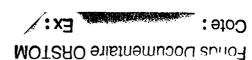


L'Institut français de recherche scientifique pour le développement en coopération

Burkina Faso

Document technique sur HYDRAM Logiciel de Simulation des Hydro-aménagements.


Alain DEZETTER

Amidou OUEDRAOGO

Fonds Documentaire ORSTOM

Cote: A & & Ex: 4

Ouagadougou, Août 1996

1. Introduction

HYDRAM est un logiciel de simulation des Systèmes d'eau ou Hydro-aménagements ; il a été développé dans le langage Eiffel¹. Eiffel est un langage de programmation orienté objet ; un langage autonome avec des possibilités d'héritage multiple, et des mécanismes de développement rapides. Eiffel est à sa Version 3.3.7. Il est portable sur UNIX et WINDOWS 95. La version actuelle d'HYDRAM peut donc fonctionner sur UNIX ; et maintenant sur WINDOWS 95. Pour notre part, c'est la version sur UNIX qui fera l'objet de nos propos. L'univers d'HYDRAM compte 102 Clusters et 1095 Classes (y compris les Clusters et Classes des bibliothèques livrées par Eiffel). Il existe différents produits d'Eiffel, EiffelBench, EiffelCase, EiffelBuild...; c'est avec les deux premiers que nous avons reconstitué le système HYDRAM; à savoir EiffelBuild et principalement EiffelCase.

Dans ce document nous allons décrire le système d'HYDRAM :

- en ce qui concerne les classes d'HYDRAM; nous passerons donc en revue leur organisation logique et physique, puis les types de liens (essentiellement des liens d'héritage, et des liens client)
- les différents Clusters du système qui décrivent en une première approche, de la conception, la notion de regroupement logique des Classes du système; puis en une seconde approche beaucoup plus physique, la "localisation" physique des fichiers, incluant la notion de répertoire.
- l'ensemble des classes appelé ACE, qui décrit l'architecture du système ; c'est donc une "étiquette" identifiant le système d'HYDRAM
- enfin les annexes nous permettrons d'appréhender le regroupement des Classes dans les différents Clusters du système d'HYDRAM.

Ce document a été essentiellement élaboré à partir de graphiques sortis d'EiffelCase; un outil d'Eiffel, conçu pour la documentation des applications développées sur Eiffel.

Notre travail sera essentiellement axé sur les clusters et classes de l'application HYDRAM proprement dite; c'est à dire, les classes qui ont été écrites et qui n'ont pas été fournies par Eiffel. Par le principe même de la programmation orientée objet, l'application HYDRAM dépend incontestablement des classes bibliothèques fournies par Eiffel dont nous ne ferons pas cas.

_

¹ Pour de plus amples informations consulter: "Eiffel, the language" de Bertrand MEYER édition Prentice-Hall, Object-Oriented Series.

2. Définitions générales

2.1. Classes

Une classe est une implémentation d'un type abstrait ; c'est à dire qu'elle décrit un ensemble d'objets caractérisés par les opérations qui leurs sont applicables. Une classe est définie par ses méthodes (Procédures et Fonctions ou "Routines") et ses propriétés (Variables et Constantes ou "Attributes"). Un objet est une instance d'une classe. La notion de classe n'est perceptible qu'au moment du développement ou "Compile-time" et celle d'objet au moment de l'exécution d'une application ou "Run-time". Une classe ne peut donc être confondue à un objet.

En plus des propriétés d'héritage des classes (possibilités d'utiliser directement ou indirectement les "Routines" ou "Attributes" des classes dites Pères ou Ancêtres) ; une classe X peut être utilisée par d'autres classes ; on dira dans ce cas que ces classes sont des "Clients" de la classe X. Les types de liens que nous rencontrerons entre classes seront principalement des liens d'héritages et des liens clients. Ces deux notions (héritage multiple et clients) font d'Eiffel un langage de programmation orienté objet très efficace.

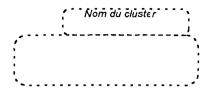
Dans la suite du document, nous allons utiliser la même convention de représentation schématique d'une classe sous la forme donnée par EiffelCase.

Nom de la classe représente le nom effectif que l'on a donné à la classe. Ce nom peut posseder un signe "+" dans ce cas on dira que la classe est effective ou d'un signe "*" dans ce cas on dira que la classe est différée

Ces possibilités offertes, imposent une organisation des classes dans des clusters.

2.2. Clusters

Nous allons définir un cluster suivant deux concepts :


- Logique : C'est un regroupement de plusieurs classes ou encore des clusters dans une structure arborescente. Ces classes et clusters devront avoir des traits communs ou de dépendance immédiats quand il s'agit des types de traitements qu'ils effectueront ; du moins à partir d'un niveau supérieur de l'arborescence. Plus on descend à la base de l'arborescence, plus les clusters se spécialisent donnant ainsi des regroupements de classes et de clusters spécifiques.

Cette organisation logique des classes et des clusters facilite la conception d'un système, et permet du coup une évolutivité aisée du système considéré.

- *Physique*: Après cette organisation logique, de subdivision des classes et clusters; la réalisation du système passe par un stockage de fichiers sur support magnétique (disque dur). C'est alors que les clusters deviennent des répertoires, pouvant donc contenir d'autres répertoires et fichiers des classes.

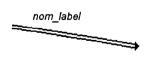
Dans la suite du document, nous allons utiliser toujours la même convention de représentation schématique d'un cluster sous la forme donnée par EiffelCase.

Nom du cluster représente le nom effectif que l'on a donné au cluster.

2.3. Lien d'héritage

Un lien d'héritage entre deux classes, entre deux clusters, ou entre une classe et un cluster, est un symbole graphique, permettant de définir une propriété d'héritage (vue précédemment) entre classes, entre clusters ou entre classe et cluster.

Dans la suite du document, nous allons utiliser la même convention de représentation schématique d'un lien d'héritage sous la forme donnée par EiffelCase.



Un lien d'héritage sera symbolisé par une flêche orientée, dans le sens d'héritage fils à père.

2.4. Lien client

Un lien client entre deux classes, entre deux clusters, ou entre une classe et un cluster, est un symbole graphique, permettant de définir une propriété client (vue précédemment) entre classes, entre clusters ou entre classe et cluster.

Dans la suite du document, nous allons utiliser la même convention de représentation schématique d'un lien client sous la forme donnée par EiffelCase.

Un lien client sera symbolisé par une double flêche orientée, dans le sens client vers fournisseur.

Un lien client peut porter un label. Le label reste le plus souvent un nom de "attributes" ou de "routines".

2.5. Ace

Une application développée dans le langage Eiffel pour être exécutable, doit regrouper des classes. Toute application exécutable dans ce cas est appelé un *système* (du type programme dans certain langage comme le Pascal par exemple). L'ensemble des classes définissant le système est appelé *univers*. Une classe est désignée comme classe *racine* du système ; une procédure de cette classe est appelée procédure de *création* ou encore appelée procédure d'initialisation. Exécuter un système, c'est donc créer une instance directe de la classe racine (objet racine pour l'exécution courante), et lui appliquer la procédure de création ou d'initialisation. Cette procédure de création va créer les autres objets dont elle a besoin.

Les classes sont enregistrées dans des fichiers séparés avec le nom de la forme *nom.e.* Les regroupements des classes se font dans des clusters vus comme des répertoires.

Les classes d'un système sont composées de la classe racine et des autres classes auxquelles la classe racine fera appel directement ou indirectement. Spécifier un système revient donc à indiquer la liste des répertoires contenant les fichiers des classes, le nom de la classe racine (qui doit être une des classes de l'univers), et de la procédure de création (qui doit être une procédure de la classe racine de l'univers).

Cet ensemble de classes est appelé ACE (Assembly of Classes in Eiffel). Il est décrit dans un langage appelé LACE (Language for the Assembly of Classes in Eiffel). Il est matérialisé par un fichier portant le même nom c'est à dire ACE.

Le fichier ACE est ainsi indispensable pour la compilation.

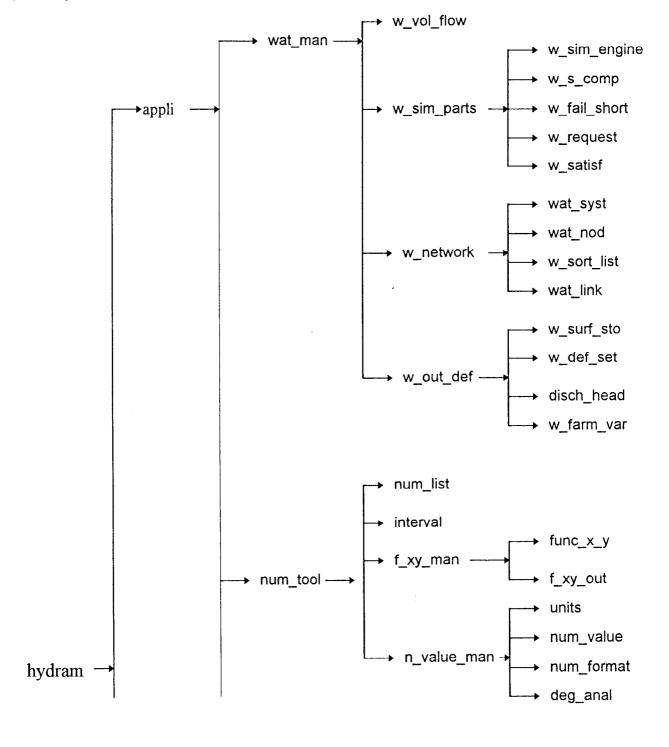
Notion de variable d'environnement sur Eiffel: Une variable d'environnement est une variable ayant un contenu donné ; on peut donc accéder au contenu de la variable en faisant référence au nom de la variable.

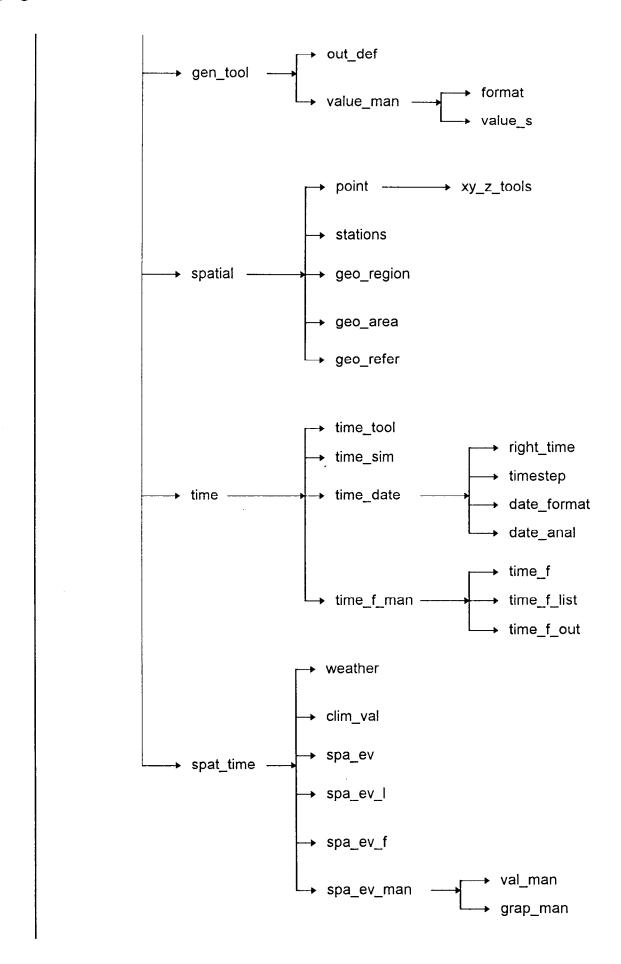
Exemple: la variable d'environnement HYD = /home2/users/hydram/hyd_0295.dir

On peut accéder au répertoire hyd_0295.dir en faisant cd \$HYD.

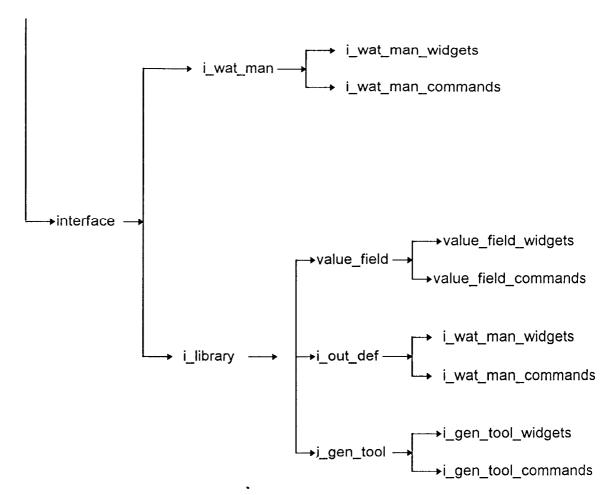
Le contenu d'un fichiers Ace a cette structure:

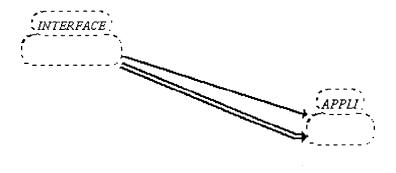
system					
	nom du système				
root					
	nom de la classe racine (nom du cluster): "nom de la procédure de création"				
default (permet de définir des paramètres par défaut qui seront pris en compte dans la compilation)					
	assertion (require);				
	precompiled ("\$EIFFEL3/precomp/spec/sparc/mvision");				
cluster					
	nom du cluster 1	"chemin absolu du cluster 1	п.		
	nom du cluster 2	"chemin absolu du cluster 2";			
	•••••				
	*****	"	"		


-HYD	RAW-		2.Définitions générales
•••••		n n	
		""	
end			
Pour des raiso	ons de commodit	és et de clarté dans la présentation d	e l'Ace, on regroupe les chemins
d'accès des d	clusters par thèm	ne : les clusters d'EiffelVision sont r	egroupés différemment de ceux
d'EiffelBase (p	oar exemple).		
On a les regro	upements suivan	t:	
Application	⇒ contient les	classes concernant directement l'app	lication HYDRAM (donc
	responsable de	la définition des traitements).	
Interface	⇒ contient les	classes directement liées à l'interface	e entre l'utilisateur et
	l'application.		
EiffelBase	⇒ contient les	classes bibliothèques livrées par Eiffe	el ; formant la base pour
	le développeme	ent des classes d'une application.	
EiffelVision	⇒ contient les	classes bibliothèques livrées par Eiffe	el ; formant la base pour
	le développeme	ent des classes de l'interface d'une ap	plication.
External (objet exterieur) \Rightarrow permet d'intégrer des objets ne pouvant pas être décrits			ouvant pas être décrits
	dans le langage	e Eiffel, ou déjà existants dans un auti	re langage
	compréhensible	e par Eiffel.	


3. Liens d'héritage et client entre clusters

3.1. Arborescence des clusters d'HYDRAM


Les clusters d'HYDRAM sont essentiellement subdivisés en deux grandes parties : la partie application (dénommée appli) et la partie interface (dénommée interface). Suivant chaque partie il y a des subdivisions dont voici la structure.


3.2. Liens d'héritage et client entre les clusters de l'application

Les liens rencontrés entre les clusters de l'application sont du type lien d'héritage et du type lien client.

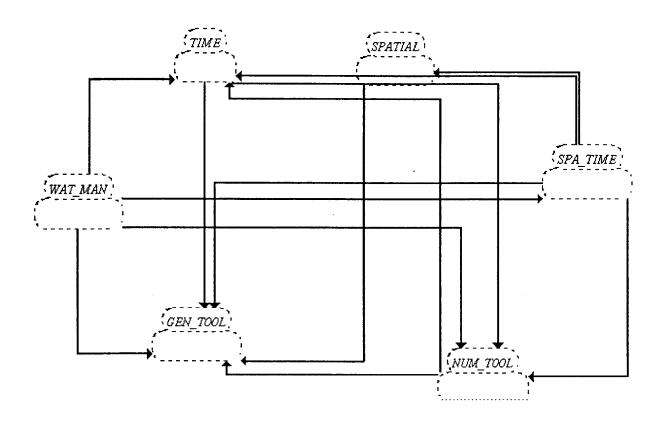
Les classes qui ont été écrites dans le cadre de l'application HYDRAM sont contenues dans le cluster HYDRAM337 (337 pour signifier que c'est la version 3.3.7 d'Eiffel qui a été utilisée). Ce cluster hérite du cluster LIBRARY; un cluster bibliothèque fourni par Eiffel. Il possède aussi un lien de type client avec ce cluster de bibliothèque d'Eiffel. Dans la suite du document les liens de type héritage seront symbolisés par un trait fléché dans le sens d'héritage fils à père. Les liens de type clients seront eux matérialisés par un double trait, fléché dans le sens client vers le fournisseur² si l'on considère qu'un cluster client utilise les clusters d'un autre qui lui est fournisseur.

