

CENTRE DE LA GUADELOUPE

ETUDE DU BILAN HYDROLOGIQUE DE LA RETENUE DE LETAYE-AMONT

ANNEE 1991

par

Alain Lafforgue Franck Régis Alain Dezetter

Pointe-à-Pitre, Septembre 1992

Introduction

A la demande du Département de la Guadeloupe et de la Direction de l'Agriculture et de la Forêt, l'ORSTOM a entrepris l'étude du bilan hydrologique de la retenue de LETAYE-AMONT.

Le dispositif de mesure mis en place et géré par l'ORSTOM a permis le suivi de la retenue depuis sa mise en eau le 23 octobre 1978.

Les campagnes de mesure successives ont fait l'objet de la publication de 11 rapports :

- campagne 1978-1979
- campagne 1980-1981
- campagne 1981-1982
- campagne 1982-1983
- campagnes 1984 à 1990

Ce rapport reprend la description de l'environnement et des caractéristiques de l'aménagement et présente le bilan hydrologique de la retenue en 1991, afin d'évaluer, notamment, les pertes par infiltration.

Cette année encore, l'absence de données fiables et suffisamment détaillées sur l'adduction de la retenue et les pompages a empéché d'obtenir un bilan hydrologique équilibré. L'objectif fixé n'a pu une nouvelle fois être atteint.

A partir des bilans hydrologiques annuels établis depuis 1979, nous avons recherché des relations entre la pluviométrie sur le bassin versant de Letaye-Amont et les apports naturels de ce même bassin.

Une simple corrélation pluie-apports n'ayant pas donné satisfaction, nous avons calé deux modèles de type global sur la relation pluie-débit. Ces modèles appelés GR3 et CREC ont été adaptés par A.DEZETTER en zone de savane soudanaise. Ils nous ont permis une reconstitution satisfaisante des apports du bassin versant de la retenue entre 1951 et 1991.

Cette chronologie de débits au pas de temps journalier sera notamment utilisée en entrée par le logiciel HYDRAM. Ce demier actuellement développé par l'ORSTOM, est destiné à simuler le fonctionnement des systèmes d'eau en vue d'une utilisation et d'un aménagement rationnel des ressources en eaux de la Guadeloupe.

Le dernier chapitre récapitule les données acquises depuis la mise en eau de l'aménagement.

TABLE DES MATIERES

	Page
I- LE MILIEU ET L'AMENAGEMENT	1
1.1 LE BASSIN VERSANT DE LA RAVINE GARDEL	
1.2 DONNEES CLIMATIQUES	2
1.3 CARACTERISTIQUES DE L'AMENAGEMENT	3
1.3.1 Caractéristiques du barrage	
1.3.2 Caractéristiques de la retenue	4
1.4 DISPOSITIF DE MESURE DE LA RETENUE DE LETAYE-AMONT	5
II- OBSERVATION DU BASSIN VERSANT DE LA RAVINE RENEVILLE	7
2.1 PLUVIOMETRIE	
2.2 ECOULEMENT DU BASSIN VERSANT	
III- ETUDE DU BV DE LETAYE-AMONT RELATION PLUIE-DEBIT	8
3.1 CORRELATION PLUIE-DEBIT	
3.1.1 Pluie moyenne mensuelle sur le BV	
3.1.2 Volumes et lames d'eau écoulés sur le BV	
3.2 MODELISATION	10
3.2.1 Données disponibles	
3.2.2 Calage des modèles	11
3.2.3 Calage manuel - Résultats de la modélisation avec GR3	
3.2.4 Calage automatique - Résultats de la modélisation avec GR3 et CREC	
3.2.5 Paramètres retenus et Simulation	12
IV- LE BILAN HYDROLOGIQUE DE LA RETENUE	13
4.1 RAPPEL DES TERMES DU BILAN	
4.2 LIMNIMETRIE ET DONNEES ASSOCIEES	
4.3 PLUVIOMETRIE	14
4.4 EVAPORATION	15
4.5 APPORTS ARTIFICIELS ET PRELEVEMENTS	16
4.6 APPORTS DU BASSIN VERSANT ET INFILTRATION	17
4.7 BILAN HYDROLOGIQUE - CONCLUSION	
V- RECAPITULATIF DES ANNEES PRECEDENTES	19
VI- BIBLIOGRAPHIE	27
VII- ANNEXES	29

I- LE MILIEU ET L'AMENAGEMENT

1.1 LE BASSIN VERSANT DE LA RAVINE GARDEL

La ravine GARDEL, dénommée RENEVILLE en amont de la retenue, draine un plateau dont la majeure partie est composée de calcaires récifaux assez perméables recouverts de sols bruns de décalcification sur une épaisseur de quelques décimètres à un mètre.

Ces sols très argileux se dessèchent en période de faible pluviosité et présentent alors des fentes de retrait. Seules des pluies importantes permettent leur colmatage et le ruissellement du bassin.

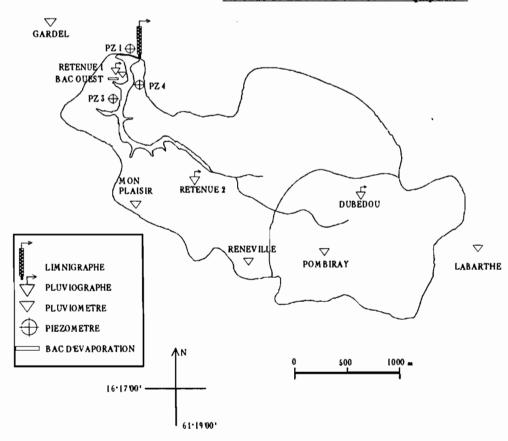
La moitié environ de la superficie du bassin est occupée par la culture de la canne à sucre, le restant étant recouvert de savanes et de prairies sèches, avec présence de cultures vivrières.

Le bassin versant contrôlé par la retenue de LETAYE-AMONT présente les caractéristiques suivantes :

- Superficie $S = 6.8 \text{ km}^2$

- Périmètre P = 13.8 km

- Coefficient de Gravélius K = 1.49


- Indices de pente Ip = 0.071 et Ig = 3.4 m/km

- Altitude point culminant: 54 m

- Altitude exutoire: 15 m

Le sous-bassin de la ravine RENEVILLE à POMBIRAY (cote 27.5 m) a une superficie de 2.7 km² (Cf. figure ci-dessous, Retenue de LETAYE-AMONT - Equipement).

Retenue de LETAYE-AMONT - Equipement

1.2 DONNEES CLIMATIQUES

Le bassin versant de la ravine GARDEL est soumis à un climat insulaire tropical régulé par un régime d'alizés d'Est chauds et humides.

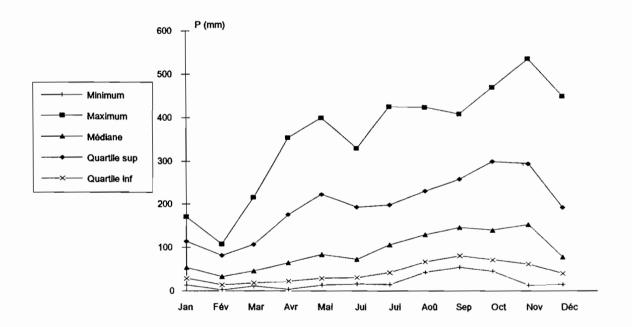
Température : 26 °C en moyenne avec une amplitude journalière de 6 à 8° et une amplitude saisonnière

de 3 à 4°; les minimums sont observés en janvier, les maximums en août.

Humidité: 80% en moyenne avec des extrêmes à 55% et 95%.

Evaporation: les valeurs annuelles moyennes des mesures sur évaporimètre évoluent entre 970 mm au

Moule et 1355 mm à Saint François.


Vents: régime d'alizés de secteur Est prédominant.

Insolation: 2700 heures par an environ.

Pluviométrie: 1300 mm en moyenne annuelle avec une variabilité caractérisée par un rapport élevé

entre les pluviométries décennales humide et sèche : K3 = 1,8.A titre indicatif, on trouvera ci-dessous les caractéristiques statistiques mensuelles de la pluviométrie à

GARDEL USINE établies à partir de 54 années de mesures.

Caractéristiques mensuelles de la pluviométrie à GARDEL USINE

1.3 CARACTERISTIQUES DE L'AMENAGEMENT

1.3.1 Caractéristiques du barrage

L'aménagement de LETAYE-AMONT est constitué d'une digue de 140 m de longueur dont la crête est érigée à la cote 28.70 m IGN.

Le seuil du déversoir principal était originellement placé par construction à la cote 25.00 m. Cependant, en raison de la croissance de la végétation ou l'accumulation de certains dépots sur le seuil, on a pu observer en 1989 que le déversement s'effectue entre 25.06 et 25.14 m. Il est encadré par 2 passes qui déversent aux cotes minimales suivantes:

- passe rive gauche 26.60 m

- passe rive droite 27.50 m

La conduite forcée de vidange est dimensionnée pour évacuer 4 m³/s à pleine charge.

Le déversoir principal de forme rectangulaire a une largeur de 4 m. Il est prolongé par un canal suivant le talus de la digue.

La formule permettant le calcul des débits instantanés déversés par cet ouvrage est de la forme :

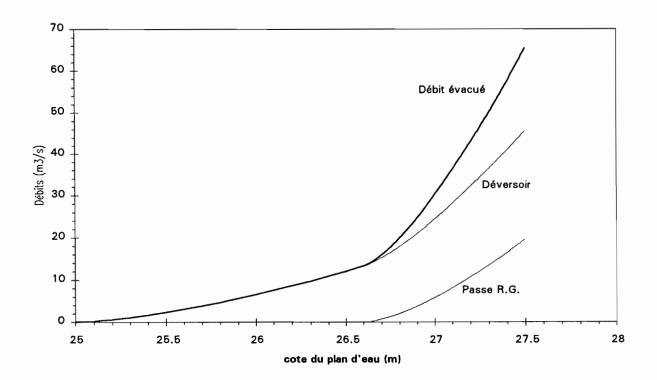
$$Q = C.L.Z^{3/2}$$

où:

 $Q = d\acute{e}bit en m^3/s$

L = largeur du seuil (4 m)

C = coefficient


Z = charge au-dessus du seuil (m)

Les mesures de débits effectués en 1979 pour des lames d'eau au-dessus du seuil comprises entre 6 cm et 33.5 cm, conduisent à adopter un coefficient C=1.65.

De manière similaire, les débits évacués par la passe déversante en rive gauche sont calculés par:

$$Q = 1.65 . 14 . Z^{3/2}$$

La figure ci-dessous représente les courbes de débits évacués par les seuils en fonction de la cote. Les barèmes d'étalonnage centimétriques du déversoir principal et de la passe déversante rive gauche, ainsi que les débits évacués globalement entre les cotes 25 m et 27.5 m, sont fournis en annexe. Au delà de la cote 27.5 m fonctionne le seuil fusible en rive droite.

1.3.2 Caractéristiques de la retenue

La cuvette est de forme très allongée : le plan d'eau à la cote 25 m s'étale sur 2 km de long pour une superficie de 18.2 ha, soit une largeur moyenne d'environ 90 m.

La profondeur moyenne de la retenue, à la cote maximale 25.00 m est d'environ 3 m.

La piste de surveillance, qui ceinture le plan d'eau, franchit la ravine en tête de retenue sur un seuil submersible équipé de 8 buses de diamètre 1000, dont la cote inférieure est de 24.55 m.

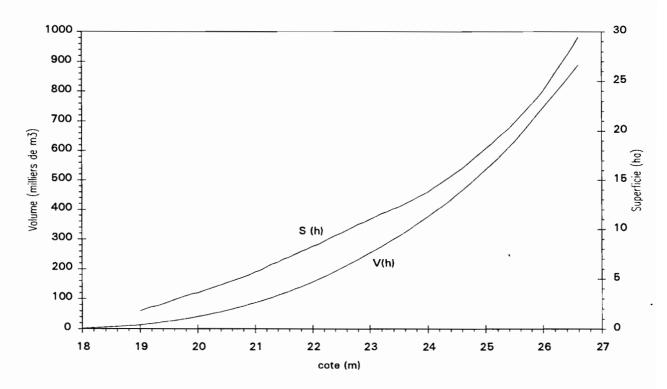
Le bassin versant contrôlé par la retenue a une superficie de 6.8 km² au niveau de la digue, et de 5.4 km² au niveau du radier submersible.

Le levé topographique réalisé en juin 1979 permet une connaissance précise de la variation du volume d'eau contenu par la retenue, et de la superficie du plan d'eau, entre les cotes 23.50 m et 26.00 m.

Levé topographique de juin 1979

Cote du plan d'eau h (en m)	Superficie du lac S (en ha)	Volume de la retenue V (en milliers de m ³⁾
23.50		V_{0}
24.00	13.78	V ₀ + 63.9
24.50	15.78	V ₀ + 137.8
25.00	18.18	V ₀ + 222.7
25.50	20.87	V ₀ + 320.4
26.00	24.03	V ₀ + 432.6

Cependant le volume V₀ n'avait pas été déterminé avec exactitude.


C'est donc sur la base d'une capacité théorique de 700 000 m³ à la cote 25 m, que V_0 était estimé à 477 milliers de m³.

Le remplissage de la retenue entre le 24 novembre et le 8 décembre 1982 a été suivi avec précision, infirmant cette hypothèse.

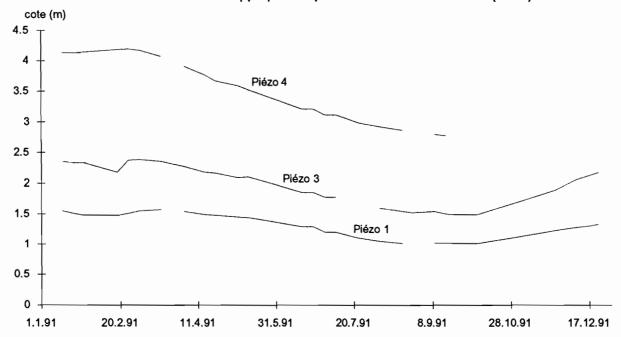
En effet le volume V_0 est estimé à seulement 312 milliers de m^3 , valeur que l'on peut admettre à 5% près, à défaut d'un levé topographique précis pour des cotes inférieures à 23.50 m, comme le précisait notre note datée de juillet 1983.

Ainsi, c'est sur la base d'une capacité de 535 milliers de m³ à la cote 25 m, pour une superficie du plan d'eau de 18.2 ha, que les courbes V(h) et S(h), présentées ci-dessous, ont été dressées (voir barèmes décimétriques en annexe).

Superficie et volume de la retenue en fonction de la cote du plan d'eau

1.4 DISPOSITIF DE MESURE DE LA RETENUE DE LETAYE-AMONT

Le dispositif de mesure implanté en 1979 pour évaluer le bilan hydrologique de la retenue se compose actuellement des éléments suivants :


- le limnigraphe de la tour de prise associé à une échelle limnimétrique de 0 à 9.5 m dont le zéro est à la cote 17.83 m IGN
- les pluviographes : RETENUE I et RETENUE II
- le bac d'évaporation enterré (bac OUEST)
- les compteurs volumétriques des conduites d'adduction et de prélèvement (installés fin mars 1987).

De plus, 3 piézomètres numérotés 1,3 et 4, permettent de suivre l'évolution du niveau de la nappe phréatique. Les repères portés sur les plaques galvanisées aux extrémités supérieures des tubes, sont aux altitudes suivantes :

piézomètre 1: 28.64 m
piézomètre 3: 31.57 m
piézomètre 4: 31.75 m

La figure ci-dessous décrit l'évolution de la nappe en 1991. Les cotes du plan d'eau sont exprimées en m par rapport au niveau de la mer.

Piezométrie de la nappe phréatique de la retenue LETAYE (1991)

II- OBSERVATION DU BASSIN VERSANT DE LA RAVINE RENEVILLE

2.1 PLUVIOMETRIE

Les relevés pluviométriques journaliers effectués aux postes de l'usine GARDEL de POMBIRAY, LABARTHE et au poste pluviographique de DUBEDOU, portant sur l'année 1991, sont présentés en annexe.

Le tableau ci-dessous récapitule les pluviométries mensuelles à ces postes.

