beUer in the blue-green window). This

amoWlts to somewhat less than haIt" Zg. Severa! bathymetric mapping by satellite have heen

carried out, with self-obviously bener results in clear waters (Topliss, 1984; Stumpf & Pennoek,

1989; Ritchie et al., 1990). Inter-tidaI and supra-tidal sediments are also amenable to remote

sensing studies (Zbinden, 1983; Wang & He, 1988).

Assessing ph)10plankton biornass by remote sensing appears a rather simple task in view

of the very clear radiative signal (Kirk, 1983, p.155). There are inde.ed cases of Morel's "type 1"

waters where the clûorophyll signal is unadulterated (Galat & Verdin, 1988), but interferences

are frequent, either by TSS or by DOM (Roesler et al., 1989; Smith et al., 1989; Vertucci .

1989; Ritehie et al., 1990). These interferences could sometimes he resolved: OOM

interference with chl (Carder et al., 1986, 1989). DOM interference on seston (Winters &

Buckley, 1980), interferenc.e of seston ~ith cW (Brown & Sinlpson, 1990). Vertical clû

distribution is sometirnes a supplementary problem in pelagie tropical systems, where chl

maximwn is fOWld at the basis of the thick mL'(ed layer (?\10rel & Berthon, 1989). Such

problem should not arise in the shallow environments envisionned here. Photosynthetic

production can he inferred from remotely-sensed phytoplankton biomass and from the known

[P vs I] relations (see Plan et al., 1988; Platt & Sathyendranath, 1988; Balch et al., 1992).

Anorher, possibly more direct path (al least from a theoretical point of view) relies on

assessrnent of solar-induced fluorescence at 683 nm (Stegman et al.• 1992).

"Terrestrial" systems in marshy areas have also been mapped by remote sensing.

Estimating vegetated surfaces is the most immediate application; a semi-quantitative assessment

is possible with the varions vegetation indic.e.s (Hodgson et al., 1987; Everin & Judd, 1989;

Crippen, 1990; Conner & Brody, 1990; Evans & Hill, 1990). Diftèrentiating vegetations (for

instance Rhizophora / Avicennia / Nypa) is sometirnes possible (Dutrieux et al., 1990), although
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radiative signaIs can he modified by water budget and climatic conditions. GroWld-truth jg

a1ways necessary.

1.6. üxygen :

1.6.1: Oxygen budget

\\t1ùle oxygen does not belong to "nutrients" in the classical sense, the oxygenation

status of a water detem1Înes its ability to support most life forms. 02 concentration results from

the equilibriurn between production and consurnption, since 02 diffusion from air into water is

of small importance, even under wind stirring (falling, 1957; Gat & Shatkay, 1991). Oxygen is

a by-product of photosynthesis; we shan hence have to mention here sorne (pe.rhaps

elementary) points about this process.

Oxvgen sources are rather well detined. Sorne OJ is brought down into the (relatively). - - -

deep sediment layers by macrophyte roots (Yamazaki, 1987; Seitzinger, 1988); this leads al'W

to the "iron-pipe formations" around Avicennia roots (1vlarius, 1985; Thibodeau & Nickerson,

1986). The sole significant Û2 source in the water is then photosynthesis, bath in the

illuminated layers of the water colwnn and on the bottom (Lindeboom et al., 1985; Jorgensen

& DesMarais, 1990).

Photosynthetic Û2 production, representing "gross" photosynthesis, i.s a function of

irradiance, at least in the simple case of an homogeneous water column. Several mathematical

expressions have been proposed (see i.a. Jassby & Platt, 1976~ Kirk. 1983). These various

fonns are in fact of equal theoretical value when the actual accuracy of experimental data is

considered (Golterman, 1991 a; Balch et al., 1992). The main point for our concem is that

gross 02 production, A, decreases (along with irradiance) at increasing optical depth. Vertically

integrated production (RzA) is thus a function of attenuation coefficient ~; Talling's integral

(1957) is the best known: RL:A == (Amax!Kd>./n (2!u'Ik) (see Balch et al., 1992, for compared

performane-es ofvarious models of RzA). Since gross production, A, is roughly proportional to

phytoplankton biomass B (often estirnated by ch1orophyll concentration), and since B is often

the main component of 1Cd. the homeostatic properties of phytoplankton gross production are

apparent in the above integral.

Net oxygen production represents the difference betWeetl A and respitatioft (R). At the

level of the whole water column, the decisive factor is the difference «RzRtA) - (RzRtR»

between integrals over time and depth. "Classical" aquatic communities are based upon a

predominant phytoplanktonic biomass_ This means more OT less implicitly a Indy eutrophie

system, where prirruuy producers are not nutrient-limited and where (micro)heterotrophs are

negligible. Anyway, phytoplankton respiration is oiten considered the main part of oxygen
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oonsWl1ptio~ and bas been wen studied. Vle shall oIlly mention the notion of photo-respiration

(sec Grande ct al, 1989). Beside this rather special efJect, phytoplankton respiration ma}' he

roughly estimated al about 1110 of Amax (Gant: 1974 a; Talling, 1957; Grande et al., 1989;

Grobbelaar, 1990; Grobbelaar et al., 1990). The other c.omponents of the aquatie (pelagie)

community must aIso he cOlmted in the total 02 consumption: aerobic bacteria (Schwaerter et

al., 1988; Cole et al., 1989; King & Palmer, 1989; Steenbergen & van den Hoven, 1990),

zooplankton and fishcs (sec Mazurnder ct al., 1990 a, b for wholc column 02 budget). In most

natural waters, net production can he positive or negative, but often hovers around zero. In a

symetrical way, carbon balance - at various depths or on the whole col\mm - may be positive or

negativc (Hcssen et al., 1990 ; Kelley et al., 1990; Jahnke et al., 1990). A rather special case is

fmUId in the man-made "High Rate Algal Ponds", in which bacterial respiration is a hefty

proportion of total 02 c.onsumption (see î.a. Kroon et al-, 1989).

We might conclude about 02 budget with two remarks. Talling's modeL as furthered by

Vollenweider (1970), bas been highly successful (Ganf & Viner, 1973; Ganf, 1974; Jewson,

1976; Platt, 1989). Most of thcse studies, though, were camed out on water bodies where

bottom influence was negligible against the various processes in the water itself. We saw above

($ 1.3.2) that sedirnentaI)' 02 uptake (or 02 production by bentlùc microalgae) may be

important in the overall 02 budget Another point must he recalled: In "classical" systems, the

ratio of eutrophie depth to mi~ depth is a reasonable pre-dictor of net integrated production

(Guildford et al, 1987; Smetacek & Passow, 1990, i.a.). This is true oIlly when photosynthesis

is the chiefprocess. We shal1 sec below ($ 2.3) sorne other cases.

1.6.2: Oxygen and biology

\Ve may note that 02 solubility decreases with increasing ternperature, but mainly with

increasing salinity (Weiss, 1970; KinsIna.n et al., 1974; Geddes, 1975; Sherwood et al., 1991).

Since 02 uptake by haemoglobin depends upon partial presure, a lowered 02 content at

constant P02 should not he hannful 10 fishes. But increased temperature heightens metabolic

rates against impoverished 02 reserves, while increased salinity heightens osmoregulatory

expenditure (wc are aluding here 10 actual cases, with T > 30"C and 40 < S < 80 gJ-1 ;Pagès et

al.) 1981). In less harsh conditions, Blaber (1985) did observe synergistic lethal effects of

temperature and salini1y onjuvenile fishes.

Benthic fauna is often lirnited by 02 content (sec review on benthic macrofauna in

rnuds, by Lopez, 1988). Its biomass is about 5-10 g dry weight m-2 (see § 2.2). This

supplementary oxygen consumption (above that of the sediment îtself) is hence a not neg1iglble
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item in 02 budget. Biotwbation increases 02 col18wnption, by enhancing scdimcnt-water

exchanges (see i.a. Baudinet et al., 1990).

We have overflown anaerobic processes in the sediment; we shan leave untouched the

vast specialized domain of anac:robic, possibly chemiotrophic, bacteria (sec sorne references in

Javor, 1989, and in Sweerts, 1990).

2. Functioning and role of near-shore waters:

We have reviewed separately severa! physical and chenùca! factors which nùght

characterize near shore, shallow, organic.-ric.h waters. We shan now consider sorne pec.uliarities

of the resulting food-webs of these environments, and their possible effects upon neighbouring

systems.

2.1. Detrital food webs :

2.1.1. Lit1er decornposition processes :

We have seen aoove that organic matter (OM) gives off nutrients and en<.'T&Y, Ieading to

heterotroph biomass and, indirectly, to autotrophic growth. We consider here the "practical"

aspects of OM decay.

Most published results about OM decomposition rate are wcU described by first order

kinetics with one homogeneous compartment (Bianchi & Findlay, 1991). This is true for

natural DOM (Westrich & Berner, 1984; Kaplan et al, 1980; see also nMew in Pagès &

Gade!, 1990) and for naturaI PO?vl or detritus (Wetzel & ?v1anny, 1972; Hart & Howmiller,

1975; De La Cruz & Post, 1977; Anderson, 1987; Blackburn, 1987). Sorne authors, though,

iden1ify a "refractory" compartment, especiaJly in POM decay studies (Robertson, 1988 a;

Gonzalez-Farias & Mee, 1988). The "multiple G model" considers severa! compartments in

(sedirnentary) organic matter (Burdige, 1991; Hansen & Blackbwn, 1991); in the (too

frequent) case of sorne scattering of experirnental resuJts, however, tlùs model is equivalent to a

refractory compartmcnt (Carignan &. Lean, 199f). We mOlY re~ as a Mere &tai1 dlat a

system of two compartments, each with its cxponential decrease, is analogous to Simpson &

Dickey's model (in Cullen et al, 1992) for light attenuation in water. Decomposition rate of the

more labile components is around 0.1 - 0.05 da)""'1 for mangrove liner (Robertson, 1988 a).

11ùs rapid initial decay bas been ascribed to leaching of DOM from litter in most cases (Benner

et al., 1986; Moran & Hodson, 1990 b). In sorne other cases, weight loss was due to direct
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attack and llptake, \\Iithom any Da~1 intemlediary step (Wilson et al., 1986; fig. 7.8 in Day et

al., 1989). Decomposition rate for a given OM batch decreases with time, down ta values of

0.01 - 0.001 day-l (se Hobbie 1988, p. 752). On the whole, tum-over tirnes can thus he

c.omprised between 2 months (Twilley et al., 1986) and more than 8 months (Wiegert &

Murphy, 1970; Day et al, 1987 a).