Le cluster HYDRAM337 contient deux groupes de clusters : le cluster INTERFACE et le cluster APPLI. Le cluster INTERFACE possède des liens de type héritage et client avec le cluster APPLI. Entre d'autres termes le cluster INTERFACE hérite et utilise le cluster APPLI.

3 - 9

-

²Cette notion est à considérer avec discernement car a un autre sens dans Eiffel. Le sens utilisé ici est pour illustrer la notion de donneur et de receveur. En considérant qu'un receveur, reçoit toujours d'un donneur.

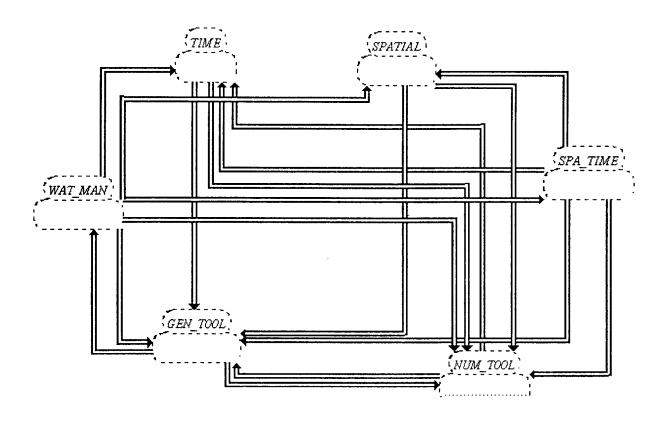


3.2.1. Liens d'héritage et client entre les clusters du cluster APPLI

3.2.1.1. Liens d'héritage entre les clusters du cluster APPLI

Comme le nom du cluster (APPLI) l'indique; c'est ce cluster qui contient les clusters directement nécessaires et importants pour l'application HYDRAM. Ce cluster contient six autres clusters : TIME (contient les clusters directement liés à la notion de temps), SPA_TIME (contient les clusters directement liés à la notion d'espace et de temps), SPATIAL (contient les clusters directement liés à la notion d'espace), WAT_MAN (contient les clusters intervenant dans la gestion des éléments de l'application), NUM_TOOL (contient les clusters considérés comme les outils de calculs), GEN_TOOL (contient les clusters considérés comme des outils généraux de l'application).

Les liens d'héritage qui existent entre ces clusters sont représentés dans ce graphique :

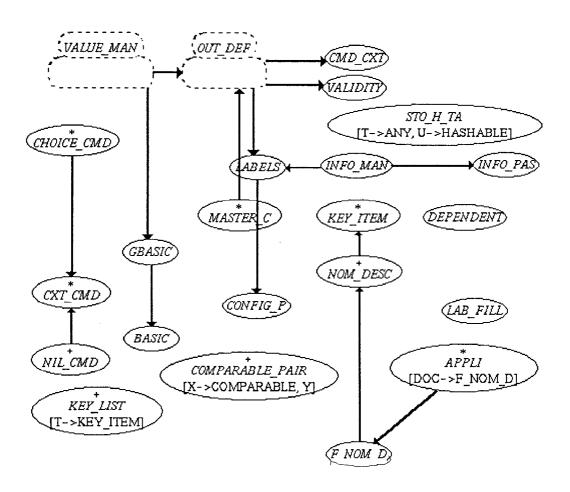

Le cluster père est GEN_TOOL; les autres clusters fils sont WAT_MAN, TIME, SPATIAL, SPA_TIME, NUM_TOOL. Naturellement le cluster SPA_TIME hérite des clusters SPATIAL et TIME, selon le principe d'héritage multiple.

3.2.1.2. Liens client entre les clusters du cluster APPLI

Notons que dans le cluster APPLI, tous les clusters, TIME, SPATIAL, SPA_TIME, WAT_MAN sont des clients des clusters GEN_TOOL et NUM_TOOL. Cela veut dire que les clusters GEN_TOOL et NUM_TOOL sont les principaux clusters, et sont sollicités par les autres. Quant au cluster WAT_MAN; il est client de tous les autres : il sollicite donc ces clusters.

Ce cluster APPLI est celui qui contient les clusters définissant l'application HYDRAM.

Ce cluster est très bien alimenté en liens de type d'héritage et de type client. Ce qui montre une fois de plus l'importance de celui-ci dans les échanges entre les clusters de l'application. Il est le siège même de toutes les opérations, de calculs, de définitions des éléments spatio-temporels de l'application.


3.2.2. Liens d'héritage et client entre les clusters du cluster GEN TOOL

3.2.2.1. Liens d'héritage entre les clusters et classes du cluster GEN TOOL

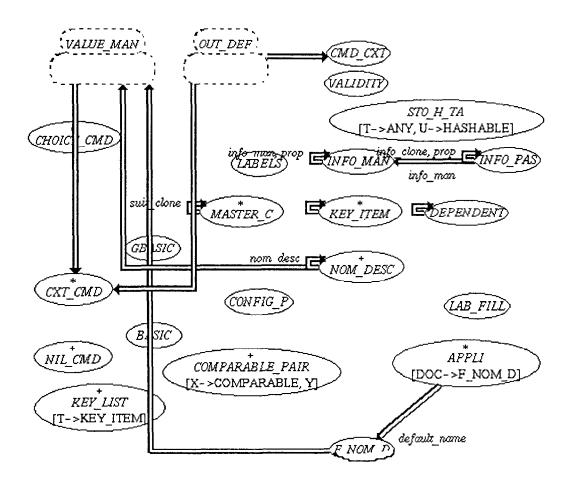
Ce cluster GEN_TOOL contient deux autres clusters : VALUE_MAN et OUT_DEF, avec un lien d'héritage de VALUE_MAN vers OUT_DEF. Ces clusters ont des liens d'héritage avec des classes³ qui sont contenues directement dans le cluster GEN_TOOL.

Les deux clusters héritent de certaines classes, CMD_CXT, VALIDITY et LABELS pour OUT_DEF; GBASIC pour VALUE_MAN. En fait ceci n'est qu'une représentation donnant une idée globale des liens entre les classes des clusters OUT_DEF, VALUE_MAN et les autres classes du cluster APPLI. Dire donc qu'un cluster hérite d'une classe, reste une approche globale pour dire que ce sont des classes du cluster qui héritent de la dite classe.

La notion d'héritage n'est formelle que d'une classe à une autre.

_

³Nous reviendrons sur ces types de liens entre classes dans un autre paragraphe.



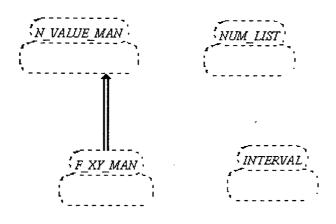
3.2.2.2. Liens client entre les clusters et classes du cluster GEN TOOL

Il n'y a pas de liens client entre les deux clusters VALUE_MAN et OUT_DEF. Mais ces deux clusters possèdent des liens client avec les classes du cluster GEN_TOOL.

Dire qu'un cluster est client d'une classe est aussi une approche globale pour dire que ce sont des classes du cluster qui sont clientes de la dite classe.

Il en est de même de dire qu'une classe est client d'un cluster ; la notion de lien client n'étant formelle que d'une classe à une autre.

Il existe des liens client qui portent des labels dans ce cluster. Ces labels sont le plus souvent des noms de variables.

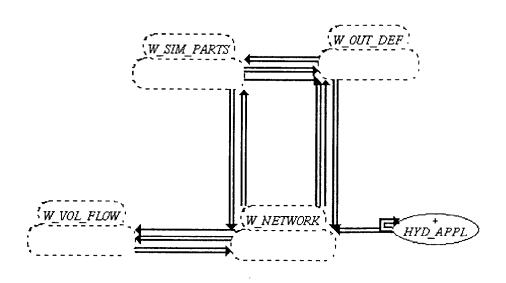


3.2.3. Liens d'héritage et client entre les clusters du cluster NUM_TOOL

Le cluster NUM_TOOL contient quatre autres clusters : N_VALUE_MAN, NUM_LIST, F_XY_MAN et INTERVAL. Il existe un lien client du cluster F_XY_MAN vers le cluster N_VALUE_MAN.

Dans ce cluster NUM_TOOL il n'existe pas de lien d'héritage entre deux quelconque clusters.

Notons que ses clusters possèdent cependant des liens d'héritage avec d'autres, mais ceux-ci étant placés dans autre un niveau de l'arborescence des clusters.

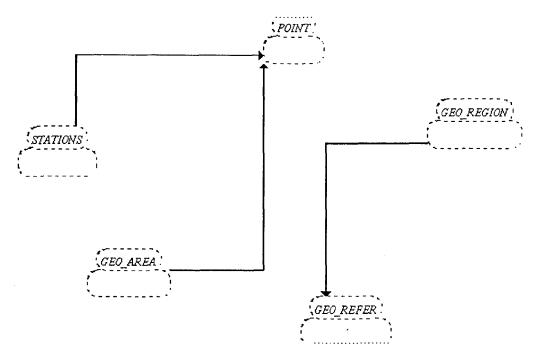


Des classes du cluster INTERVAL ne pourront pas hériter ou utiliser de celles de NUM_LIST. Il en est de même pour NUM_LIST et de N_VALUE_MAN; pour F_XY_MAN et de INTERVAL etc...

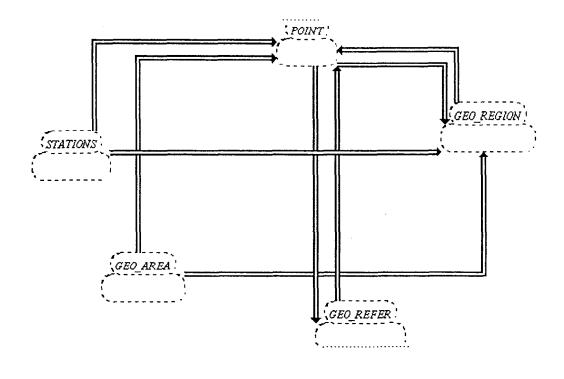
3.2.4. Liens d'héritage et client entre les clusters du cluster WAT_MAN

Le cluster WAT_MAN contient quatre clusters qui sont : W_SIM_PARTS, W_OUT_DEF, W_VOL_FLOW et W_NETWORK. Les clusters W_SIM_PARTS et W_NETWORK héritent du cluster W_OUT_DEF. Le cluster W_NETWORK hérite du cluster W_VOL_FLOW. Nous avons des liens client dans tous les sens, entre les quatre clusters. Une classe (HYD_APPL) possède un lien client avec elle même et avec le cluster W_NETWORK.

Ce cluster contient les classes et clusters, permettant de décrire et de gérer un système d'eau⁴.


⁴Un système d'eau peut être représenté par des composants subdivisés en deux grands groupes : les noeuds et les liens. Les noeuds regroupent tous les composants pouvant être localisés sans ambiguïté (une demande, un besoin, ou une jonction simple par exemple).

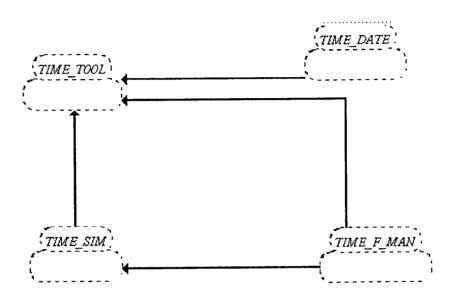
3.2.5. Liens d'héritage et client entre les clusters du cluster SPATIAL


3.2.5.1. Liens d'héritage entre les clusters du cluster SPATIAL

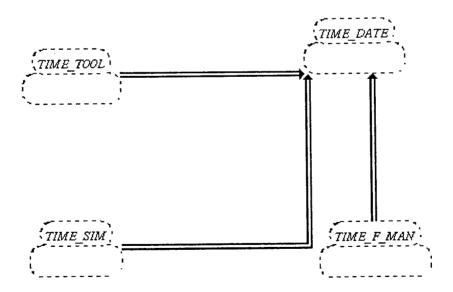
Le cluster SPATIAL contient cinq clusters : POINT, STATIONS, GEO_REFER, GEO_AREA et GEO_REGION. Les deux clusters, GEO_AREA et STATIONS héritent du cluster POINT. Le cluster GEO_REGION hérite du cluster GEO_REFER.

3.2.5.2. Liens client entre les clusters du cluster SPATIAL

Tous les clusters sont clients de POINT. Les clusters STATIONS et GEO_AREA n'ont cependant pas de cluster client.



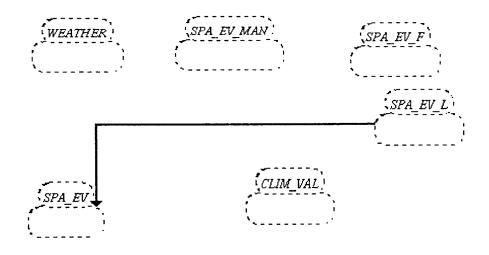
3.2.6. Liens d'héritage et client entre les clusters du cluster TIME


3.2.6.1. Liens d'héritage entre les clusters du cluster TIME

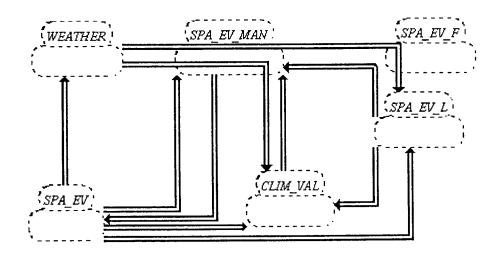
Tous les clusters TIME_DATE, TIME_F_MAN et TIME_SIM héritent du cluster TIME_TOOL. Le cluster TIME_F_MAN hérite des clusters TIME_SIM et TIME_TOOL, par le principe d'héritage multiple.

3.2.6.2. Liens client entre les clusters du cluster TIME

Tous les clusters TIME_TOOL, TIME_SIM et TIME_F_MAN sont clients du cluster TIME_DATE.

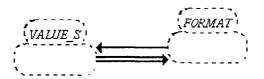


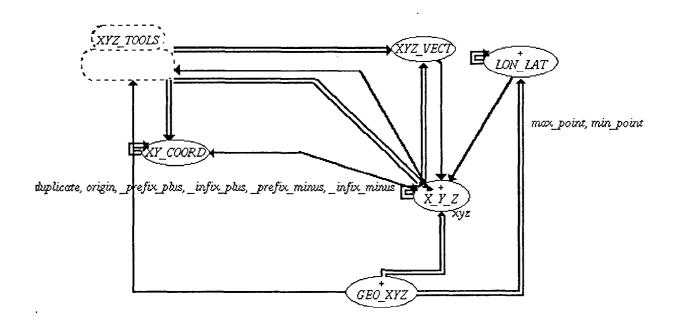
3.2.7. Liens d'héritage et client entre les clusters du cluster SPA_TIME


3.2.7.1. Liens d'héritage entre les clusters du cluster SPA_TIME

Le cluster SPA_TIME contient les clusters WEATHER, SPA_EV_MAN, SPA_EV_F, SPA_EV_L, CLIM_VAL et SPA_EV. Il existe un seul lien de type héritage de SPA_EV_L vers SPA_EV.

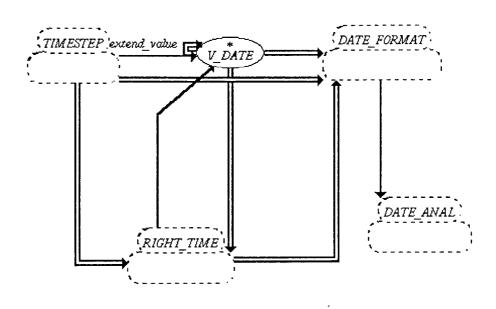
3.2.7.2. Liens client entre les clusters du cluster SPA_TIME

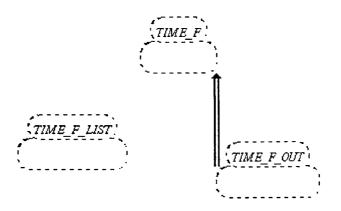

Seul le cluster SPA_EV_MAN ne possède pas de lien client ; soit entrant soit sortant, avec un autre cluster de SPA_TIME.


3.2.8. Liens d'héritage et client entre les clusters du cluster VALUE MAN

Le cluster VALUE_MAN contient deux clusters, VALUE_S et FORMAT. Le cluster FORMAT hérite du cluster VALUE_S.

