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Intraseasonal Variabilhy - A Critical Component of ENSO ?

Stephen E. ZEBIAK

Lamont-Doherty Geological Observatory
Palisades, NY 10964 - V.SA.

ABSTRACf

The impact of intraseasonal variability on ENSO is studied in the context of the Zebiak and
Cane (1987) coupled atmosphere-ocean model, and an idealized representation intraseasonal forc­
ing. The effects of the parameterized forcing are examined in both simulation and forecast exper­
iments, with similar results: the intrascasonal variability generally plays a minor role in altering
the model behavior. Despite the uncertainties inherent in both the coupled model and the
specified forcing, the results clearly suggest that intraseasonal variability is not an essential com­
ponent of ENSO. At the same time, they present evidence of occasional sensitive periods or
states of the coupled system in which intraseasonal forcing (and possibly other forcings) can
indeed disrupt the future course of events.

1. Introduction
Since the pioneering work.of Madden and Julian (1971,] 972), the so-called 40-50 day oscil­

lation (also known as the 30-60 day oscil1ation, or Madden-Julian oscillation) has been the sub­
ject of intense study. It is a prominent mode of variability on intraseasonal timescales throughout
most of the tropics, with clear signatures in upper and lower level tropospheric zonal wind, and
convective activity (Madden and Julian 197],1972; Lau and Chan 1985,1986a; Knutson and
Weickmann 1987; Cben and Murakami 1988). Its significance is further heightened by sug­
gested relationships with a number of other phenomena; among them, fluctuations of the Indian
monsoon (Krishnamurti and Subrahmanyan 1982; Murakami et al. 1984,1986; Cadet and Greco
1987), fluctuations of the Southeast Asian monsoon (Cben et a1. ]988), westerly wind bursts in
the western Pacific (Lau et al. 1988), and the onset of El Nirto (Lau and Chan 1986b,1988). The
latter two are related inasmuch as westerly wind episodes typically characterize the early stages
of El Nifto events (Luther et al. 1983). The proposed relationship between 30-60 day activity
(hereafter referred to as intraseasonal variability or ISV) and El Nifto is the subject of this study.
Specifically, we will assess the impact of ISV on the Zebiak and Cane (1987) coupled model in
both simulation mode and forecast mode.

One can easily imagine, following the authors cited above, that the energetic ISV forcing, if
not an essential element of ENSO, is often influential in the timing of events. On theother hand,
the theory emerging from simple coupled models points to an essentially deterministic interan­
nual cycle. If one accepts this theory, then the role of ISV would seem to be secondary; or more
correctly, the role of that component of ISV not controlled by the slower, ENSO-mode variability
would seem secondary. Whereas onc perspective treats El Nifto occurrences as individual events,
dependent on some triggering mechanism(s), the other views warm (and cold) events as the inev­
itable consequence of a systematic preconditioning process, and part of an ongoing, self­
sustaining cycle. Of course, there is the ssibiJit that both viewpoints are partially correct A
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deterministic, but chaotic, ENSO cycle likely would be characterized by periods of lesser and
greater susceptibility to various external forcing factors, including ISV. Even if this forcing were
not usually sufficient to disrupt the cycle, at particular times or in extreme instances it might well
do so. It is the purpose of this paper to determine which of these scenarios obtains in the context
of the ZC model.

1. A Model or Intraseasonal Forcing

Intraseasonal variability appears naturally in atmospheric models with time-dependent
dynamics, and reasonable representations of convective heating (e.g., Lau and Lau,1986; Chang
and Lim,1988; Hendon,1988; Sui and Lau,1989). It does not occur in the simpler, steady-state
models such as that of ZC. Thus, for the present purposes it is necessary to specify the intrasea­
sonal variability in some fashion. To do this, several observational results are utilized: (i) the
low-level wind signal is dominantly zonal in the equatorial region, (ii) the 30-60 day period band
contains most of the power, and (Hi) the disturbances are energetic in the west Pacific, but weaker
(at the surface) in the eastern Pacific. In the model to be constructed here the spatial structure of
the imposed anomalies is fixed in time, and positioned in the western Pacific at the equator. The
eastward propagation aspect is not included all it is considered relatively unimportant in terms of
the ocean response (especially the remote response to the east of the forcing region). Specifically,
the following fonn is chosen for fluctuations in zonal wind stress:

t""(t) =A[R (t) + 2R(t-At) + R(t -:!All] COS<Olo/ +tol e.p[ 1~re.p[ ';0r (I)

where R is a nonnal random variable with zero mean and unit variance, and to represents a uni­
fonn random variable on (0,211:). This forcing is evaluated at time intervals of !JJ, which for the
ZC model is 10 days. The parameters roo and Xo were taken to be 21t14Odays and 146°E, respec­
tively, and the amplitude A was set at .015N 1m2•