Degradation rate is govemed by several factors, which we may order into "intrinsic"

ones, "environmental" ones, and "extrinsic" ones :

- we label as "inIrinsie" factors nature, origin and composition of detritus. Il bas been

long known in agriculture that rnanure - which is a fonn of litter - decomposes best at the

"right" C/N ratio. In the same way, high C/N or OP ratios lead to low decomposition rates

(Benner et al., 1985; Robertson, 1988 a; Matson & Brinson, 1990). Bianchi & Findlay (1991)

tind decay rates sinking from 0.03 to 0.002 d-1 tor increased C/N ratio. A rernarkable tact is

the increase of ON during decomposition of POM (sec below), due perhaps to N-scavenging

by IlÙcrobes but mostly 10 high carbon losses. In this instance, we may notice that sorne caution

is required when using ratios, as stressed by Bianchi & Findlay (1991; p. 66). Lignins are rather

refractory to biological attack ().:foran & Hodson, 1989) and can hence he good markers of

terrestrial organic matter (Gardner & 11enze~ 1974; Moran et al., 1991 a, b). Tannins (and

phenols in general) are often considered to he bath refractory and inhibitory to (bac.teriaI) attack

(Günzalez-Farias & Mee, 1988). As a whole, OM of terrestrial origin, with higher ON ratios

and more lignins, will be more refractory than "aquatic" aM (pralù et al.. 1980). As we

mentioned above, diagenesis leads to a progressive alteration of bulk DM composition

(Burdige, 1991; Cowie & Hedges, 1992; Burdige et al., 1992)

- the "enviro~ factors may roughly he swnmed up by water availability. Higher

humidity leads to higher decomposition rate in rain forests (Wiegert & M:urphy, 1970) as well

as in Mojave desert (Strojan et al., 1987). Rain 8e<:.elerates the decay of standing dead reeds

(NeweD et al., 1985). In mangroves, high submersion frequency also promotes liner decay

(Twilley et al., 1986; Robertson, 1988 a; Lee, 1989 a,b). Conversely, high salinities reduce

liner decornposition in mangroves (Day et al., 1987 a; Snedaker, 1989) and DOM

decomposition in salterns (lavor, 1989). Water content also controls - however remotely 

oxygen avaiIaf>iIity. Anaerof)ic processes flaw oftcn been slrown to CODSen'-e- carbort; being

mllch slower than aerobic decomposition processes (Kepkay & Anderson, 1985; Benner et al.,

1985, 1991). These latter are more efficient in tenns ofyield, either for ATP or for growth, at

least from in vitro gtudies (Pirt, 1965; Hadjipetrou & Stouthamer, 1965; Oxenburgh &

Snoswell, 1970; Payne, 1972). This lower efficiency of anaerobic bacterial processes would

then lead to a higher consumption of substrate (Lee, 1992). But the very tact of a fundamental
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difference between mûe and anoxie rates bas been disputed when natura! environments and

populations are considered (Lee, ibid.). Hansen & Blackburn (1991) found unchanging

hydrolysis rates of PO?\l, while DÙneralization of the released DOM was lower under anaerobic

conditions.
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Fig. 2.1.1: Sorne examples of deoomposition rates of plant material: Percent remaining dry
weight as a function of time for Rhizophora leaves under dry L_) and wet (- - -) conditions,
ailer Day et al. (1989) , and foc Spartina leaves with (0) and ~ithout (0) oxygen, after Valiela
(1984).

Most of the above results stel from (more or less in "itro) experiments. An interesting

possibility of artefact bas been noticed by Gessner (1991), who found that dried (i.e. artificially

go) leaves are prone to a much higher leaclùng than intact ones.

...WC: 0f'ÔeF' as. ..atI'iIIMt' the"Variœs.~atv.m. adioo.s. dw610 valiu~ orgilOisms.

Bacterial (or miCfobial) action would appear of paramoWlt importance, as a fust and obligatory

step in aM decomposition (see partial review in Moran & Hodson, 1990 b; Couch & 1vIeyer,

1992;). Weight loss of litter is not due solely to microbial attack, though; rv10ran & Hodson

(1989) find that measured bacterial production accounts for only half the observed weight loss

of Juncus litter. Occurence and role of exo-enzymes appear larger than previously admitted

(Chrost et al, 1986; Wetzel, 1991). Colonization of detritus by rnicro-organisms results in a
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rnarked decrease in C/N ratio, whatever the precise causes (1vloran & Hodson, 1989). 'This

"conditioning" improves litter digestibility (Schroeder, 1987; Bowen, 1987; Crosby et al.,

1990), although N-enrichment apparently bas no effeet per se (Schroeder, 1987). Mechanical

comminution oc.curs at the next trophic levels, during feeding by small invertebrates of severa!

phyla (Valiela, 1984; Warwick, 1987). Shredders in general markeclly increase üM recycling

(Cummins, 1988; Moran & Hodson, 1989). Small invertebrates accelerate pigment

decomposition (Bianchi et al., 1988, 1991) and export of fine POM (Wallace et al., 1991). At a

still higher trophic leveL various crabs are very active ; Hatcher et al. (1989) ascribe them up to

80 % of litter disappearance; Lee (1989 b) offers a more cautious estiniate of 30 % . At the

trophic level of fishes, importance of detritivory is (expectably) variable. Detritus may constitute

a hefty proportion of the diet in juvenile fishes (Harrigan et al., 1989; Ahlgren, 1990 a,b;

Davanzo & Valiela, 1990). Sorne opportunistic fishes, like the "tilapias", may tum to exclusive

detritivory (Moriarty & Pullin, 1987;.Edwards, 1988; Pailly et al., 1988). Actual detritus

utilization may he low in sorne species (Deegan et al.. 1990), also in relation with their

enzymatic equipmenl Valiela (1984) cites a peak value of 40 % utilization of detritus, while

~Iann (1988, p. 924) finds a yield of 30 % for a whole detrital food chain.

2.1.2. Detrital food webs and nlicrobialloop :

Near-shore waters, estuaries or mangrove waters in an unpolluted state recewe a

relatively low amount ofNü3 or P04, despite occasionnaI tides, while organic matter and NH4

(either nearly autochthonous or really allochthonous) are abundant. UndetWater light levels are

often low owing to high anenuation, so that photosynthesis in the water tends to be - also - light

limited. These conditions explain how recycling processes are predominant .

The classical food chain is rather linear, with ph)10plankton producing organic matter

and bacteria just cleaning up after fishes. With a growing number of studies showing a

quantitative gap between (heterotropruc) pre.dator biomass (and uptake) and primary

production, a fust answer was given by pico-plankton (see review by Stockner, 1988). DetritaJ

fOod webs had been analyzed, but their scope, or their expIanative value, was mostly lirnited to

particulate (bowever fine) detritus and accompanying bacteria (Odum & Heald, 1975; Fenchel

& Jorgensen, 1977; ; sec review by :Mann, 1988; Moran & Hodson, 1989). Riemann et al.

(f99U} cire Pomero.r (l97'4') as the- pioneeF et the "ftli.croow toop'~ ~~ foi

production based on DOM (Jumars et al., 1989; Moran & Hodson, 1989). In this shunt,

autotrophic (photosynthetic) processes contribute "only" 02, and most biomass transfer is

heterotrophice Bacteria growing upon DOM are grazed by micro-heterotrophs (nano- and

micro-flagellates), themselves grazed upon by ciliates (see La. McManus & Fuhrman, 1986;

Bloem & Bàr-Gilissen, 1989~ Bennett et al., 1990; Hadas et al., 1990; Van Wamheke &
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Bianchi, 1990). This mechanism and the more classical detrital food-webs fit nicely togcther

into the rather peculiar en"ironrnents we are dealing with.

Bacteria pby a eentral roie in the "rnicrobial loop". They also do so Ù1 the parallel

concept of "/ ratio" (see also $ 2.3). To the best of our knowledge, this "f ratio" idea was

initiaDy oriented towards free-water (and high-sea) systems near 02 saturation Œppley &

Renger, 1992 ia). In near-shore waters, the substrate cornes from a (relatively) low-02

environment and resuIts inlo a high-02 one, since NH4 (or DOM) fuels photosynthesis (see fig.

1 in Santschi, 1988).

The "microbial 100p", as weil as the picoplankton-based webs of oligotrophic waters,

functions with srnall-sized organisms (Fumas et al., 1986). Size distribution has hem a fruirfl.ll

theme in studies of pelagie autotropruc organisrns sorne twenty yeats ago (Sheldon & Parsons,

1967: Banse. 1976; Cousin. in~ 1988) and has had a continued suecess (Venrick et al.•

1977; Fumas, 1983 a,b, 1987; Venrick et al., 1987; Suttle et al, 1990). Several studies show

that size spectrum is a valuahle indicator of "metabolic rate" for whole portions of food-webs

(Sheldon et aL, 1986; Yentsch & Phinney, 1989; Nielsen & Sand-Jensen, 1990; Suttle I.':t al.,

1990; Thingstad & Sakshaug. 1990), and especially for detrital ones (Kerr & Ryder, 1988;

M.azurnder et al., 1990 a,b) although sorne caution may he necessaI)' (Lehman, 1988).

2.2: Yieldc;; and rates: figures and predîctors:

Although "yield" often means "barvestable biornass production", i.e. seen from a human

(and utilitarian) point of view, we shaU briefly review the Iower trophic levels of aquatic

systems. Despite the importance of recycling, wlùch we just stressed, and the subsequent feed

back loops in the food web, we shal1 adopt below a 'very "classica1" compartmentation along the

!inear hierarchy typical of an autotroph-based food chain..

2.2.1: Bacteria:

Methods for assessing bacterial biomass have irnproved a relatively long rime ago

(Gwynfryn, 1974; see Moriarty, 1987) but sorne problerns remain (Ward & al., 1990).

Viability, among others, may remain an unanswered" quesfion (B'ergh et al., 1989). Bacterial

abundance is still often given as cell number, while bacterial size is highly variable, a tolerable

approximation would he about 2.10-14 g C per eeU (Couch & Meyer, 1992; Kamer & HendI.,

1992). Figures for absolute bacterial biomass vary widely; a magninlde order c-ould he between

1 and lOOtlg C.1-1, depending on the environment (Lind & Davalos==Lind, 1991; Eppley et al.,

1992). Bacteria may amount to between 1 % and 10 % of phytoplancton biomass in eutrophie
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waters (Cho & Azanl, 1988), but can constitute up to 50 % of particulate organîc rutrogen in

oligotrophic waters (Epp1ey et al., 1992). S~'eI'al authors find parallel distributions of bacterial

abwlClance and of chlorophyll (Bird & KalfI, 1984; M:alone & Ducklow, 1990), while others

see no relation between OOth compartrnents, owing to anochthonous imports (Findlay et aL,

1991). Anyway, a correlation does not explain the fimctioning of sucb complex systems, except

in sorne "evident" cases (Robarts, 1988). Sorokin (1981) stressed the basic difierence between

biomass and actual production (at the bacteriallevel also). The 3H-tbymidine method -among

others- has though facilitated the task of assessing bacterial biomass production (Fuhnnan et al.,

86). Severa! studies have quantified bacterial activity in various environments (Fwmuan &

Azam, 1980; \Vtlliarn.s, 1981 a; Azam et al., 1983; Ducklow & Hill, 1985; Servais et aI., 1985;

Baker & Farr, 1987; Bell & Ahlgren, 1987; .'\longi, 1988; Horrigan et al., 1988; Schwaerter

et al., 1988; Fuhrman et aL, 1989; Bloem et aL, 1989 a; Pett, 1989). The actual contribution of

bacteria to upper-levels metabolism is still sometirnes controversi.aJ (Moriarty & Pullin, 1987;

Billen et al., 1990). Bacterial growth yield is naturally highly variable (see Pirt, 1965). An

average value of 30 ~o bas been fOWld in severa! instances (Sorokin, 1981; Meyer et aL, 1987),

but yield is controlled by substrate nature. Humic DOC alIows a yield of about 0.2 % (Leif &

rv1ayer, 1991) while DOM exsuded by healthy phytoplank1on supports 50 % growth }ield

(Bailles & Pace, 1991); aromatic hydrocarbons supported yields of 10-14 % in cultures (Beller

et al., 1992).