Bassin versant de la ravine RENEVILLE à POMBIRAY

Pluviométrie mensuelle en mm - 1991

1991	J	F		A	M	J	J	A	S	0_	N	D	Total
DUBEDOU	64	44	42	1113	25	45	55	65	101	103	137	55	847
POMBIRAY	81	45	97	131	49	79	108	109	182	148	184	102	1312
LABARTHE	67	52	85	175	56	85	126	102	196	112	221	96	1372
Pluv.moy	70	46	70	135	41	66	90	88	151	119	174	80	1128

Le terme "Pluv.moy." représente la pluviométrie moyenne sur le bassin versant de la ravine RENEVILLE à POMBIRAY, évaluée par la méthode de Thiessen avec les coefficients suivants:

DUBEDOU 43 % - POMBIRAY 30 % - LABARTHE 27 %

En 1991, les précipitations moyennes sur le bassin versant de la ravine RENEVILLE à POMBIRAY s'élèvent ainsi à 1128 mm.

Le tableau suivant fournit les valeurs obtenues par l'ajustement d'une loi de Galton (ou log normale) aux totaux mensuels relevés sur la période 1938-1991 au poste de Gardel Usine. Les périodes de retour excédentaires des valeurs de l'année 1991 sont notées "+", les déficitaires "-". K3 est le rapport de la pluviométrie décennale humide à la pluviométrie décennale sèche.

La méthode d'ajustement choisie est la méthode du maximum de vraisemblance, avec ajustement du paramètre de position.

Ajustement de la loi de Galton - Période 1938-1990 - Pluviométrie en mm

Fréquences	J	F	M	A	M	J	J	A	S	0	N	D	Total
P retour													•
0.01 - 100	16	3	10	7	11	17	13	41	49	42	19	22	789
0.02 - 50	19	6	11	10	14	20	19	46	56	48	28	26	830
0.05 - 20	24	10	15	16	21	25	30	56	68	60	45	33	899
0.1 - 10	29	14	18	22	29	31	42	67	81	72	62	40	966
0.2 - 5	37	21	24	33	42	41	58	82	100	92	87	53	1060
0.5 - 2	58	38	43	67	82	73	100	124	146	146	149	87	1274
0.8 - 5	91	63	78	127	159	137	158	186	213	234	236	146	1550
0.9 - 10	114	82	107	175	223	193	198	231	259	300	295	192	1723
0.95 - 20	137	100	138	228	295	255	237	275	304	368	353	240	1884
0.98 - 50	169	125	186	306	404	352	288	336	363	464	428	309	2088
0.99 - 100	194	144	227	371	497	436	327	384	409	542	486	365	2237
K3	3.9	5.8	5.9	7.9	7.7	6.2	4.7	3.4	3.2	4.2	4.7	4.8	1.8
1991	76	51	65	95	28	55	74	73	108	95	137	60	917
P retour	3+	3+	4+	3+	8-	3-	4-	7-	4-	5-	2-	3-	12-

Etude du bilan hydrologique de la retenue de Letaye-Amont - Année 1991

La pluviométrie de l'année 1991 avec un total de 916 mm mesurés au poste de Gardel Usine est très déficitaire. Sa période de retour est de 12 ans.

La répartition des précipitations de l'année 1991 au poste de Gardel usine est anormale. Les quatre premiers mois de l'année sont excédentaires d'environ 15 %, tous les autes mois sont déficitaires, notamment mai et août, pour lesquels les périodes de retour des déficits respectifs sont de 8 et 7 ans.

2.2 ECOULEMENT DU BASSIN VERSANT

L'observation de cette station a été interrompue le 20 février 1990.

III- ETUDE DU BASSIN VERSANT DE LETAYE-AMONT - RELATION PLUIE-DEBIT

Depuis la mise en eau de la retenue en octobre 1978, on dispose de données pluviométriques sur plusieurs postes placés sur le bassin versant de la retenue, ainsi que de données hydrométriques, notamment sur les apports du bassin versant, déduites du bilan hydrologique effectué chaque année.

Nous avons donc cherché à établir une relation entre la pluie et les apports du bassin versant de la retenue de Letaye-Amont.

Les résultats obtenus par simple régression au pas de temps mensuel ayant été décevants, nous avons essayé d'appliquer deux modèles globaux de relation pluie-débit ,CREC et GR3 (A. DEZETTER). Ces études sont décrites ciaprès.

3.1 CORRELATION PLUIE-DEBIT

3.1.1 Pluie moyenne mensuelle sur le BV (Pm)

La pluviométrie moyenne sur le BV de la retenue a été calculée à partir de 4 postes pluviographiques situés sur le bassin même de la retenue ou à proximité, selon la méthode de Thiessen avec les coefficients suivants:

- GARDEL USINE	4.5%
- MON PLAISIR	27%
- POMBIRAY	55%
- LABARTHE	13.5%

Ces postes ont été retenus pour leur situation géographique et leur longue période d'observation (de 1951 à nos jours). Le tableau des pluies moyennes mensuelles ainsi calculées est présenté en annexe.

3.1.2 Volumes et lames d'eau écoulés sur le BV (Vbv., Lec)

Les volumes écoulés sur le BV de la retenue ont été déterminés à partir du bilan hydrologique réalisé chaque année. Les lames écoulées en ont été déduites $(S_{bv} = 6.8 \text{ Km}^2)$, leurs valeurs sont également fournies en annexe.

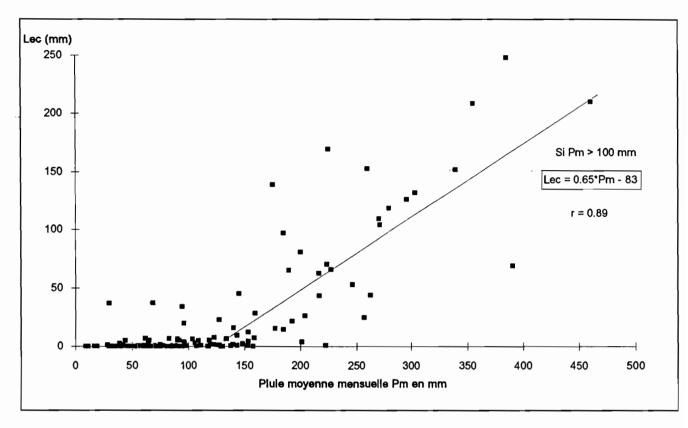


Figure 1: Corrélation Pluie-Débit au pas de temps mensuel sur le BV de Letaye

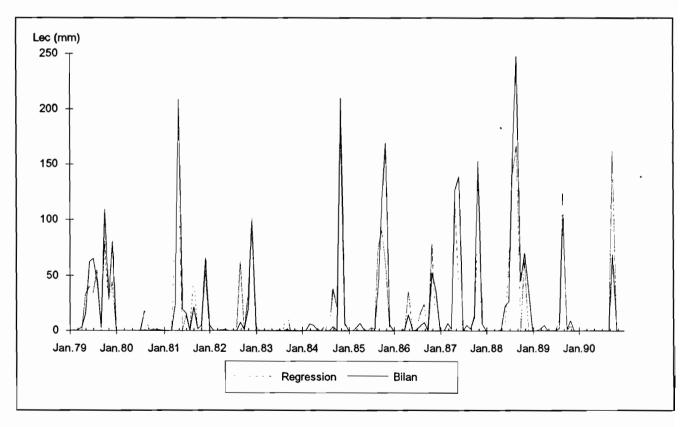


figure 2: Lames écoulées déduites du bilan et calculées par la régression pluie débit.

La figure 1 représente la lame écoulée mensuelle sur le bassin versant en fonction de la pluie moyenne mensuelle.

On constate que le bassin versant fournit des apports dans la majorité des cas, pour une pluie mensuelle supérieure à 100 mm. Nous avons donc appliqué une régression linéaire entre les lames écoulées et les pluies supérieures à cette limite et considéré que l'écoulement était nul pour une pluie inférieure.

Nous avons obtenu l'équation suivante:

Lec: Lame écoulée en mm

Pm: Pluie moyenne mensuelle en mm

Le coefficient de cette régression r est de 0.89.

La figure 2 permet de comparer les lames d'eau déduites du bilan et celles calculées par la corrélation pluie débit. Le coefficient de cette corrélation n'est que de 0.75, ce qui n'est pas très satisfaisant. En effet, ce type de régression simple ne tient compte ni de l'état du sol (saturé ou non), ni des séries pluvieuses précédentes, ni de l'évapotranspiration, d'où une forte dispersion des valeurs des lames écoulées.

Devant ce résultat peu satisfaisant, nous avons essayé d'appliquer des modèles globaux de relation pluie débit avec calage au pas de temps journalier.

3.2 MODELISATION

3.2.1 Données disponibles

Les modèles dont nous disposons fonctionnent avec 3 types de séries chronologiques de données:

- les débits journaliers en l/s (apports du bassin versant);
- les pluies journalières correspondantes en 10ème mm;
- les évapotranspirations mensuelles interannuelles exprimées en mm/j.

Nous disposons de plusieurs types de données:

- Au pas de temps journalier: 1 année complète de données fiables sur les écoulements du bassin versant de la retenue de Letaye-Amont (1981).
 - une série chronologique de pluie moyenne sur le bassin versant de 1951 à 1991 calculée à partir des quatre postes pluviographiques décrits dans le chapitre précédent, à savoir Pombiray, Labarthe, Mon plaisir, Gardel usine (confer tableau en annexe)...

Au pas de temps mensuel:

- une seule série chronologique d'apports du bassin versant de 1979 à 1990.
- des évaporations mensuelles interannuelles au Bac Ouest.

L'évaportanspiration (ETP) a été assimilée aux relevés d'évaporation du Bac Ouest enterré au niveau de la retenue (confer paragraphe 1.4). Nous disposions de 12 années d'observations de 1979 à 1991. La moyenne interannuelle figure dans le tableau ci-dessous.

Mois	Jan	Fev	Mar	Avr	Mai	Jun	Jul	Aou	Sep	Oct	Nov	Dec
ETP mm/j	3.9	4.7	5.3	5.6	5.5	5.8	5.8	5.4	4.8	4.1	3.4	3.4

Evapotranspiration mensuelle interannuelle exprimée en mm/j - Bac Ouest

3.2.2 Calage des modèles

L'opération de calage consiste à déterminer les valeurs des paramètres du modèle qui permettent de reconstituer le plus fidèlement possible l'hydrogramme observé.

Deux types de calages sont possibles: le calage manuel où l'utilisateur modifie un à un les paramètres et observe les effets produits; et le calage automatique où les paramètres sont modifiés selon une technique d'optimisation qui doit converger vers une solution optimale.

Dans un premier temps, nous avons calé manuellement les lames mensuelles calculées par le modèle GR3 sur les lames d'eaux mensuelles déduites du bilan hydrologique à partir seulement de la série chronologique de pluies journalières sur la période observée. Le calage manuel est envisageable dans ce cas, car le modèle GR3 ne nécessite que 3 paramètres contre 10 pour CREC.

Nous avons ensuite effectué le calage automatique des modèles GR3 et CREC sur les couples pluie-débit au pas de temps journalier de l'année 1981. Cette année est d'autant plus intéressante qu'elle présente plusieurs épisodes d'écoulements.

3.2.3 Le calage manuel - Résultats de la modélisation avec GR3:

Le calage manuel sur les lames d'eau moyennes est conduit de la manière suivante:

- On injecte comme données d'entrées dans le modèle, les pluies journalières, les évapotranspirations, la superficie du BV et le jeu de paramètres initial.

Le modèle calcule: - des débits journaliers

des lames écoulées décadaires
des lames écoulées mensuelles

- on calcule la corrélation existante entre les lames mensuelles ainsi calculées à celles obtenues par le bilan. Si la corrélation n'est pas optimale, on modifie le jeu de paramètres et on relance la modélisation.

La meilleure corrélation obtenue est de 0.84 entre les lames mensuelles écoulées obtenues par la modélisation et celles issues du bilan hydrologique sur la période d'observation de 1979 à 1990.

Le jeu de paramètres donnant la corrélation optimale est le suivant:

GR3 cal manu
A = 400
B = 0.5
C= 0.724
$Q_0 = 0.4$
$S_0 = 0.0041$

Coeff corrélation = 0.84

3.2.4 Le calage automatique - Résultats de la modélisation avec GR3 et CREC

Les résultats du calage automatique des 2 modèles sur l'année 1981 donnent les corrélations et jeux de paramètres suivants:

Corrélation lames mensuelles	Valeurs
GR3 / Bilan	0.84
CREC / Bilan	0.81
GR3 / CREC	0.94

GR3 calage auto
A = 296.6
B = 22.06
C = 1.16
$Q_0 = 0.4878$
$S_0 = 0.0052$

Paramètres du calage automatique sur 1981 avec GR3

CREC calage auto
X1 = 0.1148
X2 = 0.8722
X3 = 0.0241
X4 = 0.0380
X5 = 75.9172
X6 = 135.1782
X7 = 19.1132
X8 = 266.42
X9 = 7.1363
X10 = 0.5

Paramètres du calage automatique sur 1981 avec CREC

3.2.5 Paramètres retenus et Simulation

L'hydrogramme calculé donnant la reproduction la plus satisfaisante de l'hydrogramme observé, a été obtenu avec le modèle GR3. Le calage manuel et le calage automatique ont fourni des jeux différents de paramètres pour la même valeur de corrélation optimale obtenue entre les lames mensuelles qui est de 0.84.

Ces résultats nous conduisent aux conclusions suivantes:

- D'une manière générale, les résultats obtenus sont satisfaisants au regard des données des apports du BV très peu précises.
 - Le calage manuel d'un modèle tel que GR3 est possible et donne même des résultats satisfaisants.

Pour la phase de simulation, le jeu de paramètres pour chaque modèle est appliqué pour la reconstitution des apports du BV à partir de la pluie moyenne sur la période d'observation de 1979 à 1990. Les hydrogrammes sont représentés sur les graphes ci-après.

IV- LE BILAN HYDROLOGIQUE DE LA RETENUE

4.1 RAPPEL DES TERMES DU BILAN

Les termes du bilan hydrologique de la retenue de LETAYE-AMONT sont les suivants :

Apports	VPLU :Précipitation directe sur le plan d'eau
	VBV :Apports naturels du bassin versant
	VART :Apports artificiels de la conduite d'adduction
Pertes	VPRE: Prélèvement par pompage pour l'irrigation
	VDEV : Déversement et vidange
	VEVA : Evaporation
	VINF :Infiltration
Variation de stock	VSTO

L'équation du bilan hydrologique en termes volumétriques se traduit ainsi :

VSTO = VPLU + VBV + VART - VPRE - VDEV - VEVA - VINF

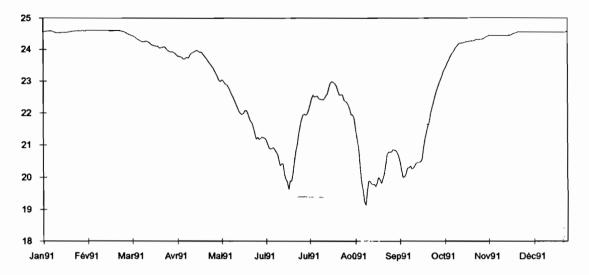
Cette équation est valable quel que soit l'intervalle de temps considéré, journalier, hebdomadaire ou mensuel. Mais en pratique, certains termes (VART, VPRE) n'étant connus qu'au pas de temps mensuel, il est illusoire de chercher à appliquer l'équation à un pas de temps inférieur.

Estimation des termes du bilan hydrologique

	Terme	Données utiles
Apports	VPLU	Pluviométrie moyenne sur la retenue et courbe S(h)
	VBV	Enregistrement limnigraphique, courbe V(h) après l'estimation de VINF
	VART	Relevés compteur alimentation
Pertes	VPRE	Relevés compteurs pompage
	VDEV	Enregistrement limnigraphique, et courbes d'étalonnage des évacuateurs
	VEVA	Evaporation du bac enterré et courbe S(h)
	VINF	Terme résiduel du bilan sans apports du B.V.
		Estimation en fonction de la cote de la retenue par référence à des situations
		connues.
Stockage	VSTO	Enregistrement limnigraphique et courbe V(h)

4.2 LIMNIMETRIE ET DONNEES ASSOCIEES

Le limnigraphe implanté à la tour de prise a enregistré en continu et sans défaillance les variations du niveau du plan d'eau, dont les cotes extrêmes au cours de l'année 1991 ont été de 19,1 et 24,6 m.