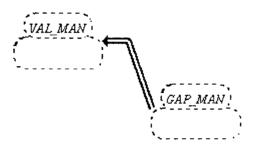
3.2.9. Liens d'héritage et client entre les clusters du cluster POINT

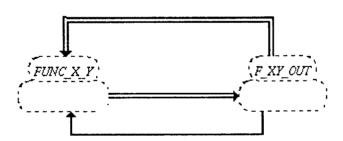

Le cluster POINT contient le cluster XYZ_TOOLS. Celui-ci possède des liens de type client avec les classes XYZ_VECT, XY_COORD et X_Y_Z. Les classes X_Y_Z et GEO_XYZ héritent du cluster XYZ_TOOLS. Les classes XYZ_VECT et LON_LAT héritent de la classe X_Y_Z.


3.2.10. Liens d'héritage et client entre les clusters du cluster TIME_DATE

Le cluster TIME_DATE contient les clusters TIMESTEP, RIGHT_TIME, DATE_ANAL et DATE_FORMAT. DATE_FORMAT hérite de DATE_ANAL. Les clusters TIMESTEP et RIGHT_TIME héritent de la classe V_DATE. Les liens client vont de TIMESTEP vers RIGHT_TIME, de RIGHT_TIME vers FORMAT et de TIMESTEP vers DATE_FORMAT. La classe V_DATE possède un lien client vers DATE_FORMAT.

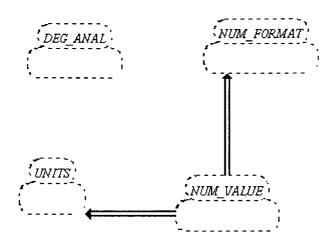
3.2.11. Liens d'héritage et client entre les clusters du cluster TIME_F_MAN

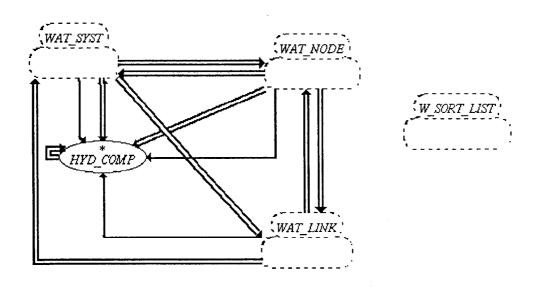

Dans ce cluster, il y a trois autres clusters : TIME_F, TIME_LIST, TIME_F_OUT. Il existe dans ce cluster un seul lien de type client de TIME_F_OUT vers TIME_F.


3.2.12. Liens d'héritage et client entre les clusters du cluster SPA_EV_MAN

Le cluster SPA_EV_MAN contient deux autres clusters qui sont : VAL_MAN et GAP_MAN. Il existe un seul type de lien client allant de GAP_MAN vers VAL_MAN.

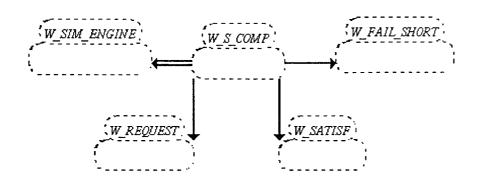
3.2.13. Liens d'héritage et client entre les clusters du cluster F_XY_MAN

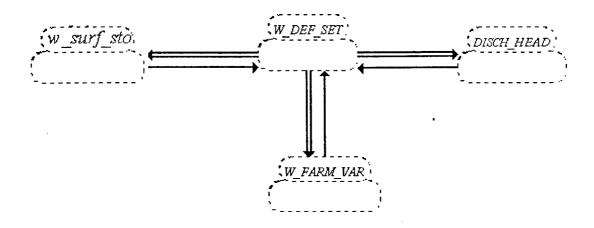

Dans le cluster F_XY_MAN, il y a deux clusters : FUNC_X_Y et F_XY_OUT. Le cluster F_XY_OUT hérite du cluster FUNC_X_Y. Les deux clusters possèdent chacun un lien de type client de l'un vers l'autre et réciproquement.


3.2.14. Liens d'héritage et client entre les clusters du cluster N_VALUE_MAN

Dans ce cluster, il existe quatre autres clusters qui sont : DEG_ANAL, NUM_FORMAT, UNITS et NUM_VALUE. Le cluster NUM_VALUE est client des clusters NUM_FORMAT et UNITS.

3.2.15. Liens d'héritage et client entre les clusters du cluster W_NETWORK

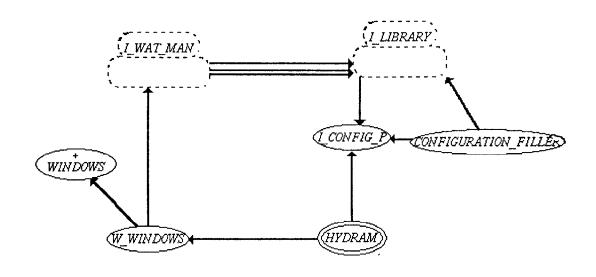

Celui-ci contient quatre clusters, WAT_SYST, WAT_NODE, WAT_LINK et W_SORT_LIST. Les trois premiers clusters cités possèdent chacun un lien d'héritage vers la classe HYD_COMP.


3.2.16. Liens d'héritage et client entre les clusters du cluster W SIM PARTS

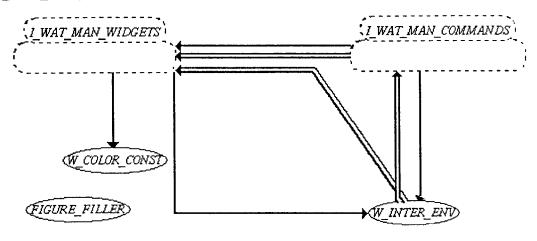
Le cluster W_SIM_PARTS contient cinq clusters : W_SIM_ENGINE, W_S_COMP, W_FAIL_SHORT, W_REQUEST et W_SATISF. Le cluster W_S_COMP hérite des clusters W_REQUEST, W_FAIL_SHORT et W_SATISF. Seul le cluster W_S_COMP possède un lien de type client vers W_SIM_ENGINE.

3.2.17. Liens d'héritage et client entre les clusters du cluster W_OUT_DEF

Ce cluster W_OUT_DEF contient les clusters W_DEF_SET, W_SURF_STO, DISCH_HEAD et W_FARM_VAR. Les trois derniers clusters possèdent des liéns de type héritage vers le cluster W_SET_DEF. Le cluster W_SET_DEF est le seul a avoir des liens de type client vers les autres clusters.

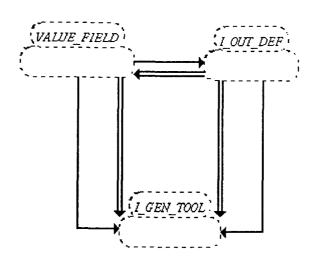


3.3. Liens d'héritage et client entre les clusters de l'interface


3.3.1. Liens d'héritage et client entre les clusters du cluster INTERFACE

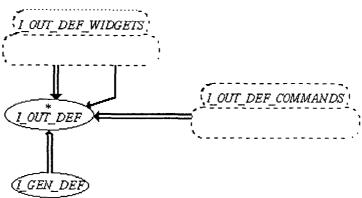
Ce cluster contient deux autres clusters : I_WAT_MAN et I_LIBRARY. Le cluster I_WAT_MAN hérite du cluster I_LIBRARY. La classe racine du système, HYDRAM hérite des classes I_CONFIG_P et W_WINDOWS. La classe W_WINDOWS hérite de la classe WINDOWS et du cluster I_WAT_MAN. Le cluster I_LIBRARY hérite de la classe I_CONFIG_P. Quand à la classe CONFIGURATION_FILLER elle hérite de la classe I_CONFIG_P et du cluster I_LIBRARY. Le cluster I_WAT_MAN est client du cluster I_LIBRARY.

3.3.2. Liens d'héritage et client entre les clusters du cluster I_WAT_MAN


Celui-ci contient deux clusters, I_WAT_MAN_WIDGETS et I_WAT_MAN_COMMANDS. Le cluster I_WAT_MAN_COMMANDS hérite du cluster I_WAT_MAN_WIDGETS et de la classe W_INTER_ENV. Le cluster I_WAT_MAN_COMMANDS hérite des classes W_COLOR_CONST et W_INTER_ENV. La classe W_INTER_ENV est client des clusters I_WAT_MAN_COMMANDS et I_WAT_MAN_WIDGETS.

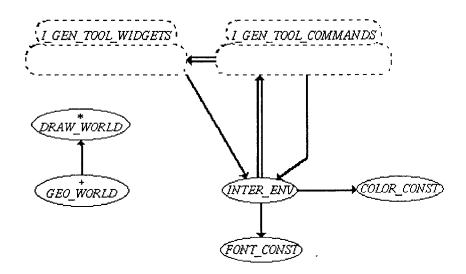
3.3.3. Liens d'héritage et client entre les clusters du cluster I_LIBRARY

Le cluster I_LIBRARY contient les clusters VALUE_FIELD, I_OUT_DEF et I_GEN_TOOL. Les clusters VALUE_FIELD et I_OUT_DEF héritent mais sont aussi des clients du cluster I_GEN_TOOL. Un lien de type héritage va de VALUE_FIELD vers I_OUT_DEF; un autre de type client va de I_OUT_DEF vers VALUE_FIELD.


3.3.4. Liens d'héritage et client entre les clusters du cluster VALUE FIELD

Nous avons deux clusters : VALUE_FIELD_WIDGETS et VALUE_FIELD_COMMANDS ayant chacun un lien de type client de l'un vers l'autre.

3.3.5 Liens d'héritage et client entre les clusters du cluster I OUT DEF


Le cluster I_OUT_DEF_WIDGETS hérite de la classe I_OUT_DEF. Les clusters I_OUT_DEF_COMMANDS, I_OUT_DEF_WIDGETS et la classe I_GEN_DEF sont clients de la classe I_OUT_DEF.

3.3.6. Liens d'héritage et client entre les clusters du cluster I_GEN_TOOL

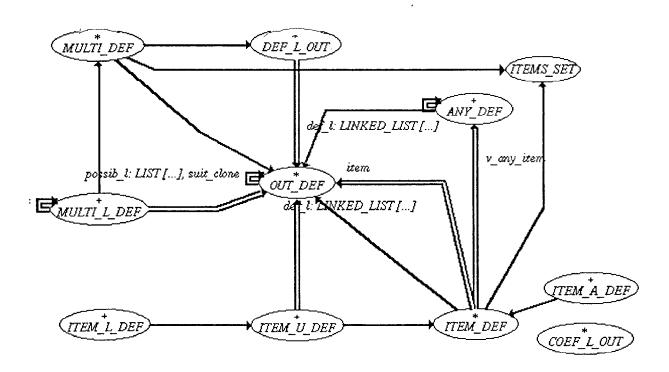
Le cluster I_GEN_TOOL contient deux clusters : I_GEN_TOOL_WIDGETS et I_GEN_TOOL_COMMANDS. Le cluster I_GEN_TOOL_COMMANDS est client du cluster I_GEN_TOOL_WIDGETS. Ces deux clusters héritent de la classe INTER_ENV ; qui elle à son tour hérite des classes FONT_CONST et COLOR_CONST. La classe INTER_ENV est client du cluster I_GEN_TOOL_COMMANDS. La classe GEO_WORLD hérite de la classe DRAW_WORLD.

4. Liens d'héritage et client entre classes

Notre démarche dans ce paragraphe, sera de considérer un à un les clusters vus dans le paragraphe précédent, de passer en revue les différentes classes qui s'y trouvent.

Il sera question d'indiquer les différents types de liens entre les classes d'un cluster donné, par une représentation graphique du contenu du cluster.

Comme ceci l'a été au paragraphe précédent nous allons considérer deux grandes parties de classes : les classes de l'application, et celles de l'interface.


Il sera exclu dans la présentation de ce paragraphe, les classes ayant directement des liens avec des clusters, et qui ont été abordées dans le paragraphe précédent.

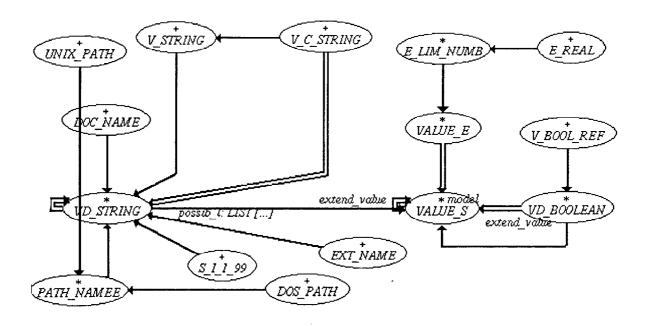
Les clusters "terminaux⁵" ne contenant qu'une seule classe ne seront pas représentés graphiquement, car il y a aucun intérêt du fait de l'absence de liens d'héritage ou client.

4.1. Liens d'héritage et client entre les classes de l'application

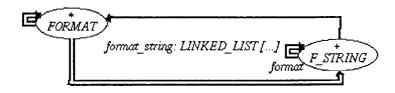
4.1.1. Liens d'héritage et client entre les classes du cluster OUT_DEF

La classe de base est OUT_DEF (OUT_DEFinitions - définitions et sortie), c'est une classe différée. Toutes les autres classes du cluster héritent directement ou indirectement de cette classe.

.___


⁵ Des clusters qui ne contiennent plus d'autres clusters, donc ils ne contiennent que des classes uniquement.

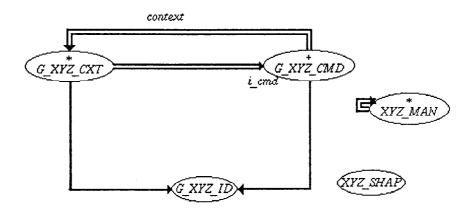
4.1.2. Liens d'héritage et client entre les classes du cluster VALUE_S


La classe de base de ce cluster est VALUE_S (VALUE_String - valeur et correspondance avec une chaîne de caractère), c'est une classe différée. Toutes les autres classes du cluster héritent directement ou indirectement de cette classe.

Voici schématisés les liens d'héritage et client entre les classes de ce cluster.

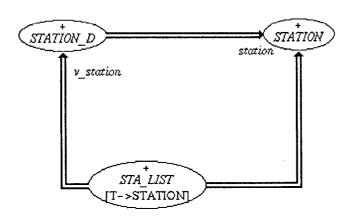
4.1.3. Liens d'héritage et client entre les classes du cluster FORMAT

La classe de base est FORMAT. Une classe effective F_STRING, hérite de la classe FORMAT. La classe FORMAT utilise F_STRING à travers une variable ou label appelé *format*.



4.1.4. Liens d'héritage et client entre les classes du cluster XYZ TOOLS

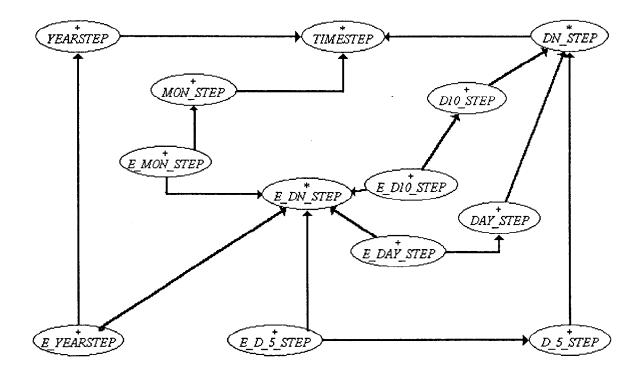
Les classes G_XYZ_CMD et G_XYZ_CXT héritent de la classe G_XYZ_ID. Elles sont clientes l'une de l'autre et réciproquement. La classe différée XYZ_MAN est cliente d'elle même.


Les classes de ce cluster offrent des outils pour la gestion de l'espace à trois dimensions.

4.1.5. Liens d'héritage et client entre les classes du cluster STATIONS

Les liens qui existent entre les classes du cluster STATIONS sont uniquement des liens de type client. La classe STA_LIST[T→STATION] est cliente des classes STATION et STATION_D. La classe STATION_D est cliente de la classe STATION.

Les classes de ce cluster STATION permettent de définir une station, une liste de stations.

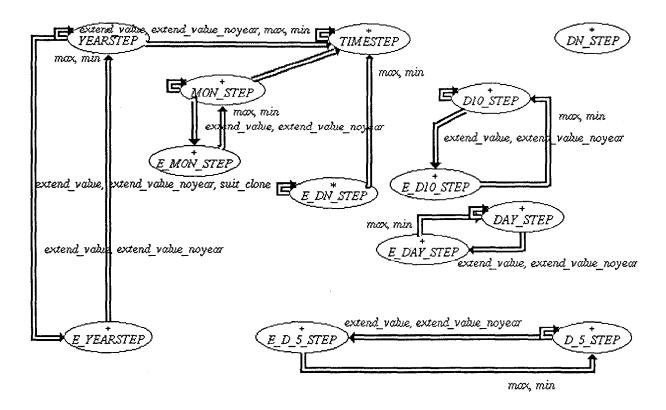

4.1.6. Liens d'héritage et client entre les classes du cluster TIMESTEP

4.1.6.1. Liens d'héritage entre les classes du cluster TIMESTEP

La classe de base dans ce cluster est TIMESTEP. Toutes les autres classes du cluster héritent directement ou indirectement de cette classe différée. Les classes qui héritent directement de TIMESTEP sont : DN_STEP, MON_STEP et YEARSTEP.