Bacterial biomass may he controlled (like that of phytoplankton) either through "bottom

up" or through "top-down" processes. On one band, axenic cultures are obviously controlled by

substrate; this led 10 the well-known uptake (or growth) kinetics of Monod and of Droop

(among the best known; see MolTÎSon et al., 1987, for a review). On the other band, natural

bacterial populations may or may not he substrate-limited. These natural populations often have

high production rates, 0\\'Ïng to intense grazing. This top-down control bas been been more

often deduced than proven, but remains a plausible and effective control mechanism for

baeteriaJ biomass (pernie et al., 1990; Beminger et al., 1991; King et aJ., 1991). This again

examplifies the distinction (sec above) between "static" biomass and "kinetic" production.

We have been dealing above with free-water bacteria (attached or free). Sedimentary

bacterial biornass is often considered as an integral part of the said sediment. Sorokin (1981)

gives a range of r to 5' mg fJ\-'f' g ofsediment. Severaf':mtho.r.f b2rre-~dy a&seS6ed ~terial

biomass, either through ATP detennination (Chrïstensen & Devo~ 1980; Craven et al., 1986)

or by other methods, and arrive at comparable magnitude orders (Bell & Ahlgren, 1987;

Moriarty et al, 1991). Bacterial biomass may accumulate in anoxie se-diments; sinc.e bacterial

markers amount to 2-5 % of OM (Lee, 1992), the bulk of bacterial substance could amount to

a very high proportion of sedimentary organic matter. Detennination of bacterial production in
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sediments is somewhat biased by the necessary use of slurries, and not of undisturbed cores

(Tibbles et al., 1992).

As a last detail, we may notice that we have voluntarily skipped the field of aquatic

fungi, molds and actinomyc.etes, which we have implkitly included on a functionnal level.

These organisms may be highly active in POM decomposition (especially on "exotic" or toxic

Molecules), although they rnay also he surprisingly limited (Benner et al., 1984). In the water

itself, both their low abundance and their slow growth make thern negligible against bacteria.

2.2.2 : Primary production:

\Vlme ph}1oplankton is not always the main source of particulate organic lTh1tter, ifs role

must though be recaDe.d. Its biomass is routinely estimated in chiorophyll, although carbon is the

more general "currency". The ratios C/NIP/chllATP often reflect nutritional status; among the

numerous recent papers, sec Minster & Boulahdid, 1987: Kana & Glibert. 1987; Guildford et

al., 1987; Davies, 1988; Balley-Watts, 1988; Rivkin, 1989; Thompson et al., 1989; Prairie et

al., 1989; Prairie, 1989; Nielsen & Sand-Jensen, 1990). A medium-range phytoplank1on

biofilaSS is about 15 mg c1ù. m-3 in estuarine waters. White production is highly variable ( S

1.5.2), an ~verage figure for net production would he about 1 g C. m-2.d-1, amounting to sorne

250 g C. m-2.)T""1 (Day et aI., 1989, p. 153). Photosynthetic yield (ratio of net, harvestable

biomass to available solar energy) may reac.h 8-9 % in intensive mic.roalgal cultures (Sukenik et

al., 1987; Moulton et al., 1987; Vonshak & Richmond, 1988; Hartig et al., 1988; Fontes et al.,

1989; Grobbelaar et al., 1990). Yields of about 4 % are still in the high range tor natural waters

with dominant photosynthetic biomass (Weidemann & Bannister, 1986; Barbosa et al., 1989).

We have seen (§ 1.5.2) that quantum yield is also control1ed by nutrient availability, or by

recycling rate. In (artificial) fish ponds, energy may he added as inorganic fertilizers or as

organie detritus. These additions represent an increase in 02 dernand, and ~ill he rate-limited

by oxygenation capacity of the pond (!vIoriarty, 1987).

Specifie attenuation also decrases slightly at lùgh biomass concentrations, indieating an

inereasing scattering of light by ceIls. Sorne of the highest biomasses, obseIVed in intensive

micro-aIgae cultures, are about 20 mg chU-l, representing about 300 mg CJ-l (Boussiba et al.,

1988). Vertically integrated biomasses seldom exceed about 800 mg chl.m2 (Agusti et al.,

1990). The ratio KbJ'Kd is in rough agreement with the pflotosynthetic ,iefd' orthe~'ater f>ody

eonsidered (Lemoalle , 1983; Bailey-Watts, 1988). Another effective parameter for primary

production "prediction" is given by the optical depth of the mi.'{ed layer, represented by the ratio

Zeu/Zmïx (Kirk, 1983; Keller, 1988; MueDer & Lange, 1989; Smetacek & Passow, 1990;

Grobbelaar, 1990).We have mentioned that light often limits photosynthesis; this explains how

the ratio KlIKd can he a good predictor of global photoS)11thetic yïeld (Lemoalle, 83). In the
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same vern, the ratio Zeu/Zmix correlates \\'ith productivity (Wofsy,83; Harris, 86 (p.239); Gons

& Rijkeboer, 90; Legendre, 90).

Prediction of primaI}' produc.tion may be tricky; deterministic models have been tried,

either for small systems or fOr whole upwelling zones, with heavy reliance upon nutrient supply

and uptalce rates ("bottom-up" control) and consideration of light limitation (Hecky & Kilham,

1988; Chalup & Laws, 1990; Bannister, 1990 b). For whole lakcs, an ample body of literature

has shown a strong correlation hetween production and P04 load (V'ollenweider, 1976; but see

Davies, 1988). Conversely, "top-down" control may he found, where lùgh gra7Jng rate lead~

(directly or not) to high recycling and production (Strom & Welschmeyer, 1991).

2.2.3: Benthos:

We are considering here "benthos" Ù1 the more usuaI perspective of the organisms living

on (or in) the bottom. The benthic organisms in the mangrove (stricly speaking epibionts) will

he dealt with in S 3.4.

Benthos in general represents an important component in shallow waters. Meiobenthos

may represent 50-200 g.m-2 (Sorokin, 1981). Macrobenthos biomass (as alre-ady mentioned) is

in the range of 5-10 g (AFDW).m-l . but may reach about 20=30 g.m-l on estuarine heaches

(table 9.2 in Day et al, 1989) In Lake Chad, molluscs alone reach 4 g AFDW.m-2 (one of the

highest figures according to Lowe-McConnell, 1987(p. 60», with a yearly production of 18 g

AFDW.m-2 (Carmouze et al., 1983). Day et al. (1989) cite biomasses of 2-17 g C.m-l , with

productions of 1-15 g C.m-2.yr'"1 for epifauna, macro-infauna and meiofauna (see their tables

9.3 (p. 361) and 9.5). In a tropical brackish lagoon, Edwards (1978) gives a biomass of up to

50 g AFDW.m-2 for infauna, with up to 30 g l\FDW.m-l for the sole Cerithidae.

Bioturbation is an aspe.ct which is difficult to asse-ss. Its effect upon both water (through

increased exchanges) and soil may he important (pornroy et al., 1983). Mangrove crabs are an

outstanding example of it (T.J. Smith et al., 1991).

2.2.4: Fishes:

From a strictly applied -if not materialistic- viewpoint, fish yield is the ultimate

characteristic of a water body. Under naturai conditions, fish biomass ("standing crop") ranges

between 300 and 1000 kg.ha-1 (Lowe-Mc.Connell, 1987). Also under natural conditions, a low

figure for yearly fish production is between 10 and 50 kg.ha-1 , corresponding to about 0.1-1.0

g C.m-2 .)T""1 (Bayley, 1988). In sub-tropical and tropical estuaries, Day et al. (1989, table 10.3)
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give a range of 10=70 g .m-2.yr-1 (i.e. 100=700 kg.ha-1). Highest fish yields in managed

systems reach about 1000 kg.ha-1 (Lowe-?\"1cConnell, 1987; Day et aL, 1989), and intensive

shrimp cultures have reached 3 tonnes per ha.

Prediction offish yield is often considered one of the main aims of funno(oceano)logicaI

studies, and the quest tOr "predictorslt has long been active (Quiros, 1990). We shall review

sorne of these, which may be divided between "extemal" factors, such as rnorphometry, and

"internal" factors of fimctioning.

A: Morphometry and "extemal lf predictors:

Morphometry has been correlated with production in lakes (Rawson, 1955). Depth in

itself, and especially optical depth, bas a direct effect upon primary production. We have seen

that the ratio of mixing depth to euphotie depth is a good predictor (all other factors being

equal) of integrated photosynthesis. ShaIlowness will arnplify atmospherie effects, among which

nutrient inputs by rain (paerl et al., 1990) and, in the near-shore waters, aoolian liner transport

(Cole et al., 1990). Shallow water bodies are sensitive to wind-induced turbulence, which may

affect the whole water column (Cannack et al., 1986; Simon, 1989; Wainright, 1990).

Resuspension of sediments - and of settled microorganisms - is relatively frequent, and

important (Ganf, 1974; De Jonge & van den Bergs, 1987). Morphametry contrais fetcit, and

hence the general characteristics and behaviour of sediments (petticrew & Ka1ff, 1991). Share

line developrnent (Bailey-Watts & Kirika, 19871 another morphometric teature, a1so may have

an effect upon over-all yield, especially with vegetated shores. Riparian forested wetlands have

a positive action on fish yield (Lugo et al., 1988).

Depth and salinity are two of the most cvident characteristics of a water body. Morpho

edaphic index ~1EI)was pioneered by Schlesinger & Regier (1982) as an indicator of fish yield

in temperate lakes (see Kerr & Ryder, 1988, for a review; Quiros, 1990). MEl has aIso bem

shown adequate for photosynthetic biomass prediction in tropical lakes (Lemoalle, 1983), and

tor benthic macrointauna (Nixon, 1988). But MEl can ooly compare comparable thïngs, and

shows a strong effect of latitude (Schneider & Haedrich, 1989; Downing et al., 199Ü). TI1is

index has recently come under cross-tire from several directions. Theoretical aspects undennine

t1l.e statistics (Jackson et ar., f99O; Rempet c!': Coft')y, 1991'), ~Me the' implicit relation between

salinity (or conductivity) and nutrients is not always verJied (Chow-Fraser, 1991). We are

aware that ?\,ffiI, and rnast of the above factors, have been employed to predict fish yield in

lakes; there is no proof (at the best of our knowledge) that they might apply ta estuarine or

near-shore waters.
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B: FW1CtiOning and "internal" predictors:

Primary production emerges as a good predictor offish yield (Nixon, 1988). But we have seen

that i) phytoplankton may not he the main constituent of fish diet and ii) photosynthesis can be

controUed by the same regeneration processes that govem the whole food web. Whatever the

pathway(s), primary production does appear correlated with fish yield (Day et al., 1989 (sec fig.

2.2.4); Downing et al., 1990). We have mentioned above that size spectrurn is a good predictor

of food-web yield (Harris ,1986, p. 283; Mazurnder et al., 1990 a,b). Recycling rate controIs

the fluxes, if not the biomasses (Harris, 1986, p. 84; Hanison, 1990; revîew by Capblancq,

1990; Eppley & Renger, 1992; Dugdale et al., 1992). Supplementary physical energy (tides,

etc.) added trom an extemal source appears to he "assimilated" by whole biologieaI systems

(Barber & Smith, 1981; Day et al., 1989; Margalef, 1989), although reduc(~d mixing leads to

phytoplank1on blooms (Cloern, 1987, 1991).
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Fig. 2.2.4.: Relationship between fisheries }ield and primary production (in g C.(m2.}T)_l) in
coastal and estuarine waters, after Day et al., 1989. Fisheries production given in two scales: the
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right-band one in g.ha-1 (from Day et al., ibid.), the left-hand one in g C.m-2, for comparison
with primaly production. Dashed line is a mere trend indication.