Fig. 1 shows three 48-month realizations of this forcing function. Anomalies as large as the
climatological mean stress (about .05N tm~ occur frequently; the model forcing is at least as
strong, and probably stronger, than what is observed (Madden, personal communication). A
spectrum of the forcing (Fig. 2) shows that, like the real ISV, most of the total power resides in
the 20-60 day band. Subsequent coupled model runs incorporate this forcing with one exception:
the amplitude A is reduced during simulated warm episodes. We reduce A in proportion to
(NIN03)112 for NIN03 >1, where NIN03 is the area averaged SST anomalies for the region
(900W-I50oW,s°S-5°N). The rationale behind this is that convective activity is generally
observed to decrease in the west Pacific during El Nino events. The reduction in model forcing is
modest (always less than a factor of two), so that the simulated ISV is still energetic by observed
standards,

3. Model SimuiationsIForecasts with Imposed ISV

Two l(XX)..year simulations were done, one with and one without ISV forcing, for the stan­
danl physics case as described in ZC. Such a lengthy simulation reveals a wide range of behavior
in the unperturbed coupled model (Fig. 3), including periods of large, regular wann events,
periods of more irregular cycles, and even periods of almost no variability. How much can a
powerful ISV forcing alter this pattern? Given this range of behavior in the basic model, it is
perhaps not surprising to find that there is little effect (Fig. 4). The favored 4 year period, and
transitions between regimes of larger and smaller amplitude variability all occur analogously. A
more quantitative comparison is shown in Fig. 5. The two time series were divided into segments
of 24 years duration, Fourier analyzed (with a Welch window applied to minimize aliasing
effects), and then averaged to fonn a mean spectrum. The two spectra are nearly identical; only
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a minute spreading about the central period of four years is detectable in the ISV-forced case.

Previously, we have used the 'Z£ model to make predictions of tropical Pacific SST during
the period 1970 to 1988. (1be experimental forecast procedure is described in detail in Cane et
al., 1986.) Forecasts were made starting from each month of the period, with the initial condi­
tions detennined as follows: a detrended and smoothed version of the FSU pseudo-stress fields
(Goldenberg and O'Brien, 1981) was used as a forcing for the ocean component of the coupled
model. TIle result is a sequence of simulated ocean states for the entire period (mid-1960's to the
present). The SST from this simulation was then used as a forcing for the atmospheric com­
ponent, resulting in a corresponding sequence of simulated atmospheric states for the same period
consistent with the coupled model physics.

The fact that ISV has little effect on the overall statistics of the coupled model does not
guarantee that it is unimportant for prediction purposes. Indeed, some have speculated that ISV
is a major factor in the onset or termination of warm events. To test this, all of the previous fore­
casts were rerun with 9 separate realizations of ISV forcing. A small but representative sample of
the results is shown in Figs. 6-9. The NIN03 index from the original forecasts (no ISV), from
each of the perturbed forecasts, and from observations is presented for sequences originating in
four consecutive months.

The July-October 1970 sequence (Fig. 6) represents a transitional time between incorrect
and correct predictions of the 1971-1972 period in the unperturbed forecasts. All but one of the
perturbed forecasts from July follow the original in producing a warming in 1971, and moreover
all from August follow the original in producing no warming in that year, despite rapid spreading
thereafter. Another period showing large month-to-month differences in the original forecasts is
September-December 1975 (Fig. 7). Once again, it is evident that the entire envelope of ISV
forecasts is tending to follow the unperturbed ones, with apparently greater spreading at times
when the month-to-month stability of unperturbed forecasts is small. In contrast to other times,
the 1977-1978 period is remarkable in that almost none of the original forecasts produced any
warm events over a three year period. The addition of ISV for February-May 1978 (Fig. 8)
hardly alters this pattern at all, resulting in only a weak warming in the third year or beyond in
about 10% of the cases. If anything, the periods just prior to or during warm events are even
more stable with respect to ISV forcing. A typical example is September-December 1986 (Fig.
9), where the envelopes tightly bracket the original forecasts throughout the extended warm
episode, and subsequent cooling in 1988.