Ce cluster contient les classes décrivant la notion de temps (sa partie différentielle ou pas de temps) et qui sont utilisées dans toute l'application d'HYDRAM.

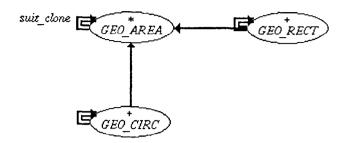
Les pas de temps utilisés au sens exhaustif sont : le journalier, le pentadaire, le décadaire, le mensuel et l'annuel (pour les moyennes interannuelles des données).



4.1.6.2. Liens client entre les classes du cluster TIMESTEP

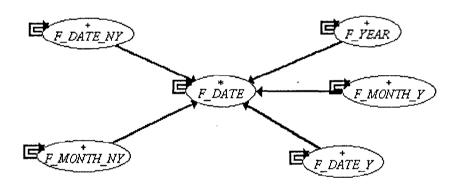
Dans ce cluster TIMESTEP, les liens client entre classes sont nombreux.

Les classes YEARSTEP, MON_STEP et E_DN_STEP sont clientes de la classe différée TIMESTEP. Les couples de classes : YEARSTEP et E_YEARSTEP, D10_STEP et E_D10_STEP, DAY_STEP et E_DAY_STEP, MON_STEP et E_MON_STEP, D_5_STEP et E_D_5_STEP forment des classes clientes l'une de l'autre (par couple de classes) et réciproguement.



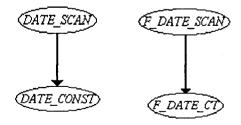
On remarquera que les liens (de type client) du cluster portent des labels. Ces labels sont pour la plupart des noms de "routines".

4.1.7. Liens d'héritage et client entre les classes du cluster GEO AREA


La classe de base du cluster GEO_AREA est GEO_AREA. Les classes GEO_RECT et GEO_CIRC héritent de la classe GEO_AREA. Les classes de ce cluster permettent de définir et de gérer des zones géographiques, dans une représentation schématique d'un périmètre d'irrigation par exemple.

4.1.8. Liens d'héritage et client entre les classes du cluster DATE FORMAT

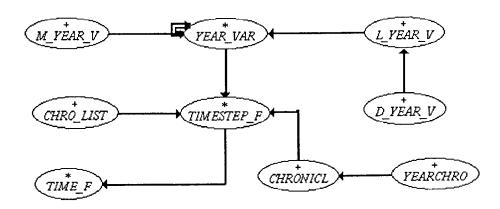
Dans le cluster DATE_FORMAT, les classes, F_YEAR, F_MONTH_Y, F_DATE_Y, F_MONTH_NY et F_DATE_NY héritent de la classe F_DATE.


Les classes du cluster permettent de prendre en compte et de gérer les formats des dates.

4.1.9. Liens d'héritage et client entre les classes du cluster DATE ANAL

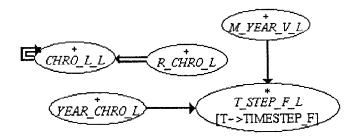
La classe DATE_SCAN hérite de la classe DATE_CONST. Aussi, la classe F_DATE_SCAN hérite de la classe F_DATE_CT.

Les classes de ce cluster permettent d'analyser les dates intervenant dans l'application HYDRAM.



4.1.10. Liens d'héritage et client entre les classes du cluster TIME_F

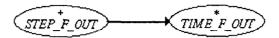
Les classes CHRO_LIST, YEAR_VAR et CHRONICL héritent de la classe TIMESTEP_F. Les classes L_YEAR et M_YEAR_V héritent de la classe YEAR_VAR.


Les classes de ce cluster permettent de définir des fonctions bornées associant une valeur à une date ou un pas de temps.

4.1.11. Liens d'héritage et client entre les classes du cluster TIME_F_LIST

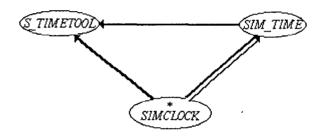
Les classes M_YEAR_V_L et YEAR_CHRO_L héritent de la classe T_STEP_F_L [T→TIMESTEP_F]. La classe R_CHRO_L est cliente de la classe CHRO_L_L.

Les classes de ce cluster, permettent de prendre en compte des listes de pas de temps et des valeurs chronologiques.



4.1.11. Liens d'héritage et client entre les classes du cluster TIME F OUT

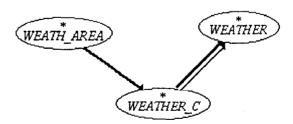
Le classe STEP_F_OUT hérite de la classe TIME_F_OUT.


Les deux classes interviennent dans le filtre de sortie de fonction de pas de temps à réel et de réel à réel.

4.1.12. Liens d'héritage et client entre les classes du cluster TIME SIM

Les classes SIM_TIME et SIMCLOCK héritent de la classe S_TIMETOOL. La classe SIMCLOCK est cliente de la classe SIM_TIME.

Les classes de TIME_SIM prennent en compte les outils nécessaires (en ce qui conserne le temps) pour la simulation.

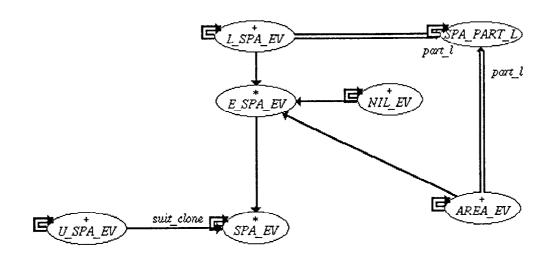


4.1.13. Liens d'héritage et client entre les classes du cluster WEATHER

La classe WEATH_AREA hérite de la classe WEATHER_C. La classe WEATHER_C est cliente de la classe WEATHER.

Toutes les classes de ce cluster sont différées. Elles ne sont pas effectives.

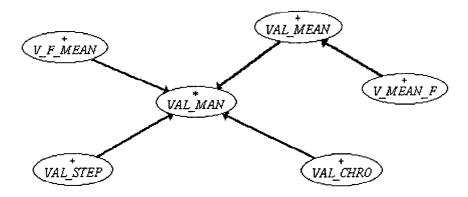
Ces classes interviennent dans la définition des événements (données) spatio-temporels.


4.1.14. Liens d'héritage et client entre les classes du cluster SPA_EV

La classe de base de ce cluster est SPA_EV. Les autres classes du cluster héritent directement ou indirectement de cette classe SPA_EV.

Les classes L_SPA_EV, NIL_EV et AREA_EV héritent de la classe E_SPA_EV.

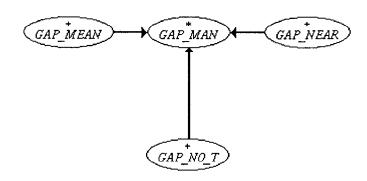
Les classes L_SPA_EV et AREA_EV sont clientes de la classe SPA_PART_L.


Ces classes permettent de prendre en compte les événements spatio-temporels.

4.1.15. Liens d'héritage et client entre les classes du cluster VAL_MAN

Le cluster VAL_MAN contient les classes : VAL_MEAN, V_MEAN_F, VAL_CHRO, VAL_MAN, V_F_MEAN et VAL_STEP.

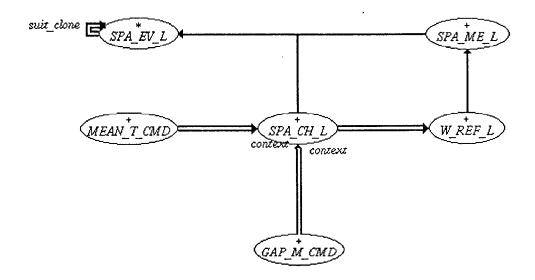
Les classes VAL_MEAN, VAL_CHRO, V_F_MEAN et VAL_STEP héritent de la classe VAL_MAN. Les classes de cluster permettent de gérer les données d'un horizon prévisionnel.



4.1.16. Liens d'héritage et client entre les classes du cluster GAP_MAN

Les classes GAP_MEAN, GAP_NEAR et GAP_NO_T héritent de la classe GAP_MAN.

Les classes de ce cluster permettent de gérer les lacunes dans les données hydro-météorologiques.

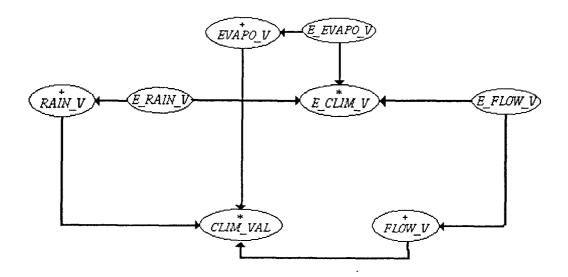


4.1.17. Liens d'héritage et client entre les classes du cluster SPA_EV_L

Les classes SPA_CH_L et SPA_ME_L héritent de la classe SPA_EV_L.

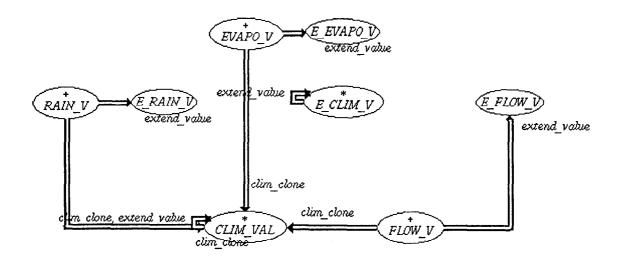
Les classes MEAN_T_CMD, GAP_M_CMD et W_REF_F sont clientes de la classe SPA_CH_L.

Les classes de ce cluster permettent de prendre en compte les listes des événements spatiaux.



4.1.18. Liens d'héritage et client entre les classes du cluster CLIM_VAI

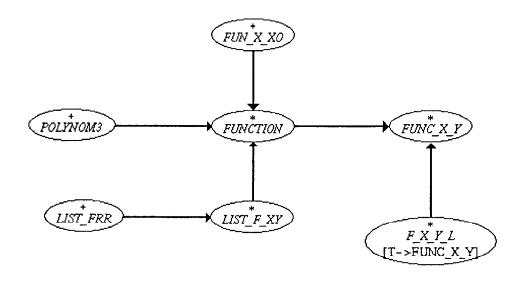
4.1.18.1. Liens d'héritage entre les classes du cluster CLIM VAI


Les classes RAIN_V, FLOW_V et EVAPO_V héritent de la classe CLIM_VAL. E_RAIN_V, E_FLOW_V et E_EVAPO_V héritent de la classe E_CLIM_V. La classe E_RAIN_V hérite des classes RAIN_V et E_CLIM_V.

Les classes de ce cluster prennent en compte les valeurs climatiques (pluie, évaporation...).

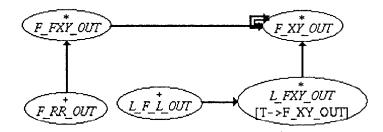
4.1.18.2. Liens client entre les classes du cluster CLIM_VAI

Les classes RAIN_V, EVAPO_V et FLOW_V sont clientes de la classe CLIM_VAL. La classe FLOW_V est aussi cliente de la classe E_FLOW_V. RAIN_V est cliente de E_RAIN_V. La classe EVAPO_V est cliente de la classe E_EVAPO_V.



4.1.19. Liens d'héritage et client entre les classes du cluster FUNC_X_Y

Dans le cluster FUNC_X_Y, on a les classes FUN_X_XO, POLYNOM3 et LIST_F_XY qui héritent de la classe FUNCTION.

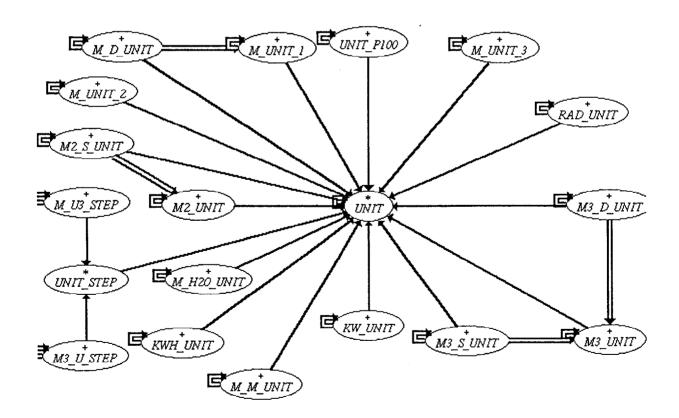

Les classes de ce cluster permettent de prendre en compte les fonctions de la forme y = f(x).

4.1.20. Liens d'héritage et client entre les classes du cluster F_XY_OUT

Dans le cluster F_XY_OUT, les classes F_FXY_OUT et L_FXY_OUT[T→F_XY_OUT] héritent de la classe F_XY_OUT.

Les classes de ce cluster interviennent comme des filtres de sortie de fonctions ou de liste de fonctions.

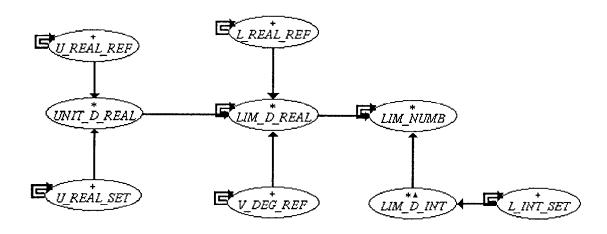
4.1.21. Liens d'héritage et client entre les classes du cluster INTERVAL


Nous avons deux classes dans le cluster INTERVAL : INTERFIX[$T\rightarrow COMPARABLE$] et INTERVAL[$T\rightarrow COMPARABLE$].

La classe INTERFIX[T→COMPARABLE hérite de la classe INTERVAL[T→COMPARABLE]. Ces deux classes permettent de définir des intervalles de valeurs numériques.

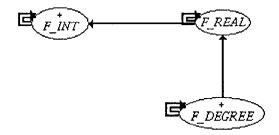
4.1.22. Liens d'héritage et client entre les classes du cluster UNITS

Dans ce cluster, la classe de base est UNIT. Les autres classes héritent de la classe UNIT. Ce cluster contient toutes les classes définissant et gérant toutes les unités de calculs utilisées dans l'application HYDRAM.



4.1.23. Liens d'héritage et client entre les classes du cluster NUM_VALUE

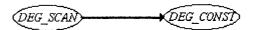
Les classes UNIT_D_REAL, V_DEG_REF, L_REAL_REF héritent de la classe LIM_D_REAL. Cette même classe hérite de la classe LIM_NUMB.


Les classes du cluster NUM_VALUE prennent en compte la valeur et la correspondance avec une chaîne de caractères. Ces classes considèrent des chaînes de caractères (mais qui doivent être des valeurs numériques) saisies par l'utilisateur, les interprètent et trouvent leurs correspondances en valeurs numériques.

4.1.24. Liens d'héritage et client entre les classes du cluster NUM FORMAT

Dans le cluster NUM_FORMAT, la classe F_DEGREE hérite de la classe F_REAL. La classe F_REAL hérite de F_INT.

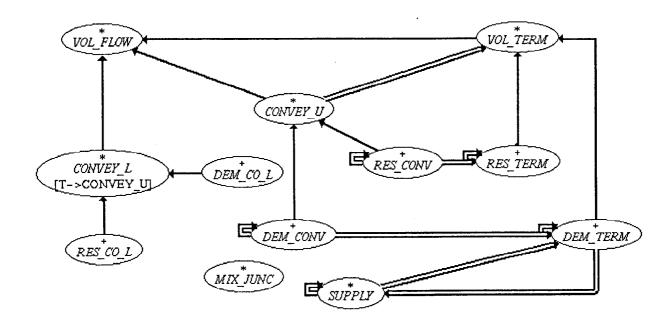
Les classes de ce cluster prennent en compte la valeur et la correspondance avec une chaîne de caractères. Ces classes déterminent le format numérique de la chaîne de caractères (format entier, réel ou degré).



4.1.25. Liens d'héritage et client entre les classes du cluster DEG ANAL

La classe DEG SCAN hérite de la classe DEG CONST.

Ces deux classes permettent d'analyser les nombres en degrés.