2.3: The many faces of "production"

Defining the "productivity" of near-shore waters meets several theoretical problerns,

owing 10 the intricate tOodwebs tound there.

One point is the juxtaposition of heterotrophic and autotrophic processes. Estuaries have

been called "heterotroplùc", since they import orgaruc matter (Hopkinson, 1985; Dollar et al.,

1991; Findlay et al., 1991; Moran et al., 1991 b; Smith et al., 1991). In dIe particular case of

mangroves, net mangrove (terrestrial) production is much higher than aquatic photosynthesis

(Clough & Attiwil, 1975; Ong et al., 1984) For nc~ar-shore freshwater margins, Wetzel (1990)

argues that terrestrial OM is not "allochthonous", since the system should comprise both water

and riparian vegetation. Anyway. in systems with high organic !luxes. Quinones & Platt (1991)

show that/ratio and netigross ratio become uncoupled. A negative net production (classically in

terms of oxygen budget) is compatible with biomass exports.

A serond point is the role of recycling processes effected by heterotrophs. Bacterial

activity is only one side of this, since predation ("grazing") seems to be of paramoWlt

importance for actual recycling (Jumars et al., 1989; Andersen & Hessen, 1991). This leads to

two further aspects. The fust one is the quantitative importance of the microblal loop in the

overall energy budget (lind & Davalos-Lind. 1991). The second one is the much-debated

question ofbottom-up vs top-down control. Sterner (1990) and Sterner et al. (1992) show that

both co-exist for phytoplankton; McQueen et al. (1986) showed that the importance of both

varies according to the troplùc level. Bacterial biomass may aIso be controlled from both

directions (Berninger et al., 1991). In what regards bottom-up contro~ severa! studies have

shown that the (static) concentration of a "limiting" substance is much less important than fllL"{es

and ratios (Davies & Sleep, 1989; Prairie et a1.. 1989; Stemer, 1990).

A third point is the scale of observation. On a spatial seale. we have seen that processes

al the interfaces, for instance, are seen in a different light when using micro-electrodes which

work practicaily at the scale of micro-organisms. In what regards the time scale, important

transient processes may be missed (Horrigan et al, 1990), 50 that repeated sampling is

sometimes obligatol}' (!\1ontoY3 et al., 1990). On a combined time-space scale, Horrigan et al.

(1990) had to admit "circuitous 'food chain' processes" instead of "immedÏate (albeit bio

catalized) transfonnations" to explain highly aetive nitrogen fluxes between dissolved pools.

Quantifying fluxes in near-shore waters then appears particularly difficult, since ~ese

seem.ingJy eutroplùc environments often share many characteristics of oligotroplùc waters.
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Anyway, after having highlighted these problems, we sha11 try to describe two particular

en"ironrnents, the mangroves and the freshwater Phragmites swamps.

3. Mangroves:

3.1: General teatures:

Since our viewpoint is an hydrobiologica! one, we shall not try to review the extensive

literature describing the \Vide variety of worla mangroves from a botanical perpective; severa!

detailed studies exist (Macnae, 1968; Chapman, 1976; see review by Rollet, 1981; Tomlinson,

1986). We shalllimit ourselves to a sketchy description of the main featmes of mangroves, with

sorne ane.c.dotical personal observations from West Mrica.

Mangroves, sucb as existing now, are relatively modem. The Kff boundary, 65.106

year ago, would fit nicely (Wolfe, 1990), although Nypa exisled al the end of the CreL.1cean

(Rao, 1987; Tomlinson, 1986). Pelliciera and Rhizophora came later on, at the Eocene (30.

106 year, Tomlinson, 1986). Analogous fomlations existed as early as the Carboniferous, while

swamp forests are present in comparable modern enviromnents (Conner & Brady, 1990).

Present-day mangroves are found along the coasts of the inter-tropical belt, in the tid.al zone

(Longhurst & Pauly, 1987, p. 23-26; sec also Day et aL, 1989, p. 192). Without entering the

fray about the climacic (or not) character of mangroves (Uibrig, 1983 i.a.), we may recall that,

according to Tomlinson (1986), mangroves are r-selective in tin<ling their habitat. but are K

selective in maintaining n.
The highest specifie diversity in mangroves is found in South-East Asia (Chapman,

1976; TomlinsoD., 1986), whilc, West-African mangroves are much simpler (see bdow). Wc

sh.al1 not risk a botanica1 description, but sorne simplistic morphological characters, taken from

Chapman (1976; "C") and from Tomlinson (1986; "T"), are worth a reminder:
-----------

morphological characters of the main tree genera
--------------_.---------------------

character
aerial roots:

rounded
tlanged

buttresses
pnemitatopftotes

thin, "pencil-like"
large and c.oarse
bulbous end
knee-Jike
sharp ridge

genus

Rhizophora. Bruguiera (T)
Ceriops (T)

Heritiera (T)
te}
Avicennia
Sonneratia
Xylocarpus-mekongensis. Laguncularia ("')
Bruguiera, Lumnitzera
Xylocarpus granatum. Heritiera

------------------------------------------------------------------------------------------------------------
(.) pnewnatophores ofLaguncularia are not always apparent, aecording to Tomlinson
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A peculiar trait of mangroves, whereever in the world, is their zonation parallcl to the

water edge. A typical West-Afiican profile (fig. 3.1) shows two tree sorts. In the intertidal

strata, i.e. directly along the water front, Rhizophora sp. ("red mangrove" after Enos, 89) builds

a dense banier of stilt roots. Its lower branches mark the high-tide level. In the upper tidal

strata, i.e. landwards, cylindrical pneumatophores stickïng out of the mud identify Avicennia sp.

CA. ajricana in Sénégal; "black mangrove" in America; "mangrove blanche" in French, after

Marius, 1985). The "white mangrove" is Laguncularia (after Hicks & Burns, 1975). Back to

our West-African profile: Still more landward, a bare mud expanse (the "tanne" in french

speaking West Africa; the teml bas been adopted b)i T\\'ilIey, 1985 b). These mud flats are

often hypersaline even in the humid tropics (southem Vietnam for instance; Marius & Pagès,

unpubl.), and often show a cover of Sesul'ium portulacastrum. Analogous hypersaline bare

fiats are even found in New England salt tTh1rshes (Bermess, 1991 a). A pe-euliar detail of

Senegalese mangroves is the occasional occurrence of baobab trees (Adansonia digitata)

perched atop kjôkkenmôddinger of shellfish remains. In other regions. well-developped

mangroves show a more complex zonation (see fig. 3.4). Avicennia appears on the seaward

side of the mangrove in Australia (Tomlinson, 1986) and in the "Indo-West-Pacific" (Macnae,

1968), as wc saw in Vietnam.

Zonation of Rhizophora and A\'Îcennia (to take only these two "typical" trees) appears

to be eontrolled by severa] factors, among whieh seed predation (by crabs; Osborne & Smith,

1990) and light level (Smith, 1987): Propagule sorting (by tide and waler level) bas been shown

to be very eflective when salinity gradients are negligible (Rabinowitz, 1975; Tomlinson, 1986).

The main zonation factor, though, appears to be salinity, against which Avicennia is more

resistant (Jimenez & Sauter, 1991). This zonation of Rhizophora and Avicennia bas its

consequences upon sail properties in tenns of ox-ygenation. We recalled above (S 1.6) the "iron

pipes" around Avicennia fOOts. The widely heId "iew is that Avicennia oxygenates the soil

through ils pneWTl3topbores, whiIe Rhizophora allows fuJ1y anoxie soils (Marius, 1985;

Thibodeau & Nickerson, 1986). Il seems that effe.ctivemess of oxygenation and gemme

differences must both be mitigated (Andersen & Krïslensen, 1988; McKee el al., 1988).

The landward mangrove fringe may he occupied by Nypa fruticans where freshwater is

abwlClant 11ris palm marks the transition zone subrnitted to the widest salinity range (Chapman,

1976; Dutrieux et al., I990). Wc saw Nypù ptanrations tI'rriWtg in a (J..2ft g.t-l mYge' in

Vietnam. Hibiscus tillaceus marks the freshwater domain accordîng to Chapman (1976),

although we would consider that bamboos are a better hint of constant freshwater.

.~...
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Fig. 3.1 : Schernatic zonation of Wesr=African mangroves, with either herbaceous tanne
(above) or bare tanne (nùddle); on the far right, Adansonia digitata (adaptcd from Diatta et al.,
1982). BeIow: salinity (g.l-I) and pH of soil along a transect (approximate distances from water
edge) on the Gambia River (after Twilley, 1985 b). Abreviations: R.~1.Rhizophorû mûngle;
R.e.: Rh. racemosa; A.a.: Avicen1Jla ajhcana; S.p.: Sesuvium portulacastrum; P.v.: Paspalum
vaginatum; C.e.: Conocarpus erectus; P.r.: Phoenix reclinata; T.s.: Tamarix senegalensis.

Anoiher general featw"e of mangroves is their overall bathymetry (or hypsometIy; $

1.1.1). AItbeügb m.mgfi)'\ies.· BlaY aIs& De ÎWIlIiL OQ. haià. iOQ§aL (u. iD..~ pWw& ID. N~w

Caledonia), most mangroves grow on soft mud and in shallow waters. On a geochronological

scale, mangroves expand during transgression episodes (poumot, 1989). On a local seale, this

c.orresponds to wide surfac.es ofvery shaUow waters against a very low perc.entage of deep tidai

channeJs. These drainage creeks (Chapman, 1976) are called "bolon" in Senegambia (Marius,

1985; Twilley, 1985). This hypsometric distribution is naturally variable, aIso as a function of
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tidal amplitude. This leads to various types of mangroves, as classified by Lugo et al. (1988)

and Snedaker (1989). These vacious types correspond to difIerent biomasses (see S 3.2.2). This

most frequent correlation hetween shallow muddy em.-irorunents and mangroves might he

c.ausal; the ac.tual rôle of mangroves in promoting se.dimentation i~ doubtful at best (Chapman,

1976).

3.2: Biomass and production of mangroves

3.2.1: 1V1ethods of assessment:

Biomass measurement seems e,as)', m principle if not in deed, in the case of

macrophytes. But even in "simple" systems like Spartina salt marshes, the very rnethodology is

a part of the problem (see fig. 5.12 in Day et al., 89). In mangroves, standing crop can he

assessed by the obvious way of cutting down sorne mangrove stands, and weighing - with the

equally obvious drawback of destroying the object of the study. Non-destructive, and hence

repeatable, measurements use proxy estimators such as trunk diameter ("diameter at breast

height", DBI-!) or total height (Cintron & Novelli, 1984; Komayama, 1989; 'Martin et al.,

1990; Lee, 1990 a); such proxy estimators are aIso used in more classical forests (Ovington &

OIson, 1970; Conner & Brody, 1990). Strictly speaking, regression hetween actual biomass and

these indicators would he valid only for a gjven species in a gîven plot of l.and (Lee, 1990 a, b).

In fact, the several uncertainty sources appear to cancel each other. The "structural index",

which combines basal area.. height and density, does give satistactory results (Twilley, 85 b).

Aboveooground biomass can aIso he assessed by rernote sensing (sec S 1.5.3). Various

vegetation indices have been employed on other forested landscapes, using the different

wavelengths available in the different satellite-borne sensors (Lintlùcum et al., 1987). Another

optics-based method utilizes sunlight attenuation by the canopy , under which irradiance

distribution is cw10USly analogous 10 that of underwater light (see fig. 164-165 in Chapman,

1976). Irradiance at ground leveI is about 2~t6 of incident irradianc.e, and can he an indic.ator of

canopy density (B1ll1t et al., 1979, cited in Lee, 1990 a).

