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ABSTRACf

The western boundary of the tropical Pacific is not continuous and leakage of low frequency
energy from the Pacific to the Indian Ocean is possible. At low frequencies equatorial Kelvin and Rossby
waves have very large east-west scales compared with the east-west scale of the land masses in the region.
Consequently, these land masses may be treated as islands that are infinitesimally thin in the east-west
direction. By generalizing previous theory for a single island, the leakage of low frequency energy through
the seven major 'islands" forming the boundary of the western Pacific can be studied. The major results
are as follows.

(1) When a mode 1 low frequency Rossby wave is rellected at the discontinuous western Pacific
boundary, the eastward reflected Kelvin wave energy flux is about one third of the incoming
energyflux or about two thirdsof that expected for a solid meridional wall.

(2) In phase interannual sea levelsshould occuralong Australia'swestern coast.
The latterprediction is in agreement withobservation.

(3) Negligible low frequency Kelvin wave energy from the Indian Ocean is transmitted into the
Pacific.

(4) Strong narrow currents are predicted to occur westward of some island tips.
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1. Introduction

The western 'boundary' of the tropical Pacific is discontinuous. The reflection of low frequency

energy from this western boundary may be crucial to interannual coupled ocean-atmosphere dynamics

(Battisti, 1988). But present models assume that the boundary is a solid wall when it clearly is not.

Just how well does the gappy western Pacific reflect low frequency energy compared to a solid wall?

In order to answer this question, it is important to realize that because low frequency westward

propagating energy has such a large east-west scale, land masses forming the western tropical Pacific

boundary can dynamically be treated as being infmitesimally thin east-west. The single 'island'

results of Cane and du Penhoat (1982) then apply. These results can be generalized to the several

island case and the multiple reflection and transmission of low frequency energy in the western

tropical Pacific can be analyzed.

Theory for low frequency flow near a single irregularly shaped island is discussed in the next

section and this is generalized in section 3 to the several island case. Section 4 presents some results

for the west Pacific.

2. Theory for a Single Island

I will suppose that the large-scale, low-frequency flow is linear. The linear equations for

perturbations to a continuously stratified constant depth ocean at rest can be separated into vertical

modes (e.g., Gill and Clarke, 1974; Moore and Philander, 1977) and in the following I will consider a

single baroclinic mode. The horizontal equations for each vertical mode are nondimensionalized in

standard equatorial fashion, viz., (c/~)lh for length and (c~rlh for time. (In these expressions ~ is the

northward gradient of the Coriolis parameter and c is the Kelvin wave speed for the vertical mode).

The coordinates x and y will represent non dimensional distance eastward from the origin and

northward from the equator.

At the very low frequencies of interest here, large scale waves carrying energy westward are

Rossby waves while those carrying energy eastward are equatorial Kelvin waves. At low frequencies

these waves have very large east-west scales and the motion can be assumed to be independent of x.

By geostrophy,

v(large scale) = Px/y = 0 (2.1)

Consider now an irregularly shaped island with a well defined single eastern and a single western

boundary. The island's northern most and southern most points are defmed by y=a and y=b

respectively. Analysis to be reported elsewhere shows that the boundary conditions for that island,
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together with (2.1) and p and u independent of x imply that the irregular island is dynamically

equivalent to an island which extends from y=b to y=a and is inflnitesirnally thin from east to west.

Specifically, the infmitesimally thin island results of Cane and du Penhoat (1982) are valid for an

irregular island provided

EO>« 1 and k L\x « 1 (2.2)

where E, L\x and k are, respectively, the nondimensional width of the boundary layer east of the island,

half of the east-west extent of the island and the largest wave number of all large scale motion of

significant amplitude near the island.

The Cane and du Penhoat (1982) results for an incident unit amplitude equatorial Kelvin wave

striking a north south island are shown in Figure 1. The transmitted Kelvin wave has amplitude <X. and

so by continuity the p and u fields west of the island for y > a and y < b have the form

(2.3a)

(2.3b)

where 'Vo is the zeroth order Hennite function. West of the island and in its latitude range b < Y< a,

the boundary condition at the island and u and p independent of x imply

Pw = D = constant

(2.4a)

(2.4b)

As pointed out by Cane and du Penhoat, (2.4b) and (2.3a) cannot simultaneously hold without there

being a discontinuity in pressure at y=a or y=b or both. By geostrophy, this leads to a 0 function

behaviour for u and so (2.3b) can be written as

= <X.'Vo + Ao(y-a)

= <X.'Vo + Bo(y-b)

for y ~ a

fory ~ b

(2.5)
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Pw = e1.\l'o

Uw = a\jfo+A8(y-a)

_____X:~. . _

U =0w

y=b

pw=a\jfo

uw=a\jfo+B8(y-b)

Figure 1

p and u fields for a low frequency equatorial Kelvin wave striking an island
extending from y=b to y=a. The incoming Kelvin wave has u=p=\jfO· PE
and uE are given for the large-scale field outside the narrow western
boundary layer east of the island. 8 is the Dirac delta function.