On remarquera dans le graphique qui suit, que le niveau du plan d'eau est descendu à deux reprises en dessous de la cote 20 m; pendant les périodes mai-juin et fin juillet début août. Le plan d'eau est ainsi passé au cours de la première période de la cote 24 (barrage empli à 390 milliers de m3) à la cote 19,6 (30 milliers de m3 d'eau) et jusqu'à 19,1 m (19 milliers de m3) pour la deuxième période.

Les prélèvements ont donc été encore plus sévères que l'année précédente, au cours de laquelle, la cote du plan d'eau n'était pas descendue en dessous de 20 m.

La réalimentation de la retenue (Apports artificiels et naturels) a tout de même permis de retrouver en fin d'année la cote initiale de 24,6 m.

La figure ci-après retrace les variations journalières des cotes du plan d'eau en 1991.

Cotes de la retenue (en m)

Les données de limnigraphie sont explicités de deux façons différentes selon qu'il y a ou non déversement.

S'il n'y a pas de déversement (h < 25,1 m), les différents termes du bilan sont calculés au pas de temps journalier, de 8H00 à 8H00 le lendemain. On utilise le logiciel "HYDROM" pour traduire les cotes en superficies ou en volumes à l'aide de barèmes fictifs S(h) et V(h). Ces données sont préalablement saisis sous HYDROM, comme s'il s'agissait de barèmes de traduction des hauteurs en débits.

Les superficies et volumes "instantanés" ainsi obtenus servent ensuite au calcul de valeurs moyennes journalières qui entrent seules dans le calcul des termes du bilan.

Lorsque la cote du plan d'eau dépasse 25,1 m, il convient aussi de calculer les volumes journaliers déversés. Pour cela, on traite la limnigraphie de façon classique en traduisant les cotes en débits à partir de l'équation de déversement donnée plus haut.

Il convient de préciser ici qu'en fait :

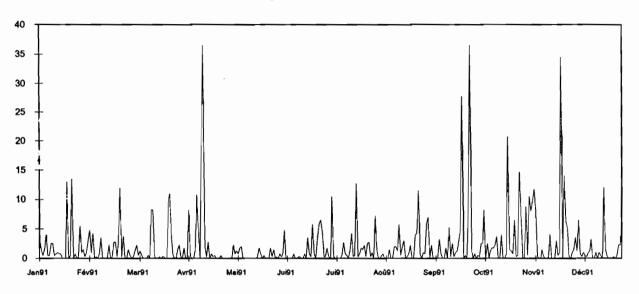
- il existe une "vanne" dite de décharge au-dessus du seuil (construite pour relever la cote normale de la retenue, afin de réaliser un stockage supplémentaire). Il se peut que cette "vanne" soit fermée en début de crue, le déversement se trouvant alors retardé jusqu'à son ouverture (ou au débordement).
- le terme VDEV recouvre théoriquement en plus du volume déversé, le volume écoulé par la vanne de décharge.

En ce qui concerne l'année 1991, la cote maximale relevée n'ayant jamais atteint ou dépassé la cote 25 m, c'est à dire la cote limite à partir de laquelle il y a déversement, le terme VDEV = 0 pour toute l'année.

Dans le tableau ci-dessous figurent les variations de stock et les volumes déversés au pas de temps mensuel en milliers de m³ pour l'année 1991.

	Jan	Fev	Mar	Avr	Mai	Jui	Jul	Aou	Sep	Oct	Nov	Dec	Total
VSTO	+7000	-15000	-82000	-79000	-191000	+51000	+34000	-108300	+136300	+207000	+37000	+7000	+4000
VDEV	0	0	0	0	0	0	0	0	0	0	0	0	0

Variations de stock en 1991 exprimées en milliers de m³


4.3 PLUVIOMETRIE

Les postes RETENUE I et RETENUE II sont équipés de pluviographes dont nous avons tiré les cumuls journaliers de pluie de 8h à 8h. Les données pluviométriques correspondantes sont présentées en annexe. Ces pluviométries sont entrées automatiquement dans la feuille de calcul du tableur par simple transfert de fichier.

Les lames d'eau moyennes journalières précipitées sur le plan d'eau de la retenue sont estimées en faisant la moyenne entre les observations de RETENUE I et RETENUE II.

La figure ci-dessous montre la répartition de cette pluviométrie moyenne journalière en mm, au cours de l'année 1991.

Pluviométrie moyenne en mm sur la retenue

Les valeurs mensuelles sont récapitulées ci-dessous.

Pluviométrie moyenne (mm) en 1991 sur la retenue

Jan	Fév	Mar	Avr	Mai	Jui	Jui	Aoû	Sep	Oct	Nov	Déc	total
61	44	53	92	17	41	57	51	109	87	129	50	789

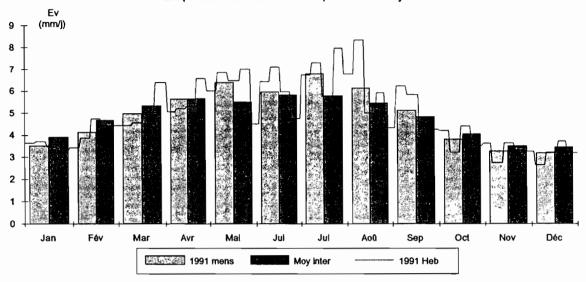
Au niveau de la feuille de calcul, le volume de pluie, VPLU, précipité directement sur le plan d'eau est calculé automatiquement par multiplication de la pluviométrie moyenne journalière par la superficie moyenne journalière du plan d'eau.

Ainsi les quantités d'eau apportées par précipitation directe sur le plan d'eau de la retenue sont estimées à 95 milliers de m³ pour 1991, contre 145 en 1990.

4.4 EVAPORATION

L'évaporation est mesurée sur un bac "enterré" et n'est connue qu'au pas de temps hebdomadaire, qui correspond à la fréquence des tournées sur le site de la retenue.

L'analyse des informations obtenues sur bac flottant et bacs enterrés (campagne 1979 à 1984) a montré que contrairement à ce que l'on pouvait attendre, l'évaporation était plus forte sur le bac flottant que sur les bacs enterrés (Est et Ouest). Devant l'impossibilité de déterminer un coefficient de passage entre bac enterré et retenue, nous admettrons que les évaporations mesurées au bac sous le vent (bac Ouest) sont extrapolables à la retenue.


Entre deux relevés du bac, la hauteur d'eau évaporée est répartie uniformément au pas de temps journalier. Les volumes VEVA évaporés au niveau du plan d'eau sont calculés en multipliant directement les lames évaporées par la superficie moyenne correspondante.

La figure ci-après reprend la répartition de l'évaporation hebdomadaire ainsi calculée (1991 Heb) exprimée en mm/jour. La valeur maximale d'évaporation atteint 8.3 mm/jour en août alors que la valeur minimale est de 2.64

mm/jour en décembre.

Sont aussi représentées sur cette figure, les évaporations mensuelles de l'année 1991 (1991 mens) et les évaporations moyennes interannuelles de 1979 à 1991 (Moy inter), au BAC OUEST.

Evaporation au BAC-OUEST exprimée en mm/j

Evaporation mensuelle en mm pour l'année 1991 - Bac OUEST

Jan	Fev	Mar	Avr	Mai	Jui	Jul	Aou	Sep	Oct	Nov	Dec	Total
109	118	154	169	198	179	211	190	154	118	98	99	1797

En 1991, 192 milliers de m³ d'eau ont été perdus par évaporation, ce qui représente le tiers du volume total de la retenue à la cote de déversement.

4.5 APPORTS ARTIFICIELS ET PRELEVEMENTS

Les valeurs des volumes d'eau qui transitent par la conduite d'adduction depuis le Bras David à la cote 130 jusqu'à la retenue de LETAYE-AMONT, sont en principe fournies par la SOGEA, organisme gestionnaire du réseau.

Les valeurs transmises à l'ORSTOM pour 1991 sont rassemblées dans le tableau ci-après.

Apports artificiels en 1991
Volumes d'eau en milliers de m³ (données SOGEA)

Jan	Fev	Mar	Avr	Mai	Jui	Jul	Aou	Sep	Oct	Nov	Dec	Total
50	115	108	119	125	123	115	248	102	90	104	171	1470

D'autre part, les valeurs relatives aux prélèvements fournies par le même organisme sont les suivantes:

Prélèvements pour l'irrigation en 1991 (données SOGEA)

Volumes d'eau en milliers de m³

Jan	Fev	Mar	Avr	Mai	Jui	Jul	Aou	Sep	Oct	Nov	Dec	Total
0	0	0	213	214	161	196	305	232	•	-	•	1321

4.6 APPORTS DU BASSIN VERSANT ET INFILTRATION

Les apports naturels du bassin constituent globalement avec l'infiltration les inconnues du bilan. Cependant, concernant plus précisément l'infiltration, des études antérieures à 1989 ont montré qu'il était possible d'établir une relation entre la hauteur d'eau journalière infiltrée dans la retenue et la cote moyenne de cette dernière:

Infiltration
$$(mm/j) = a * (h-22)^2$$

a étant un paramètre d'ajustement dont la valeur s'est stabilisée à 1.7 au cours des années 1987 et 1988.

Cette formule conduit, avec a pris égal à 1.7, au barème suivant:

Infiltration en fonction de la cote du plan d'eau de la retenue

Cote du plan d'eau	25.5	25.0	24.5	24.0	23.5	23.0	22.5	22.0
$Imm/j = 1.7 * (Cote-22)^2$	20.8	15.3	10.6	6.8	3.8	1.7	0.4	0.0
Vol.Inf. 10 ³ .m ³ /jour	4.35	2.78	1.68	0.94	0.47	0.19	0.04	0.0

4.7 BILAN HYDROLOGIQUE - CONCLUSION

Les bilans ne peuvent être dressés qu'à l'échelle mensuelle, pas de temps correspondant aux données d'apports artificiels et de prélèvements fournies par la SOGEA.

Le bilan est résumé dans le tableau suivant :

Bilan hydrologique de la retenue - Volumes en milliers de m³

1991	VPLU	VART	VPRE	VDEV	VEVA	VSTO	VINF	VBV	VBVm
J	10	50	0	0	17	7	56	21	31
F	7	115	0	0	19	15	52	-66	8
M	8	108	0	0	22	82	37	-138	5
Α	12	119	213	0	22	-79	21	46	43
M	2	125	214	0	18	-191	2	-83	4
J	2	123	161	0	9	51	4	100	0
J	5	115	196	0	20	34	2	132	0
A	2	248	305	0	9	-108	6	-39	0
S	7	102	232	0	8	136	4	272	22
0	12	90	•	0	16	207	28	149	56
N	20	104	-	0	15	37	48	-23	200
D	8	171	-	0	16	7	55	-100	87
Total	95	1470	1321	276	191	4	315	270	460

Le terme résiduel est l'apport naturel du B.V, déterminé à partir de la relation suivante:

L'examen des valeurs de VBV ainsi calculées met en évidence des anomalies:

- apports naturels du bassin versant négatifs pour certains mois (fev, mars, mai, avril, nov et dec);

- apports anormalement élevés pour d'autres mois de l'année (Juin, Jul, sept et oct.), comparés aux valeurs VBVm déduites de la modélisation par GR3 (confer paragraphe 3.2.3).

A titre d'exemples, on analysera ci-après les bilans mensuels des mois de mars et décembre.

Bilan hydrologique sur le mois de mars:

Les apports naturels du B.V déduits du bilan correspondent à un important déficit de -138.10³ m3. A titre indicatif, le modèle GR3 donne un apport des écoulements du B.V. de 5 milliers de m3 (précipitations faibles ce mois-ci).

Pour que le bilan puisse être équilibré, il faudrait soit des apports plus faibles, soit des pertes et prélèvements plus importants.

En ce qui concerne les apports, le terme VPLU représentant les précipitations, connu au pas de temps journalier (moyenne de 2 postes pluviométriques), est fiable. Quand au terme VART, en admettant qu'il soit surestimé, cette surestimation serait au maximum de 108.10³ m³, ce qui ne pourrait expliquer entièrement, le déficit de 138.10³ m³.

On est donc conduit à admettre qu'un ou plusieurs des termes correspondant aux pertes sont erronés. Or, les termes VDEV (pertes par déversement), VSTO (variation de stock) et VEVA (pertes par évaporation) sont connus au pas de temps journalier voire hebdomadaire et relativement précisément. Quand aux pertes par infiltration (VINF), elles sont d'un ordre de grandeur trop petit pour expliquer le déficit constaté. Ce sont donc les valeurs fournies pour les prélèvements qui doivent être incriminées.

Il apparaît en outre clairement sur les relevés limnigraphiques, des périodes répétitives de pompage s'échelonnant de 8H à 18H du 01 au 31 mars. Ce qui prouve bien que les prélèvements n'ont pas pu être nuls, contrairement aux indications de la SOGEA: on peut même avancer la valeur approximative de 120 milliers de m³ pour ces prélèvements, valeur qui permettrait d'obtenir un bilan équilibré.

Bilan hydrologique sur le mois de décembre:

De même, au mois de décembre, les apports naturels du B.V. déduits du bilan, correspondent à un important déficit (-100.10³ m³). Or, la variation de stock est négligeable (+7milliers de m³), la cote du plan d'eau n'a augmenté que d'un centimètre au cours du mois, et d'autre part nous avons contrôlé qu'il n' y avait pas eu de prélèvements pour l'irrigation au cours de ce mois. L'anomalie ne peut donc s'expliquer que par une surestimation des apports artificiels. Cette surestimation serait d'au moins 100 milliers de m³.

En définitive, seuls les mois de janvier et avril semblent équilibrés. Pour les autres mois, comme dans les rapports précédents, nous remettons fortement en doute les données de la SOGEA.

Pour ces raisons, il ne nous est pas possible de tirer des conclusions intéressantes quant à l'évolution des infiltrations en vue d'une optimisation de la gestion de l'ouvrage.

V- RECAPITULATIF DES ANNEES PRECEDENTES

Depuis la mise en eau de l'aménagement en octobre 1978, le bilan hydrologique de la retenue de LETAYE-AMONT a été établi au pas de temps mensuel. Les tableaux ci-dessous récapitulent les données annuelles.