Deternrining mangrove production meets a two-fold problem: on the one band, the

problem seen above for biomass assessment (destructive vs repeatable methods), on the other

ftand' tfle customary question ofgrogs vs net prodrh.."1ion (see $. 2'.3). ÂlrlOrfg"~

methods, detennination of gas exchanges (C02 or 02) bas been used, either in vel')' large

enclosures (Odurn & Jordan, 1970) or above open forest patches (Yabuki et al., 1989). Litter

production should he more easily assessed (barring sampling errors); detritivory by crabs can

though seriously skew the observations (Lee, 1989 b; Robertson & DanieL 1989 b).
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3.2.2: Biofi1aSS: figures and factors:

\Vhile standing crop is highly variable, an indicative range lies between 500 and 5,000

g.m-2 (AFDW), or 5-50 tonnes.ba- l . A New-Zealand mangrove stand showed an average of

680 g.m-2, with a range of 400 10 10,000 (Woodroffe, 1985); several mangroves in South-East

Asia have lùgher standing crops, ranging between 2,000 and 20.000 g.m-2 (Rao, 1987;

Tanapennpool, 1989). For comparison, the Puerto-Rican El Verde rain forest had an average

standing crop of 27,000 g.m-2 (Odum et al., 1970). The Nigerian mangrove standing crop

corresponds to about 100 nè.ha-1 of timber (range: 50-250; Adegbehin & Nwaigbo, 1990).

For mangroves in genera1, litter biomass is about 10-50 g.m-2 (Twilley et al., 1986), again.s

1930 g.m-2 in the El Verde forest (see above).

Distribution of biomass among the various organs has been described in several studies;

Lugo et al. (1988) gives a summary of numerous results. The tollowing table is oIlly meant as

an example.

Distribution ofbiom.ass in a Rhizophora mangrove
data from Silva et al. (1991), in kg. ha-1

above ground

flowers
fiuits
leaves
branches
proproots
stems
total

22
53

4,200
12,900
16,800
31.400
65,400

below ground

fme roots
large roots

total

2,200
14.100

16,300

The two general factors of biomass are latitude (which govems temperature and rain)

and position relative to water level (which is related with tide). From what we saw in several

places, but especiaUy in West Africa, salinity appears to he of paramount importance, and

results of the two above factors, which deterntine the water (and salt) budget. Mangroves do

not exhibit a lower salinity limit as long as tide is tell. The upper salinity limit is ill-detined;

growth rate and survival strongly depend on the temporal salinity régime, on a daily as weil as

seasonal seale. Gordon (1988) gives as absolute limit a salinity of 90 g.t1, while we observed in

southem Sénégal that cven Av[cemûû Joes not resist abm-e a constant ()(J g.r-J. The

physiological mechanisms of salt resistance have been weIl described (see for instance fig. 157

in Chapman, 1976). Standing crop should aise he influenced by nutrient availability. Hatcher et

al. (1989) review the evidence for N-limitation in the lower tidai leveIs, against P-limitation in

the upper tidal levels. This contradicts Hicks & Burns (1975), who found a high landward
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P04/Cl ratio. Generally, though, nutrient limitations in mangroves are masked by salinity

(and/or tide) effects (see Hicks & Burns, ibid.).

The. typology define.d by Lugo & Snedake.r (1974, in Snedake.r, 1989) is founded upon

tidal exchange rate, and has shawn its worth. Sorne authors equate tidal régime with freshwater

tum-over (Pool et al., 1975), but this appears 10 he a particular case of the more general point

of water exchanges (or water residence rime), whatever the average salinity (Hicks & Burns,

1975). The four (or six) classes defined by Lugo & Snedaker have heen found to have a

general validity (pool et al., 1975; Lugo et al., 1988; Day et al., 1989).

Chenùcal composition of biomass should refleet nutrient limitations but, here again,

other factors induce a much wider variation of the C/NlP ratio. Specifie and anatomical

cbaracteristic.s (Avicennia vs Rhizophora, leaves vs wood, etc) are the main variability factors

(Twilley et al., 1986). As a rule, though, mangrove plants, like MOst superior plants, have a high

carbon content ~ith CfN ratios of 30-50 (at:at) and C/P ratios of 150-300 (Twilley et al.. op.

crt.). Carbon constitutes about 50 '% of dry weight, irrespective of taxonomy; leaves have a

higher content in N and P (respectively 2.0% and 0.15%) than do branches (1.2~!o and 0.08%);

dead wood bas the lowest contents in N (0.6%) and P (0.03%) (Clough & Attiwil, ] 975).

3.2.3: Production:

Primary production understandably varies still more than does biomass. An indicative

range would he between 1.2 and 23 tonnes.ha-1.yr-I. (Twilley et al., 1986), whieh amounts to

5-100 mol C.m-2.yr-l. Day et al. (1987) give for net production a narrower range of 16-25

t h -1 -1onnes. a .yr .

Liner production as related to typology; figures in g AFDW.m-2; upper me: annuallinerfall,
after Day et aI., 1989; lower line: daily litterfall, after Pool et al., 1975

scrubhammock basin fringe overwash riverine

190+60
0.2-0.3 1.8

660+70
2.0-2.3

900+70
2.0-2.6 3.0

1300+100
3.0-3.6

As in aquatic systems, the main problem about "production" is the difference between

net and gross pfûduction. Odum & Jordan (1970) found night respiration rates of 0.3-0.8 g

C.(m2.hrt1 in the El Verde rain forest. Sorne other figures are given below for comparison.
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------------ ------------------ . -------------------------- ----------
Cornparison of net production and respiration.•.t\ll figures in g C.(m2.drl , at1er Lugo &
Snedaker (1975) and Hicks & Bwns (1975; italies)

Rhzzophora mangie
SW1

shade
trunks
branches
prop fOOts

rivicenniu germÙu.UlS
sun

sIude
tfunks
pneumatophores

Laguncularia
sun

shade
trunks

-------------------------

net daytirne

1.12±0.3
0.7

0.75±O.1
-2.5±O.9
0.001
-0.04±0.3

1.14±().5
1.6
0.7
-1.46-1:0.5
O.05±O.04

0.S±0.24
J.8
0.5
-0.83

IÙght

O.44±0.2
0.5
0.46±0.1
1.1±0.4
0.007
0.08±O.OS

0.47±O.2
1.2
2.3
O.73±0.25
0.26±O.lÛ

0.14±0.04
1.6
0.35
0.40

As a whole, mangrove production is controlled by several factors apart from specifie

differences (or anatomic.al ones; see below). Nutrients in the soil have been seldom c.onsidere.d.

Salinïty has a high impact upon production, as it does upon biornass, and each species has its

optimum. Hicks & Burns (1975) showed that salinity in soil and in water interact to rnodity net

production on an species.

Highest production rate is found in leaves and small debris, wlùch repfesent only 10-20

% ofbiomass but 20-50 % of production. Litterfall arnounts to 200-1,500 g (AFDW).rn-2·)T-1,

or about 0.5-2.0 g C.m-2.d-1 (Klinge & Rodriguez, 1968; Odum, 1970; Boto & Bunt, 1981;

T9oIilley, 1985 a; Woodroffe, 1985; Twilley et al., 1986;Day et al., 1987 a; Woodroffe et al.,

1988; Robertson & DanieL 1989; Day et al., 1989; Lee, 1989 a, 1990; Flores-Verdugo et al.,

1990: Shaetler-Novelli et al., 1990). This littertall cycles back nutrients: in non-mangrove

forests, on a yearly basis and per m2, liner brings 4-10 g N (Klinge & Rodriguez, 1968) and

0.3-0.5 g P (Cole et al., 1990).

3.3: Exports from mangroves:

High OI-ganic matter (ONl) production c.ould rnean that mangroves are a nutrient source

for adjacent waters, provided that exportation does occur. In the sornewhat analogons

environment of salt marshes, several studies have shawn a net OM export (Odurn & Heald,
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1975; Jordan et al., 1983; Valiela, 1984; DeLaune et al., 1989 a; see also review by Dale &

Hu1sman, 1990). In sorne cases, though, dissolved and particulate fluxes diverge: POM and

phosphorus can he less exported than are DOM and carbon (Kaplan et al., 1980; Wrigley et al;,

1988). Sirnilarly, Whiting et al. (1989) find a higher export of PON than of DON. SeveraI

factors influence the direction of the net flux. Seasonal variations modify the available

(exportable) biomas.li, so that the whole salt marsh acts as a tlywheel tor nutrients (Childers &

Day, 1990). Morphology and typology ("age") of the marsh also have consequences upon the

overall budget of nutrients and sediment (Heinle & Flemer, 1976; Jordan et al., 1983, 1989). A

general ("wùversal") conclusion fuus appears Wlfeachable (!vladden et al., 1988, p. 1,000) in

these salt marshes, where even the spatial seale of observation plal's a role (DeLaune et al.,

1989 a). It is hence no wonder that the sitlültion is far from clear for mangroves -even if Boto

& Wellington (1988) caution against comparing these two ec.osysterns.

For mangroves. then, opinions ditler about the sign and magnitude of net flux. Several

slUdies find a net total organic carbon (TOC) export, ranging between 20 and 200 g C.m-2.yr-l

(Boto & Bunt, 1981; Twilley, 1985 a; Alongi et al., 1989). For comparison, floodplain forests

yearly export about 3-15 g DOC-e per m2 of watershed area (Meyer et al., 1987 and

references therein; Da\id et al., 1992). Other studies still arrive at a l'early export, but in much

lower amounts and with marked seasonal variations (Boto & Wellington, 1988). Lastly,

although working in seerningly ideal topographie. e.onditions, Woodroffe (1985) cannat

conclude about a positive or negative budget. In a similar vein, Silva et al. (1990) acknowledge

such an uncertainty that "net import" remains a computational artitact.

This lack of a "universal" result may stern from several reasons. Methodology itself may

play a role (see Day et al., 1989, p. 289). "The customary eulerian approach may not he

adequatc for assessing a transport (Boto & \Vellington, 1988). Rezenda et al. (1990) stress that

a sizable proportion of DOM and POM travels aItematively out of the mangrove and back into

if. Wc have mentioned the complcxity of water movements in mangroves, WÎth a-symetric.al

flow/ebb fluxes (Day et al., 1989; sec also Ong et al., 1991). In the "simple" case of a smaU

woodland stream, Wallace et al. (1991) identit)' methodological pitfalls. Methodology can also

intervene if either POM or DOM (but not both) is considered. Beside the variability of their

ratio, the two fonns can convert into each other (see $ 1.3.2; Tranvik & SiebW1h, 1989).

Apart from methodology. natural -and actual- variability also exists. Absolute C export

and percent of liner exported are bot.lt positively correlatcd witll. ti<W amplitude (fIg. 3.3)

(Twilley, 1985 b; Twilley et al., 1986; Lee, 1990 a, b; Rezenda et a!., 1990; Alongi &

Chrîstoffersen, 1992). Exported forros (particulate or dissolved) aIso differ in the different types

of mangroves (see last right column in table 1 of Snedaker, 1989). We have also seen that tide
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acts indirectly upon mangrove standing crop, through salinity. TidaI amplitude -and elevation,

relative to water leveL of the considered mangrove stand- also contraIs decay rate and predation

by macrofauna. Lee (1989 b) estimates that 30 % of daily litter
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Fig. 3.3: Etlect of yearly cumulated tidal amplitude (in m.yr'"1) on export of total OJ'ganic
earbon (eircles) and on percentage ex-ported (crosses). Data from Twilley (1985 b; 0 and x) and
recalculated from Woodroffe (1985; 0 and +)

production is conswned, and thus escapes hwnan assessment Another "extemal" factor of

export is rain. which increases exports from mangrove (Twilley, 1985 a) as it does in salt

marshes (Whiting et al., 1989) and in other forested ecosysterns (Lesack et al., 1986). The

overa1l picturc is hence far from clear. We may though notice that exports from mangroves

actnanyhappen (Gagm etal., !987). 1\-foomet al. (f99J tt}d&fmdtePlesùial maJkeJs..m~

marine DOM more than 1 k.ïl away from mangroves.

