Observations of the Low-latitude Western Boundary Circulation in the Pacific during WEPOCS III

Peter HACKER¹, Eric FIRING², Roger LUKAS², Philipp L. RICHARDSON³ and Curtis A. COLLINS⁴

¹ Texas A&M University, College Station, Texas - U.S.A.
² University of Hawaii, Manoa, Honolulu, Hawaii - U.S.A.
³ Woods Hole Oceanographic Institution, Woods Hole, Massachusetts - U.S.A.
⁴ Naval Postgraduate School, Monterey, California - U.S.A.

Introduction

In 1985, US and Australian investigators began a series of cruises to explore the hydrography and currents of the western equatorial Pacific Ocean. The first two sets of cruises in this Western Equatorial Pacific Ocean Circulation Study (WEPOCS) took place in July-August 1985 (WEPOCS I) and January-February 1986 (WEPOCS II; Lindstrom et al., 1987). They were designed to study the ocean response to the monsoon in the region from 143°E to 155°E, and to determine the source waters of the Equatorial Undercurrent (Tsuchiya et al., 1989). In the US part of the third WEPOCS cruise sequence (WEPOCS III), the focus of attention shifted further west, to the region from 124°E to 143°E, and north to the Mindanao Current and the North Equatorial Countercurrent (NECC). The South Equatorial Current (SEC) was also of interest as a source of water for the NECC.

The US WEPOCS III cruises, during June and July 1988, included the launch of satellite-tracked drifters, continuous acoustic Doppler current profiling (ADCP) along the entire cruise track, and CTD stations with water samples at close intervals along much of the cruise track. In this paper we will show the changing structure of the Mindanao Current as it flows south along the coast of the Philippines, the signature of the Mindanao Current in the salinity field, and the structure of the Halmahera Eddy and the beginning of the NECC (Figure 1). Currents along 141.5°E (and the characteristics of the ADCP data)

Figure 1: Currents of the low-latitude western boundary region during WEPOCS III: the North Equatorial Current (NEC), the Mindanao Current, the Mindanao Eddy (ME), the South Equatorial Current (SEC), the North Equatorial Countercurrent (NECC), and the Halmahera Eddy (HE).
are discussed by Firing and Jiang (1989). Upper-ocean water properties and air-sea interaction during WEPOCS III are presented by Lukas (1989).

Drifter trajectories

Thirty-five satellite-tracked buoys drogued at 15 m were launched from the R/V Moana Wave during WEPOCS III. During the first three months (July-September) they provide for the first time a quasi-synoptic Lagrangian picture of the surface flow in the region (Figure 2). One group of drifters followed the SEC northwestward along the New Guinea coast, turned around the quasi-stationary (anticyclonic) Halmahera Eddy centered near 4°N 130°E, and proceeded eastward in the NECC. Four buoys made a complete circuit around the Halmahera Eddy. Buoys in the NECC meandered with meridional displacements of 300 km and wavelengths of 600-700 km. Of eleven buoys in the Mindanao Current, two continued through the Makassar Strait, five turned eastward into the NECC, joining those that had retroflected from the SEC, and the rest were grounded or stolen. Three buoys looped cyclonically around the Mindanao Eddy centered near 7.5°N 129°E.

Averaging all July-September drifter velocity measurements in 1° squares and lightly smoothing the gridded values (Figure 3), we find a remarkable similarity to the climatological mean ship drifts (Figure 4) averaged from May through November and smoothed in the same way. (Smoothing was done with the diffusion equation. An anomalous value was reduced by 83% relative to the background field, with 60% of the reduction going to the 8 nearest neighbors.) The Halmahera Eddy is not seen as a closed circulation in the climatology, as it is in the July 1988 drifter tracks, but it is indicated by a southward dip in the NECC at about 135°E. Note also the sharp northward bump in the NECC between 135°E and 140°E in both the drifter measurements (Figure 3) and the ship drifts (Figure 4). The similarity between the drifter tracks and climatology suggests that the WEPOCS III observations were not atypical, despite the cold event that was underway (Keusky, 1989).

