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GEOSAT Sea Level Anomalies in the Western Equatorial Pacific

during the 1986-87 El Nino,

Elucidated as Equatorial Kelvin and Rossby Waves
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Noumea - New Caledonia

ABSTRACf

Thanks lO the GEOSATaltimeterdata set. information on sea level changes during the 1986-87El Nino is
presented. Special emphasis is placed on the warm pool area, with an evaluation, a detailed description and
tentativeexplanation of the observed Sea Level Anomaly(SLA) changes.

Near the 165°E longitude, the onset of the 198~87 El Nino is characterized by a rapid development of a
positive (>]4 cm) equatorial SLA in November/December 1986. This feature occurs in response lo an
eastwardwindanomalyappearingbetween 140oE-1700W along the equator.The wind inducesa downweHing
equatorial Kelvin wave with phase speed of about 2.3 m.s-I. Thereafter, equatorial SLA remains quite
constant from January lo ApriVMay 1987. In June 1987, equatorial SLA decreases 10 a minimum value, just
after an abrupt change of the zonal wind stress anomaly, west of 165°E. Such anomaly seems lo force an
upwelling equatorial Kelvin wave propagating at about 2.3 m.s-I. Two patches of negative SLAs then appear
in September ]987 at4°N and 4°S, symmetrical about the equetor,These are the signatureof a first baroclinic
upweHing equatorial Rossby wave (n=I=]) arising from the eastern boundary, at c = 0.9 m.s-I phase speed.
These calculations suggest that first baroclinic mode Kelvin waves and Rossby wave were the dominant
sourcesof sea level changes in theequatorial band, over the November 198~November ]987 El Nino period.

1. Introduction.

Before 1985, large scale monitoring of the tropical Pacific Ocean relied on island sea
level and/or XBT networks. Both monitoring approaches were quite successful in
describing and understanding the main tropical Pacific Ocean variability (e.g., Wyrtki,
1985; White et al., 1985). However, these observations were respectively limited by the
poor spatial coverage of the islands, especially in the eastern Pacific, and the poor temporal
resolution of XBT measurements which were also restricted to commercial shipping routes.

The U.S. Navy GEOSAT (GEOdetic SATellite) was launched in March 1985, which
coincided with the beginning of the international TOGA programme. Hence, the 1986-87 El
Nino phenomenon was the first to be captured by a satellite altimeter, providing
unprecedented spatial and temporal resolutions of the tropical Pacific ocean surface
variability.

Previous works (Cheney and Miller, 1988; Miller et al., 1988; Tai et al., 1989) have
already demonstrated the usefulness of GEOSAT in monitoring the whole tropical Pacific
ocean. As a complement, the goal of this note is to specifically focus upon the Sea Level
Anomalies (SLAs) measured in the tropical Pacific warm pool during the 1986-87 El Nino.
To this end, we first briefly present the GEOSAT data and data processing, then give a
description of the SLAs observed in the "center" of the warm pool (l65°E longitude), and
finally try to understand the origin of the altimeter-derived SLAs.
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2. Data

a. Data processing.
Detailed information about the GEOSAT mission may be found in a review released by

the Applied Physics Laboratory of the Johns Hopkins University (APL, 1981). It is worth
reiterating here that the GEOSAT spacecraft was originally launched into a non repeat orbit
(March 12, 1985), and then put into a l1-day repeat/coJlinear orbit configuration
(November 18, 1981), for oceanographic applications. Only part of that phase of the
mission, referred to as the Exact Repeat Mission (ERM), will be considered here.

The GEOSAT data we have analysed were kindly provided by C. Koblinsky (NASA,
Greenbelt). All environmental corrections, e.g. water vapour derived from the Fleet
Numerical Oceanographic Center's 12-hour model, were already included. The Sea Level
Anomalies (SLAs) data we received, stem from the first year of the ERM; SLAs are thus
relative to the mean of the November 1986-November 1981 period. The data consist of 22
grids of SLAs, and figure 1 shows the ground tracks of such a grid over the tropical Pacific
ocean. Tracks are separated from each other by about 1.5° at the equator, and there is a
measurement every about 1 km along each track.
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Our own data processing was made in three steps. Firstly, along track SLAs were smoothed
using 300 km width non-linear median and linear Hanning filters. An example of such
processing is given in figure 2. Secondly, by combining several tracks (6-1) in the zonal
direction, time series of SLAs were generated in O.5°xlO° latitude-longitude boxes. Finally,
smoothed records were produced by low-pass filtering in time and latitude using a 31-day
and 3°-latitude Hanning filters. No smoothing in longitude was performed.

b. Evaluation
Comparisons between GEOSAT sea level and data from tide gauges, inverted echo

sounders, and thermistor chains at various locations throughout the Pacific have suggested
that altimeter time series have an RMS accuracy of about 3 cm (Cheney et al., 1988). As an
example of our intercomparison figure 3 shows a GEOSAT SLA time series obtained in the
warm pool (2°S-165°E), together with the OI300db dynamic height anomaly derived from
the ATLAS thermistor chain mooring at 2°S-165°E, and the 0/500db dynamic height
anomaly obtained from cm stations made during seven cruises. Although the data may
differ by as much as 5 to 12 cm, they generally agree within a few centimeters. Notable



261

30o
latitude

-10-20

-10

-20

-30

- 40-l----L.t.-ft:f¥-t....4W'""...HF'IHW-tlAr.HliVWt#M....~1V\11

- 50-+-------,------r------,r-------~.&----_T_---__I

-30

50""'T"""-------------------------......