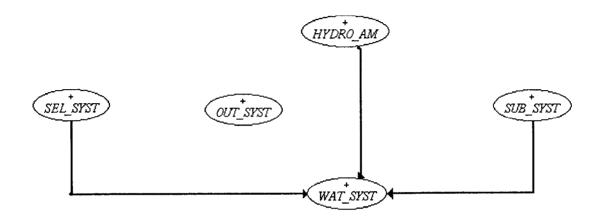

4.1.26. Liens d'héritage et client entre les classes du cluster W_VOL_FLOW

Les classes CONVEY_U, VOL_TERM et CONVEY_L[T→CONVEY_U] héritent de la classe VOL_FLOW.

Les classes RES_TERM et DEM_TERM héritent de la classe VOL_TERM.

La classe CONVEY_U est cliente de la classe VOL_TERM.

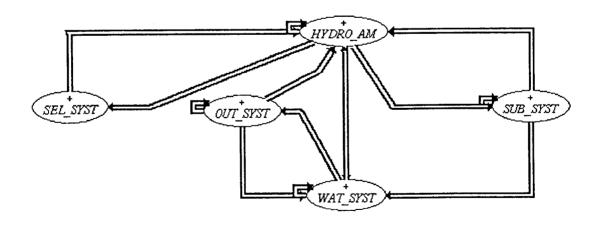
Les classes de ce cluster prennent en compte la gestion des volumes et débits dans un système d'eau, le transport d'un débit ou d'un volume d'une ressource à une demande.



4.1.27. Liens d'héritage et client entre les classes du cluster WAT_SYST

4.1.27.1. Liens d'héritage entre les classes du cluster WAT_SYST

Les classes SEL_SYST, HYDRO_AM et SUB_SYST héritent de la classe WAT_SYST.


Ces classes de ce cluster prennent en compte la gestion, le stockage des résultats de simulations d'un système d'eau.

4.1.27.2. Liens client entre les classes du cluster WAT_SYST

Les classes SEL_SYST, SUB_SYST, WAT_SYST et OUT_SYST sont clientes de la classe HYDRO_AM.

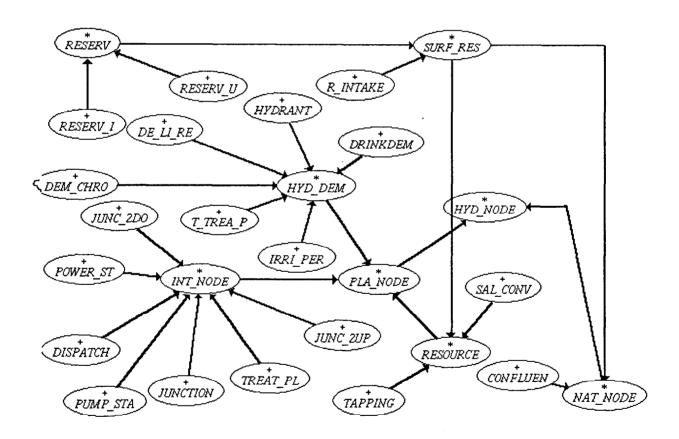
La classe HYDRO_AM est cliente de la classe SUB_SYST et de la classe SEL_SYST.

4.1.28. Liens d'héritage et client entre les classes du cluster WAT_NODE

4.1.28.1. Liens d'héritage entre les classes du cluster WAT NODE

Dans le modèle HYDRAM, un système d'eau est composé de noeuds et de liens.

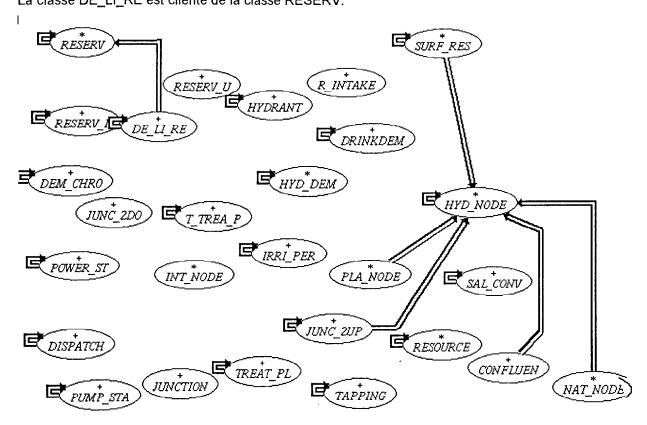
Un noeud d'aménagement peut être une demande, une ressource ou un noeud sans échange avec l'extérieur (par exemple une jonction).


Ainsi les classes HYD_DEM (pour un noeud de type demande), INT_NODE et RESOURCE (pour un noeud de type ressource) héritent de la classe PLA_NODE.

La classe PLA_NODE hérite de la classe HYD_NODE.

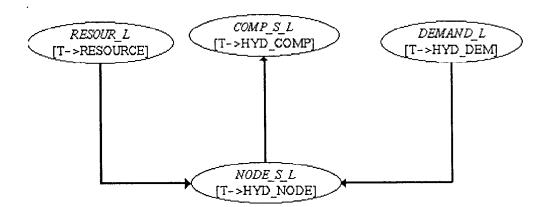
Les classes TAPPING, SAL_CONV et SURF_RES héritent de la classe RESOURCE.

Les classes HYDRANT, DE_LI_RE, DEM_CHRO, T_TREA_P, IRRI_PER et DRINKDEM héritent de la classe HYD_DEM.


Les classes de ce cluster permettent de définir tous les noeuds disponibles pour l'application HYDRAM.

4.1.28.2. Liens client entre les classes du cluster WAT NODE

En ce qui conserne les liens client du cluster, les classes SURF_RES, PLA_NODE, JUNC_2UP, CONFLUEN et NAT_NODE sont clientes de la classe HYD_NODE La classe DE_LI_RE est cliente de la classe RESERV.



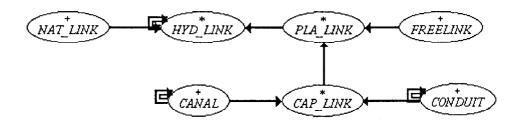
4.1.29. Liens d'héritage et client entre les classes du cluster W_SORT_LIST

Les classes DEMAND_L[$|T\rightarrow HYD_DEM$] et RESOUR_L[$T\rightarrow RESOURCE$] héritent de la classe NODE_S_L[$T\rightarrow HYD_NODE$].

La classe NODE_S_L[T→HYD_NODE] hérite de la classe COMP_S_L[T→HYD_COMP].

Les classes du cluster prennent en compte les listes des composants hydrauliques (ressources et

demandes).



4.1.30. Liens d'héritage et client entre les classes du cluster WAT_LINK

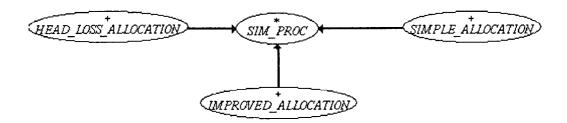
Les classes NAT_LINK et PLA_LINK héritent de la classe HYD_LINK.

Les classes FREELINK et CAP_LINK héritent de la classe PLA_LINK.

Les classes de ce cluster prennent en compte les différents liens d'ouvrages hydrauliques prise en compte dans l'application HYDRAM.

4.1.31. Liens d'héritage et client entre les classes du cluster W_SIM_ENGINE

Les classes IMPROVED_ALLOCATION, SIMPLE_ALLOCATION et HEAD_LOSS_ALLOCATION héritent de la classe SIM_PROC.

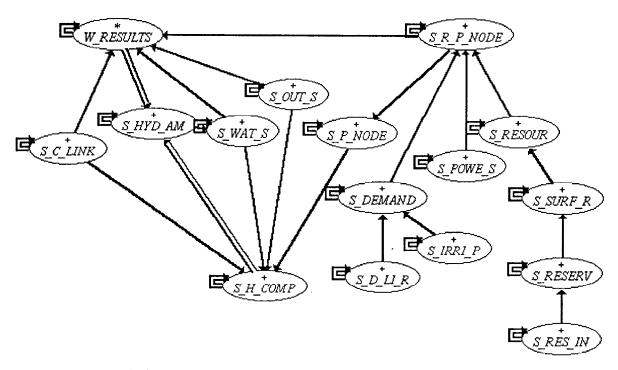

Les classes de ce cluster prennent en compte les différents processus de simulations utilisés dans l'application HYDRAM.

Les différents types de simulations utilisés sont :

la desserte simple

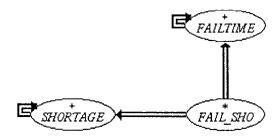
la desserte améliorée

la desserte avec prise en compte des pertes de charges.



4.1.32. Liens d'héritage et client entre les classes du cluster W S COMP

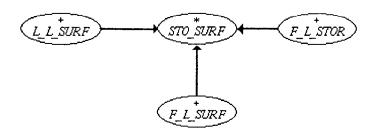
Les classes S_OUT_S, S_WAT_S, S_C_LINK et S_R_P_NODE héritent de la classe W_RESULTS. Les classes S_RESOUR, S_POWE_S, et S_DEMAND héritent de la classe S_R_P_NODE. Les classes W_RESULTS et S_H_COMP sont clientes de la classe S_HYD_AM.


Les classes de ce cluster prennent en compte les données d'un composant hydraulique relatives à une simulation et les résultats relatifs à une simulation d'un composant.

4.1.33. Liens d'héritage et client entre les classes du cluster W FAIL SHORT

La classe FAIL_SHO est cliente des classes FAILTIME et SHORTAGE.

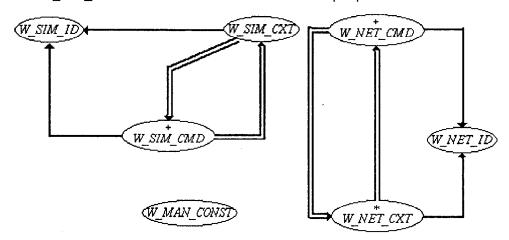
Les classes de ce cluster prennent en compte les pénuries et les durées de défaillances dans la desserte en eau d'un système.



4.1.33. Liens d'héritage et client entre les classes du cluster W SURF STO

Les classes L_L_SURF, F_L_STOR et F_L_SURF héritent de la classe STO_SURF.

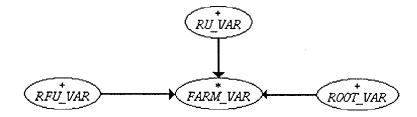
Les classes de ce cluster prennent en compte le stockage et la surface libre des retenues en fonction du niveau.



4.1.34. Liens d'héritage et client entre les classes du cluster W DEF SET

Les classes W_SIM_CXT et W_SIM_CMD héritent de la classe W_SIM_ID.

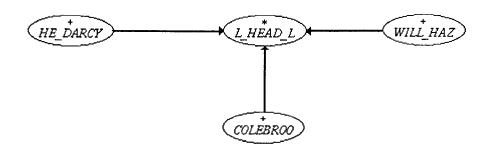
Les classes W_NET_CMD et W_NET_CXT héritent de la classe W_NET_ID.


W_SIM_CXT et W_SIM_CMD sont clientes l'une de l'autre et réciproquement.

4.1.35. Liens d'héritage et client entre les classes du cluster W FARM VAR

Les classes RU_VAR, RFU_VAR et ROOT_VAR héritent de la classe FARM_VAR.

Ces classes prennent en compte les variations de la RU, RFU en fonction du stade cultural et à partir de la variation saisonnière de la profondeur racinaire.



4.1.36. Liens d'héritage et client entre les classes du cluster DISCH_HEAD

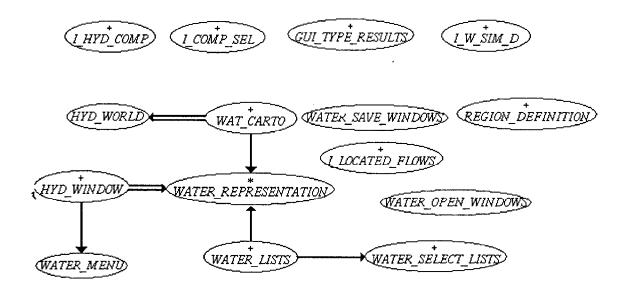
Les classes COLEBROO, HE_DARCY et WILL_HAZ héritent de la classe L_HEAD_L.

Ces classes décrivent les formules utilisées dans les calculs des pertes de charges linéaires.

4.2. Liens d'héritage et client entre les classes de l'interface

Les classes de ce cluster décrivent l'interface de l'application HYDRAM.

On y rencontre deux groupes de classes :

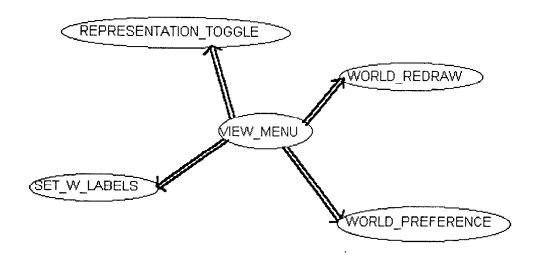

les classes décrivant l'interface elle même, l'effet graphique (c'est à dire tout ce qui peut être contenu dans une fenêtre ; bouton radio, case à cocher, icônes...), ou "motifs".

les classes décrivant des commandes, dont les objets commandes permettent de déclencher des objets cibles.

4.2.1. Liens d'héritage et client entre les classes du cluster I_WAT_MAN_WIDGETS

Dans le cluster I_WAT_MAN_WIDGETS les classes WATER_LISTS et WAT_CARTO héritent de la classe WATER_REPRESENTATION. La classe WATER_LISTS hérite aussi de la classe WATER_SELECT_LISTS.

La classe WAT_CARTO est cliente de la classe HYD_WORLD. HYD_WINDOW est cliente de WATER_REPRESENTATION.



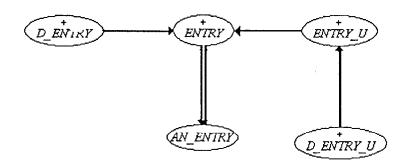
4.2.2. Liens d'héritage et client entre les classes du cluster

I_WAT_MAN_COMMANDS

Nous représentons dans ce cluster, les classes ayant des liens du type héritage ou client avec d'autres classes.

Ainsi la classe VIEW_MENU est cliente des classes REPRESENTATION_TOGGLE, WORLD_REDRAW, SET_W_LABELS et WORLD_PREFERENCE.

4.2.3. Liens d'héritage et client entre les classes du cluster

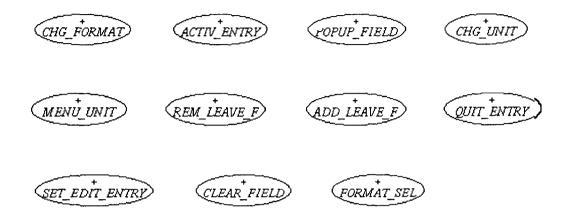

VALUE_FIELD_WIDGETS

Les classes ENTRY_U et D_ENTRY héritent de la classe ENTRY.

La classe D_ENTRY_U hérite de la classe ENTRY_U.

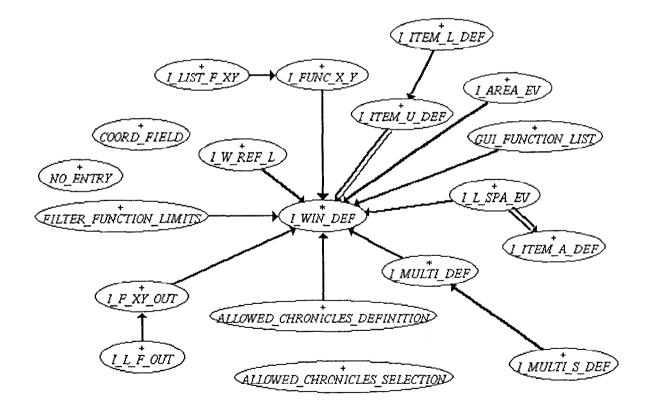
Seule la classe ENTRY est cliente de la classe AN ENTRY.

Ces classes interviennent au niveau présentation des champs de saisies de l'interface.



4.2.4. Liens d'héritage et client entre les classes du cluster

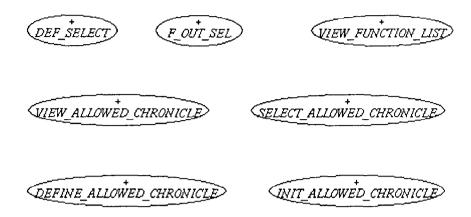
VALUE FIELD_COMMANDS


Il n'existe pas de liens entre les classes de ce cluster VALUE_FIELD_COMMANDS. Ces classes interviennent au niveau commande des champs de saisies de l'interface.

4.2.5. Liens d'héritage et client entre les classes du cluster I_OUT_DEF_WIDGETS

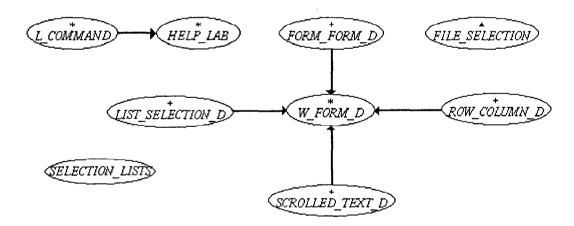
La classe de base ce cluster est I_WIN_DEF, une classe différée.