The tangled appearance of the 3-month drifter trajectories, with a multitude of crossing paths (Figure 2), illustrates the temporal variability of the flow. For example, the 3 drifters launched in the region of the Mindanao Eddy initially travelled eastward. In early August they reversed course and during that month each made slightly more than one circuit around the eddy. During September their path was dominantly eastward. It appears that the eddy was present (at least in that location) only during August. Similarly, all the circuits around the Halmahera eddy occurred in July; in August, buoys in the NECC proceeded eastward with only a moderate southward dip near 132°E, which previously had been the east side of the eddy.

Currents as measured by the ADCP

The dominant features in the map of upper-ocean ADCP currents are the Mindanao Current and the Halmahera Eddy (Figure 5). The Mindanao Current appears to begin near the northern limit of the measurements, 13.5°N, and accelerates southward along the Philippine coast until it separates at the southern tip of Mindanao and extends as a jet into the Celebes Sea. There is a suggestion of an eddy just west of the separation point, but the cruise tracks there did not extend far enough from the coast to resolve this circulation. Along 130°E, between 12°N and 10°N, the North Equatorial Current (NEC) can be seen flowing west to supply the Mindanao Current. The southern limit of the NEC is not resolved by the WEPOCS III cruise track; it appears to have been between 10°N and 8°N during this cruise. The Mindanao Eddy, distinguished by closed loops in the drifter trajectories during August (Figure 2), is not evident in the ADCP measurements, which were made in July.

East-southeast of Mindanao and north-northeast of Halmahera is the Halmahera Eddy. There is little indication in this near-surface current field of eastward flow in the NECC. Instead, it appears that water enters the Halmahera Eddy north of Halmahera, circulates anticyclonically around the eddy, and exits southward near 133°E on the southeast side of the eddy. This picture is confirmed by the drifter trajectories during August. The partition of NECC source waters among three possible sources—the SEC, the Mindanao Current via the Celebes Sea, and the Molucca Strait (in which water may also come from the Mindanao Current via the Makassar Strait)—is not at all clear from the ADCP currents and the drifter tracks, and remains to be studied through isopycnal analysis.

In the mid-thermocline, 200-250 m (Figure 5), the Mindanao Current looks much as it does near the surface apart from a reduction in speed by roughly a half. Elsewhere the mid-thermocline currents differ substantially from the near-surface currents. There is little westward flow in the thermocline that can be identified as the NEC, and little indication of anticyclonic circulation in the region of the Halmahera.
Figure 2: Trajectories of the WEPOCS III drifters, July–September.

Figure 3: Drifter velocity vectors averaged by 1° squares, July–September 1988. Gridded data have been smoothed (see text).
Figure 4: Historical monthly-mean ship-drift observations averaged from May through November in 1° squares and smoothed (see text).

Figure 5: Currents measured by the ADCP, averaged from 25-50 m (left) and from 200-250 m (right). Note the change in velocity scale.
Eddy. The field of motion may include several unresolved eddies; if so, it appears that the surface eddies and the subsurface eddies are not coincident.

The downstream changes in the Mindanao Current can be seen more clearly in the sequence of zonal sections of meridional velocity component (Figure 6). All sections begin within 1 km of the Philippine coast. From 12°N to the southernmost section (Tobi–Mindanao), the vertical shear in the Mindanao Current tended to increase, and the current became increasingly intensified near the surface. The current was nearly uniform over the top 300 m at 12°N, where the maximum speed was about 80 cm/s; at the southernmost section the current increased from 30 cm/s at 300 m to 110 cm/s near the surface. In some of the sections, most notably at 7°N and 8°N, the maximum southward velocity component occurred in a subsurface core near 80 m. This shear reversal may have been caused by strong transient southwest winds retarding the surface current (Lukas, 1989). Offshore of the Mindanao Current, northward currents were found in all sections. The structure of the northward flow varied from section to section, but there appear to be two components: a near-surface current, and a deeper one, with its core near or below the maximum depth range of the ADCP (about 400 m). This subsurface northward current has been identified also in geostrophic sections by Hu and Cui (1989), who have named it the Mindanao Undercurrent.