PW=R\jfO+Pinc

uw=R\jfo+uinc+A'8(y-a)

y=a
..----------- -- -- ---- -- .. -

P -0'w-

u =0w

PW=R\jfo+Pinc

uw=R\jfo+uinc+B'8(y-b)

Figure 2

p and u fields for a low frequency Rossby wave striking an island
extending from y=b to y=a. The incoming Rossby wave has u=u inc and
p=p. . PE and uE are given for the large-scale field outside of the
narr~~ boundary layer east of the island.
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The transports A and B supply the western boundary current on the eastern side of the island. This

boundary current redistributes mass to allow the transmitted Kelvin wave with amplitude a to leave

the island. Cane and du Penhoat provide formulae for a, A, B and D.

A similar analysis can be carried out for the case of a Rossby wave striking a north-south island

(see Fig. 2). Formulae for the amplitude R of the reflected Kelvin wave and A', B' and D' are

provided by Cane and du Penhoat.

3. Several Island Theory

To examine the reflection and transmission at the western Pacific 'boundary', theory must be

developed for the interaction of low frequency fields with several islands. Proceeding westward from

the eastenunost island, number the islands i =1, 2, ... . The western Pacific Ocean boundary appears

to consist of seven major islands (see Figs. 3 and 4).

Consider low frequency transmission and reflection occurring at island i (see Fig. 5). Define Ti
to be the amplitude of the Kelvin wave transmitted past island i due to the Kelvin wave coming into

the island from the west and Ri as the amplitude of the Kelvin wave reflected from island i due to an

incoming Rossby wave field from the east. Represent this Rossby wave field as

u =u~1 ' (3.1)

If ai is the transmission coefficient for island i, then since (Ri+1+Ti+'> is the amplitude of the

incoming Kelvin wave it follows that

where, from Cane and du Penhoat's single island results

(3.2)

In (3.3)

(3.4)
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Figure 3

The western Pacific region under study. The dashed line is the 200 m
isobath. SI=Solomon Islands, NB=New Britain, NI=New Ireland,
NG=New Guinea, H=Halmahera, C=Celebes, Ph=Ph.ilippines,
B=Borneo and J=Java.
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Figure 4

Thinisland approximation to the western Pacific boundary. The
northern and southern latitudes were based on the northern and southern
limits of the 200 m isobath for each island.
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and

(3.5)

Defme Ai and Bi to be transport around the northern and southern tips of island i due to the incoming

Kelvin wave and Ai' and Bi' to be similar transports for the incoming Rossby wave. The pressure Di

west of island i is associated with the incoming Kelvin wave and the pressure Di' with the incoming

Rossby wave. Then from the single island results of Cane and du Penhoat,

At = At Tt (3.6)

where

, I

- ~ J1 + ~ + Bi - U i =0

A. =- ~b I 'lto(a.)-'!'o(b l )+ hlJ. I
a l I

(3.7)

(3.8)

(3.9)

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)

(3.15 )

and the Ki and Ui are known in terms of pR i_ , and uRi_, as
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&1

~ =J (U~l+P~l) '1Jo dy
bl

&1

U1 =JU~l dy
bl

(3.16)

(3.17)

Fig. 5 shows the p and u fields east and west of island i.

To solve the problem posed by (3.2) and (3.6)-(3.12) for the unknowns Ai, Bi, 0i, Ti' Ri' A{, B{

and O{ (i=I,2,...,7), I must fmd expressions for the Rossby wave fields uRi_t and pRi_t so that the Ki

and Ui can be evaluated. The p and u fields west of island i consist of the required long Rossby wave

field and the incoming Kelvin wave field with amplitude Ti+.+Ri+I' Thus we can obtain pRi and uRi

by subtracting off the Kelvin wave field. From Figure 5 and Eqs, (3.2) and (3.6)-(3.12), the Rossby

wave field west of island i is given by

(3.18a)

(3.18b)

(3.18c)

(3.18d)

(3.18e)

(3.18f)
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In (3.18) pRi_1 and uRi_1 can be similarly written in terms of Ti_I' Ri_I' Di_I' A'i_I' B'i_" pRi_2 and

uRi_2' This process can be repeated until i=1 when pRo and uR
oare known incoming Rossby wave

fields from the Pacific interior. Thus equations (3. 9)-(3.12) and (3.2) are all linear equations in terms

of the 35 variables Ti' Ri, D{, A{ and B{ (i=l ,...,7). The form of the equations will differ depending

on the relative positions of the islands. Note that since there is no eighth island, (Ra+ Ta) is the given

amplitude of the incoming Kelvin wave from the Indian Ocean.