Ces classes permettent de définir des fenêtres de sorties de résultats.



4.2.6. Liens d'héritage et client entre les classes du cluster I_OUT_DEF_COMMANDS

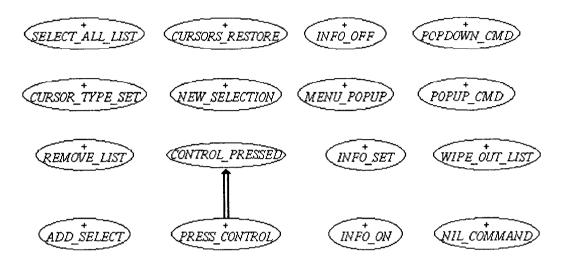
Il n'existe pas de liens entre les classes de ce cluster l_OUT_DEF_COMMANDS.


Ces classes interviennent au niveau commande des fenêtres de sorties des résultats.

4.2.7. Liens d'héritage et client entre les classes du cluster I_GEN_TOOL_WIDGETS Les classes LIST_SELECTION_D, FORM_FORM_D, ROW_COLUMN_D et SCROLLED_TEXT_D héritent de la classe W_FORM_D.

La classe L COMMAND hérite de la classe HELP LAB.

Ces classes forment des outils généraux dans la définition de l'interface de l'application HYDRAM.



4.2.8. Liens d'héritage et client entre les classes du cluster

I_GEN_TOOL_COMMANDS

Il existe un lient de type client de la classe PRESS_CONTROL vers la classe CONTROL_PRESSED. Ces classes forment des outils généraux dans la définition des commandes de l'interface de l'application HYDRAM.

5.1. Structure et composition de l'Ace de l'univers d'HYDRAM

l'Ace de l'univers d'HYDRAM se présente comme suit:

system hydram

root

hydram (interface): "make"

default

```
assertion (require);
fail_on_rescue (yes);
precompiled ("$EIFFEL3/precomp/spec/sparc/mvision");
```

cluster

-- APPLICATION

appli:	"\$HYD/appli.dir";
wat_man:	"\$HYD/appli.dir/wat_man.dir";
w_out_def:	"\$HYD/appli.dir/wat_man.dir/out_def.dir";
w_def_set:	"\$HYD/appli.dir/wat_man.dir/out_def.dir/def_set.dir";
disch_head:	"\$HYD/appli.dir/wat_man.dir/out_def.dir/dis_head.dir";
w_farm_var:	"\$HYD/appli.dir/wat_man.dir/out_def.dir/farm_var.dir";
w_surf_sto:	"\$HYD/appli.dir/wat_man.dir/out_def.dir/surf_sto.dir";
w_network:	"\$HYD/appli.dir/wat_man.dir/network.dir";
w_sort_list:	"\$HYD/appli.dir/wat_man.dir/network.dir/sortlist.dir";
wat_link:	"\$HYD/appli.dir/wat_man.dir/network.dir/wat_link.dir";
wat_node:	"\$HYD/appli.dir/wat_man.dir/network.dir/wat_node.dir";
wat_syst:	"\$HYD/appli.dir/wat_man.dir/network.dir/wat_syst.dir";
w_sim_parts:	"\$HYD/appli.dir/wat_man.dir/sim_part.dir";
w_fail_short:	"\$HYD/appli.dir/wat_man.dir/sim_part.dir/shortage.dir";
w_request:	"\$HYD/appli.dir/wat_man.dir/sim_part.dir/request.dir";
w_satisf:	"\$HYD/appli.dir/wat_man.dir/sim_part.dir/satisfac.dir";
w_sim_engine:	"\$HYD/appli.dir/wat_man.dir/sim_part.dir/sim_proc.dir";
w_s_comp:	"\$HYD/appli.dir/wat_man.dir/sim_part.dir/sim_comp.dir";
w_vol_flow:	"\$HYD/appli.dir/wat_man.dir/vol_flow.dir";
gen_tool:	"\$HYD/appli.dir/gen_tool.dir";
value_man:	"\$HYD/appli.dir/gen_tool.dir/val_man.dir";
out_def:	"\$HYD/appli.dir/gen_tool.dir/out_def.dir";
value_s:	"\$HYD/appli.dir/gen_tool.dir/val_man.dir/value_s.dir";
format:	"\$HYD/appli.dir/gen_tool.dir/val_man.dir/format.dir";

time: "\$HYD/appli.dir/time.dir";

time_date: "\$HYD/appli.dir/time.dir/date_man.dir";

right_time: "\$HYD/appli.dir/time.dir/date_man.dir/date.dir";
timestep: "\$HYD/appli.dir/time.dir/date_man.dir/met_step.dir";
date_format: "\$HYD/appli.dir/time.dir/date_man.dir/format.dir";
date_anal: "\$HYD/appli.dir/time.dir/date_man.dir/analyze.dir";

time_f_man: "\$HYD/appli.dir/time.dir/time fun.dir";

time_f: "\$HYD/appli.dir/time.dir/time_fun.dir/function.dir";
time_f_list: "\$HYD/appli.dir/time.dir/time_fun.dir/lists.dir";
time_f_out: "\$HYD/appli.dir/time.dir/time_fun.dir/func_out.dir";

time_sim: "\$HYD/appli.dir/time.dir/time_sim.dir"; time_tool: "\$HYD/appli.dir/time.dir/tools.dir";

spatial: "\$HYD/appli.dir/spatial.dir";

geo_area: "\$HYD/appli.dir/spatial.dir/geo_area.dir";
geo_refer: "\$HYD/appli.dir/spatial.dir/geo_ref.dir";
geo_region: "\$HYD/appli.dir/spatial.dir/geo_reg.dir";
point: "\$HYD/appli.dir/spatial.dir/point.dir";

xyz_tools: "\$HYD/appli.dir/spatial.dir/point.dir/xyz_tool.dir";

stations: "\$HYD/appli.dir/spatial.dir/stations.dir";

num_tool: "\$HYD/appli.dir/num_tool.dir";

f_xy_man: "\$HYD/appli.dir/num_tool.dir/f_xy_man.dir";

f_xy_out: "\$HYD/appli.dir/num_tool.dir/f_xy_man.dir/f_xy_out.dir"; func_x_y: "\$HYD/appli.dir/num_tool.dir/f_xy_man.dir/func_x_y.dir";

n_value_man: "\$HYD/appli.dir/num_tool.dir/value_m.dir";

units:"\$HYD/appli.dir/num_tool.dir/value_m.dir/units.dir";deg_anal:"\$HYD/appli.dir/num_tool.dir/value_m.dir/deg_anal.dir";num_format:"\$HYD/appli.dir/num_tool.dir/value_m.dir/n_format.dir";num_value:"\$HYD/appli.dir/num_tool.dir/value_m.dir/n_value.dir";

interval: "\$HYD/appli.dir/num_tool.dir/interval.dir";
num_list: "\$HYD/appli.dir/num_tool.dir/num_list.dir";

spa_time: "\$HYD/appli.dir/spa_time.dir";

clim_val: "\$HYD/appli.dir/spa_time.dir/clim_val.dir";
spa_ev: "\$HYD/appli.dir/spa_time.dir/spa_ev.dir";
spa_ev_man: "\$HYD/appli.dir/spa_time.dir/spa_ev_m.dir";

gap_man: "\$HYD/appli.dir/spa_time.dir/spa_ev_m.dir/gap_man.dir"; val_man: "\$HYD/appli.dir/spa_time.dir/spa_ev_m.dir/val_man.dir";

spa_ev_l: "\$HYD/appli.dir/spa_time.dir/spa_ev_l.dir";
spa_ev_f: "\$HYD/appli.dir/spa_time.dir/spa_ev_f.dir";
weather: "\$HYD/appli.dir/spa_time.dir/weather.dir";

-- INTERFACE

interface:

"\$HYD/inter.dir":

i wat man:

"\$HYD/inter.dir/wat_man.dir";

i wat man widgets:

"\$HYD/inter.dir/wat_man.dir/widgets.dir";

i_wat_man_commands:

"\$HYD/inter.dir/wat_man.dir/commands.dir";

i_library:

"\$HYD/inter.dir/library.dir";

value field:

"\$HYD/inter.dir/library.dir/value.dir";

value_field_widgets:

"\$HYD/inter.dir/library.dir/value.dir/widgets.dir";

value field_commands:

"\$HYD/inter.dir/library.dir/value.dir/commands.dir";

i_gen_tool:

"\$HYD/inter.dir/library.dir/gen_tool.dir";

i_gen_tool_widgets:

"\$HYD/inter.dir/library.dir/gen_tool.dir/widgets.dir";

i_gen_tool_commands:

"\$HYD/inter.dir/library.dir/gen_tool.dir/commands.dir";

i_out_def:

"\$HYD/inter.dir/library.dir/out_def.dir";

i_out_def_widgets:

"\$HYD/inter.dir/library.dir/out_def.dir/widgets.dir";

i_out_def_commands:

"\$HYD/inter.dir/library.dir/out_def.dir/commands.dir";

-- EiffelBase

kernel.

"\$EIFFEL3/library/base/kernel";

support:

"\$EIFFEL3/library/base/support";

access:

"\$EIFFEL3/library/base/structures/access";
"\$EIFFEL3/library/base/structures/cursors";

cursors:

"\$EIFFEL3/library/base/structures/cursor_tree";

cursor_tree:
dispenser:

"\$EIFFEL3/library/base/structures/dispenser";

iteration:

"\$EIFFEL3/library/base/structures/iteration";

list:

"\$EIFFEL3/library/base/structures/list";

obsolete:

"\$EIFFEL3/library/base/structures/obsolete";

set:

"\$EIFFEL3/library/base/structures/set";
"\$EIFFEL3/library/base/structures/sort";

sort:

"\$EIFFEL3/library/base/structures/storage";

storage: table:

"\$EIFFEL3/library/base/structures/table";

traversing:

"\$EIFFEL3/library/base/structures/traversing";

tree.

"\$EIFFEL3/library/base/structures/tree";

lexical:

"\$EIFFEL3/library/lex";

- EiffelVision

graph_resources:

"\$EIFFEL3/library/vision/implement/motif/Resources";

graph_widgets:

"\$EIFFEL3/library/vision/implement/motif/widgets";

graph toolkit:

"\$EIFFEL3/library/vision/implement/toolkit";

graph X:

"\$EIFFEL3/library/vision/implement/X";

graph_commands:

"\$EIFFEL3/library/vision/oui/commands";

graph_kernel:

"\$EIFFEL3/library/vision/oui/kernel";

graph_oui_widgets:

"\$EIFFEL3/library/vision/oui/widgets";

graph figures:

"\$EIFFEL3/library/vision/figures";

graph_tools:

"\$EIFFEL3/library/vision/tools";

external

object:

"\$(EIFFEL3)/library/vision/spec/\$(PLATFORM)/lib/motif_Clib.a";

"\$(EIFFEL3)/library/vision/spec/\$(PLATFORM)/lib/Xt.a";

"-IXm -IXt -IX11";

"\$(EIFFEL3)/library/lex/spec/\$(PLATFORM)/lib/lex.a"

end

5.2. Regroupement des classes par cluster

	1	1
root: HYDRAM (cluster, interface)	Cluster, w_network (1 class)	Cluster. wat_syst (5 classes)
	HYD_COMP	HYDRO_AM
		OUT_SYST
		SEL_SYST
		SUB_SYST
Cluster. appli (0 class)	Cluster; w_sort_list (4 classes)	WAT_SYST
	COMP_S_L[T->HYD_COMP]	
	DEMAND_L[T-> HYD_DEM]	
	NODE_S_L[T-> HYD_NODE]	
Cluster: wat_man (3 classes)	RESOUR_L[T > RESOURCE]	Cluster: w_sim_parts (0 class)
GUAD_S M		
HYD_APPL		
WAT_SM		Į.
	Cluster: wat_link (7 classes)	Cluster: w_fail_short (3 classes)
	CANAL	FAIL_SHO
	CAP_LINK	FAILTIME
Cluster.w_out_def (0 class)	CONDUIT	SHORTAGE
	FREELINK	
	HYD_LINK	
	NAT_LINK	
Cluster: w_def_set (7 classes)	PLA_LINK	Cluster: w_request (1 class)
W_MAN_CONST		REQUEST
W_NET_CMD		
W_NET_CXT		
W_NET_ID	Cluster: wat_node (27 classes)	
w_sm_and	CONFLUEN	Cluster.w_satisf (1 class)
W_SM_CXT	DE_U_RE	SATISFAC
w_sm_id	DEM_CHRO	
	DISPATCH	
	DRINKDEM	
	HYD_DEM	Cluster.w_sim_engine (4 classes)
Cluster: disch_head (4 classes)	HYD_NODE	HEAD_LOSS_ALLOCATION
COLEBROO	HYDRANT	IMPROVED_ALLOCATION
HE_DARCY	INT_NODE	SIM_PROC
L_HEAD_L	IRRI_PER	SIMPLE_ALLOCATION
WILL_HAZ	JUNC_2DO	
	JUNC_2UP	
	JUNCTION	
	NAT_NODE	
Cluster: w_farm_var (4 classes)	PLA_NODE	Cluster: w_s_comp (16 classes)
FARM_VAR	POWER_ST	S_C_LINK
RFU_VAR	PUMP_STA	S_D_U_R
ROOT_VAR	R_INTAKE	S_DEMAND
RU_VAR	RESERV	S_H_COMP
	RESERV_I	S_HYD_AM
	RESERV_U	S_IRRI_P
	RESOURCE	s_our_s
Cluster.w_surf_sto (4 classes)	SAL_CONV	S_P_NODE
F_L_STOR	SURF_RES	S_POWE_S
F_L_SURF	T_TREA_P	S_R_P_NODE
L_L_SURF	TAPPING	S_RES_IN
STO_SURF	TREAT_PL	S_RESERV
		S_RESOUR
		S_SURF_R
	•	1

HYDRAM-

0.1447-0	1 7734 4 000	l promp
S_WAT_S	ITEM_A_DEF	D_5_STEP
W_RESULTS	ITEM_DEF	DAY_STEP
	ITEM_L_DEF	DN_STEP
	ITEM_U_DEF	E_D10_STEP
	ITEMS_SET	E_D_5_STEP
Cluster: w_vol_flow (13 classes)	MULTI_DEF	E_DAY_STEP
CONVEY_L[T -> CONVEY_U]	MULTI_L_DEF	E_DN_STEP
COMEY_U	OUT_DEF	E_MON_STEP
DEM_CO_L		E_YEARSTEP
DEM_CONV		MON_STEP
DEM_TERM		TMESTEP
MIX_JUNC	Cluster. value_s (17 dasses)	YEARSTEP
RES_CO_L	DOC_NAME	
RES_CONV	DOS_PATH	
RES_TERM	E_INT	
STATE_J	E_LM_INT	Cluster. date_format (6 classes)
SUPPLY	E_LIM_NUMB	F_DATE
VOL_FLOW	E_REAL	F_DATE_NY
VOL_TERM	EXT_NAME	F_DATE_Y
	PATH_NAMEE	F_MONTH_NY
	S <u>I 1</u> 99	F_MONTH_Y
	UNIX_PATH	F_YEAR
Cluster: gen_tool (22 classes)	V_BOOL_REF	
APPLI[DOC -> F_NOM_D]	V_C_STRING	
BASIC	V_STRING	
CHOICE_CMD	VALUE_E	Cluster: date_anal (4 classes)
CMD_CXT	VALUE_S	DATE_CONST
COMPARABLE PAIR [X ->	VD_BOOLEAN	DATE_SCAN
COMPARABLE, Y	VD_STRING	F_DATE_CT
CONFIG_P		F_DATE_SCAN
CXT_CMD		
DEPENDENT		
F_NOM_D	Cluster: format (2 classes)	
GBASIC	F_STRING	Cluster: time_f_man (0 class)
INFO_MAN	FORMAT	` '
INFO_PAS		
KEY_MEM		
KEY_LIST[T-> KEY_TEM]		Cluster. time_f (9 classes)
LAB_FILL	Cluster time (0 class)	CHRO_UST
-	Ciusia. ui le (0 ciass)	CHRONICL
LABELS		D YEAR V
MASTER_C		i
NIL_CMD	Charles the day (4 deep)	L_YEAR_V
NOM_DESC	Cluster: time_date (1 class)	M_YEAR_V
STO_BY_NAME	V_DATE	TME_F
STO_H_TA[T->ANY,U->HASHABLE]		TMESTEP_F
VALIDITY		YEAR_VAR
		YEARCHRO
	Cluster. right_time (4 classes)	
	DATETIME	
Cluster: value_man (0 class)	DAY_TIME	
	E_DAY_TIME	Cluster: time_f_list (6 classes)
	V_DAY_TIME	CHRO_L_L
		M_YEAR_V_L
Cluster: out_def (11 classes)		R_CHRO_L
ANY_DEF		T_STEP_F_L[T -> TMESTEP_F]
COEF_L_OUT	Cluster: timestep (13 classes)	TIME_S_L
DEF_L_OUT		YEAR_CHRO_L