Bilan hydrologique de la retenue de LETAYE-AMONT - Volumes en milliers de m³

	VPLU	VBV	VART	VPRE	VEVA	VDEV	VSTO	VINF
1978	22	507	-30	0	37	0	+ 473	49
1979	305	2804	57	0	304	2291	+ 227	344
1980	109	24	1	0	280	0	- 261	115
1981	266	2473	0	3	304	1761	+ 272	399
1982	133	897	1204	40	240	1585	+ 2	367
1983	75	29	6	69	222	15	- 383	188
1984	204	1585	473	20	250	1193	+ 288	514
1985	235	2392	-39	* 0	289	2249	+ 50	-
1986	177	(805)	961	(520)	269	481	- 11	(684)
1987	226	3111	836	602	260	2616	- 12	706
1988	302	4100	786	211	296	3764	+ 66	849
1989	219	838	1698	982	270	778	- 26	751
1990	145	468	2500	2244	217	276	- 14	390
1991	* 95	*270	*1469	*1320	*193	*0	*+4	*317

*: Données brutes, bilan non équilibré

Ravine RENEVILLE à POMBIRAY - Volumes écoulés en milliers de m³

	J	F	M	Α	M	J	J	Ā	S	0	N	D	TOTAL
1981	-	-	•	-	-	-	-	0	56.0	0.8	1.8	205	264
1982	17.9	0	0	0.4	0	0	0	0.5	20.0	2.5	45.3	234	320
1983	15.3	0	0	0	0.7	0.7	3.7	0	4.4	0	0	0	25
1984	0	0	0	0	0	0	10.7	0	0.1	0.8	592	6.7	611
1985	0	0	0.3	0.6	0.6	0	4.6	0.4	80.9	232	113	0.2	432
1986	0	0	0	0.3	16.5	0.6	0	0.3	8.9	0.8	86.6	27.2	141
1987	0.2	0	0.5	0	148	112	0.4	5	0.6	40	267	-	-
1988	1.7	0	2.0	0	1.7	18.9	31	442	648	45	156	11.8	1358
1989	0	0	0.4	8.2	0	0.1	8.7	9.8	220	38	25	0.9	311
1990	0			•		-					-	<u>-</u>	-

Volumes en milliers de m³

APPORTS PAR PRECIPITATION DIRECTE

	J	F	M	Α	M	J	J	Α	S	О	N	D	TOTAL
1978	-	-	-	-	-	-	-	-	-	7	10	5	22
1979	6	9	8	12	23	41	41	35	17	52	28	33	305
1980	6	4	5	5	7	6	13	16	11	15	13	8	109
1981	4	5	3	24	77	18	22	10	30	19	17	37	266
1982	6	9	6	11	2	3	14	14	24	1	2	41	133
1983	7	2	4	6	13	4	12	5	12	4	2	4	75
1984	7	4	7	14	10	10	15	6	23	19	80	9	204
1985	5	10	10	26	7	8	14	17	41	49	37	11	235
1986	10	6	10	10	30	7	7	17	20	10	40	10	177
1987	10	1	11	24	44	31	12	16	16	23	42	16	226
1988	9	7	4	2	11	19	31	60	71	31	44	12	302
1989	8	11	22	17	8	4	10	18	64	19	26	12	219
1990	7	3	4	2	7	12	4	9	14	60	10	13	145
1991	10	7	8	12	2	2	5	2	7	12	20	8	95

APPORTS DU BASSIN VERSANT

	J	F	M	Α	M	J	J	Α	S	0	N	D	TOTAL
1978	-	-	-		-	-	•	-	-	497	10	0	507
1979	0	3	3	20	103	425	443	295	26	744	193	549	2804
1980	0	0	0	0	0	0	2	3	0	9	7	3	24
1981	0	0	0	169	1420	132	108	2	149	11	. 34	446	2473
1982	33	1	0	5	6	0	0	1	51	6	134	660	897
1983	18	0	0	1	0	0	4	0	6	0	0	0	29
1984	2	1	42	34	5	0	0	0	26	0	1429	46	1585
1985	0	0	18	44	9	0	19	8	299	807	1152	36	2392
1986	0	0	0	10	100	0	5	30	50	0	360	250	805
1987	4	0	44	8	859	945	0	33	11	83	1040	42	3111
1988	3	0	0	0	5	155	180	1034	1685	307	478	253	4100
1989	0	0	11	33	0	0	0	14	710	7	63	0	838
1990	0	0	0	0	0	0	0	0	0	468	0	0	468
1991	+21	-66	-138	+46	-83	+100	+132	-39	+272	+149	-23	-100	+270

Volumes en milliers de m³

APPORTS ARTIFICIELS

	J	F	M	Α	М	J	J	Α	S	О	N	D	TOTAL
1978	-	•	-	-		-	-	-	-	-	0	30	30
1979	43	0	0	0	4	6	0	0	0	0	0	4	57
1980	1	0	0	0	0	0	0	0	0	0	0	0	1
1981	0	0	0	0	0	0	0	0	0	0	0	0	0
1982	0	0	39	0	0	560	1	1	0	31	206	366	1204
1983	0	0	1	1	4	0	0	0	0	0	0	0	6
1984	0	0	82	198	100	36	0	1	6	50	0	0	473
1985	-	-	-	-	-	-	-	•	-	-	-	-	-
1986	13	115	150	105	92	283	17	3	43	46	56	38	961
1987	50	50	88	97	241	55	24	27	59	49	45	53	836
1988	31	40	21	136	127	72	41	46	38	78	68	87	786
1989	106	170	169	149	153	110	253	202	119	115	78	74	1698
1990	194	212	330	283	308	197	205	269	227	69	83	123	2500
1991	50	115	108	119	125	123	115	248	102	_ 90	104	171	1470

PRELEVEMENTS POUR L'IRRIGATION

	J	F	M	A	M	J	J	A	S	0	N	D	TOTAL
1978	-	-	-	-	-	-	-	_		0	0	0	0
1979	0	0	0	0	0	0	0	0	0	0	0	0	0
1980	0	0	0	0	0	0	0	0	0	0	0	0	0
1981	0	0	0	0	0	0	0	0	0	1	1	1	3
1982	2	2	3	5	5	7	6	5	3	1	0	1	40
1983	1	5	7	10	4	7	5	6	6	6	7	5	69
1984	5	9	6	0	0	0	0	0	0	0	0	0	20
1985	0	0	0	0	0	0	0	0	0	0	0	0	0
1986	0	(81)	(42)	(80)	(79)	(222	(16)	0	0	0	0	0	(520)
1987	0	52	65	103	176	0	14	33	62	18	37	44	602
1988	0	0	3	92	50	66	0	0	0	0	0	0	211
1989	20	147	96	46	199	248	209	0	0	0	0	17	982
1990	173	339	433	262	194	72	233	219	159	23	32	105	2244
1991	0	0	0	213	214	161	196	305	232	-	-	-	1321

Volumes en milliers de m³

PERTES PAR EVAPORATION

	J	F	M	Α	M	J	J	Α	S	0	N	D	TOTAL
1978	-	-	-	-	-	-	-	-	-	4	17	16	37
1979	18	19	20	22	24	29	35	34	27	28	24	24	304
1980	26	28	31	28	28	27	24	21	19	19	16	13	280
1981	16	17	17	18	35	33	35	32	32	27	22	20	304
1982	25	22	27	26	7	21	31	27	24	10	2	18	240
1983	22	22	20	25	19	22	18	20	17	14	12	11	222
1984	11	13	13	23	32	28	24	24	22	16	25	19	250
1985	18	14	25	24	29	30	28	29	23	27	19	23	289
1986	17	17	28	26	25	29	29	24	21	19	17	17	269
1987	19	20	23	26	21	26	28	26	23	14	15	19	260
1988	22	22	25	24	28	27	30	23	25	29	20	20	296
1989	20	23	28	23	28	24	15	29	26	26	18	10	270
1990	25	19	16	9	20	19	24	15	18	18	17	17	217
1991	17	19	22	22	18	9	20	9	8	16	15	16	191

VOLUMES DEVERSES ET VIDANGES

	J	F	M	Α	M	J	J	Α	S	0	N	D	TOTAL
1978	-	-	-	•	-	•	-	•		0	0	0	0
1979	0	0	0	0	0	236	441	214	29	676	165	530	2291
1980	0	0	0	0	0	0	0	0	0	0	0	0	0
1981	0	0	0	0	1119	183	30	0	47	0 -	0	308	1761
1982	40	0	0	218	114	46	0	0	0	433	94	640	1585
1983	15	0	0	0	0	0	0	0	0	0	0	0	15
1984	0	0	0	0	0	0	0	0	0	0	1168	25	1193.
1985	0	0	0	0	0	0	0	0	229	796	1180	44	2249
1986	0	0	0	0	0	0	0	0	0	0	228	253	481
1987	0	0	0	0	705	952	2	0	0	0	915	43	2616
1988	0	0	0	0	0	0	96	1018	1659	257	494	241	3765
1989	0	0	0	0	0	0	0	0	703	6	61	8	778
1990	0	0	0	0	0	0	0	0	0	276	0	0	276
1991	0	0	0	0	0	0	0	0	0	0	0	0	0

<u>Volumes en milliers de m</u>³

VARIATION DE STOCK

	J	F	M	Α	M	J	J	Α	S	0	N	D	TOTAL
1978										+481	-18	+10	+473
1979	+18	-19	-17	+3	+97	+180	-60	+40	-58	+54	-6	-5	+227
1980	-51	-4 5	-42	-33	-28	-26	-13	-6	-11	+1	+1	-8	-261
1981	-15	-14	-17	+167	+201	-123	+11	-52	+44	-36	0	+106	+272
1982	-91	-45	-14	-245	-119	+460	-76	-4 1	+31	-4 11	+245	+308	+2
1983	-83	-63	-55	-40	-11	-34	-13	-25	-8	-18	-21	-12	-383
1984	-9	-19	+110	+204	+1	-34	-44	-37	+18	+42	+149	-93	+288
1985	-49	+32	+7	+40	+27	-35	-30	-17	+102	+8	-3	-32	+50
1986	-33	-17	+10	-23	+38	-21	-56	-5	+65	-6	+113	-76	-11
1987	-19	-66	+6	-56	+196	-15	-77	-36	-34	+71	+89	-70	-12
1988	-37	-18	-40	-10	+36	+100	+37	-2	+6	+22	-24	-3	+66
1989	-18	-43	+22	+41	-128	-177	+33	+177	+85	+20	-8	-30	-26
1990	-71	-167	-118	+11	+93	+103	-68	+33	+43	+205	-37	-41	-14
1991	+7	-15	-82	-79	-191	+51	+34	-108	+136	+207	+37	+ <u>7</u>	+4

PERTES PAR INFILTRATION

	J	F	M	Α	M	J	J	Α	S	0	N	D	TOTAL
1978	-	-	-	-	-	-	-	-	-	19	21	9	49
1979	13	12	8	7	9	27	68	42	45	38	38	37	344
1980	32	21	16	10	7	5	4	4	3	4	3	6	115
1981	3	2	3	8	70	57	54	32	56	38	28	48	399
1982	63	31	29	12	1	29	54	25	17	5	1	100	367
1983	70	38	33	13	5	9	6	4	3	2	4	1	188
1984	2	2	2	19	82	52	35	20	15	11	167	107	514
1985	-	-	-	-	-	-	-	-	-	-	-	-	- 1
1986	39	(40)	(80)	(42)	(80)	(60)	(40)	31	27	43	(98)	(104	(684)
1987	64	46	48	36	57	100	68	54	35	51	72	76	706
1988	58	45	37	32	28	52	89	101	105	108	100	94	849
1989	92	54	56	89	62	19	6	28	79	90	95	81	751
1990	74	23	3	3	8	15	20	11	22	75	80	- 56	390
1991	56	52	37	21	2	4	2	6	4	28	48	55	315

Pluviométrie moyenne mensuelle sur le BV de la retenue (Pm en mm) Lames écoulées mensuelles (en mm) issues du bilan et de la modélisation avec GR3 et CREC, calage manuel ou automatique

Année	Mois	Jan	Fév	Mar	Avr	Mai	Jui	Jui	Aoû	Sep	Oct	Nov	Déc
1979	Pm	48.4	83.5	71.1	106.0	177.1	216.6	189.6	216.9	95.6	270.6	159.4	200.3
	Bilan	0.0	0.4	0.4	2.9	15.1	62.5	65.1	43.4	3.8	109.4	28.4	80.7
	regression	0.0	0.0	0.0	0.0	33.4	39.7	33.9	55.1	0.0	81.0	16.6	44.6
	GR3 cal manu	4.3	4.7	3.0	1.9	14.4	21.4	35.0	59.6	10.8	68.3	47.2	85.8
	GR3 cal auto	4.7	5.3	4.3	1.2	16.4	25.3	46.8	71.1	13.5	71.5	50.8	94.8
	CREC cal auto	0.4	2.1	4.0	2.7	18.3	28.1	60.9	8.8	36.1	77.5	60.6	107.6
1980	Pm	33.3	30.0	32.4	44.3	45.1	44.9	117.4	152.6	81.4	125.5	111.1	69.6
	Bilan	0.0	0.0	0.0	0.0	0.0	0.0	0.3	0.4	0.0	1.3	1.0	0.4
	regression	0.0	0.0	0.0	0.0	0.0	0.0	0.0	18.5	0.0	0.0	0.0	0.0
	GR3 cal manu	4.5	2.0	0.3	0.5	0.0	0.0	0.4	1.5	0.9	3.8	6.4	3.3
	GR3 cal auto	5.1	2.1	0.5	0.2	0.1	0.1	0.4	1.5	1.5	3.1	9.5	5.8
	CREC cal auto	9.0	2.1	1.3	1.2	1.1	1.4	8.1	6.8	5.3	4.1	20.1	12.5
1981	Pm	41.7	63.3	34.3	256.8	354.9	94.0	139.9	61.5	192.6	139.4	118.8	227.3
	Bilan	0.0	0.0	0.0	24.9	208.8	34.1	15.9	0.3	21.9	1.6	5.0	65.6
	regression	0.0	0.0	0.0	86.9	129.3	0.0	13.3	0.0	50.0	2.6	0.0	54.5
	GR3 cal manu	0.8	1.8	0.1	19.8	166.9	23.0	25.6	2.6	43.1	21.3	16.8	69.3
	GR3 cal auto	1.4	1.7	0.4	25.5	148.9	28.6	26.5	2.0	46.0	17.7	15.8	77.1
	CREC cal auto	2.9	2.4	1.4	36.0	171.3	48.3	19.0	4.1	43.5	10.8	9.9	78.8
1982	Pm	44.0	74.9	44.4	88.1	59.9	38.0	107.5	123.1	222.6	95.6	184.5	303.5
	Bilan	4.9	0.1	0.0	0.7	0.9	0.0	0.1	7.5	0.9	19.7	97.1	131.9
	regression	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3.2	63.0	0.0	34.0	101.0
	GR3 cal manu	9.0	6.5	0.2	6.6	1.6	0.1	0.3	2.0	25.1	11.6	40.1	113.4
	GR3 cal auto	14.9	5.2	1.4	4.2	1.5	0.4	0.2	1.3	33.4	18.1	47.0	130.5
	CREC cal auto	28.9	5.0	2.5	2.5	2.5	1.7	2.6	5.5	56.3	24.1	47.5	135.2
1983	Pm	39.1	9.4	35.8	49.9	130.1	30.6	137.6	61.1	143.2	54.5	16.2	73.6.
	Bilan	2.6	0.0	0.0	0.1	0.0	0.0	0.6	0.0	0.9	0.0	0.0	0.0
	regression	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	19.8	0.0	0.0	0.0
	GR3 cal manu	1.4	0.2	2.2	2.0	1.2	0.2	1.3	0.9	4.7	1.3	0.3	0.7
	GR3 cal auto	8.2	0.3	1.3	1.0	0.8	0.5	0.8	1.1	3.5	4.2	0.7	0.7
	CREC cal auto	28.4	1.9	1.3	1.2	5.8	3.8	4.9	4.0	5.7	8.9	2.2	3.2
1984	Pm	80.4	41.7	89.4	91.4	73.0	79.9	128.9	50.9	201.3	157.4	460.4	61.0
	Bilan	0.3	0.1	6.2	5.0	0.7	0.0	0.0	0.0	3.8	0.0	210.1	6.8
	regression	0.0	0.0	0.0	0.0	0.0	0.0	4.3	0.0	38.2	20.9	184.8	0.0
	GR3 cal manu	0.7	1.0	0.2	0.4	0.9	0.3	2.8	0.2	7.3	10.2	205.1	13.9
	GR3 cal auto	0.6	1.0	0.4	0.3	1.3	0.4	3.8	0.5	9.3	10.0	251.5	16.8
	CREC cal auto	3.9	2.8	2.2	1.9	7.4	2.6	10.2	2.5	30.9	12.7	314.3	25.8