We must address here the question of identi:fying "allochthonous", terrestrial

components in general. At a macroscopic seale, the proposition is clear, but becomes murky at

the molecular level. Stable i')otopes, especially Be, may give good results (Rodelli et al., 1984;

Gagan et al., 1987; Quay et al.. 1992) but may present sorne pittalls (Hedges et al.. 1988 a;
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Druffel & Williams, 1992). Fogel et al. (1992) show that d 13C of estuarine phytoplankton may

straddle the range of "terrestria" values. Amino-acid composition may give uncertain answers

(Cowie & Hedges, 1992). ügnins seem a better bio-marker of terrestriallitter (Hedges et al.,

1988 b; Alberts et al, 1991; Moran et al., 1991 a, b; Cowie & Hedge-s, 1992). Sorne truly

typical hopane-like compounds have been used as tracers (Cume & Johns, 1989). It thus

appears that identifYing (if not always quantifying) tcrrestrial (and/or mangrove) exports is a

difficult but feastble proposition.

We have up to now considered the "nanu-al" exports. In what regards exploitation by

man, we found annual exportations of 40-400 kg of tirnber per ha (Untawale, 1987; Robertson

& Danien, 1989) and of 8-12 tonnes of wood (Day et al., 1987). Regarding other mangrove

prooucts, the too dassical item of "tanning barks" is brought down to proportions by Uibrig

(1983): in relative weight units for an unspecified swiace, we find:

construction timber 600
fuel wood 360
c~~al 30
tanning harks 1

3.4: Mangroves as l?iological systems:

Estuaries appear more productive, as a whole, than nearby coastal waters (Day &

Yanez-Arrancibia, 1985; l\IIadden et al., 1988). Fish biomass and production are often higher

(Longhurst (1959) in Longhurst & Pailly, 1987, p. 127-129; \Vrutfield, 1983; Tabb & Roessler,

1989). Shrirnps are also more abundant in (or off) estuaries (Longhw-st & Pauly, 1987, p. 320;

Snedaker, 1989). This special shrimp abundance bas probably to do with their reproductive

c.ycle. But the whole estuarine environment appears especially favorable for juvenile fishes

(Pinto, 1987), 50 that estuaries are aJmost always nurseries Wadden et al., 1988; De

LatOntaine, 1990). Nixon (1988) accounts tor "more intense yield of fishes" by the added tidal

energy (see also $ 1.1.1).

These high biomasses and productions can be justified by shelter or by food. The shelter

effect has been identified in pelagie environments (Kingsford & Choat, 1985; Longhurst &

Pauly, 1987, p. 217). In estuaries, and especially in mangroves, shallo\\' waters re-inforce

shelter effe.c.ts and attract juvenile fishes (Blaber, 1985; Deegan & Thompson, 1985; Ross &

Epperly, 1985; Mann, 1988; Cyrus & Martin, 1991). Shelter effect in mangroves also applies

ta erabs (Wilson, 1989). Small tidal rivulets allow access to protective shallow areas (Freeman

& Freeman., 1985; Rozas et al., 1988). In what regards food resources, liner can he more

aboodant than plankton (van Valkenburg et al., 1978), and may make up a hefty proportion of

the diet of fishes (Harrigan et al., 1989; Ahlgren, 1990) and of praWTlS (Leh & SasekWllM,



83

HGFEocBA

1984). A synergistic effect of food and shelter exists in estuaries (v..'hitfield, 1983, 1984;

Boesch & Turner, 1984; Parrish, 1990). In coastal waters, fish production increases with the

ratio of marsh ta open water areas (Deegan & Thompson, 1985; Deegan et aI., 1985;

Longhurst & Pauly, 1987, p. 127). In shallow mangrove margïns,fish biomass is 5- to l()-fold

that of adjacent waters (Blaber et aI., 1989). In a somewhat similar setting, seasonnaDy flooded

torests appear to be a teeding -if not breeding- grOlmd tOr tishes (see Lowe-McConne~ 1987

(p. 168 and 318) about forests around the Tonle-Sap). Severa! estuaries have been shown to he

spawning grounds and/or nurseries "for nwnerous marine-related fishes" (Yoklavich et al.,

1991). M~angroves., still more than other estuaries, have long been shown to increase secondary

biomass and production, and hence fishery }ields, in adjacent waters (De La Cruz, 1979).

~1angroves are often attractors for fishes, adult ones as well as juveniles (Iittle et al., 1988;

Monon, 1990).

1000 -

100 - '--[
L-_
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Fig. 3.4: Total biomasses across the schematic zonation of a well-developped Rhizophora
mangrove, after Kolehmainen & Hildner, 1975. The approximate range of bion13SS in given (in
g dry weight.m-2) under each zone. A: embayment; B: aerial roots; C: berm; D: Bostrychietum;
E-: central' sftatrtp', F: beadP'bemPr6-: fI'III6 fiat, with-A. gtII,.inaIu~ H: sakem.

A quantified description of mangrove production has been tried by several authors after

Üdunl & Heald (1975). Assessîng both slorage and flow for eaer. compartment remains a major

undertaking (see for instance fig. 22 in Lugo & Snedaker, 1975).



The bulk of references about mangrove productivity deals Vvith fishes and shrimps. TIùs

may he due to methodological -or e\<"eI1 psychological- biases, arnong which the fact that these

"exploitable" species are caught in large amounfs (up to 800 kg shrimps per ha. year; Day et al.,

1989, p. 485). The possible supply of bard currency also plays a roie. Secondary mangrove

production jg though not limited to fishes. As in other shallow waters, macrobenthos t8 often

abundant. While sorne calm waters may have hypoxic "deep" Iayers, the frequent organic

bottoms can feed a sizable benthic cornmunity (see $ 2.2). Production figures are rather scarce,

since m08t catches (mud-dwelling bivalves, espectally) are conswned by local populations.

Apart fiom ifs role as hunW1 food, macrobenthos recycles sett1ed üM, and can make it again

available to the planktonic food web; bioturbation is an important aspect of this recycling

(Kristensen & Blackburn, 1987; Kemp et al., 1990).

Crabs are sometime-.s spe.ctacularty ahundant in mangroves. Their biomass c.an amount

to 1-10 g (AFDW).m-2, with an annual production of 1-15 g.m-2 (M:acintosh, 1984). Their

teeding upon lifter contributes to nutrient recycling (Lee. 1989 b. 1990). l\mong mangrove

benthic animals, a particular place is occupied by mangrove oysters (Crassostrea spp.).

Biomass figures for these particular oysters are rather scarce. Kolehmainen & Hildner (1975)

give global "molluscs" biomasses of 60 to 500 g.m-2. Interpolating Jau from a survey in

Guinea ()farozova et al., 1991) )ields biomasses of 112 g AFD\.V.m-2, and 810 g AFDW "per

metre" (probably per linear metre along mangrove channeIs). These figures comp...re weIl ,vith

those for oyster reefs: 200 g AFDW. m-2 (Dame et aL, 1984) and 160-970 g AFDW.m-2 (Day

et al., 1989, p. 363). Such figures, which visuaI inspection makes plausible, are especia1ly

impressive when compared with the etlective water volume in mangrove channels:

Muschenheim & Newen (1992) show thatMytllus edulis beds exploit a layer of water about 35

mm-thick. In other environments, suspension feeders, and particularly bivalves, can influenœ

the general food web (Riemann et al, 1990; see review by Hobbie, 1988). l'v1angrove oysters

can thus markedly modifY the water in mangrove channels, bath by their grazing upon seston

and by their excretion (sec Dame et al, 1989, for reef oysters). This two-fold effect of filter

feeders has hem described in other mvironrnents with bivalves or fuhes (Coltrum & Edwards,

1987; Proder, 1987; Riemann et al., 1988; Mazumder et al., 1990; see also Gulati et al., 1990,

on biomampulation).

A Jast point rather characteristical of mangroves is the abundance of epiphytic

organisms, ih ref'anon "'11ft tfIe afmndance of avaifabfe substntes. ln ",-bat regMœ bact~ k

oId glass-slide method yielded results on the mode and rate of appearance of the fust stages of

bio-fouling. Bacterial production on macrophyte litter amounts to sorne O.4~g C.ern-2.d-1 (cm

2 of detritus area; Moran & Hodson, 1989 a). To our knowledge, bac.terial ac.tivity in the

specifie mangrove environment bas not been studicd in terros of biomass production per unit
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area, while severa! studies have dealt with bacterial activity in mangrove sediments (A1ongi,

1988; Alongi et al., 1989).

The other epiphytic organisms are micro-algae. The "Bostrychietwn" is a well-described

feature of mangroves. The role of micro-algae in generat has been wen studied in relation with

sea grasses (see Day et al., 1989) or with other, mostly submerged, macrophytes (Burkholder &

Wetzel 1990) and ofien fiom the point ofview of competition tor available light (Twilley et al .•

1985). As far as we know, epiphytes in mangroves have been mostly studied from a

taxonomical point of view, while their functional aspect has been somewhat neglected. For a

particuiar epiJ...-ylic conununity taken as a whoIe, Couch & Meyer (1992) found biomasses

ranging between 0.5 and 2 mg AFDW.cm-2. Micro-phytobenthos grO\\'Îng on Avicenma

pneumatophores show a gross production of sorne 500 mg C.hf1 per m2 of sediment (Lugo &

Snedaker, 1975). Most data on epibiontic mic.roalgae stem from freshwater habitats; biomasses

of 10-200 mg chI pa m2 of substrate have heen measured (Baker & Orr, 1986; Hooper &

Robinson, 1976: Bulthuis & WoeJkerling, 1983: Palumbo et al.. 1987: Hill & Boston. 1991:

Boston & Hill, 1991; Turner et al., 1991).

Another set of figures may he sought with benthic microalgae, whose biomasses range

bernicen 15 and 125 mg cW per m2 of sediment (Blanchard & Montagna, 1992). Benthic

microalgal production (net) ranges between 10 3.a'1d 30 mg C. hr- 1 per m2 of sediment (Grant,

1986; Sundback & Grané~ 1988; Jônsso~ 1991; Cahoon et al., 1992), with extreme values of

up to 100-150 mg C. m-2.rn-1 (Pinc.kney & Zingmark, 1991). Gross productions range

between 10 and 80 mg C. br"'1 per m2 of substrate (ibid) and may reach 200 mg C.hr-1 per

m2 ofsediment (Heijs. 1987). We tind again in this instance the wide dîtlerence betweèn gross

and net production (see figures in Lugo & Snedaker (1975) and in Twner et al., 1991).

Anyway, epiphytic production is far from neg1igible from its sheer magnitude relative to free

waler production. Apart from carbon fixation (or POC production in general), cpiph)'tic

organLsms are a1so active in nitrogen (N2) fixation (Van der Valk & Atthvil, 1984; Mann &

Steinke, 1989; PaWsen et al., 1991). These ef1ects of epibiontic conununities find a pragmatical

application with the West-Afric.an "acadja" fishing system (Hurault, 1964; WeIc.omme, 1972).