The 35 linear equations can be written in terms of the 35 unknowns as a matrix problem

Ex=q (3.19)

where x is the column vector consisting of elements T I, RI' D/, A/, B I', ... A/, B/, q is a known vector

with elements derived from T. and the incoming known Rossby p and u fields and E is the appropriate

35x35 matrix associated with the linear equations. E consists mainly of zeros and its structure is

influenced by the relative positions of the islands. Equations (3.9)-(3.12) for i=1 indicate that AI" D/,

A/ and BI' can be found separately but for structural convenience I kept the problem in the 35x35

form and solved it by standard techniques.

4. Application of the Theory to the Western Pacific

4.1 Validity of the theory
To apply the theory to the western Pacific, the criteria in (2.2) must first be checked. For ~ =

2.29x1O-ttm-ls- l
, c = 2.74ms- l

, an ENSO frequency of 21t/3 years, k corresponding to a Kelvin wave or

first mode Rossby wave and~ corresponding to 2900km (half of total east-west distance occupied by

the 7 island 'boundary'), the maximum magnitude of kzix and CO£ is 0.2. Thus the requirement that

this maximum magnitude be small compared with unity is marginally satisfied.

A further theoretical restriction is that the motion be linear and inviscid. While this is reasonable

for the large scale Kelvin and westward propagating Rossby wave fields, it will break down for the

strong currents at the island tips and east of the island. As noted by Cane and du Penhoat, friction and

nonlinear effects will broaden these strong currents. The large scale balances on which the theory is

based will be neglegibly affected, however.

4.2 Results
I briefly discuss some of the major results below. A more detailed discussion will be given in a

future report.
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Figure 5

The u and p fields for reflection and transmission at island i due to an
incident Rossby wave from island i-I and an incident equatorial Kelvin
wave from island i+1.
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FIG.6.Kelvin waveamplitudes Ri'Tj and Rj+Tj for the seven islandsforming the westPacificboundary.
I. B. Asiaeindonesia, Borneo. Asia; Cel=Celebcs. Phil=Philippines. Halellalmahera, NG=New Guinea.
Aus=Australia. NB=New Britain. NI=New Ireland. SI=Solomon Islands.
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a. Reflection and transmission of a model Rossby wave

Figure 6 shows the transmitted and reflection Kelvin wave amplitudes plotted for each island.

The large value of R
7

compared to the other Ri indicates that the mode 1 Rossby wave energy is

mainly reflected at the western most island (Indonesia/Borneo/Asia). The total Kelvin wave

amplitude does not vary much from island to island because all islands are good to excellent

transmitters of the Kelvin wave reflected at Indonesia/Borneo/Asia.

If the western Pacific boundary were a solid north-south wall then the magnitude of the Kelvin

wave energy flux reflected back into the Pacific compared to the incident mode 1 Rossby wave energy

flux would be 0.5 (Clarke, 1983). The ratio for the 7 island model is 0.34, l.e., about two-thirds of that

expected for a solid wall.

The solution also indicates that D
3
+ D

3
' is substantial and that therefore interannual sea level

fluctuations should be observed along Australia's western coast. These sea level fluctuations should

be in phase and of constant amplitude. This is in good agreement with observation (Pariwono et al,

1986).

Strong jets occurring westward of some island tips are suggested by the model. These have been

observed in numerical models (Luther, personal communication) and recent observations near the

Philippines suggest a westward jet from the southern tip [Lukas (1988), Hacker and Firing (1988)].

For the model incoming mode 1 Rossby wave the strongest jet is predicted at the southern end of the

Philippines. If this mode were to have a sea level amplitude of 7 cm at the equator, then the upper

layer transport in a 1~ layer model with upper layer depth of 100 m would be about 6 Sverdrups at the

southern end of the Philippines.

b. Reflection and transmission of an Indian Ocean equatorial Kelvin wave

The western most island (Indonesia/Borneo/Asia) prevents transmission of almost all of an

incoming Indian Ocean Equatorial Kelvin wave. Only small transmission is expected because this

island extends further north and south than the north-south scale of the incoming Kelvin wave. A

Kelvin wave eventually reaches the Pacific by proceeding past the other islands, but its energy flux is

less than 5% of the original energy flux.
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