1985	Pm	40.5	74.0	63.6	133.8	42.3	38.9	96.4	127.5	262.6	279.8	224.9	64.1
	Bilan	0.0	0.0	2.6	6.5	1.3	0.0	2.8	1.2	44.0	118.7	169.4	5.3
	regression	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	75.3	90.6	57.8	0.0
	GR3 cal manu	1.3	1.8	3.3	2.1	0.3	0.0	1.0	0.8	27.1	77.9	85.2	7.0
	GR3 cal auto	1.5	1.3	4.6	1.4	1.2	0.2	1.0	0.7	37.5	100.5	98.2	8.8
	CREC cal auto	0.2	1.0	3.9	5.1	6.0	1.2	3.9	3.8	56.0	145.3	117.5	17.5
1986	Pm	82.9	39.4	61.4	73.6	184.6	51.4	55.1	153.3	158.5	79.6	246.4	29.8
	Bilan	0.0	0.0	0.0	1.5	14.7	0.0	0.7	4.4	7.4	0.0	52.9	36.8
	regression	0.0	0.0	0.0	0.0	35.9	0.0	0.0	15.5	24.0	0.0	78.6	0.0
	GR3 cal manu	8.5	2.0	2.1	4.1	21.4	0.7	0.1	2.7	8.6	4.5	42.4	7.0
	GR3 cal auto	6.5	3.7	1.8	2.9	22.6	1.1	0.3	1.7	9.1	7.3	51.0	13.9
	CREC cal auto	5.8	2.8	2.0	3.6	35.2	4.1	2.1	7.0	17.1	11.8	70.9	27.6
1987	Pm	55.3	8.6	81.5	28.3	295.9	174.9	69.6	109.1	121.0	153.4	259.8	103.8
	Bilan	0.6	0.0	6.5	1.2	126.3	139.0	0.0	4.9	1.6	12.2	152.9	6.2
	regression	0.0	0.0	0.0	0.0	113.9	30.7	0.0	0.0	2.0	13.9	89.5	0.0
	GR3 cal manu	8.9	0.0	2.5	0.1	29.1	35.0	4.5	11.4	9.6	17.4	78.5	26.7
	GR3 cal auto	10.4	0.5	1.5	0.4	38.4	46.1	5.4	11.8	8.4	19.6	90.7	30.3
	CREC cal auto	3.6	1.0	2.2	1.2	91.9	44.8	9.1	8.1	6.2	21.9	95.6	51.6
1988	Pm	76.3	59.8	87.3	10.8	97.4	127.6	204.1	339.3	385.1	144.8	223.8	67.3
	Bilan	0.4	0.0	0.0	0.0	0.7	22.8	26.5	152.1	247.8	45.1	70.3	37.2
	regression	0.0	0.0	0.0	0.0	0.0	1.9	55.6	140.3	167.0	0.0	64.3	0.0
	GR3 cal manu	14.1	5.6	5.1	0.4	1.0	5.2	17.1	103.1	209.7	48.7	100.2	14.0
	GR3 cal auto	14.5	6.6	2.7	2.5	0.4	4.3	19.4	130.1	234.0	47.4	98.8	15.0
	CREC cal auto	15.2	4.7	2.4	2.7	2.0	5.8	19.0	160.1	270.8	53.0	70.7	21.6
1989	Pm	52.6	65.4	120.0	89.6	47.6	29.4	94.1	148.4	271.4	111.3	143.1	65.3
	Bilan	0.0	0.0	1.6	5.0	0.0	0.0	0.0	2.1	104.4	1.0	9.3	0.0
	regression	0.0	0.0	0.0	0.0	0.0	0.0	0.0	9.6	128.0	0.0	4.3	0.0
	GR3 cal manu	5.2	9.7	12.2	8.5	1.1	0.5	0.5	3.2	87.2	12.9	25.5	10.2
	GR3 cal auto	5.4	7.2	6.3	12.0	0.5	0.6	0.4	3.4	121.2	11.2	28.3	.12.0
	CREC cal auto	5.4	3.0	2.7	25.2	1.9	1.7	1.5	10.3	189.0	20 .1	30.2	14.6
1990	Pm	36.2	18.7	35.0	118.0	49.0	90.3	32.2	83.5	87.3	390.7	52.3	79.5
	Bilan	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	68.8	0.0	0.0
	regression	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	161.9	0.0	0.0
	GR3 cal manu	2.3	0.0	0.0	1.6	0.1	0.2	0.0	0.1	0.5	80.3	7.5	15.2
	GR3 cal auto	2.5	0.4	0.1	1.0	1.2	0.3	0.2	0.1	0.5	113.5	8.5	17.6
	CREC cal auto	3.2	1.0	1.0	4.2	6.2	3.2	2.2	2.3	4.9	180.7	17.5	6.6

EVAPORATION MENSUELLE EN MM AU BAC-OUEST

	J	F	М	A	M	J	J	A	S	0	N	D
1978	-	-	-	-	-	•	•	-	-	126	121	118
1979	125	144	151	179	170	(155)	(135)	(132)	(110)	98	91	88
1980	121	147	191	190	202	200	179	165	133	143	115	98
1981	114	138	175	155	151	169	172	160	159	122	101	115
1982	142	140	181	168	165	196	190	176	134	138	103	110
1983	123	148	136	208	133	181	167	198	173	142	128	123
1984	130	151	168	186	188	181	173	179	144	109	132	110
1985	116	90	159	150	173	169	174	184	135	146	99	127
1986	98	104	164	156	152	175	185	168	136	118	94	94
1987	112	125	151	177	139	139	160	156	154	92	93	111
1988	137	139	174	172	200	172	164	124	130	147	106	106
1989	111	146	176	125	165	180	187	197	154	151	98	98
1990	145	142	168	171	177	157	186	132	134	105	97	103
1991	109	118	154	169	198	179	211	190	154	118	98	99

VI- BIBLIOGRAPHIE

CHAPERON (P), L'HOTE (Y), VUILLAUME (G) - 1985

Les ressources en eau de surface de la GUADELOUPE ORSTOM - BONDY, 3 tomes multigr., 547 p., 304 tabl., 318 fig., 4 cartes

DEZETTER (A) -- 1991

Modélisation globale de la relation pluie débit. Application en zone de savanes soudanaises

Thèse USTL Montpellier.

KLEIN (J-C.) - 1975

Note hydrologique sur les crues de la RAVINE GARDEL (GUADELOUPE). ORSTOM, Service hydrologique, Paris, septembre 1975, 33 p.multigr., 8 tabl., 12 fig. REF. ORSTOM 71 559

KLEIN (J-C.) - 1977

Etude hydrologique de la GRANDE RIVIERE à GOYAVES - Rapport terminal.

TOME I Etude du bassin de la GRANDE RIVIERE

TOME II Etude des crues des ravines GARDEL et GACHET (GRANDE-TERRE)

ORSTOM, service hydrologique, Paris, mai 1977 - TOME I: 123 p. multigr., 35 fig., Annexes - TOME II: 113 p. multigr., 19 fig., 18 tab. Annexes.

REF. ORSTOM 71 734

MORELL (M.), BOUCHEZ (J-M.) - 1981

Etude du bilan hydrologique de la retenue de LETAYE-AMONT

Campagnes 1978 et 1979.

ORSTOM - BONDY, Bureau central hydrologique, mars 1981, 92 p.mult.

HOEPFFNER (M.), MORELL (M.), GUIGUEN (N.) et al.- 1982

Etude du bilan hydrologique de la retenue de LETAYE-AMONT - Campagne 1980-1981 ORSTOM - Pointe-à-Pitre, mai 1982, 28 p., 45 tabl., 17 fig.

MORELL (M.), HOEPFFNER (M.), et al. - 1983

Etude de bilan hydrologique de la retenue de LETAYE-AMONT - Campagne 1981-1982 ORSTOM - Pointe-à-Pitre, mai 1983

MORELL (M.), HOEPFFNER (M.), et al. - 1984

Etude hydrologique de la retenue de LETAYE-AMONT Campagne 1982-1983 ORSTOM - Pointe-à-Pitre, octobre 1984, 21 p. multigr., 28 tabl., 4 fig.

MORELL (M.), HOEPFFNER (M.) et al. - 1986

Etude du bilan hydrologique de la retenue de LETAYE-AMONT.Campagne 1984 ORSTOM - Pointe à Pitre, juin 1986

MORELL (M.), HOEPFFNER (M.) et al. - 1987

Etude hydrologique de la retenue de LETAYE-AMONT - Campagne 1985. ORSTOM - Pointe à Pitre, janvier 1987, 45 pages, 29 tabl., 5 fig.

MORELL (M.), HOEPFFNER (M.) et al. - 1987

Etude hydrologique de la retenue de LETAYE-AMONT - Campagne 1986. ORSTOM, Pointe à Pitre, mars 1987, 49 pages, 29 tabl., 5 fig.

MORELL (M.), POUGET (J-C.) et al. - 1988

Etude du bilan hydrologique de la retenue de LETAYE-AMONT - Campagne 1987 et récapitulatif.

ORSTOM - Pointe à Pitre, décembre 1988, 88 pages, 38 tabl.

MORELL (M.), BRIZIO (M.) - 1990

Etude du bilan hydrologique de la retenue de LETAYE-AMONT - Année 1988 ORSTOM - Pointe à Pitre, avril 1990, 34 pages, 28 tab., 31 fig.

MORELL (M.), PLANTIER (E.) - 1991

Etude du bilan hydrologique de la retenue de LETAYE-AMONT - Année 1989 ORSTOM - Pointe à Pitre, avril 1990,

MORELL (M), BARDIN (I) -- 1991

Etude du bilan hydrologique de la retenue de LETAYE-AMONT - Année 1990 ORSTOM - Pointe à Pitre, mars 1991,

VII- ANNEXES

- * Pluviométrie mensuelle au poste de Gardel-Usine
- * Pluviométrie moyenne mensuelle sur BV de Letaye-Amont
- * Barèmes d'étalonnage des évacuateurs
- * Barèmes du volume et de la surface de la retenue en fonction de la cote
- * Carte des isohyètes annuelles de 1991 sur le Sud Est Grande-Terre
- * Bassin versant de RENEVILLE à POMBIRAY
 - Pluviométrie journalière à DUBEDOU, POMBIRAY, LABARTHE
- * Retenue de LETAYE-AMONT
 - Pluviométrie journalière à RETENUE 1
 - Pluviométrie journalière à RETENUE 2
 - Pluviométrie journalière à Monplaisir
 - Pluviométrie journalière à Gardel Usine
 - Pour chaque mois de l'année 1991 :

. Carte des isohyètes mensuelles

Pluviométrie mensuelle au poste de Gardel-usine, exprimée en 1/10 mm

année	Jan	Fev	Mar	Avr	Mai	Jui	Jul	Aou	Sep.	Oct.	Nov	Dec.
1938	662	375	208	1365	175	1815	1115	2395	667	795	3605	1413
1939	345	372	1235	188	260	630	795	617	905	1878	1175	570
1940	1180	897	325	1145	660	615	363	777	2463	1065	2472	528
1941	420	152	418	1065	1517	1028	2010	1215	1287	575	1400	642
1942	1492	512	110	1560	2125	3295	1475	2178	813	1717	5360	1045
1943	898	307	643	400	1155	1710	643	1485	555	2820	1255	492
1944	795	340	130	310	3072	868	1510	1342	940	1143	1877	350
1945	305	300	252	618	892	275	985	4245	2143	1632	785	635
1946	670	290	332	2005	735	1090	548	1415	1710	688	977	1332
1947	1003	70	283	370	1630	390	455	1055	1303	1832	840	1087
1948	360	193	470	263	977	1213	1492	970	1935	2925	1545	877
1949	430	969	690	185	605	1850	1625	1285	4088	2693	810	585
1950	1225	500	403	332	432	1040	473	1139	1355	4700	2098	670
1951	930	1057	838	580	1627	1232	1155	1355	1413	2157	993	1575
1952	1502	718	482	1245	453	1512	1565	1315	2025	2235	1775	1010
1953	525	307	2155	2058	1812	585	1068	1117	1815	645	2170	1278
1954	380	582	260	285	1165	1103	1217	2025	3223	2200	227	645
1955	252	160	150	395	858	757		1302	1422	2358	1465	1180
1							778				1960	
1956	910	995	507	640	1793	1615	835	2450	1270	1087		848
1957	397	178	567	273	172	705	1225	1328	1692	2193	2285	2112
1958	137	103	502	122	2875	3068	1700	1170	1545	3402	760	1243
1959	522	408	187	660	760	293	865	1540	710	1182	1523	1922
1960	315	865	672	270	215	425	1115	1305	1112	785	1227	783
1961	690	590	1342	330	375	445	2255	1603	1215	2667	2358	717
1962	1705	287	118	970	1515	1930	1455	1432	1565	1138	790	152
1963	537	325	148	992	1085	605	1340	428	1527	1405	2743	455
1964	815	325	875	3535	335	737	1735	1133	1365	945	505	957
1965	1190	173	133	520	700	680	860	683	1750	505	2118	788
1966	200	828	495	418	1065	325	4255	645	1415	1098	2078	750
1967	295	25	1398	960	1128	468	1090	990	600	1800	775	543
1968	513	160	235	1653	878	1667	615	883	855	663	900	1910
1969	733	205	320	393	2038	928	1428	1525	1913	1045	1708	1055
1970	530	543	265	1438	1560	2378	2423	1943	1893	3485	1718	4500
1971	1088	450	260	618	715	290	745	1020	550	998	773	1278
1972	1055	303	1070	1185	865	340	880	2100	2041	1220	2155	465
1973	330	685	590	780	130	1605	365	1610	2620	990	648	573
1974	1060	548	383	775	633	158	300	1175	2595	1795	2145	985
1975	770	317	368	38	310	480	145	935	1570	1380	1523	2698
1976	765	660	610	390	495	525	460	500	885	2835	975	1565
1977	310	280	310	960	190	225	200	3625	1960	2385	3830	445
1978	470	195	370	880	1965	730	910	1145	1490	2530	895	480
1979	430	1075	755	1160	1825	2585	2070	2250	1095	2690	1770	2080
1980	350	275	270	415	600	435	1100	1420	890	1315	1280	975
1981	460	535	390	3255	3990	950	1465	835	2245	1395	1105	2245
1982	365	650	560	785	475	340	1030	1185	2015	1165	1555	3525
1983	600	150	295	445	1730	330	1380	460	1150	455	130	525
1984	810	225	1280	1320	820	740	1065	480	1960	1295	4545	525
1985	435	815	615	2005	455	430	835	1340	2895	2830	2330	775
1986	925	275	445	650	2005	595	570	1545	1380	560	2425	113
1987	550	105	840	285	2600	393 1440	680	1035	1160	1645	2423	850
1988	525	585	760	285 255		1185						710
1989	560	383 740			830		1855	3185	3565	1445	2240	
1989	340	230	1305	880	440 625	305 900	1130	1645	2130	1045	1620	600
	1		485	1370	625		235	915	1045	3600	525	710
1991	760	510	645	950	275	545	735	730	1085	950_	1370	605

Pluie moyenne mensuelle (en mm) sur bassin versant de Letaye-Amont à partir de 4 postes pluviographiques: Gardel usine-Pombiray-Monplaisir-Labarthe