Its efficacy is proven, although its mode of action is still Iargely hypothetical but probably relies

lx>th upon shelter eftect and increased epibiontic biomass production.

3.5: Mangroves: why proteet thern ?

We are aware that this topic is akward, and perhaps not really pertinent in such a paper

with "scientific" pretentions. However, we came severa! times upon the question, be it in

abstrae.t tenns or from an applie-d point of view. Sc.ientists have benn trying to protee.t

mangroves for at least 30 years. Despite these efforts, and sorne success in public opinion,

mangroves are being devastated at a dizzying rate around the tropical belt. Extolling the



86

qualitative value of a pristine env1ronment does not cut much ice against majority's mIe, a

corrosive mixture of intercsts (or just greed) and neglect. This is compoWlded in developping

countries b)' bare survival needs and "development" (whatever tIùs might mean). We do not

hope to tum the tide, sinc.e better and more authoritative voices have been t:rying to long before

us. We oIlly want to examine sorne of the reasons for protecting mangroves, including

obsetVations we made in some developping COWltries. The hub of our argumentation is that

mangroves may have a low production but are bener than nothing.

We have seen that mangroves export organic matter; while the exact amount is still

undecided, and highly variable, biomarkers are found several kilometers away from mangrove

stands. This gives a logical support to the presurned role of mangroves in fishery production.

There are numerous hints, or even circumstantial evidence if not downright proofs, that yield is

higher around mangroves. This may still he disputed, but often more out of personnal

conviction than for objective reasons. The role of mangroves (and estuaries) as nurseries is

equally plausible- and equaDy disputed, with sorne arcane distinction between "truly estuarine"

species and "opportunistic" ones. Anyway, this double role of mangroves, as shelter and as food

source, has been often put fOIWard with little actual effect: Clearing a mangrove brings

immediate profit to a given collectivlty, white decreasing fish yields strikes another commwùty.

The protective raIe of mangroves against coastaI erosion has been mentioned. \Vhile a

fringe of Rhizophora may offer sorne protection against ridaI turbulence, the reverse causative

effect is more plausible (presence of Rhizophora because of low turbulenc.e). There are

nwnerous examples of alternating erosion/deposition cycles wlùch control mangrove

development, and a storm surge ~il] not he halted by a mangrove. Against these negative views,

we tlùnk that clear-eutting a mangrove may weil he a one-way ticket toward local

desertification. Evaporative losses may not he higher than evapo-transpiration, but it is plausible

that a bare creek bank. ~iD tend to become hypersaline. Tree feUing i.s often a preliminary to

large seale works wlùch deeply modify hydraulics and easily tead 10 acidification. There are

sorne examples of successfut exploitation of mangroves, but they are often due 10 autarcie, low

density native populations (Cormier-Salem, 1991). There are sobering -ifnot chilling- opposite

instances of lasting destructions. In Guinea, sorne 60,000 ha of mangroves were cleared (for

rice culture) then abandonned: 35,000 ha are defuùtively sterilized.

Mangrove production has often he cited as one of the good reasons for protecting them;

the case was that mangroves are not a useless, unproductive (and possibly lethal) swamp. We

J"eem ffi.is argument &ngerous bccause" easiry oontradicted. B'iomasses.md~ (of~

themseh:es) ma)' look impressive at face value; wc saw that annual )ield is about 10 tonnes of

wood and sorne 120 kg oftirnber.In what regards the L1tter, an analysis (Vincent, 1992) shows

that timber is a poor prospect for sl1stainable development. In what regards tire wood,

consumption is about 2.2 kg per head pet day (one ha would supply 12 persons). These figures,

albeit simplistic, indicate that mangroves rernain a very localized commodity. The usual list of
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lannins, dyes and exotic œmpooods do not rcally alter the picture. Against these negative

remarkst we must stress the obvious fact that the above "negligible" )ields are renewable, and

available with a very srruùl input, especially in what reg<rrds cash.

"Development" is one master word (even if its meaning is sometirnes vague), and

increased cash flow is generally the decisive index of development; increased yields (of

anything) are also "good". So, mangroves must he replaced by sornething cise. Freshwater

backswarnps can he coaxed into producing sago flour (GobI, 19~1) or even nce (we can remark

that wood market priees for edible carbohydrates are desperately low). But even such cultures

nct:d inveslIllen~, water conlro~ al least some fertilizers if no1 ~sticides. Increasing yield neeJs

energy, in severa! complernentary forms, since "there is no such thing as a free lWlch". Shrîmp

culture bas exploded throughout the tropical zone, but shrimp fanns Carl ooly succeed with

heavy upstreal investments (water controL post-Iarvae rearing, feed production; see table 13-ll,

p. 77t in Untawale, 1987). We have witncssed extensive shrirnp "fanning" leading to devastated

landscapes tor a bare and ephemereal profit to a small minority ot uprooted peasants. In all

cases, as mentioned above, altered hydraulics can easily lead to intense soil acidification through

even temporary oxygenation.

\\;Te hope having made our point lhal, in the absence of siLAble Îll'vestrnenls and a well

dirccted application thereof, mangroves are the orùy (and hence the best) long-tenu het, since

sorne small production is better than none. Rubbish heaps are as objectionable in mangroves as

anywhere eIse; the ultimate cost of destroying the environment is being rediscovered (Repetto,

1992).

4: Phragmius swamps:

These reed commwùties, and sorne other analogous onest are widely found Wlder

\'3rious climates. They resemble m:mgroves and Spartina salt marshes in severa! aspects of their

generaJ func.tioning, layout and effect upon aquatic systems. Conversely, the main difference

lies in the frequent (but not obligate) absence of tide, the effects of which have been mentioned

above. We ditlerentiate these Phragmites swarnps chietly for clarity's sake in the tables on

biomass and production data. ln these tables, we have incorporated figures from Papyrus or

Spartina swamps, though being aware of size diffèrences. These figures are rneant to give

ordt;rs of magnilude and comparison LernlS.

Zonation parallel to the water edge exists in the marshes occupied by these vanous

macrophytes. Ostendorp (1988) showed a distinct pattern in Phragmites development. In a

Spartina marsh, the distribution of species and phenotypes appeared to be controlled hy
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waler/sall balanœ and by S2-/0Z proportions (Berlnt:S8, 1991 a, b; see a1so table 5.4 in Day el

al., 1989).

4.1: Standing-e.rop biomasses:

Above-groWld biomasses in Phragmites swamps range between 1,000 and 10,000 g

(AFDW).m-2 This represents a pool of phosphorus ranging from 100 to 2,000 mg P04-P.m-2

(Gunatilaka. 1988). Underground biomass -alive and dead- is much higher, reaehing up ta 20

kg AFDW.m-:~ (Ostendorp, 1988). For Spürti1'la, Gross el al. (1991) fOWld 1t:SS live biomass

underground than aboveground..

Despite botanic.a1 differences, carbon constitutes about 50% of dry weight (Ostendorp,

1988), as it does in mangroves. A<r>h content is high; Si cao amoWlt to 10 % of dry weight

(Viaroli & Fumagalli, pers. comm.). Nitrogen and phosphoros are relatively searee. as in other

"superior" terrestrial plants: atomic C/NIP ratios range between 520/J8/1 and 3200/1711

(Hocking, 1989 a,b). Clough & Attiwil (1975) fOWld about 3 % N in PhragmItes leaves.

Phosphorus l;onlenl ranges between 2-7tlmoI p.g-l (Gunatilaka, 1988) and 0.14 % (w:w, i.e.

about S0tlm0l p.g-l; Clough & Atti~11, 1975). Dead stems are expectably the most depleted

organs. Internai translocation of nutrients blces piace seasoruilly between rhizome and stem.

Chemical composition ofPapyms stems is comparable: 1.2 % N, 0.16 % P in AFDW (Muthuri

et al., 89). Emergent aquatie macrophytes in general have a CfN ratio of 40-50 (Bianchi &

Findlay, 1991).

From the above string of figures, C/NiP ratios may appear rather inditlerent. "1here is

though a 'critical limit' for N and P content, under which no biornass increase may occur

(Hough el al., 1989; Bradley & Morris, 1992). This limil reminds of Droop's 'œil quota' moJd

for ph)10plank1on growth. Bradley & Morris (1992) find in SpaT·tina an interesting positive

correlation between water salinity and 'critical nitrogen content'. This Irul)' be :1 good illustration

of the rnetabolic. cost of osmoregulation.

Nutrient availability in the water, and thence in sediment, controIs chemicaI composition

and long-tenn biomass (Ulric.h & Burton, 85). The same is true for sea grass (powell et al., 89)

and for terrestrial grarninae. Atmosphe.ric nntrient sources (especia1ly for N) can con,:;titule a

PrigI't part of rmtrient bm.tget; with important frrputs- by rairr amt m~~~ 198&)..

In the (very particuIar) case of inverse hyperhaline estuaries, Phragmites extension and biomass

are also controlled by salinity incursions. As a whole, Day et al. (1989) identify three factors

conlrolling production in inlertiJai wellanJs: i) lidal range, ii) nulrÏenl l;oncentration in l.he

sediment, li) oX1'gen and drainage.
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Continental and coastal swamps:Some standing stock data
figures in g (AFDW).m-2; ClN and C/P: atomic ratios. ._n _ ._--------------_..._----

organ. mat. N
Phragmites biomass
total
stems
peat
total roots

stems live
stems dead
rhizomes
roots
Spartina biomass:
stream side
inland
average
Ruppia biomass

1,200
900
5500
4,300

10,000
12,000
16,000
3000

600-3000
260- 800
300-900

3.9
229
49
e'N
29
194
117
58

p

0.2
22
4

C/P
517

3230
927
1292

réf

Lee,90b
)
} Ostendorp, 88
)

)
)
)Hoc.king, 89,a,b
)
Day et aI., 89, table 5.4

Edwards,78
200-1,000

Papyrus (Cypems papyn/s)
total 4,000-5,000
above-groWld 1,400

4.2: Production:

) Muthuri et al, 89
)

-----------._-------------

The proportion of open waters and that of macrophyte-grown shallows control the share

of Im1y aquatic proouction (by phyloplanklon). In musl lagOOIl8 or rnarsh~, plankloIÙc

production represents a small part of whoJe-system yield (FJores-Verdugo et al., 1988; Lee,

1990 a). :\etù1 biOl1l41SS production is highly vamble Wlder different climates. A median figure

is about 1,000 g AFDW.m-2.yr-1 (Ostendorp, 1988; Lee, 1990 b). Underground production

figures are seldom determined; an additionaI difficulty lies in separating tme production (roots

and rhizomes) from mere detrital accumulation (Ostendorp, 1988; Hocking, 1989).

Continental and coastal swamps: sorne production figures (in g .m-1.yr-l)

Spartina:
Valiela. 1984
(m carturr)

gross
net

3,640
82&

Day et al., 19H9
(AroW)

Phragmites (AFD~l

Lee (1990 b)
Ostendorp, 1988

above-ground Hoo-4,OOO
below-ground 1,000-5,000

2,200
1,025
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NulrienL concenlcation, in wa.it:r and in sedirnenl, conLrols pwJuction. PhosphaLe upLakt:

by Phragmites bas been studied by Gunatilaka (1988). Apart from the customary nutrient

upbke kinetics, upbke rate also depends on sedimenbry characteristics, among wruch i) water

Jogging, whieh is rel3ted m.th organie matter content, ii) salinity and S04 content, ifi) oxygen

concentration. These three factors are interwoven, and reJated with grain size. Oxygen depletion

bas a limiting etltet and sultides înhibit NH4 uptake in freshwater plants (Koch et al.. 1990) as

well as in Spartina (Mendelssohn et al., 19H1, cited by Day et al., 19l59). Conversely, anoxie

environments allow N2 fixation in such marshes (Abd-Aziz & Nedwell, 1986). Nitrogenase

seenlS associaLoo wilh living rools, al Jeasl in papyrus sYvamps (1vlYvaura & WiJJowson, 1992).