Geostrophic currents and tracers

The geostrophic current section at 10°N (Figure 7) shows that the Mindanao Undercurrent there has a core depth of about 350 m, and a speed (relative to 1000 dbar) exceeding 20 cm/s, in agreement with the ADCP (absolute) velocity measurement. The undercurrent appears to extend over a large depth range; its full extent cannot be determined from these geostrophic calculations. The geostrophic current section also agrees with the ADCP section in that both show a strong Mindanao Current, but otherwise the two estimates of current are surprisingly different. The geostrophic estimate of maximum southward component in the Mindanao Current is 165 cm/s, compared with only 60 cm/s from the ADCP. The northward surface current found above the Mindanao Undercurrent in the ADCP section is nearly absent in the geostrophic section. The geostrophic section shows two surface currents with speeds exceeding 40 cm/s—a southward current near 128°E and a northward current near 129°E—which have no obvious counterparts in the ADCP section. These differences between the geostrophic and ADCP current estimates appear to be real, not due to any deficiencies in the measurements, but they are not yet understood.

The salinity field at 10°N (Figure 7) shows two cores near the Mindanao coast that can be used to trace the Mindanao Current. A high-salinity core (>34.9 psu) at 390 cl/ton (about 100 m depth) next to the coast is separated by lower salinity from a second high-salinity core offshore. A low-salinity core (<34.4 psu) is found next to the coast at 150 cl/ton (about 300 m). Both of these cores can be traced along the Mindanao coast from 14°N to the southernmost section (Figure 8).

Transport

Estimates of Mindanao Current transport have ranged from 8 to 40 Sv (Table 1; Lukas, 1988), with the highest resulting from a calculation of Sverdrup transport (Kessler and Taft, 1987). Our estimates for 0–300 m from WEPOCS III, 10–24 Sv, are well within this historical range. Although ADCP and geostrophic transport estimates both increase downstream, the geostrophic estimates are systematically higher than the ADCP integrals on this cruise. The reasons for this difference, and whether it occurs in other observations such as those of the US/PRC Bilateral Air-Sea Interaction Program, remain to be investigated.

Conclusions

Although our analysis of the WEPOCS III data is at an early stage, we can draw some qualitative conclusions:

- Currents during the cruise, June–July 1988, appear to have been normal in spite of the ongoing cold event.
- A strong, narrow Mindanao Current flows southward very close to the coast as far as the southern tip of Mindanao, where it separates and continues as a jet into the Celebes Sea.
- Part of the Mindanao Current turns in the Celebes Sea to feed the NECC. A second major source of the NECC is the SEC, which curves around the Halmahera Eddy. There may also be a contribution from the Molucca Sea, which may in turn receive water from the Mindanao Current.
Figure 6: Meridional component of the Mindanao Current from 12°N to the southernmost section, which runs east-southeast from the southern tip of Mindanao at 5.5°N to the small island of Tobi at 2.5°N.
Figure 7: Isopycnals (left) and meridional component of geostrophic velocity (middle) as functions of depth along 10°N; and salinity (right) as a function of δρ. Note the high-salinity core next to the Mindanao Coast at 390 cl/ton, and the low-salinity core at 150 cl/ton.