Année	Jan	Fev	Mar	Avr	Mai	Jui	Jul	Aou	Sep	Oct	Nov	Dec
1951	76.1	132.2	106.0	53.1	169.8	136.2	119.0	145.3	191.4	206.1	106.7	183.4
1952	131.1	62.0	59.5	109.6	87.5	109.6	126.3	130.9	139.6	133.5	203.3	95.6
1953	49.7	26.6	230.0	171.7	196.5	67.1	94.7	129.8	198.4	42.5	226.2	100.9
1954	37.8	63.3	48.9	45.7	82.2	78.3	143.9	185.9	257.7	228.5	50.1	88.4
1955	21.2	32.0	16.9	42.4	85.1	76.3	64.4	119.6	132.2	234.1	128.8	135.2
1956	98.2	117.1	42.2	97.7	126.9	169.0	124.4	240.6	127.8	137.2	112.9	97.7
1957	55.3	20.8	61.7	22.7	24.3	93.2	122.0	172.1	174.5	159.0	210.0	219.9
1958	21.6	21.4	67.7	12.8	349.2	283.9	147.7	104.6	193.4	318.9	106.7	142.5
1959	85.6	65.5	15.0	93.9	82.5	31.2	81.1	174.1	94.0	91.1	115.4	184.2
1960	53.3	90.0	91.7	25.5	17.3	56.5	141.7	123.6	104.5	72.3	132.4	102.2
1961	62.9	82.6	116.1	35.3	43.9	47.4	211.1	217.7	97.8	307.9	243.4	90.0
1962	190.6	41.0	6.5	129.9	169.1	179.7	169.4	222.5	164.9	96.1	74.0	27.1
1963	74.0	31.9	23.5	120.4	104.0	57.6	122.7	75.9	176.6	141.7	263.6	39.6
1964	87.4	25.6	62.5	413.3	45.8	69.8	184.7	159.4	156.1	105.0	70.3	69.4
1965	149.9	18.4	17.0	69.1	89.5	35.9	105.5	84.4	99.2	89.6	192.3	68.7
1966	24.7	94.1	75.7	59.7	105.5	39.2	639.1	67.7	231.7	132.8	300.8	77.2
1967	38.1	7.9	154.3	117.9	145.6	66.1	131.9	140.0	82.6	186.2	78.4	59.0
1968	87.9	24.8	28.9	126.9	93.3	181.0	57.7	82.3	92.3	66.4	157.2	185.1
1969	72.5	24.9	33.8	69.8	235.6	89.7	169.5	147.4	196.3	80.9	192.3	94.9
1970	71.3	28.0	21.5	42.2	199.7	172.7	218.4	173.9	175.8	362.3	214.2	353.5
1971	118.9	47.2	38.4	84.6	72.3	43.1	49.5	78.9	51.4	89.3	47.7	84.3
1972	100.1	60.2	143.5	92.7	93.7	29.0	73.2	181.8	202.4	185.4	177.2	75.6
1973	35.0	74.7	51.6	53.0	13.5	160.3	31.2	151.9	219.5	82.5	51.8	95.0
1974	122.0	66.8	49.6	89.8	88.6	24.3	39.2	140.3	245.9	204.2	157.3	108.5
1975	98.1	39.0	37.3	10.3	26.3	48.4	33.4	85.2	122.7	153.4	177.9	209.5
1976	95.4	73.0	35.6	28.5	50.3	61.5	49.3	38.3	105.3	305.4	123.5	142.2
1977	28.3	37.4	26.4	75.9	26.6	21.4	14.4	326.0	172.1	206.0	294.3	42.4
1978	48.3	15.9	60.4	115.3	181.0	65.6	94.7	130.1	152.6	212.9	76.3	34.3
1979	51.1	81.3	69.8	101.8	179.0	188.7	179.8	212.3	88.8	261.4	153.0	200.3
1980	33.3	31.2	34.9	45.0	43.5	48.2	117.2	156.0	80.3	124.0	114.5	66.9
1981	40.6	71.5	40.5	268.1	361.3	104.5	149.8	75.5	204.5	142.7	120.7	229.0
1982	45.8	78.5	40.1	94.3	62.3	41.8	113.5	132.4	237.1	86.1	196.7	284.4
1983	32.7	7.9	37.6	50.6	119.4	29.6	140.9	69.3	158.2	61.2	18.2	80.2
1984	82.8	47.7	79.2	80.0	70.1	76.9	136.1	47.9	191.8	161.1	459.1	62.2
1985	40.9	71.7	64.9	118.8	40.1	37.3	97.7	119.9	245.3	278.0	222.6	58.7
1986	80.5	41.1	62.3	75.3	182.8	49.2	52.7	152.5	164.4	81.5	250.0	40.0
1987	54.7	8.1	77.4	29.9	303.9	177.4	71.5	111.1	130.7	151.7	265.7	108.8
1988	84.0	62.0	91.7	5.8	99.5	134.1	214.6	345.3	384.8	140.0	227.1	66.1
1989	50.4	66.4	116.3	86.5	49.9	28.6	87.1	142.1	325.3	109.0	134.3	68.0
1990	39.3	17.8	30.2	111.6	51.1	90.9	38.4	85.8	98.0	388.8	57.1	85.0
1991	75.4	44.0	84.3	127.8	44.9	71.9	100.4	93.0	164.7	124.5	175.7	90.7

RETENUE DE LETAYE - AMONT

Barème d'étalonnage du déversoir principal Cotes en m - débits en m²/s

Cote m	0	1	2	3	4	5	6	7	8	9
25.0	0	0	0	0	0	0	.010	.022	.035	.050
25.1	.070	.093	.120	.149	.178	.209	.241	.274	.309	.346
25.2	.383	.422	.463	.504	.547	.590	.635	.681	.728	.776
25.3	.825	.875	.926	.978	1.03	1.08	1.14	1.19	1.25	1.31
25.4	1.37	1.43	1.49	1.55	1.61	1.67	1.73	1.80	1.86	1.93
25.5	1.99	2.06	2.13	2.19	2.26	2.33	2.40	2.47	2.55	2.62
25.6	2.69	2.77	2.84	2.92	2.99	3.07	3.14	3.22	3.30	3.38
25.7	3.46	3.54	3.62	3.70	3.78	3.87	3.95	4.03	4.12	4.20
25.8	4.29	4.37	4.46	4.55	4.63	4.72	4.81	4.90	4.99	5.08
25.9	5.17	5.26	5.36	5.45	5.54	5.64	5.73	5.82	5.92	6.02
26.0	6.11	6.21	6.31	6.40	6.50	6.60	6.70	6.80	6.90	7.00
26.1	7.10	7.20	7.30	7.41	7.51	7.61	7.72	7.82	7.93	8.03
26.2	8.14	8.25	8.35	8.46	8.57	8.67	8.78	8.89	9.00	9.11
26.3	9.22	9.33	9.45	9.56	9.67	9.78	9.90	10.0	10.1	10.3
26.4	10.4	10.5	10.6	10.7	10.9	11.0	11.1	11.2	11.3	11.5
26.5	11.6	11.7	11.8	11.9	12.2	12.3	12.5	12.7	13.0	13.2
26.6	13.4	13.5	13.6	13.7	13.8	13.9	14.1	14.2	14.3	14.5
26.7	14.6	14.7	14.8	15.0	15.1	15.2	15.4	15.5	15.6	15.8
26.8	15.9	16.0	16.2	16.3	16.4	16.6	16.7	16.8	17.0	17.1
26.9	17.3	17.4	17.5	17.6	17.8	17.9	18.1	18.2	18.4	18.5
27.0	18.7	18.8	18.9	19.1	19.2	19.3	19.5	19.6	19.8	19.9
27.1	20.1	20.2	20.3	20.5	20.6	20.8	20.9	21.1	21.2	21.4
27.2	21.5	21.7	21.8	22.0	22.2	22.3	22.4	22.5	22.7	22.8
27.3	23.0	23.2	23.3	23.5	23.6	23.8	23.9	24.1	24.2	24.4
27.4	24.5	24.7	24.8	25.0	25.2	25.3	25.5	25.6	25.8	<u> 25</u> .9

RETENUE DE LETAYE - AMONT

Barème d'étalonnage de la passe déversante rive gauche <u>Cotes en m - débits en m²/s</u>

$$Q = 1.65 * 14 * Z^{3/2}$$

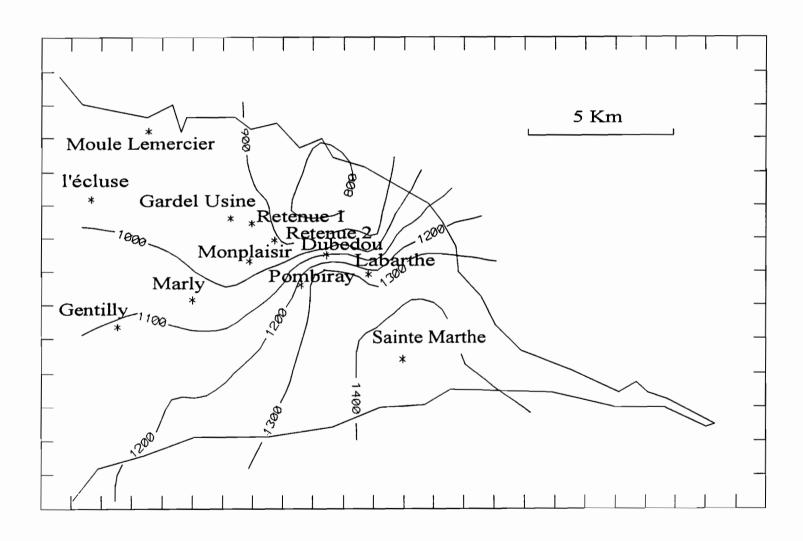
Cote m	0	1	2	3	4	5_	6	7	8	9
26.6	0	.023	.065	.120	.185	.258	.339	.428	.523	.624
26.7	.730	.842	.961	1.08	1.21	1.34	1.47	1.62	1.76	1.91
26.8	2.07	2.22	2.38	2.55	2.72	2.89	3.06	3.24	3.42	3.61
26.9	3.80	3.99	4.18	4.38	4.58	4.78	4.99	5.20	5.41	5.63
27.0	5.84	6.06	6.29	6.51	6.74	6.97	7.21	7.44	7.68	7.92
27.1	8.17	8.41	8.66	8.91	9.17	9.42	9.68	9.94	10.2	10.5
27.2	10.7	11.0	11.3	11.6	11.8	12.1	12.4	12.7	13.0	13.2
27.3	13.5	13.8	14.1	14.4	14.7	15.0	15.3	15.6	15.9	16.2
27.4	16.5	16.8	17.2	17.5	17.8	18.1	18.4	18.7	19.1	19.4
27.5	19.7									

Débits évacués en m³/s (déversoir principal + passe rive gauche)

entre les cotes 26.6 m et 27.5 m

Cote m	0	1	2	3	4	5	6	7	8	9
26.6	13.4	13.5	13.7	13.8	14.0	14.2	14.4	14.6	14.8	15.1
26.7	15.3	15.5	15.8	16.1	16.3	16.5	16.9	17.1	17.4	17.7
26.8	18.0	18.2	18.6	18.9	19.1	19.5	19.8	20.0	20.4	20.7
26.9	21.1	21.4	21.7	22.0	22.4	22.7	23.1	23.4	23.8	24.1
27.0	24.5	24.9	25.2	25.6	25.9	26.3	26.7	27.0	27.5	27.8
27.1	28.2	28.6	29 .1	29.4	29.8	30.2	30.6	31.0	31.4	31.9
27.2	32.2	32.7	33.1	33.6	34.8	34.4	34.8	35.2	35.7	36.0
27.3	36.5	37.0	37.4	37.9	38.3	38.8	39.2	39.8	40.1	40.6
27.4	41.0	41.5	42.0	42.5	43.0	43.4	43.9	44.3	44.9	45.3
27.5	45.8									

RETENUE DE LETAYE - AMONT


Volume de la retenue en milliers de m³

Cote m	0.0	0.10	0.20	0.30	0.40	0.50	0.60	0.70	0.80	0.90
18	2	3	4	5	6	7	8	9	11	12
19	14	16	18	20	23	25	28	31	34	37
20	41	45	49	53	57	62	66	71	76	82
21	87	93	99	105	112	118	125	133	140	148
22	157	165	174	183	192	202	212	222	232	243
23	254	265	276	288	300	312	324	337	350	363
24	376	390	404	418	433	450	465	482	499	517
25	535	554	573	593	613	633	655	677	699	722
26	745	768	792	816	840	865	890			

Superficie de la retenue en hectares

Cote m	0.0	0.10	0.20	0.30	0.40	0.50	0.60	0.70	0.80	0.90
19	1.8	2.0	2.2	2.3	2.5	2.7	2.9	3.1	3.3	3.5
20	3.6	3.8	4.0	4.2	4.4	4.6	4.8	5.0	5.2	5.4
21	5.7	5.9	6.2	6.5	6.7	7.0	7.2	7.5	7.8	8.0
22	8.3	8.5	8.8	9.1	9.4	9.6	9.9	10.2	10.5	10.7
23	11.0	11.3	11.6	11.8	12.1	12.3	12.6	12.9	13.2	13.5
24	13.8	14.2	14.6	15.0	15.4	15.8	16.2	16.7	17.2	17.7
25	18.2	18.7	19.3	19.8	20.3	20.9	21.5	22.1	22.7	23.3
26	24.0	24.9	25.8	26.7	27.6	28.5	29.5	_		

ISOHYETES ANNEE 1991

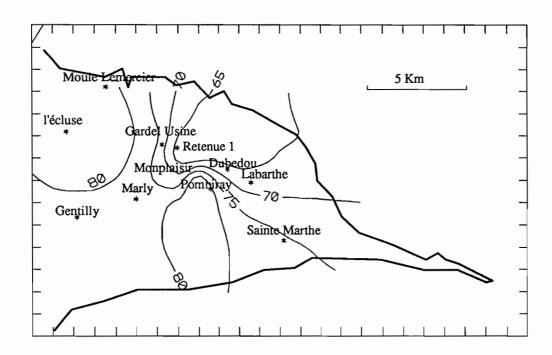
STA	TION: 2	62 01010	00 Dt	UBEDOU		OR	STO GUA	DELOUPE			ANN	EE: 1991	L
	JANV.	FEVR.	MARS	AVRI.	MAI	JUIN	JUIL.	AOUT	SEPT.	OCTO.	NOVE.	DECE.	
1	5.5	5.5	2.0	3.0			0.5		6.0	+	+	2.0	1
2	3.0	0.5	3.0	•			0.5	9.0	•	+	+	3.5	2
3	1.0	3.5				7.0	14.0	1.5	2.0	+	22.0	2.5	3
4	2.0		2.0	18.5	2.0	0.5	0.5			+	6.0	8.5	4
5	4.0				0.5					+	15.5	1.0	5
6	1.5									27.0	13.0	0.5	6
7	2.5	1.5		0.5	1.5					+	8.0	1.0	7
8	2.5	6.5		2.5				2.5	0.5	+	1.0	0.5	8
9	2.5		1.5	13.0		1.0			0.5	+			9
10		•		2.5			4.0			+	•	2.0	10
11	0.5		9.0			0.5	1.0	2.5		+	2.0	2.5	11
12			4.0	40.0			1.0	5.0	•	+		2.5	
13	1.0	2.0						0.5		7.0			13
				3.5			1.5	1.0	0.5	4.0			14
14			0.5		•	•					•		15
15	0.5	0.5	•	•	•	•	4.0	•	0.5	•	•	•	13
16				4.5			•	5.0	3.5		3.0		16
17		2.5			0.5		1.5	5.5			0.5	2.5	17
18	13.0			0.5	4.5	3.5	13.5		0.5	4.0		0.5	18
19	1.0	2.0			2.0	0.5	0.5	0.5	2.5				19
20	0.5	9.5		1.0	5.5		•	0.5	7.5	0.5	4.5	11.5	20
21	9.5	2.0		•		3.0	4.0	4.0	7.0	14.0	0.5	0.5	21
22	0.5	4.5	5.5					•	22.0	0.5	0.5		22
23	0.5		9.0			0.5	1.5			4.5	27.5		23
24			3.0	1.0		6.0	0.5	4.0	0.5	1.0			24
25	0.5	2.0		•	5.5	4.0	2.0	6.0		3.5	16.5		25
26	4.5	2.0				5.0	4.0	13.0	9.0	0.5	+		26
27	1.5					9.0			34.5		+	1.0	27
28	1.0		0.5			1.5	0.5	0.5	2.0	24.5	+		28
29	0.5	=	2.0		1.5	0.5		2.0	1.0	11.5	+	2.0	
30	1.5	=		•		1.5			0.5		16.5	2.5	
31	3.0	=		=	1.0	=	•	1.5	=		=	8.0	
LATOT	64.0	44.5	42.0	113.0	24.5	44.5	55.0	64.5	100.5	102.5	137.0	55.0	
			ANNEE	COMPLETE		TOTAL	:	847.0m	n.				
	JANV.	FEVR.	MARS	AVRI.	MAI	JUIN	JUIL.	AOUT	SEPT.	OCTO.	NOVE.	DECE.	TC
NJTOI	r 25	14	12	13	10	16	18	18	18	11	13	19	1
N<10.	. 24	14	12	9	10	16	16	17	16	8	9	18	1
N<0. 5		0	0	0	0	0	0	0	0	0	0	0	
COMP	. 0	0	0	0	0	0	0	0	0	0	0	0	
TOTAL	ւ օ	0	0	0	0	0	0	0	0	0	0	0	
FREQ		0	0	0	0	0	0	0	0	4	4	0	
QUAL	. 0	0	0	0	0	0	0	0	0	0	0	0	