40

30

20

10

E 0
u

FIG.2. Along track processing of meridional sea level anomalies. Curve 1 denotes the raw sea level anomaly
(cm) from 300S lO 3OoN. Curve 2 is curve 1 shifted by +10 cm and despilted with a 3°-latitude non-linear
median filler. Curve 3 is curve 2 shifted by +)0 cm and smoothed with a 3°-latitude Hanning filter. Curve 4 is
curve 1 minus curve 3.
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FIG.3. Comparison between Geosat SLA time series (full line), OI300db dynamic height anomaly time series
obtained from ATI.AS thennislOr chain moorings (broken line), and spot 0I500db dynamic height anomaly
measurements derived from CTD stations from seven different cruises. Noae thal the 0/300 db data were
linearly interpolated from May 20 lO July 21, 1987. Cruise numbers are (I) USIPRC-2, (2)
SURTROPAC-7, (3) JENEX-I, (4) SAGA-2, (5) SURTROPAC·8, (6) PROPPAC-I. and (7) USIPRC-3. The
vertical scale denotes either cm (GEOSAT data) or dyn.cm (mooring and cruises).
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differences between time series may be due to incomplete correction of environmental
errors and/or they may reflect the idiosyncrasies of each type of observations (e.g., the
dynamic height time series do not include the variability below 300 db as well as the
salinity effects upon dynamic height computation; the CfD stations represent only spot
measurements, etc...). The RMS scatter about the fitted line between the altimeter SLAs and
the 0/300 db dynamic height anomaly is 4 cm. Thus, based on previous evaluations and on
this last comparison, we conclude that GEOSAT altimeter data seems adequate for
monitoring sea level variations in the tropics with an RMS accuracy of 4 cm. As a
consequence, only SLAs above ± 8 cm, corresponding to a signal/noise == 2, will be further
considered. .

3. Results

Figure 4 represents the SLAs along the 165°E longitude, as a function of time and
latitude. Four patches of SLA above ±8 cm appear in the equatorial band. Our purpose is to
sequentially analyse the mechanisms that generated these. patches. In support of this
analysis, we will refer to figures 5a-b presenting the zonal wind stress anomaly and SLA
along the equator, both as a function of time, from the western to the eastern Pacific.
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FIG.4. Geosatsea levelanomalies (cm)as a function of timeand latitude, along rhe 165°ElongibJde.

The first significant patch of SLA appears in November/December 986 (Fig.5b). It
occurs in response to eastward wind anomaly located west of about 1700W (Fig.5a). The
wind induces a downwelling equatorial Kelvin wave which propagates across the entire
basin at about the first baroclinic phase speed Ckt= 2.3 m.s·l (Eriksen, 1982), as already
documented by Miller et al. (1988). A Gaussian fit of the meridional SLA structure, east of
the forcing area, is clearly in excellent agreement with the data, within ± 5° of the equator
using Ckl =2.3 m.s'! (Fig.6).
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The second significant sea level signal emerges in June 1987 (Fig.5b), just after a rapid
zonal wind stress change near the 165°E longitude (Fig.5a). The wind seems to generate an
upwelling Kelvin wave (Fig.5b) that propagates at least to the middle of the basin, where
the Kelvin wave meets a downwelling-favorable wind stress. Figure 7 shows that a
Gaussian fit of the meridional SLA structure, east of the forcing area, corresponds quite
well to the data, within ± 5° of the equator, using ck.=2.3 m.s'.
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FIG.6. Gaussian fit (broken line) of the meridional
(200S-200N) sea level anomaly structure (full line)
at 155°W longitude, on December 25, 1986.

FIG.7.Gaussian fit (broken line) of the meridional
(20oS-20°N) sea level anomaly structure(full line)
at 175°Wlongitude, on June 25, 1987.

Two patches of SLAs in excess of ± 8 cm then arise in August-September 1987, at
165°E, symmetrical about the equator at about 4°N and 4°S (Fig.4). They result from the
westward propagation of a first baroclinic (n=l) first horizontal (1=1) Rossby wave, as
shown in Figure 8. The Rossby wave propagates at about cR]=O.9 m.s", i.e. about one third
(21+1=3) of the aforementionned Kelvin wave phase speed. Figure 10 shows the good
agreement between the meridional SLA structure and the theoretical shape of the Rossby
wave (n=l=1), involving Gaussian and Hermite functions.

The upwelling Rossby wave portrayed in Figure 8 may result from two different
mechanisms. First, due to the excellent timing agreement, we suggest that it might be the
reflection of the upwelling equatorial Kelvin wave generated by the fast zonal wind stress
change occuring east of 165°E , by the end of January 1987 (Fig.5a). This upwelling
equatorial Kelvin wave, evidenced in figure 5b, hits the eastern coast by the end of March
1987, and then might reflect as an equatorial upwelling Rossby wave (Fig.8). Second, it
should be noted that the upwelling Rossby wave may also be amplified or eventually
generated by local forcing, as exemplified in figure 9 which shows a positive Ekman
pumping anomaly beginning in early March 1987, between about l000W and 1(fJ°W.
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Sea Level Anomaly (cm) along 4N latitude
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FIG.8. Sea level anomaly (cm) along the 4°N (top panel) and 4°S (bottom panel) latitudes, as a function of
time and longitude.
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Ekman pumping anomaly along 4N latitude Cm/month).
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I65°Elongitude, on September I, ]987.

The relative imponance of both mechanisms is now part of an ongoing study involving
linear numerical model results.

In conclusion, we believe that first baroclinic Kelvin waves and (n=I=I) Rossby wave are
the dominant sources of sea level changes in the equatorial band, during the 1986-87 El
Nino.
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