The picture emerging from these results is that ISV forcing can be important at particular
times, but that on average, it does little to alter the evolution as predetennined by the initial con­
ditions. In fact, the sensitivity to consecutive monthly changes in initial conditions appears
greater than that associated with ISV. This can be quantified by a calculation in the spirit of pred­
ictability studies.

TIle usual predictability experiment consists of a series of model integrations with small
changes in initial conditions. A measure of predictability is obtained from calculating the spread
among individual "predictions", compared with the expected differences among randomly chosen
states of the model or observed variables. While the theoretical limit of predictability is a func­
tion of the governing physics alone, an analogous predictability can be defined on the basis of any
method of perturbing the system, whether it be in the initial conditions, or some external forcing.
In this case, the rate at which the envelope spreads is a function not only of the model physics,
but also the fonn and size of perturbations. TIle rate of spreading provides a means for evaluating
the dynamical significance of a particular type of initial condition perturbation or external forc­
ing. For example, if perturbations to which the system is very insensitive are introduced. the rate
of spreading will approach the theoretical one - only model physics matter. On the other hand, if
sizeable or otherwise dynamically significant perturbations are introduced, the rate of spreading
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will be much larger, and the predictability limit will be reachedsooner.

For the present purposes we wish to compare the spreading rates associated with ISV forc­
ing and one-month differences in start time. The former is detennined by computing the mean
square difference among all pairs of forecasts starting from the same initial conditions, but with
different realizations of intraseasonal forcing. Similarly, the latter is detennined from the mean
square difference between forecasts starting one month apart. and with no ISV (only the overlap­
ping time period enters for this calculation). Both are shown in Fig. 10. The results confinn what
was suggested in the sets of individual forecasts: the ISV forcing has less overall effect on the
forecasts than does moving the start time by one month.

4. Discussion

The question of intraseasonal variability and its impact on ENSO has been addressedin the
context of the Zebiak and Cane (1987) coupled model and an idealized representation of ISV.
From several different analyses, the results are unambiguous: ISV has only a marginal effect on
ENSO. Lengthy integrations of the model with and without ISV yield nearly identical statistics.
The majority of individual forecastexperiments show little spreading over a two year period as a
result of this forcing. Predictability calculations show that, even relative to the differences
among forecasts startingone month apart, the ISV influence is small. (The comparisonwith fore­
casts starting two monthsor more apart is more dramatic.)

It is worth noting that the initial conditions in our forecastexperimentsare generated with a
filtered (and detrended) version of the FSU pseudo-stress fields. This involves a temporal 1-2-1
smoothing of monthly averages, and therefore has nearly all intraseasonal variability removed.
Thus the changes in initial conditions from month to month in the forecasts do not simply reflect
ISV, but rather reftect somewhat lower frequency wind changes at varying preceeding times
dependingon position. The resultsshowthat the sensitivity to these lower frequency components
of the wind field (whetherreal or spurious)supersedes the effectsof ISV.

Despite the consistency of the results, conclusions should be considered tentative for two
reasons. Our ISV model, thoughmotivated by observations, is highly idealized in many respects
and may not representthe real phenomenon faithfully. Also, the Z£ model has systematicbiases,
and quite possibly is overly insensitive to the imposed west Pacific forcing. Both of these poten­
tial problems in principle can be reduced with better or more complete models. Awaiting such
further studies, the present results can be regarded as suggestive of a secondary role for ISV in
relationto ENSO.

Finally, it is interesting to consider the relatively infrequent periods where the imposed
intraseasonal forcing did have an important effect on forecasts. This leads to question: what
characteristics of the coupled system determine whetheror not the future is well determined? Is
there some feature symptomatic of an uncertain future evolution, beyond our imperfect
knowledge of the state of the system at any given time? In general, can we know when predicta­
bility is more and less limited? It seems certain that a careful study of these issues will give new
insight into the model dynamics, but may also contributeto a better understanding of the real cli­
mate system.
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