.: JOUR SANS PLUIE +: CUMUL ULTERIEUR

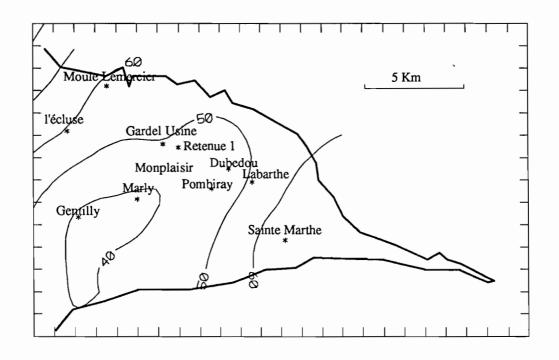
STA	STATION: 262 01740 00 POMBIRAY					12	540 GU		ANNEE: 1991				
	JANV.	FEVR.	MARS	AVRI.	MAI	JUIN	JUIL.	AOUT	SEPT.	octo.	NOVE.	DECE.	
1	8.0	6.0	2.0	9.0	•	0.5	2.5		10.0	8.0	3.0	6.5	1
2	5.0	0.5	7.0	•	•	•	•	•	•	2.0	•	6.5	2
3	1.5	0.5	3.0	•	6.0	5.5	27.0	0.5	3.0	•	16.0	9.5	3
4	1.0	•	6.5	15.0	4.5	•	1.5	3.5	•	8.0	9.0	17.5	4
5	2.5	•	2.0	1.0	•	1.0	•	•	•	13.0	25.0	3.0	5
6	4.0	5.0	•		6.0	•		•		27.0	21.5	1.5	6
7	4.0	8.0	•	•	4.0	0.5	1.0	•	•	-	5.0	2.5	7
8		•			•	3.5	0.5	4.5	3.0	2.0	2.0		
9	4.5	•	2.5	13.5	•	•		0.5	0.5		•	2.5	
10	1.0	•	•	7.0	•	٠	5.5	•	2.5	3.0	•	5.0	10
11			10.0	2.0	•	1.5	1.0	4.5	0.5	17.0	2.0	4.5	11
12	2.0		10.0	13.0	•	•	2.5	6.0	5.0	4.5	2.0	3.0	12
13	1.0	1.0	•	50.0	•	•	•	0.5	•	1.0	•	•	13
14	0.5	•	1.5	11.0	•	•	8.5	7.0	3.5	3.5	0.5	0.5	
15	•	•	•	•	•	0.5	7.5	•	2.5	•	•	1.0	15
16				2.0		0.5	2.0	4.5	4.0		6.0	1.0	16
17	•	4.0	2.0	•	2.0	•	1.0	7.5	2.0	3.0	•	4.0	17
18	9.5	•	1.0	•	5.5	7.5	8.0	•	1.0	2.5	0.5	1.0	
19	1.0	4.0	•	0.5	4.0	•	1.5	2.5	4.5	•		1.0	
20	•	7.0	•	1.0	8.0	0.5	•	3.5	5.0	2.0	7.5	13.0	20
21	16.0	1.5	•	•	2.0	6.0	2.5	13.0	11.5	18.0	3.0	1.0	21
22	•	•	9.0	•	•	1.5	1.5	•	44.0	2.0	1.0	0.5	22
23	•	1.0	15.5	•	•	•	1.0	•	4.5	1.5	40.0	•	
24	•	•	16.0	6.5	•	19.0	0.5	5.0	•	1.0	0.5	-	
25	1.5	4.0	1.0	•	3.0	3.0	3.0	1.5	•	3.0	18.5	•	25
26	4.5	2.0	-	•		8.0	4.0	32.5	17.0		0.5	•	26
27	3.0	•	1.0	•	•	7.0	0.5	2.5	43.0	•		1.5	27
28	1.5	•	2.0	•	•	4.5	3.0	•			7.5	•	
29	1.0	=	4.0	•	•	3.0	1.0	3.0	9.5	4.0	0.5	1.5	
30 31	3.0 5.0	=	0.5	· =	4.0	5.0 =	15.5 5.0	1.5 4.5	1.5	0.5 2.0	•	4.0 9.5	30 31
31	3.0	_	0.5	_	1.0	_	3.0	1.5	_	2.0	_	3.5	31
TOTAL	81.0	44.5	96.5	131.5	49.0	78.5	107.5	108.5	182.0	148.0	183.5	101.5	•
			ANNEE	COMPLETE		TOTAL	:	1312.0mm	n.				
	JANV.	FEVR.	MARS	AVRI.	MAI	JUIN	JUIL.	AOUT	SEPT.	OCTO.	NOVE.	DECE.	TOTAL
NJTO	T 22	13	19	13	11	19	25	20	22	23	22	24	233
₹													
N<10		13	15	8	11	18	23	18	17	18	16	22	200
N<0.	5 0	0	0	0	0	0	0	0	0	0	0	0	0
COMP		0	0	0	0	0	0	0	0	0	0	0	
TOTA		0	0	0	0	0	0	0	0	0	0	0	
FREQ		0	0	0	0	0	0	0	0	0	0	0	
QUAL		0	0	0	0	0	0	0	0	0	0	0	
CRIT	. 0	0	0	0	0	0	0	0	0	0	0	0	

STA	ATION: 2	62 01040	00 L	ABARTHE		12	2530 GUZ	ADELOUPE			ANN	EE: 199	1
	JANV.	FEVR.	MARS	AVRI.	MAI	JUIN	JUIL.	AOUT	SEPT.	OCTO.	NOVE.	DECE.	
1	8.5	6.5		12.0		1.0	4.0		7.5	3.0	5.0	6.5	1
2	3.0	1.0	8.0				1.5		•	1.5		5.0	2
3	1.0	1.0	5.0		5.0	8.0	26.0	1.0	3.0	•	16.0	8.0	3
4	1.0		7.0	30.0	14.5	•	0.5	1.0	•	8.0	9.0	19.0	4
5	2.0	•	1.5	4.0	1.0	1.0	1.0	•	•	3.5	32.0	2.0	5
6	2.5	6.0			1.5					12.5	22.0	1.0	6
7	2.5	6.0		•	2.5	0.5				0.5	6.0	1.5	7
8	•	•	•	•	•	4.5	0.5	4.5	2.5	1.5	1.5	•	
9	1.0	•	2.0	10.5	•	•	•	0.5	2.5	1.0	•	1.0	
10	1.0	•	•	6.0	•	•	6.0	•	2.0	1.5	0.5	4.5	10
11	•		13.0	3.0	-	1.5	1.5	3.0	1.5	9.5	3.5	4.0	11
12	1.5		8.5	22.0	•		2.0	4.0	•	7.0	3.5	3.5	12
13	0.5	•		54.0	•	•		4.0		1.0		•	13
14	•	•	1.0	13.0	•	•	6.0	5.0	3.0	5.0	1.0	1.0	
15	•	•	•	•	•	1.0	8.0	1.5	1.5	•	•	0.5	15
16				8.0		2.0	2.0	4.0	3.5		16.0	1.0	16
17	•	6.0	1.5	•			1.0	4.5	1.0	4.0		1.5	17
18	10.0	•	4.0	•	4.0	8.0	16.5			1.5		1.0	18
19	•	3.0		1.5	6.0	•	1.5	3.0	4.0	•		1.0	19
20	٠	6.5	•	1.5	8.5	1.0	1.5	3.5	15.0	1.5	6.0	16.0	20
21	13.5	2.0	•		4.0	8.0	2.5	13.5	11.5	19.5	2.5	1.0	21
22	•		7.0	•		1.0	3.0		49.0	0.5	1.0	0.5	22
23	-	1.0	10.0	-			4.5	•	4.0	1.0	41.0		23
24	•		6.0	9.0	•	22.0	0.5	5.0	•	1.0	1.0		24
25	1.0	4.0	1.0	•	2.5	3.0	3.0	1.5	0.5	0.5	26.5	•	25
26	4.5	8.5				6.0	3.5	33.5	17.5		0.5		26
27	2.0					8.0		3.0	54.0		18.5	1.5	27
28	1.0	•	2.0	•		3.0	2.5	•	4.0	22.5	7.0		28
29	6.5	=	4.0	•	•	1.5	1.0	3.0	6.0	2.0	1.0	2.0	
30	2.0	=	•	-	•	4.5	22.5	0.5	2.0	1.5		3.0	
31	2.0	=	3.0	=	6.5	=	4.0	2.0	=	1.5	=	10.0	31
OTAL	67.0	51.5	84.5	174.5	56.0	85.5	126.5	101.5	195.5	112.5	221.0	96.0	•
			ANNEE	COMPLETE		TOTAL	:	1372.0m	m.				
	JANV.	FEVR.	MARS	AVRI.	MAI	JUIN	JUIL.	AOUT	SEPT.	OCTO.	NOVE.	DECE.	TOTA
njto	T 20	12	17	13	11	19	26	21	21	25	22	24	231
N<10		12	15	7	10	18	23	19	16	22	15	21	196
N<0.	5 0	0	0	0	0	0	0	0	0	0	0	0	0
COMP	. 0	0	0	0	0	0	0	o	0	0	0	0	
TOTA	L 0	0	0	0	0	0	0	0	0	0	0	0	
FREQ	. 0	0	0	0	0	0	0	0	o	0	0	0	
QUAL	. 0	0	0	0	0	0	0	0	0	0	0	0	
CRIT	. 0	0	0	0	0	0	0	0	0	0	0	0	

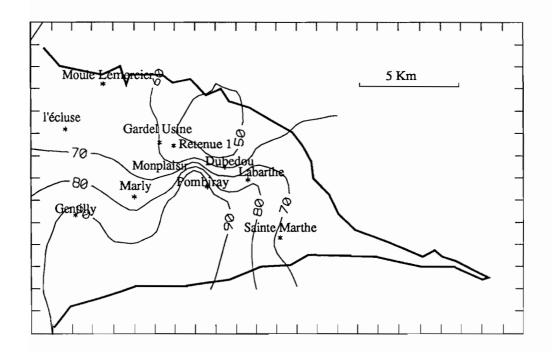
STAT	rion: 2	62 01030	00 RE	TENUE 1		OR	STO GUA	DELOUPE			ANN	EE: 199	1
	JANV.	FEVR.	MARS	AVRI.	MAI	JUIN	JUIL.	TUOA	SEPT.	OCTO.	NOVE.	DECE.	
1	3.5	6.0	0.5	2.0		+		•	8.0	•	7.0	1.0	1
2	0.5	1.5	1.5		3.0	1.5	•			0.5	0.5	4.0	2
3		5.0	0.5	•	0.5	6.0	10.0		1.0	•	9.5	1.0	3
4	2.0	•	0.5	10.0	1.0	•	0.5	1.5	•	0.5	8.5	6.0	4
5	4.5	0.5	•	0.5	1.0	•	٠	•	•	4.0	8.0	1.0	5
6				•	1.0		•		•	8.0	10.0		6
7	•	1.5	•	•	•	•	•	•	•	•	7.0	1.5	7
8	1.5	•	•	1.0	•	•	•	•	2.0	3.0	•	•	
9	3.5	•	0.5	5.5	•		0.5	•	1.0	•	•	0.5	
10	0.5	٠	•	3.5	•	•	2.5	•	•	0.5	•	1.0	10
11	1.0	•	7.5	•	•	•	1.0	1.5		0.5	1.0	•	11
12	1.5	•	4.5	16.0	•	0.5	•	0.5	1.0	0.5	0.5	3.0	12
13	0.5	2.0	0.5	40.5	•	0.5	•	2.5	•	3.0	•	-	13
14	1.5	•	•	0.5	•	•	1.5	7.5	8.0	1.0	•		
15	•	0.5	•	•	•	•	4.5	1.0	0.5	•	•	2.0	15
16		4.0		1.5	•	1.0	0.5	1.5	3.0	•	4.0	•	16
17	•	3.5		•	•	•		2.5	0.5	3.0	•	0.5	17
18	13.0	•	0.5	1.0	0.5	3.0	12.5	•	•	•	•	0.5	18
19	•	3.5	0.5	0.5	1.0	•	•	•	1.0	•	•	•	19
20	٠	15.5	•	0.5	•	0.5	•	1.0	4.0	0.5	1.5	11.0	20
21	13.0			•	1.0	5.5	2.0	2.0	5.0	27.0		1.5	21
22	•	1.0	12.0	•	+	1.0	3.0	•	26.5	1.0	2.0	0.5	
23	0.5	•	10.5	•	+	•	2.5	•	•	1.0	42.0	•	
24	•	•	2.5	0.5	+	2.5	0.5	3.0	1.0	0.5		•	
25	•	1.5	0.5	•	+	8.0	2.0	6.5	•	3.5	14.0	•	25
26	6.5	0.5	•	•	+	7.0	2.0	8.0	6.5		•		
27	1.0	•	•	•	3.0	3.0	•			•			
28	2.0	0.5	2.0	•	+	0.5	1.0			6.0			
29		=	2.0	•	+			2.0	•	11.1			
30	1.0	=	0.5	•	+	2.0	7.0	0.5	•	•	1.0	2.0	
31	3.5	=	•	=	1.5	=	1.0	4.5	=	•	=	5.5	31
TOTAL	61.0	47.0	47.0	83.5	13.5	43.5	54.5	47.0	102.5	75.6	126.0	45.0	•
			ANNEE II	NCOMPLETE		TOTAL PA	RTIEL:	746.1m	m.				
	JANV.	FEVR.	MARS	AVRI.	MAI	JUIN	JUIL.	AOUT	SEPT.	OCTO.	NOVE.	DECE.	TOTAL
NJTOT	19	15	17	14	8	15	18	17	17	20	17	18	(195)
N<10.	17	14	15	11	8	15	16	17	15	18	14	17	(177)
N<0.5	0	0	0	0	0	0	0	0	0	0	0	0	(0)
COMP.	0	0	0	o	0	0	0	0	0	0	0	7	
TOTAL	. 0	0	0	0	0	0	0	0	0	0	0	0	
FREQ.	0	0	0	0	4	4	0	0	0	0	0	0	
QUAL.	0	0	0	0	0	0	0	0	5	0	0	0	
CRIT.	0	0	0	0	0	0	0	0	0	0	0	0	
.:	JOUR S	ANS PLUII	E +:	CUMUL ULT	ERIEUR	-:REI	LEVE ABSI	ENT II	III:TOTA	L INCOMP	Let		