4.3: Exports:

Lifter decay rate and nutrient liberation have heen reJatively seldom studied in the

particuIar case of Phragmites. Complete disappearanee needs 2-3 years in temperate climate

(Ostendorp, 1988). Decomposition thus appears mueh slower than thal of Spartma (Filip &

Alberts, 1988, 1989). It is though probable that dead· plants decay aiong the same general

paUem, wilh an initial rapiJ Jeaching of low mole~ular weighl I.A>mpont:nLs. In lhis pèrspeclive,

rain appears to play a role in the decomposition of "standing dead" stems (Newell et al., 1985).

Under t)'pical tropical conditions, initial dec::!)' rates of 0.1 d-1 have been measured in

environments c.omparable with Phragmites swamps (Gaudet, 1977; Ellery et al., 1990). In an

atypical (hyperhaline) environment, we observed seasonal bush tires extending into dried

Phragmites marshes, thus acceJerating reDÙneralization (Pagès, unpubl.).

The (nonnally absent) tidal mixing can he replaced by wind-induced turbulence in these

oonûmmlal marshes. While a nel exportation of tiller would he Jilli~ulL lo assess, organil,; maUer

can thus he brought out of the macrophyte stands into the open waters (see Ellery ct al., 1990,

for comparable environrnents; see Wetze~ 1992, about the general features of bnd-water

interfaces).

4.4: Side eftècts of Phragmites swamps:

Al lhe leveJ of lbe whole waler body, lhe vegetative biomass probably parl.akes in lbt:

water budget through its evapo-transpiration. The main difficulty is that different authors arrive

, at diverging conclusions about the effect of plants (increase or decrease of total e\'Jporation

(Crundwell, 1986; Idso & Anderson, 1988; Koersehnan & Beltman, 1988).
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In anolher field, il is well accepled lhal macrophyles in general -and Phrügmites

increase sedimentation rate by trapping fine suspensions. Their own POM production is a

contribution to sediment accumulation. In the (vet)' particular) case of saline mcurslOns,

flocculated DOM may be a further addition.

Shelter etlects tor tishes are exacerbated in the dense Phragmites stands growing in

shallow waters. In comparable macrophyte stands. Dejoux (1983) found a three-told increase in

flSh biomass compared with that in open waters of Lake Chad. Despite low irradiances at

groWld leve~ epiphyl.es still grow, and are an aLlraclanl for grazers. Ritx:r el al. (1984) obscrved

epiphytic biomasses of up 10 400 mg chl per m2 of sediment in a Phr.:;gmites stc1nd. Rozas &

üdum (1987) found an abundant nekton in analogous settings.

Avian falma is also attracted -for opposite reasons- by these swamps, much more than

by mangroves (Guillou et al., 1987). Predation on tishes by birds can amount to 113 to !i2 of

fish production (Winfield, 1990). Conversely, nesling birds can have a fertilizing elfect (Uliver

& Legovic, 1988; Powell et al., 1989; Winfield, 1990; Portnov, 1990). "The overall eftè:ct of

bÎIds is an accelcraLion of nulrÏenl twnover.

5 : Conclusion:

ln what regards the functioning of detrital systems, a four-toId characterization emerges:

i) in estuarine systems, ride controIs (dirctly or not) biomass, production and exports of

riparian vegelation. In an systems, walcr régime is a conlrolling faclor~

ü) sediments, and solid'liquid interfaces in general, are roostly a source of nutrients and 

hence ?- a sink for oxygen;

ru) oxyg~ which is controlled by undetWater light availability, is necesary for all trophic

levelo; except bacteria. It can he a limiting factor for loading rate (at the whole~systellevel) and

tor decomposition rate.

iv) recycling processes are predominant. "Residence rime is the clue" to nutrient

limitation (Pomeroy & Alberts, 88, p. 319). Despite high standing-stocks (even in nuuients),

sysCëms are t.requenlfy "'t;rypto-oligoflopbic~ as "'~ by ihe- ~. fok of~

production (see Dortch & Packard, 89). Size-spectrum appears a good diagnostic tool (1\fann,

88).

The present review originated from reading notes on two main subjects. The first one

was the tate ofdetrital organic matter (DOM and POM) in aquatic environments, and this Jed
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logica11y lo anaerobic processcs. The second subjecl was mangroves. In llie resulLing documenl,

we preferred to separate the various components of the mangrove ecosystem, with the

accessory chapter on reed swamps. Sorne themes were thus assigned sornewhat a.rbitrary

locations.

We vohmtarily left aside severa! fields which wOlùd have heen necessary, had we airned

at a handbook. Among the most conspicuous absentees are phytoplankton and nutrients (both

uptake kinetics and limitation). This would have swollen an already bloated document. On the

opposite, we did not limit our borrowing of data to near-shore, or estuarine, waters nor to the

tropical zone; we also lried lo foind data from olher foresls lhan mangrov~> lhereby following

the exarnple of Lugo et al. (1988).

The main themes are e:xpee.tably detrital matter and recycling. This stresses the fact that

primary production is not the ooly pathway toward production of living particlùate organic

matter (by the way, the tenu "production" occasionnally loses sorne sharpness). Anyhow, we

sec that heterotrophic processes can partake in the flux of matter and energy. 'l'he fertile

concept of the "microbialloop" was developped for high-sea pelagie systems, but retains its

u.st:fulness in lhe rallier s~cial enviromnenls we deall wilh. The str~ on r~ycling(

re1lÙneralization) processes implies that we admit a bottorn-up control for autotrophs, as weIl as

for heterotrophs. In the sante vem, studying "production" (of living POM, as said before)

implies admitting a bottom-up control by availilble POM on the upper trophic Jevels.

We have noticed several points which are rather detaïls, but which struck us either as

recurrent themes (the key words were 'uncoupling' and 'discrepancy') or unexpected analogies.

Arnong the divergences, we noted: a) uncoupling between hydrolytic activity and DOM uptake,

as ObseIVed aroWlJ marin~ snow (Smilh el al., 1992~ Kam~r & Herndl, 1992); b) WlcoUpling

between production and conswnption of N02 (lIorrigan et al., 1990); c) uncoupling between f

ratio, on one band, and the netlgross production ratio, on the other band (Quinones & Platt,

1991); d) discrepanc:y between water-column particle flux and bottom carbon decay (Cowie &

Hedges, 1992; SDÙth et al., 1992). The analogy we noticed concerns C:N:P ratios. The concept

of "critical nitrogen concentration" tound tor Spartina by Hough et al. (1989) fits well into the

continuum observed in macrophytes by Ouarte (1992). We a1ready stressed ($ lA) the analogy

with Droop's "celI quota" mode!. This brings again the nutrient limitation question (which we

stùtedJ unJ'er a1~ particufar conditions ofcerrestrial pfanfs~agzü.nsI~. "Ilti8.raBÎl_

of the summation by Lugo et al. (1973): "...nutrient availability [from terrestrial sources] is an

important detenninant of the vigor of a mangrove stand [...] and salinity adaptations represent

the energetic, cost oftapping these nutrient sources where c:ompetition is controlled (i.e.

reduced) by other factors". This (perhaps lengthy) citation illlLc;1rates the energetic cost of

osmoregulation, such as tound underanother tonn in the halotolerant Dunaliel/a salina.
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Since a hefty portion of this document was devoted to liuer, it was expectable !hat the

subject of solid'liquid interfaces should oilen crop up (we left aside the air/water interface). We

gathered the impression that interfaces (at any spatial seme) play an important role in nutrient

fluxes (which is rather obvious) and that methodology io; still more critical than in a "mere"

liquid medium. We noticed the change of perspective brought by DÙcro electrodes, but also the

frequent disagreement between in situ and in vitro measurements in sedimentJwater exchanges.

One series of artifacts is brought about by the use ofa (Fickian) diffusion model to compute

lluxt;s from vt;rliçal prof.t1t:S, whilt; Jirt;d mcasurcme::nls in benlhic chambt:rs give:: diverging

results. A seeond artifact stems from statie experimentai conditions; while resuspension bas

been taken ioto account, the effect of irrigation is seldom quantified (see l\rcher & DevoL

1992). The mention of micro electrodes brings the whole problem of observational scale.

Spatial and temporal variability have halmted aquatic sciences (among others) and lead to the

whole field of sarnpling statistics. The observation of "transient processes" ~ and the very

knowledge of their existence - is one big question mark in pelagie oligo1rophic tropical waters.

At a much smaller scale of rime and space, it cao be difficult to identify and quanti.fY the exact

path.ways of nulricnl flwi.t:s bdwctm comparlmt:nLs: Horrigan cl al. (1992) coulù nol asccrlain

whether sorne nitrogen interconversions were merely "biologically mediated" or due to

"circuitous 'food-web' processes". :\t about the s.ame scale, the existence of micro-patches of

nutrients has been hotly debated (Lehman & Scavia, 1984).

Another point worth underlining again is the relatively small meaning of absolute "static"

concentration (or biomass) data compared with ratios and fluxes. ln what regards ratios, the

re1ative proportions of C, N and P are useful tools, he it to descrihe available nutrients or

organisms. In lillt:r Jc~ay prOCGSSt:S, lhis C:N:P ratio is simullanoously a recorù of pasl hîsLory

and a predictor of future fate; in a paralle1 way, production of a whole lake will be 1imited by

either Nor P according to the NP ratio. In ",hat regards f11L'tes, Pomeroy & Alberts (1988)

stress that "residence lime is the clue [.. _Jto nutrient limitation"_The speed of remineralization

controls production (see aiso Ward &. Twilley, 1986). Lastly, ratios offlmces have proven

efiectïve diagnostic tool8: the fratio or the "relative preference index" describe the nutritional

status of a population, while lstvanovics et al. (1992) showed that the ratio dCidP is a good

index of P depletion in phytoplankton.

One last series of remarks will deai -with the general functionning of the systems

described here, for which we propose the tenu "crypto-oligotrophic". We mean that an

apparent richness mask..s truly oligotrophic features. It may seem that the terro "eutrophie" has

been satisfactorily defined (OECD, 1982). As we interpret it, a eutrophie system transfonlls

high nutrient concentrations into high (exportable) biomasses. Comtois's model tOllllalizes this



dynanùc cquivaltmcc bdwccn bion1aSS and nuU"Ïenls. Anolher characler of euuoplùc syslems

(and probably a consequence of the above) is the preponderance of primary (PhotoS}l1thetie)

producers. On the opposite, the most evident features of cbssical oligotrophic systems are low

biomasses and low nutrient concentrations. More basical features, though, are i) active rec)'cling

processes despite (or becau.."le of?) little, if any, export and ii) predominance ofheterotrophic

biomass (Dortch & Packard, 1989; Caraco et al., 1992; IJ et al., 1992). We then see that,

despite high concentrations of C, N and P (and high biomasses), the systems we have in mind

acually behave as oligotrophie ones. The techniques, and the philosophy, developped for the

sludy of oœanic oligouophic waLers n"ÙghL wcll he applied lo mangrove wa1ers !
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