Table 1: Mindanao Current Transport Estimates

<table>
<thead>
<tr>
<th>Source</th>
<th>Transport</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wyrtki (1956, 1961)</td>
<td>8–12 Sv</td>
<td>upper 200 m only, friction included</td>
</tr>
<tr>
<td>Wyrtki (1961)</td>
<td>25 Sv</td>
<td>0–1000 dbar, relative to 1250, friction included</td>
</tr>
<tr>
<td>Masuzawa (1969)</td>
<td>13, 19, 26, 29 Sv</td>
<td>relative to 600 dbar</td>
</tr>
<tr>
<td>Kendall (1969)</td>
<td>24 Sv</td>
<td>historical data, geostrophy and mass balance</td>
</tr>
<tr>
<td>Cannon (1970)</td>
<td>18, 31 Sv</td>
<td>relative to 1000 dbar; rapid change in space/time</td>
</tr>
<tr>
<td>Nitani (1972)</td>
<td>24 Sv</td>
<td>relative to 1200 dbar; plus 15 Sv recirculating in Mindanao Eddy</td>
</tr>
<tr>
<td>Kessler and Taft (1987)</td>
<td>24–40 Sv</td>
<td>WBC transport needed to close Sverdrup circulation</td>
</tr>
<tr>
<td>Toole et al (1988)</td>
<td>17–18 Sv</td>
<td>transport for T>12°C, relative to 1000 dbar</td>
</tr>
<tr>
<td>WEPOCS III</td>
<td>10 Sv at 10°N</td>
<td>ADCP, upper 300 m</td>
</tr>
<tr>
<td></td>
<td>22 Sv at 5°N</td>
<td>geostrophy, upper 300 m relative to 1000 dbar</td>
</tr>
<tr>
<td></td>
<td>18 Sv at 10°N</td>
<td></td>
</tr>
<tr>
<td></td>
<td>24 Sv at 7°N</td>
<td></td>
</tr>
</tbody>
</table>
Figure 8: Salinity on the 24 (390 cl/ton; top) and 26.5 (150 cl/ton; bottom) σ_t surfaces. The Mindanao Current carries southward a high salinity core at 24 σ_t and a low salinity core at 26.5 σ_t.
via the Makassar Strait, but this is not resolved by the direct current measurements alone.

- The transport of the Mindanao Current increases rapidly downstream from 10°N to 6°N, as does the vertical shear in the upper 300 m.
- The Mindanao Current carries a high salinity core at 24 \(\sigma_t \) and a low salinity core at 26.5 \(\sigma_t \).
- Geostrophic and ADCP current estimates in the Mindanao Current can differ by a factor of two.

More detailed analysis of the WEPOCS III data set is planned. In particular, we expect that the combination of isopycnal analysis with the direct current measurements and geostrophic calculations will clarify our picture of the circulation.

Acknowledgements

This work is supported by the National Science Foundation under grants OCE-8716509 and OCE-8716510.

References

WESTERN PACIFIC INTERNATIONAL MEETING
AND WORKSHOP ON TOGA COARE

Nouméa, New Caledonia
May 24-30, 1989

PROCEEDINGS

edited by

Joël Picaut *
Roger Lukas **
Thierry Delcroix *

* ORSTOM, Nouméa, New Caledonia
** JIMAR, University of Hawaii, U.S.A.
TABLE OF CONTENTS

ABSTRACT ... i

RESUME ... iii

ACKNOWLEDGMENTS ... vi

INTRODUCTION

1. Motivation .. 1
2. Structure ... 2

LIST OF PARTICIPANTS .. 5

AGENDA ... 7

WORKSHOP REPORT

1. Introduction ... 19
2. Working group discussions, recommendations, and plans 20
 a. Air-Sea Fluxes and Boundary Layer Processes 20
 b. Regional Scale Atmospheric Circulation and Waves 24
 c. Regional Scale Oceanic Circulation and Waves 30
3. Related programs .. 35
 a. NASA Ocean Processes and Satellite Missions 35
 b. Tropical Rainfall Measuring Mission 37
 c. Typhoon Motion Program ... 39
 d. World Ocean Circulation Experiment 39
4. Presentations on related technology 40
5. National reports ... 40
6. Meeting of the International Ad Hoc Committee on TOGA COARE 40

APPENDIX: WORKSHOP RELATED PAPERS

Robert A. Weller and David S. Hosom: Improved Meteorological Measurements from Buoys and Ships for the World Ocean Circulation Experiment ... 45