Cluster: time_f_out (2 classes) STEP_F_OUT TIME_F_OUT Cluster: time_sim (3 classes)	Cluster: stations (3 classes) STA_LIST [T → STATION] STATION STATION_D	M_UNIT_1 M_UNIT_2 M_UNIT_3 NO_UNIT P100_UNIT RAD_UNIT UNIT UNIT UNIT_P100 UNIT_STEP
S_TIMETOOL SIM_TIME SIMOLOOK	Cluster: num_tool (0 class)	Cluster: deg_anal (2 classes) DEG_CONST
	Cluster: f_xy_man (0 class)	DEG_SCAN
Cluster: time_tool (1 class) TIMETOOL		
Cluster spatial (0 class)	Cluster: [_xy_out (5 classes) F_FXY_OUT F_RR_OUT F_XY_OUT L_F_L_OUT L_FXY_OUT [T → F_XY_OUT]	Cluster: num_format (3 classes) F_DEGREE F_INT F_REAL
Cluster: geo_area (3 classes)		Cluster: num_value (12 classes)
GEO_AREA		INT_1_99
GEO_CIRC	Cluster: func_x_y (7 classes)	L_INT_SET
GEO_RECT	F_X_Y_L[T→FUNC_X_Y]	L_REAL_REF
	FUN_X_XO	L_REAL_SET
	FUNC_X_Y	LIM_D_INT
	FUNCTION	LIM_D_REAL
Cluster: geo_refer (1 class)	LIST_F_XY	LIM_INT
GEO_REF	LIST_FRR	LIM NUMB
-	POLYNOM3	U_REAL_REF
	,	U_REAL_SET
		UNIT_D_REAL
Charter and major (1 door)		V_DEG_REF
Cluster: geo_region (1 class)	Chata-andra and Calary	<u>v_bco_</u> \\\
REGION	Cluster: n_value_man (0 class)	
Cluster: point (5 classes)	Cluster: units (23 classes)	Cluster: interval (2 classes) INTERFIX [T -> COMPARABLE]
GEO XYZ	D_UNIT	INTERVAL [T -> COMPARABLE]
LON LAT	DEG UNIT	WILLIAM TO SALE
_	KW_UNIT	
X_Y_Z	-	
XY_COORD	KWH_UNIT	Cluster: num_list (1 class)
XYZ_VECT	M2_S_UNIT	- ' '
	M2_UNIT	LIST_ <u>i</u> i
	M3_D_UNIT	
Charles and the Colons A	M3_S_UNIT	
Cluster: xyz_tools (5 classes)	M3_U_STEP	Character Street Control
G_XYZ_CMD	M3_UNIT	Cluster: spa_time (0 class)
G_XYZ_CXT	M_D_UNIT	
G_XYZ_ID	M_H2O_UNIT	
XYZ_MAN	M_M_UNIT	Charton offers and (2 shares a)
XYZ_SHAP	M_U3_STEP	Cluster. clim_val (8 classes)

CLM_VAL		COPY_SEL
E_CTW_A		CUT_SEL
E_EVAPO_V	Cluster: weather (3 classes)	DEFINE_LOCATED_FLOWS
E_FLOW_V	WEATH_AREA	DEFINE_REGION
E_RAIN_V	WEATHER	DEFINE_SELECTION
EVAPO_V	WEATHER_C	DEL_SEL
FLOW_V		DISPLAY_PREFERENCES
RAIN_V		EDIT_MENU
		EXECUTE_SIMULATION
	Cluster: interface (5 classes)	FILE_MENU
	CONFIGURATION_FILLER	HELP_MENU
Cluster. spa_ev (7 classes)	HYDRAM	HYD_TITLE
AREA_EV	I_CONFIG_P	I_COMPONENT_CHRONICLES
E_SPA_EV	W_WINDOWS	I_COMPONENT_RESULTS
L_SPA_EV	WINDOWS	I_W_SMUL_UP
NIL_EV		LOAD_SIMULATION
SPA_EV		MODIF_MENU
SPA_PART_L		NEW_HYD
U_SPA_EV	Cluster: i_wat_man (3 classes)	OPEN_HYD
	FIGURE_FILLER	PASTE_SEL
	W_COLOR_CONST	Q_SAVE_HYD
	W_INTER_ENV	REPRESENTATION_RESET
Cluster: spa_ev_man (0 class)		REPRESENTATION_TOGGLE
		RES_SEL
		RES_SYST
	Cluster: i_wat_man_widgets (16 classes)	RESIZE_ICONS
Cluster: gap_man (4 classes)	GUI_TYPE_RESULTS	SAVE_HYD
GAP_MAN	HYD_WINDOW	SAVE_HYD_AS
GAP_MEAN	HYD_WORLD	SEL_OK
GAP_NEAR	I_COMP_SEL	SEL_SM_OK
GAP_NO_T	I_HYD_COMP	SEL_MEW
	I_LOCATED_FLOWS	SELECT_ALL
	I_W_SM_D	SELÉCT_C
	ICON_MIN	SELECT_C_L
Cluster: val_man (6 classes)	REGION_DEFINITION	SELECT_DEM
V_F_MEAN	WAT_CARTO	SELECT_RES
V_MEAN_F	WATER_LISTS	SET_STEP
VAL_CHRO	WATER_MENU	SET_W_LABELS
VAL_MAN	WATER_OPEN_WINDOWS	SIMUL_HYD
VAL_MEAN	WATER_REPRESENTATION	SIMULATION_MENU
VAL_STEP	WATER_SAVE_WINDOWS	STORE_OUT
	WATER_SELECT_LISTS	SYST_OK
		SYST_SM_OK
		TO_APPL_ITEM
Cluster: spa_ev_l (6 classes)		TOOLS_MENU
GAP_M_CMD	Cluster: i_wat_man_commands (69 classes)	VIEW_ALL
MEAN_T_CMD	BASE_FILE_MENU	VIEW_CHRONICLES_SYSTEM
SPA_CH_L	BASE_VIEW_MENU	VIEW_MENU
SPA_EV_L	BUTTON_ZOOM	VIEW_SELECTION
SPA_ME_L	CHRONICLES_SYSTEM	W_REF_L_CALCULATE
W_REF_L	CUP_VIEW	WATER_APPLI_SET
	CLOSE_HYD	WATER_ITEM_SELECT
	COMP_DEF	WIPE_OUT_SELECTION
	COMPONENT_MENU	WORLD_PREFERENCES
Cluster: spa_ev_f (1 class)	COMPONENT_VIEW	WORLD_REDRAW
SPA_EV_F	COORD_RESET	ZOOM_MIN
	COORDINATES_SELECT	ZOOM_PLUS

ZOOM_VALUE DEF SELECT DEFINE_ALLOWED_CHRONICLE F_OUT_SEL Cluster: i_gen_tool_commands (20 classes) INIT_ALLOWED_CHRONICLE Cluster: i_library (0 class) ADD_SELECT ITEM_A_DEF_CMD CONTROL_PRESSED ITEM L DEF_CMD CURSOR TYPE SET ITEM U DEF, CMD CURSORS RESTORE SELECT_ALLOWED_CHRONICLE Cluster: value_field (0 class) DRAW_FIG MEW_ALLOWED_CHRONICLE INFO OFF VIEW_FUNCTION_LIST INFO OFF CMD INFO ON Cluster.value_field_widgets (5 classes) INFO_ON_CMD AN_ENTRY INFO_SET Cluster: lexical (24 classes) D_ENTRY MENU_POPUP AUTOMATON D ENTRY U MESSAGE INFO DFA **ENTRY** NEW_SELECTION ERROR_LIST ENTRY U NIL_COMMAND FIX_AUTOMAT [S -> STATE] POPDOWN CMD FIX INT SET FIXED_AUTOMATON [S -> STATE] POPUP CMD PRESS_CONTROL FIXED DFA REMOVE LIST FIXED INTEGER SET SELECT ALL LIST HIGH BUILDER WIPE OUT LIST Cluster. value_field_commands (11 classes) LEX ARRAY [T] ACTIV_ENTRY LEX_BUILDER ADD_LEAVE_F LEXICAL CHG FORMAT LINK AUTOMAT LINKED_AUTOMATON [S -> STATE] CHG_UNIT Cluster.i_out_def (2 classes) CLEAR_FIELD I_GEN_DEF LINKED DFA FORMAT SEL LOUT DEF METALEX NDFA MENU UNIT POPUP_FIELD NFA QUIT_ENTRY PDFA SCANNING REM LEAVE F Cluster, i out def widgets (19 classes) SET_EDIT_ENTRY ALLOWED CHRONICLES DEFINITION STATE ALLOWED_CHRONICLES_SELECTION STATE_OF_DFA COORD FIELD TEXT FILLER FILTER FUNCTION LIMITS TOKEN Cluster: i_gen_tool (5 classes) GUI FUNCTION LIST COLOR CONST LAREA_EV DRAW WORLD I.F.XY_OUT I_FUNC_X_Y Cluster: kernel (Precompiled, 50 classes) FONT_CONST GEO_WORLD LITEM A DEF ANY INTER_ENV LITEM_L_DEF **ARGUMENTS** ARRAY [G] I_TTEM_U_DEF BASIC ROUTINES ILF_OUT BIT_REF I_L_SPA_EV Cluster: i_gen_tool_widgets (9 classes) I LIST_F XY **BOOLEAN** FILE_SELECTION BOOLEAN REF LMULTI DEF I_MULTI_S_DEF CHARACTER FORM_FORM_D HELP_LAB I_W_REF_L CHARACTER_REF COMPARABLE L COMMAND I WIN DEF LIST_SELECTION_D NO_ENTRY CONSOLE DECLARATOR ROW_COLUMN_D SCROLLED_TEXT_D DIRECTORY DIRECTORY_NAME SELECTION LISTS DOUBLE W_FORM_D Cluster.i_out_def_commands (10 classes)

DOUBLE_REF Cluster: access (Precompiled, 7 classes) ITERATOR [G] EXCEP_CONST ACTIVE [G] LINEAR ITERATOR [G] **EXCEPTIONS** TWO_WAY_CHAIN_ITERATOR [G] BAG [G] FILE COLLECTION [G] FILE INFO CONTAINER [G] FILE_NAME CURSOR STRUCTURE [G] GC INFO INDEXABLE [G, H -> INTEGER] Cluster: list (Precompiled, 22 classes) **GENERAL** ARRAYED CIRCULAR [G] TABLE [G, H] HASHARI F ARRAYED LIST [G] INTEGER BI_LINKABLE[G] INTEGER_REF CELL [G] K) MEDIUM Cluster: cursors (Precompiled, 9 classes) CHAIN [G] MEM CONST ARRAYED LIST CURSOR CIRCULAR (G) MEM INFO DYNAMIC_CHAIN [G] CIRCULAR CURSOR MEMORY COMPACT TREE CURSOR DYNAMIC CIRCULAR [G] NUMERIC CURSOR DYNAMIC LIST [G] PART COMPARABLE LINKED LIST CURSOR [G] FIXED LIST [G] PATH NAME LINKED_TREE CURSOR [G] LINKABLE [G] LINKED CIRCULAR [G] PLAIN TEXT FILE MULTAR LIST CURSOR [G] PLATFORM RECURSIVE TREE CURSOR [G] LINKED_LIST[G] POINTER LIST [G] TWO_WAY_TREE_CURSOR [G] MULTI_ARRAY_LIST [G] POINTER REF RAW_FILE PART_SORTED_LIST [G -> PART_COMPARABLE] REAL_REF Cluster.cursor_tree (Precompiled, 5 classes) PART_SORTED_TWO_WAY_LIST [G -> PART_COMPARABLE] SEQ_STRING COMPACT_CURSOR_TREE [G] SPECIAL.[T] CURSOR_TREE [G] SEQUENCE [G] SORTED_LIST [G -> COMPARABLE] STD FILES LINKED_CURSOR_TREE[G] SORTED_TWO_WAY_LIST [G -> RECURSIVE_CURSOR_TREE [G] STORABLE STRING TWO_WAY_CURSOR_TREE[G] COMPARABLE] TWO_WAY_CIRCULAR [G] TO SPECIAL [T] TWO_WAY_LIST [G] UNIX_FILE UNIX_FILE_INFO UNIX_SIGNALS Cluster: dispenser (Precompiled, 13 classes) UNIX STD ARRAYED_QUEUE [G] ARRAYED STACK [G] Cluster: obsolete (Precompiled, 2 classes) BOUNDED_QUEUE [G] ARRAY LIST IGI BOUNDED_STACK[G] FIXED_CIRCULAR [G] Cluster: support (Precompiled, 15 classes) DISPENSER [G] HEAP_PRIORITY_QUEUE [G -> ASCII BOOL_STRING COMPARABLE] LINKED_PRIORITY_QUEUE [G -> Cluster: set (Precompiled, 8 classes) COUNTABLE_SEQUENCE [G] DOUBLE MATH COMPARABLET BINARY SEARCH_TREE_SET [G -> COMPARABLE EXECUTION_EN/IRONMENT LINKED_QUEUE [G] COMPARABLE_SET [G -> COMPARABLE] LINKED_STACK[G] **FIBONACCI** LINKED_SET[G] FORMAT DOUBLE PRIORITY_QUEUE [G -> PART_COMPARABLE PART SORTED SET [G -> FORMAT_INTEGER PART_COMPARABLE] IDENTIFIED QUEUE [G] SORTED_PRIORITY_QUEUE [G -> SET [G] INTERNAL SORTED_SET [G -> COMPARABLE] MATH CONST COMPARABLE] SUBSET [G] OPERATING_ENVIRONMENT STACK [G] TWO_WAY_SORTED_SET [G ->

Cluster: iteration (Precompiled, 5 classes) CHAIN ITERATOR [G]

CURSOR_TREE_ITERATOR [G]

COMPARABLE]

Cluster: sort (Precompiled, 2 classes)

PRIMES

RANDOM SINGLE_MATH

COMPARADIE CITILICIES	L FOAT BOY DAY	L LADEL C M
COMPARABLE_STRUCT (G >	FONT_BOX_R_M	LABEL_G_M
COMPARABLE] SORTED_STRUCT [G > COMPARABLE]	FORM_R_M	LABEL_M
SONTED_STROCT[S ~ COMPANDLE]	FRAME_R_M	LIST_MAN_M
	LABEL_R_M	MANAGER_M
	LIST_R_M	MENU_B_M
Charles and Charles and Calabara	MANAGER_R_M	MENU_M
Cluster: storage (Precompiled, 8 classes)	MENU B.R.M	MENU_PULL_M
BOUNDED [G]	MENU_R_M	MESSAGE_D_M
BOX [G]	MESSAGE_R_M	MESSAGE_M
COUNTABLE [G]	PRINTIVE_R_M	MOTIF
FINITE [G]	PROMPT_R_M	MOTIF_1
FIXED [G] INFINITE [G]	PUSH_B_R_M	MOTIF_APP
RESIZABLE [G]	READ_ACT_R_M	MOUSE_POINTER_M
• •	ROW_COLUMN_R_M	OPT_PULL_M
UNBOUNDED [G]	SCALE R M	OPTION_B_M
	SCROLLBAR_R_M	OVERRIDE_S_M
	SCROLLED_W_R_M	PICT_COL_B_M
	SEPARATOR_R_M	POPUP_M
Cluster: table (Precompiled, 2 classes)	SHELL R M	POPUP_S_M
ARRAY2 [G]	SMPLE_M_R_M	PRIMTIVE_M
HASH_TABLE[G, H -> HASHABLE]	TEXT_FIELD_R_M	PROMPT_D_M
	TEXT_R_M	PROMPT_M
	TOGGLE_R_M	PULLDOWN_M
	TOP_R_M	PUSH_B_M
Cluster: traversing (Precompiled, 4 classes)	TRANSIENT_R_M	PUSH_BG_M
BILINEAR [G]	WIDGET_R_M	QUESTION_D_M
HIERARCHICAL [G]	WM_SHELL_R_M	RADIO_BOX_M
LINEAR [G]	XM_STRING_R_M	READ_ACTION_M
TRAVERSABLE [G]		ROW_COLUMN_M
		SCALE_M
		SCROLL_L_M
	Cluster: graph_widgets (Precompiled, 72	SCROLLBAR_M
Cluster: tree (Precompiled, 8 classes)	classes)	SCROLLED_T_M
ARRAYED_TREE [G]	ARROW_B_M	SCROLLED_W_M
BINARY_SEARCH_TREE [G ->	BAR_M	SEPARATO_G_M
COMPARABLE]	BASE_M	SEPARATOR_M
BINARY_TREE [G]	BULLETIN_D_M	SHELL_M
DYNAMIC_TREE [G]	BULLETIN_M	TERMINAL_M
FIXED_TREE [G]	BUTTON_M	TEXT_FIELD_M
LINKED_TREE [G]	CHECK_BOX_M	TEXT_M
TREE [G]	COMPOSITE_M	TOGGLE_B_M
TWO_WAY_TREE [G]	D_AREA_M	TOGGLE_BG_M
	DIALOG_M	TOP_M
	DIALOG_S_M	TOP_SHELL_M
	DRAW_B_M	WARNING_D_M
Cluster: graph_resources (Precompiled, 38	ERROR_D_M	WIDGET_M
classes)	EVENT_HAND_M	WM_SHELL_M
ARROW_B_R_M	FILE_SEL_D_M	WORKING_D_M
BASE_R_M	FILE_SELEC_M	
BULLETIN_R_M	FONT_B_D_M	
CB_REASONS_R_M	FONT_BOX_M	
COMPOSITE_R_M	FONTABLE_M	Cluster: graph_toolkit (Precompiled, 79 classes)
D_AREA_R_M	FORM_D_M	ARROW_B_I
DIALOG_R_M	FORM_M	BAR_I
DRAW_B_R_M	FRAME_M	BASE_I
DRAWN_B_R_M	G_AYY_M	BULLETIN_D_I
FILE_SELEC_R_M	INFO_D_M	BULLETIN
		l .