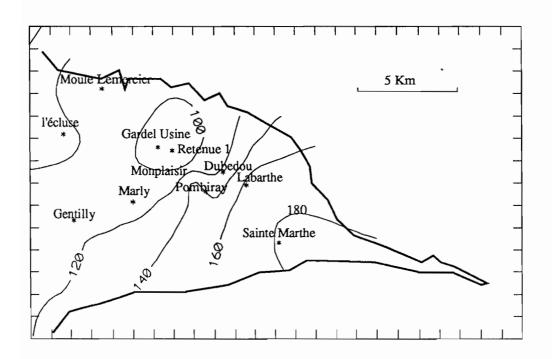

STA	TION: 2	62 01035	00 RE	ETENUE 2		OR	STO GUAL	DELOUPE			ANNI	EE: 1991	
	JANV.	FEVR.	MARS	AVRI.	MAI	JUIN	JUIL.	AOUT	SEPT.	OCTO.	NOVE.	DECE.	
1	3.5	3.5	2.0	1.5		0.5	0.5		6.0		10.5	2.0	1
2	2.5	0.5	3.0		1.5					0.5	0.5	3.0	2
3	1.0	3.5	0.5		1.0	3.5	11.0	1.0	3.5	0.5	11.5	1.5	3
4	1.0	•	2.0	6.5	1.5					4.5	7.5	7.0	4
5	3.5	•	1.0	•	0.5	•	•		•	1.0	11.5	0.5	5
6	1.0				2.5					8.5	13.5	0.5	6
7	1.0		•		4.0	•	•	•	•	•	8.5	0.5	7
8	3.5	7.0	-	2.0		•	•	3.0	4.5	2.0	0.5		8
9	1.5	•	0.5	16.0		0.5	0.5	•	0.5		•		
10	0.5	•	•	5.5	٠	•	3.0	•	•	2.0	•	1.0	10
11	0.5		9.0			•		2.5		3.0	2.0	2.5	
12	0.5	•		27.0	•	•	1.0	3.5	2.5	3.0	•	3.5	
13	1.0	2.5	•	32.5	•	•		•		1.5	•		13
14	•	•	•	3.5	•	•	1.5	4.0	2.5	6.5	•	•	14
15	•	•	•	0.5	•	•	4.0	•	•	•	•		13
16		1.5	0.5	4.0		0.5		2.5	2.0		4.0		16
17		2.0			0.5		1.0	3.5		5.0	•	1.5	17
18	13.0	0.5		0.5	3.0	4.0	13.0		2.0	•	•	0.5	18
19	•	2.0	•	•	0.5	1.5	0.5	0.5	1.5	•	•	•	
20	1.0	8.5	•	0.5	•	•	1.5	0.5	2.0	1.0	4.5	13.0	20
21	14.0	0.5				6.0	1.5	2.5	5.0	14.5	1.0	1.5	
22	•	6.5	8.0	•	•	0.5	•	•	29.0	2.0	•	•	
23	1.0	•	11.5	•	•	•	2.0	•	•	1.5	27.0	•	
24			4.5	0.5		4.0		5.0	•	1.0		•	24
25	0.5	1.5	0.5	•	3.5	3.5	3.0	2.0	•	9.5	14.0	•	25
26	4.5	0.5	•		0.5	6.0	3.5	15.0	10.5		12.5	0.5	26
27	1.0		•			6.0	0.5	0.5	40.5		1.0		27
28	1.0		1.0		•	•	1.0	•	2.0		•	1.0	
29	0.5	=	2.5	•	0.5	0.5	•	•	•	4.5		2.0	
30	1.0	=	•	•	•	1.5		1.0	1.5	•	1.0	2.5	
31	2.5	=	•	=	•	=	2.0	7.0	=	•	=	9.5	31
TOTAL	61.0	40.5	58.5	100.5	19.5	38.5	59.0	54.0	115.5	98.0	131.0	55.0	•
			ANNEE	COMPLETE		TOTAL	:	831.0m	m.				
	JANV.	FEVR.	MARS	AVRI.	MAI	JUIN	JUIL.	AOUT	SEPT.	OCTO.	NOVE.	DECE.	TOTAL
N-JTO	T 24	14	15	13	12	14	20	16	16	21	17	20	202
N<10	. 22	14	13	10	12	14	18	15	13	19	10	19	179
N<0.	5 0	0	0	0	0	0	0	0	0	0	0	0	0
COMP	. 0	0	0	0	0	o	0	0	0	0	0	0	
TOTA	L O	0	0	0	0	0	0	0	0	0	0	0	
FREQ	. 0	0	0	0	0	0	0	0	0	0	0	0	
QUAL	. 0	0	0	0	0	0	0	0	0	0	0	0	
CRIT	. 0	0	0	0	0	0	0	0	0	0	0	0	

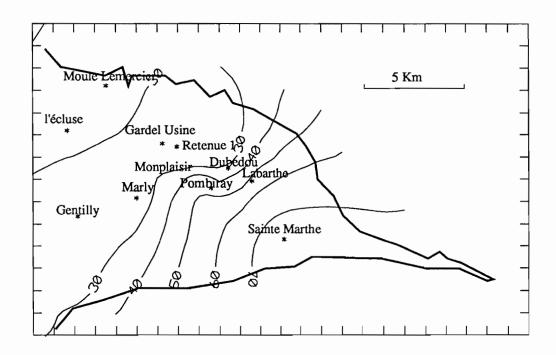
STA	rion: :	262 01050	00 M	ONPLAISIR		11	730 GUA	DELOUPE			ANN	EE: 199	1
	JANV.	FEVR.	MARS	AVRI.	MAI	JUIN	JUIL.	AOUT	SEPT.	octo.	NOVE.	DECE.	
1	6.0	6.0	2.0	1.0		0.5	1.0		5.0	1.0	7.0	3.0	1
2	3.0	1.0	2.5				1.0			0.5	0.5	3.0	2
3	0.5	3.0	0.5	•	4.0	4.0	11.0		2.5		11.5	4.0	3
4	1.0		2.5	6.5	2.0		1.0	2.0		1.0	7.0	9.0	4
5	4.0	•	1.5	0.5	•	•	0.5	•	•	6.0	13.5	2.0	5
6	1.0	1.5		•	2.5					5.5	11.0	1.0	6
7	1.5	1.0	•	•	9.0	0.5	1.0	•	•		7.5	0.5	7
8	0.5		1.0	•		1.5	0.5	2.0	4.0	2.5	1.0	•	8
9	4.5		0.5	18.5	•	•	0.5	0.5		•		0.5	9
10	•	•	•	4.0	•	•	3.5	•	1.0	2.0	•	2.0	10
11	1.0		9.0				1.0	3.0	0.5	8.5	0.5	3.5	11
12	1.0	•	7.5	15.0	•		2.0	2.0	3.0	5.0	2.0	4.0	12
13	1.0	3.0		46.0			•	1.5	•	1.0	•		13
14	0.5	•		2.5	•	•	3.0	4.5	2.5	7.0	•		14
15		•	•	•	•	•	5.0	•	1.0	•	•	•	15
16				6.0		1.0	2.0	1.0	5.0		5.0		16
17	•	5.0					0.5	6.0	0.5	3.5	•	2.0	17
18	12.5				1.5	4.5	13.0		3.5	2.0	•		18
19		3.0			2.5		1.0	1.0	1.0			0.5	19
20	•	6.0	•	1.0	4.0	2.0	1.5	0.5	2.0	•	7.0	13.0	20
21	15.5	0.5	•			6.0	4.0	3.5	6.5	13.5	1.0	1.0	21
22	1.0	6.0	11.0	•	•	0.5	0.5		27.5	6.0	0.5		22
23	1.0	0.5	14.0		•		1.5			•	43.0	•	23
24	-		6.0	1.5	•	14.5	0.5	5.0	0.5	2.0	0.5	•	24
25	•	•	0.5	•	6.0	2.5	2.5	1.0	•	3.5	13.0	•	25
26	5.0	1.5				5.0	4.5	18.0	12.5	•	1.0	•	26
27	2.0		•			6.0		0.5	42.0	0.5	6.0	2.0	27
28	1.5	•	1.5	•		1.0	4.0	0.5	1.5	9.0	5.0		28
29	0.5	=	2.5	•	0.5	2.5	•	2.0	0.5	6.5		3.0	29
30	1.5	=	•	•		2.5	5.0	1.5	1.0	0.5	` .	5.0	30
31	2.0	=	•	=	2.0	=	6.0	4.5	=	0.5	=	12.0	31
TOTAL	68.0	38.0	62.5	102.5	34.0	54.5	77.5	60.5	123.5	87.5	143.5	71.0	
			ANNEE	COMPLETE		TOTAL	:	923.0m	m.				
	JANV.	FEVR.	MARS	AVRI.	MAI	JUIN	JUIL.	AOUT	SEPT.	OCTO.	NOVE.	DECE.	TOTAL
NJTOT	23	13	15	11	10	16	27	20	21	22	20	19	217
*													
N<10.	21	13	13	8	10	15	25	19	18	21	15	17	195
N<0.5	0	0	0	0	0	0	0	0	0	0	0	0	0
COMP.	0	0	0	0	0	0	0	0	0	0	0	0	
TOTAL		0	0	0	0	0	0	0	0	0	0	0	
FREQ.		0	0	0	0	0	0	0	0	0	0	0	
QUAL.		0	0	0	0	0	0	0	0	0	0	0	
CRIT.		0	0	0	0	0	0	0	0	0	0	0	

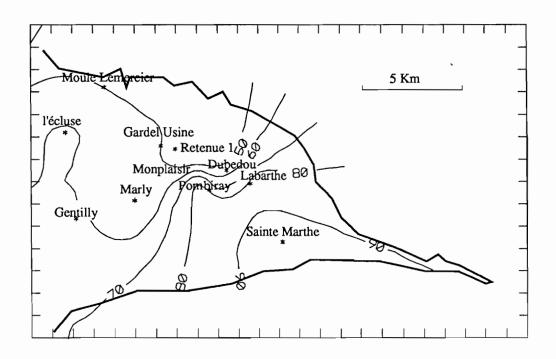

ST	ATION: 2	62 01020	00 G	ARDEL USIN	Œ	OR	STOM GUA	DELOUPE		ANNEE: 1991			
	JANV.	FEVR.	MARS	AVRI.	MAI	JUIN	JUIL.	AOUT	SEPT.	OCTO.	NOVE.	DECE.	
1	6.0	8.0	1.0	2.0			1.0		6.0	0.5	8.0	0.5	1
2	0.5	2.0	2.5				1.0			0.5	10.5	5.0	2
3		6.0	1.0		4.5	1.5	12.0		2.5		10.5	2.5	3
4	3.0	2.0	1.5	9.0	3.0		1.0	4.0		1.0	8.5	8.0	4
5	5.5	•	•	1.5	•	•	•		•	5.0	10.0	1.5	5
6	0.5	0.5		•	1.0					16.0	11.5	1.0	6
7	0.5	1.5	•	•	1.0	1.5	•	•	•	1.0	8.0	1.5	7
8	•	•	•	•	2.0		•	1.5	2.5	3.0	0.5		8
9	6.0			6.0		•	•	0.5		0.5	•	0.5	9
10	1.0	•	•	3.5	•	•	4.5	•	2.0	•	•	1.5	10
11			7.5					2.0		2.0	0.5	0.5	11
12	4.5	•	4.0	8.0	•	•	1.0	1.5	1.0	0.5	2.5	5.5	
13	1.0	2.0	•		•	•	•	10.0	•	2.5	•	•	
14	2.5	•	0.5	1.0	•	•	2.0	8.0	9.0	1.5	•	1.0	
15	•	•	•	•	٠	•	7.5		0.0	•	•	2.0	15
16						3.0	0.5	2.5	3.0		1.0		
17	•	6.5	•	•	•	•	•	3.5	3.0	3.0	2.0	1.5	17
18	13.5	•	•	•	1.0	4.0	15.0	•	1.5	•	•	0.5	18
19	•	3.5	0.5	•	1.0	•	1.0	1.5	•	•	•		
20	•	16.5	•	1.0	5.0	1.5	•	1.5	3.5	•	2.5	12.0	20
21	15.0	0.5				6.5	2.5	2.5	7.0	26.0	0.5	2.0	21
22	•	0.5	10.5	•	•		1.5	•	29.0	2.5	2.0	•	
23	•	•	25.5	•	•	•	7.0	•	•	1.5	40.0	•	
24	•	•	3.0	0.5	•	7.5	0.5	3.0	1.5	1.0	2.0	•	24
25	0.5	0.5	0.5	•	5.0	9.0	3.5	0.5	•	6.5	15.0	•	25
26	5.5	1.0				7.5	2.5		6.5				
27	3.0	•	•	•	•	6.0		3.5		1.5		0.5	
28	2.0	•	1.0	•	2.0	1.0	1.0		2.0	10.0	1.0	•	28
29	1.0	=	2.0	•		1.0	•	0.5	•	8.0	•	3.0	29
30		=	2.5	•		3.0	7.0	1.5	1.5	•	1.5	4.0	
31	2.5	=	1.0	=	2.0	=	1.0	9.0	=	1.0	=	6.0	31
TOTAL	76.0	51.0	64.5	95.0	27.5	54.5	73.5	73.0	108.5	95.0	137.0	60.5	
			ANNEE	COMPLETE		TOTAL	:	916.0m	n.				
	JANV.	FEVR.	MARS	AVRI.	MAI	JUIN	JUIL.	AOUT	SEPT.	OCTO.	NOVE.	DECE.	TOTAL
	T 20	14	16	11	11	14	21	19	17	22	22	21	208
	. 18	13	14	10	11	14	19	17	16	20	17	20	189
N<0.	5 0	0	0	0	0	0	0	0	0	0	0	0	0

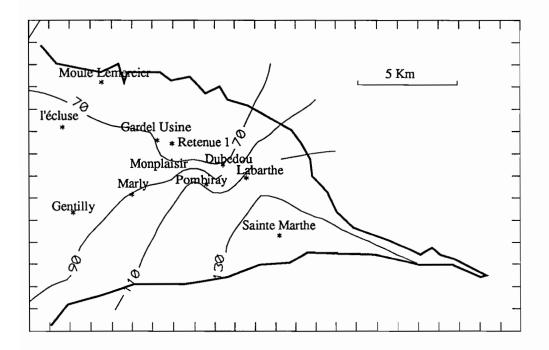
.: JOUR SANS PLUIE +: CUMUL ULTERIEUR

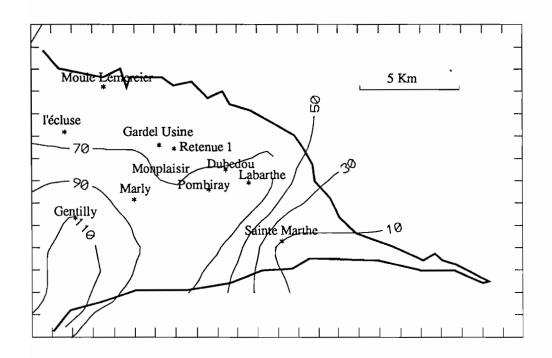

ISOHYETES - JANVIER 1991

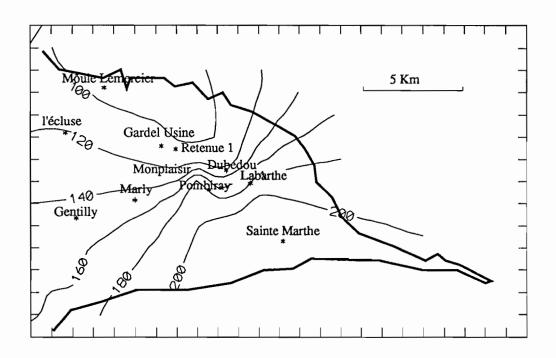

ISOHYETES - FEVRIER 1991

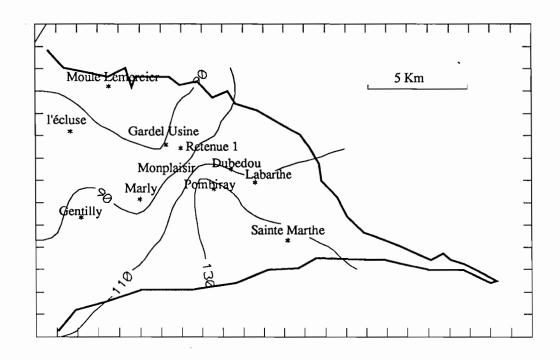

ISOHYETES - MARS 1991

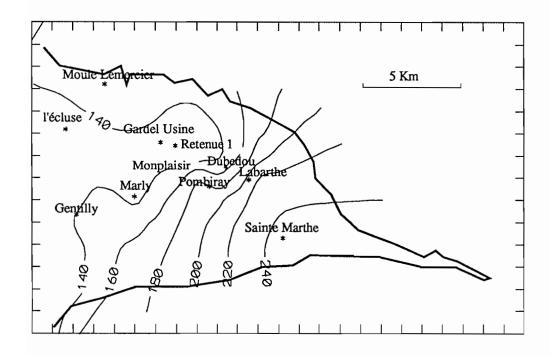

ISOHYETES - AVRIL 1991

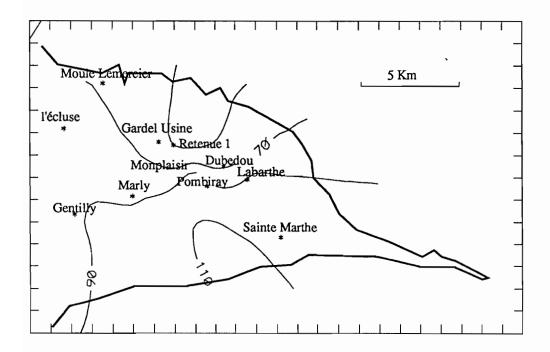

ISOHYETES - MAI 1991


ISOHYETES - JUIN 1991


ISOHYETES - JUILLET 1991


ISOHYETES - AOUT 1991


ISOHYETES - SEPTEMBRE 1991


ISOHYETES - OCTOBRE 1991

ISOHYETES NOVEMBRE 1991

ISOHYETES DECEMBRE 1991