Peter H. Hildebrand: Flux Measurement using Aircraft and Radars ... 57

MEETING COLLECTED PAPERS

WATER MASSES, SEA SURFACE TOPOGRAPHY, AND CIRCULATION

Klaus Wyrtki: Some Thoughts about the West Pacific Warm Pool 99
Jean René Donguy, Gary Meyers, and Eric Lindstrom: Comparison of the Results of two West Pacific Oceanographic Expeditions FOC (1971) and WEPOCS (1985-86) ... 111
Dunxin Hu, and Maochang Cui: The Western Boundary Current in the Far Western Pacific Ocean .. 123
Peter Hacker, Eric Firing, Roger Lukas, Philipp L. Richardson, and Curtis A. Collins: Observations of the Low-latitude Western Boundary Circulation in the Pacific during WEPOCS III .. 135
Stephen P. Murray, John Kindle, Dharma Arief, and Harley Hurlburt: Comparison of Observations and Numerical Model Results in the Indonesian Throughflow Region ... 145
David J. Webb, and Brian A. King: Preliminary Results from Charles Darwin Cruise 34A in the Western Equatorial Pacific 165
Warren B. White, Nicholas Graham, and Chang-Kou Tai: Reflection of Annual Rossby Waves at The Maritime Western Boundary of the Tropical Pacific .. 173
William S. Kessler: Observations of Long Rossby Waves in the Northern Tropical Pacific ... 185
Eric Firing, and Jiang Songnian: Variable Currents in the Western Pacific Measured During the US/PRC Bilateral Air-Sea Interaction Program and WEPOCS .. 205
John S. Godfrey, and A. Weaver: Why are there Such Strong Steric Height Gradients off Western Australia? ... 215
John M. Toole, R.C. Millard, Z. Wang, and S. Pu: Observations of the Pacific North Equatorial Current Bifurcation at the Philippine Coast 223

EL NINO/SOUTHERN OSCILLATION 1986-87

Gary Meyers, Rick Bailey, Eric Lindstrom, and Helen Phillips: Air/Sea Interaction in the Western Tropical Pacific Ocean during 1982/83 and 1986/87 ... 229
Laury Miller, and Robert Cheney: GEOSAT Observations of Sea Level in the Tropical Pacific and Indian Oceans during the 1986-87 El Nino Event .. 247
Thierry Delcroix, Gérard Eldin, and Joël Picaut: GEOSAT Sea Level Anomalies in the Western Equatorial Pacific during the 1986-87 El Nino, Elucidated as Equatorial Kelvin and Rossby Waves ... 259
Gérard Eldin, and Thierry Delcroix: Vertical Thermal Structure Variability along 165°E during the 1986-87 ENSO Event .. 269
Michael J. McPhaden: On the Relationship between Winds and Upper Ocean Temperature Variability in the Western Equatorial Pacific .. 283
THEORETICAL AND MODELING STUDIES OF ENSO
AND RELATED PROCESSES

Kensuke Takeuchi: On Warm Rossby Waves and their Relations to ENSO Events 329
Yves du Penhoat, and Mark A. Cane: Effect of Low Latitude Western Boundary Gaps on the Reflection of Equatorial Motions .. 335
Harley Hurlburt, John Kindle, E. Joseph Metzger, and Alan Wallcraft: Results from a Global Ocean Model in the Western Tropical Pacific 343
John C. Kindle, Harley E. Hurlburt, and E. Joseph Metzger: On the Seasonal and Interannual Variability of the Pacific to Indian Ocean Throughflow 355
Antonio J. Busalacchi, Michael J. McPhaden, Joël Picaut, and Scott Springer: Uncertainties in Tropical Pacific Ocean Simulations: The Seasonal and Interannual Sea Level Response to Three Analyses of the Surface Wind Field .. 367
Akimasa Sumi: Behavior of Convective Activity over the "Jovian-type" Aqua-Planet Experiments .. 389
Ka-Ming Lau: Dynamics of Multi-Scale Interactions Relevant to ENSO .. 397
Sam F. Iacobellis, and Richard C.J. Somerville: A one Dimensional Coupled Air-Sea Model for Diagnostic Studies during TOGA-COARE 419
Roland W. Garwood, Jr., Pecheng C. Chu, Peter Muller, and Nikias Schneider: Equatorial Entrainment Zone: the Diurnal Cycle .. 435
Peter R. Gent: A New Ocean GCM for Tropical Ocean and ENSO Studies .. 445
Wasito Hadi, and Nuraini: The Steady State Response of Indonesian Sea to a Steady Wind Field .. 451
Pedro Ripa: Instability Conditions and Energetics in the Equatorial Pacific .. 457
Lewis M. Rothstein: Mixed Layer Modelling in the Western Equatorial Pacific Ocean .. 465
Neville R. Smith: An Oceanic Subsurface Thermal Analysis Scheme with Objective Quality Control 475
Duane E. Stevens, Qi Hu, Graeme Stephens, and David Randall: The Hydrological Cycle of the Intraseasonal Oscillation .. 485
Peter J. Webster, Hai-Ru Chang, and Chidong Zhang: Transmission Characteristics of the Dynamic Response to Episodic Forcing in the Warm Pool Regions of the Tropical Oceans .. 493
MOMENTUM, HEAT, AND MOISTURE FLUXES BETWEEN ATMOSPHERE AND OCEAN

E. Frank Bradley, Peter A. Coppin, and John S. Godfrey: Measurements of Heat and Moisture Fluxes from the Western Tropical Pacific Ocean 523
Richard W. Reynolds, and Ants Leetmaa: Evaluation of NMC’s Operational Surface Fluxes in the Tropical Pacific ... 535
Stanley P. Hayes, Michael J. McPhaden, John M. Wallace, and Joël Picaut: The Influence of Sea-Surface Temperature on Surface Wind in the Equatorial Pacific Ocean .. 543
T.D. Keenan, and Richard E. Carbone: A Preliminary Morphology of Precipitation Systems In Tropical Northern Australia 549
Phillip A. Arkin: Estimation of Large-Scale Oceanic Rainfall for TOGA 561
Catherine Gautier, and Robert Frouin: Surface Radiation Processes in the Tropical Pacific .. 571
Roger Lukas: Observations of Air-Sea Interactions in the Western Pacific Warm Pool during WEPOCS ... 599

EMPIRICAL STUDIES OF ENSO AND SHORT-TERM CLIMATE VARIABILITY

Klaus M. Weickmann: Convection and Circulation Anomalies over the Oceanic Warm Pool during 1981-1982 ... 623
Claire Perigaud: Instability Waves in the Tropical Pacific Observed with GEOSAT ... 637
Ryuichi Kawamura: Intraseasonal and Interannual Modes of Atmosphere-Ocean System Over the Tropical Western Pacific 649
David Gutzler, and Tamara M. Wood: Observed Structure of Convective Anomalies ... 659
Bingrong Xu: Some Features of the Western Tropical Pacific: Surface Wind Field and its Influence on the Upper Ocean Thermal Structure 677.
Bret A. Mullan: Influence of Southern Oscillation on New Zealand Weather ... 687
John Joseph Bates: Signature of a West Wind Convective Event in SSM/I Data ... 711
David S. Gutzler: Seasonal and Interannual Variability of the Madden-Julian Oscillation .. 723
Marie-Hélène Radenac: Fine Structure Variability in the Equatorial Western Pacific Ocean .. 735
George C. Reid, Kenneth S. Gage, and John R. McAfee: The Climatology of the Western Tropical Pacific: Analysis of the Radiosonde Data Base 741
Chung-Hsiung Sui, and Ka-Ming Lau: Multi-Scale Processes in the
Equatorial Western Pacific ... 747
Stephen E. Zebiak: Diagnostic Studies of Pacific Surface Winds 757

MISCELLANEOUS

Rick J. Bailey, Helene E. Phillips, and Gary Meyers: Relevance to TOGA
of Systematic XBT Errors .. 775
Jean Blanchot, Robert Le Borgne, Aubert Le Bouteiller, and Martine
Rodier: ENSO Events and Consequences on Nutrient, Planktonic Biomass,
and Production in the Western Tropical Pacific Ocean 785
Yves Dandonneau: Abnormal Bloom of Phytoplankton around 10°N in the
Western Pacific during the 1982-83 ENSO .. 791
Cécile Dupouy: Sea Surface Chlorophyll Concentration in the South Western
Tropical Pacific, as seen from NIMBUS Coastal Zone Color Scanner from
1979 to 1984 (New Caledonia and Vanuatu) ... 803
Michael Szabados, and Darren Wright: Field Evaluation
of Real-Time XBT Systems .. 811
Pierre Rual: For a Better XBT Bathy-Message: Onboard Quality Control,
plus a New Data Reduction Method .. 823