BUTTON_I	SEPARATOR I	TRANS INFO X
CHECK_BOX_I	SHELL I	WIDGET_RESOURCE_X
COLOR_I	STACKABLE_I	WIDGET X
COMPOSITE_I	TASK_I	_
D_AREA_I	TERMINAL_I	
DIALOG_!	TEXT_FIELD_I	
DIALOG_S_I	TEXT_I	Cluster: graph_commands (Precompiled, 55
DRAW_B_I	TIMER I	classes)
DRAWING_I	TOGGLE B.I	BTPRESS_DATA
ERROR_D_I	TOGGLE_BG_I	BUTCLICK DATA
FILE SEL D I	TOP I	BUTREL_DATA
FILE_SELEC_I	TOP_SHELL_I	BUTTON_DATA
FONT_B_D_I	WARNING D.I	BUTTONS
FONT_BOX_I	WIDGET_I	CIRCNOT_DATA
FONT_I	WIDGET_RESOURCE I	CIRCREQ DATA
FONT_LIST_I	WM_SHELL_I	CLICK DATA
FONTABLE I	WORKING D I	CLRMAP_DATA
FORM D I		COMMAND
FORM I		COMMAND EXEC
FRAME I		CONFNOT DATA
G ANY I	Cluster: graph_x (Precompiled, 39 classes)	CONFREQ DATA
NFO_D_I	ALL_CURS_X	CONTEXT_DATA
IO HANDLER I	BITMAP RES X	CREATE_DATA
LABEL_G_I	BITMAPS_RES_X	DESTROY_DATA
LABEL I	BUT CLICK HAND X	ENTER DATA
LIST_MAN_I	BUT_HAND_X	EVENT_HDL
MANAGER I	BUTMT HAND X	EXPOSE DATA
MENU_B I	COLOR RES X	FOCSOUT_DATA
MENU I	COLOR X	FOCUSIN DATA
MENU_PULL_I	COMPL_HAND_X	GRAPEXP_DATA
MESSAGE D I ·	CURSOR RES X	GRAVNOT DATA
MESSAGE I	DRAWING X	HISTORY
MOUSE_POINTER_I	ENTER HAND X	IO_HANDLER
OPT_PULL_I	EXP HAND X	KEY DATA
OPTION_B_I	FONT_UST_X	KEYBOARD
OVERRIDE_S_I	FONT RES X	KEYMAP DATA
PICT COL B I	FONT X	KEYREL DATA
PIXMAP I	FONTABLE X	KYPRESS_DATA
POPUP I	G_CONTEXT_X	LEAVE DATA
POPUP_S_I	GRAPHIC R X	MAPNOT DATA
PRINTINE I	IO_HANDLER_X	MAPPING DATA
PROMPT D I	KEY HAND X	MAPREQ DATA
PROMPT_I	LEAVE HAND X	MESSAGE_DATA
PULLDOWN I	MOT_HAND_X	MODIFY DATA
PUSH B I	PXWAP_RES_X	MOTION_DATA
PUSH BG I	PXMAP_X	MOTNOT_DATA
QUESTION_D_I	READ_EVENT_R_X	MOUSE_POINTER
RADIO_BOX_I	READ_EVENT_X	MULTIPL_DATA
ROW COLUMN I	RESOURCE X	NOEXP DATA
SCALE I	RESOURCES_X[T]	PROPERT_DATA
SCREEN_CURSOR_I	SCREEN_CURSOR_X	REPAREN_DATA
SCREEN I	SCREEN_X	RESIZE DATA
SCROLL_L_I	SIMPL_HAND_X	SCALE DATA
SCROLLBAR_I	SIZE_HAND_X	SELCLE DATA
-	TASK X	SELNOT_DATA
SCROLLED_T_I SCROLLED_W_I	TIMER_X	SELREQ DATA
SCROCLED_W_1 SEPARATO_G_I	TRANS_HAND_X	SINGLE DATA
OTLY AND TO THE	LIKATO LIMO N	004_0010

LABEL_G TASK CLOSURE TIMER LIST_MAN COMPLEX FIG TOGGLE_DATA MANAGER COMPOSITE FIG UNDOABLE MENU CONFIGURE NOTIFY UNIMAP DATA MENUR COORD_XY_FIG VISIBLE DATA MENU PULL DASHARI F MESSAGE ELLIPSE MESSAGE D **ENDED** OPT PULL FIGURE Cluster; graph kernel (Precompiled, 18 classes) OPTION B FILLABLE OVERRIDE S **FOREGROUND** COLOR PICT COLOR B GEOMETRIC OP COORD XY POPUP INF LINE CURSOR TYPE POPUP SHELL INTERIOR DASH JOINABLE PRIMITIVE DRAWING PROMPT LINE PROMPT D LINE WIDTH FONT LIST PULLDOWN LOGICAL **FONTABLE** PUSH_B MOVABLE FIG G ANY PUSH BG NOTIFY **GRAPHICS** QUESTION D OPEN FIG PAINTER RADIO BOX PATH ROW COLUMN PICT COLOR PIXMAP SCREEN SCALE PICTURE POINT SCREEN CURSOR SCROLL LIST STACKABLE SCROLLBAR POLYGON TOOLKIT SCROLLED T POLYLINE WIDGET RESOURCE RECTANGLE SCROLLED W SEPARATOR REG POLYGON SEGMENT SEPARATOR G SUCE SHELL Cluster: graph_oui_widgets (Precompiled, 66 TERMINAL_OUI SOUARE TEXT_FIGURE classes) TEXT GEN ARROW B TEXT FIELD TOGGLE_B TEXT_IMAGE BAR BASE TOGGLE BG TRIANGLE BULLETIN TOP VECTOR WORLD TOP SHELL BULLETIN D BUTTON W_MAN_GEN CHECK BOX W MANAGER WARNING D COMPOSITE WIDGET Cluster: graph_tools (Precompiled, 12 classes) DIALOG DIALOG_SHELL WM_SHELL DRAW_FIG_COM DRAW B WORKING D HISTORY_CLCK HISTORY L W DRAWING AREA HISTORY LIST ERROR D HISTORY_REDO FILE_SEL_D Cluster: graph figures (Precompiled, 45 classes) HISTORY UNDO FILE SELEC POPDOWN COM ANGLE ROUT FONT_BOX FONT BOX D ARC POPUP_COM QUIT APP D FORM ARC FILLABLE BACKGROUND QUIT NOW COM FORM D STD COMMANDS FRAME CHILD_CLIP UNDOABLE_L INFO D CIRCLE LABEL CLOSED FIG

TABLE DES MATIERES

1. Introduction	1
2. Definitions generales	2
2.1. Classes	2
2.2. Clusters	2
2.3. Lien d'héritage	
2.4. Lien client	
2.5. Ace	4
3. Liens d'heritage et client entre clusters	
3.1. Arborescence des clusters d'HYDRAM	6
3.2. LIENS D'HERITAGE ET CLIENT ENTRE LES CLUSTERS DE L'APPLICATION	9
3.2.1. Liens d'héritage et client entre les clusters du cluster APPLI	10
3.2.1.1. Liens d'héritage entre les clusters du cluster APPLI	10
3.2.1.2. Liens client entre les clusters du cluster APPLI	11
3.2.2. Liens d'héritage et client entre les clusters du cluster GEN_TOOL	12
3.2.2.1. Liens d'héritage entre les clusters et classes du cluster GEN_TOOL	12
3.2.2.2. Liens client entre les clusters et classes du cluster GEN_TOOL	13
3.2.3. Liens d'héritage et client entre les clusters du cluster NUM_TOOL	14
3.2.4. Liens d'héritage et client entre les clusters du cluster WAT_MAN	15
3.2.5. Liens d'héritage et client entre les clusters du cluster SPATIAL	16
3.2.5.1. Liens d'héritage entre les clusters du cluster SPATIAL	16
3.2.5.2. Liens client entre les clusters du cluster SPATIAL	16
3.2.6. Liens d'héritage et client entre les clusters du cluster TIME	17
3.2.6.1. Liens d'héritage entre les clusters du cluster TIME	17
3.2.6.2. Liens client entre les clusters du cluster TIME	17
3.2.7. Liens d'héritage et client entre les clusters du cluster SPA_TIME	
3.2.7.1. Liens d'héritage entre les clusters du cluster SPA_TIME	
3.2.7.2. Liens client entre les clusters du cluster SPA_TIME	
3.2.8. Liens d'héritage et client entre les clusters du cluster VALUE_MAN	19
3.2.9. Liens d'héritage et client entre les clusters du cluster POINT	19
3.2.10. Liens d'héritage et client entre les clusters du cluster TIME_DATE	20
3.2.11. Liens d'héritage et client entre les clusters du cluster TIME_F_M4N	20
3.2.12. Liens d'héritage et client entre les clusters du cluster SPA_EV_MAN	21
3.2.13. Liens d'héritage et client entre les clusters du cluster F_XY_MAN	22
3.2.14. Liens d'héritage et client entre les clusters du cluster N_VALUE_MAN	22
3.2.15. Liens d'héritage et client entre les clusters du cluster W_NETWORK	22
3.2.16. Liens d'héritage et client entre les clusters du cluster W_SIM_PARTS	23
3.2.17. Liens d'héritage et client entre les clusters du cluster W_OUT_DEF	
3.3. Liens d'heritage et client entre les clusters de l'interface	24

3.3.1. Liens d'héritage et client entre les clusters du cluster INTERFACE	<i>524</i>
3.3.2. Liens d'héritage et client entre les clusters du cluster I_WAT_MAN	V24
3.3.3. Liens d'héritage et client entre les clusters du cluster I_LIBRARY.	25
3.3.4. Liens d'héritage et client entre les clusters du cluster VALUE_FIE	
3.3.5 Liens d'héritage et client entre les clusters du cluster I_OUT_DEF	25
3.3.6. Liens d'héritage et client entre les clusters du cluster I_GEN_TOC)L26
4. LIENS D'HERITAGE ET CLIENT ENTRE CLASSES	
1.1. Liens d'heritage et client entre les classes de l'application	27
4.1.1. Liens d'héritage et client entre les classes du cluster OUT_DEF	27
4.1.2. Liens d'héritage et client entre les classes du cluster VALUE_S	28
4.1.3. Liens d'héritage et client entre les classes du cluster FORMAT	28
4.1.4. Liens d'héritage et client entre les classes du cluster XYZ_TOOLS.	29
4.1.5. Liens d'héritage et client entre les classes du cluster STATIONS	29
4.1.6. Liens d'héritage et client entre les classes du cluster TIMESTEP	
4.1.6.1. Liens d'héritage entre les classes du cluster TIMESTEP	30
4.1.6.2. Liens client entre les classes du cluster TIMESTEP	
4.1.7. Liens d'héritage et client entre les classes du cluster GEO_AREA	32
4.1.8. Liens d'héritage et client entre les classes du cluster DATE_FORM	<i>IAT</i> 32
4.1.9. Liens d'héritage et client entre les classes du cluster DATE_ANAL.	32
4.1.10. Liens d'héritage et client entre les classes du cluster TIME_F	33
4.1.11. Liens d'héritage et client entre les classes du cluster TIME_F_LIS	ST33
4.1.11. Liens d'héritage et client entre les classes du cluster TIME_F_OU	JT34
4.1.12. Liens d'héritage et client entre les classes du cluster TIME_SIM .	
4.1.13. Liens d'héritage et client entre les classes du cluster WEATHER.	34
4.1.14. Liens d'héritage et client entre les classes du cluster SPA_EV	
4.1.15. Liens d'héritage et client entre les classes du cluster VAL_MAN	
4.1.16. Liens d'héritage et client entre les classes du cluster GAP_MAN.	
4.1.17. Liens d'héritage et client entre les classes du cluster SPA_EV_L.	36
4.1.18. Liens d'héritage et client entre les classes du cluster CLIM_VAl	
4.1.18.1. Liens d'héritage entre les classes du cluster CLIM_VAl	37
4.1.18.2. Liens client entre les classes du cluster CLIM_VAI	37
4.1.19. Liens d'héritage et client entre les classes du cluster $FUNC_X_Y$	
4.1.20. Liens d'héritage et client entre les classes du cluster F_XY_OUT	38
4.1.21. Liens d'héritage et client entre les classes du cluster INTERVAL.	
4.1.22. Liens d'héritage et client entre les classes du cluster UNITS	
4.1.23. Liens d'héritage et client entre les classes du cluster NUM_VALU	
4.1.24. Liens d'héritage et client entre les classes du cluster NUM_FOR	
4.1.25. Liens d'héritage et client entre les classes du cluster DEG_ANAI	541
4.1.26. Liens d'héritage et client entre les classes du cluster W_VOL_FL	.OW41
4.1.27. Liens d'héritage et client entre les classes du cluster WAT_SYST	
_	

	4.1.27.1. Liens d'héritage entre les classes du cluster WAT_SYST	42
	4.1.27.2. Liens client entre les classes du cluster WAT_SYST	42
	4.1.28. Liens d'héritage et client entre les classes du cluster WAT_NODE	43
	4.1.28.1. Liens d'héritage entre les classes du cluster WAT_NODE	
	4.1.28.2. Liens client entre les classes du cluster WAT_NODE	
	4.1.29. Liens d'héritage et client entre les classes du cluster W_SORT_LIST	
	4.1.30. Liens d'héritage et client entre les classes du cluster WAT_LINK	
	4.1.31. Liens d'héritage et client entre les classes du cluster W_SIM_ENGINE	
	4.1.32. Liens d'héritage et client entre les classes du cluster W_S_COMP	
	4.1.33. Liens d'héritage et client entre les classes du cluster W_FAIL_SHORT	
	4.1.33. Liens d'héritage et client entre les classes du cluster W_SURF_STO	
	4.1.34. Liens d'héritage et client entre les classes du cluster W_DEF_SET	47
	4.1.35. Liens d'héritage et client entre les classes du cluster W_FARM_VAR	47
	4.1.36. Liens d'héritage et client entre les classes du cluster DISCH_HEAD	48
4	2. Liens d'heritage et client entre les classes de l'interface	49
	4.2.1. Liens d'héritage et client entre les classes du cluster I_WAT_MAN_WIDGETS	49
	4.2.2. Liens d'héritage et client entre les classes du cluster I_WAT_MAN_COMMANDS	50
	4.2.3. Liens d'héritage et client entre les classes du cluster VALUE_FIELD_WIDGETS	50
	4.2.4. Liens d'héritage et client entre les classes du cluster VALUE_FIELD_COMMANDS	51
	4.2.5. Liens d'héritage et client entre les classes du cluster I_OUT_DEF_WIDGETS	51
	4.2.6. Liens d'héritage et client entre les classes du cluster I_OUT_DEF_COMMANDS	52
	4.2.7. Liens d'héritage et client entre les classes du cluster I_GEN_TOOL_WIDGETS	52
	4.2.8, Liens d'héritage et client entre les classes du cluster I_GEN_TOOL_COMMANDS	53
	5.1. Structure et composition de l'Ace de l'univers d'HYDRAM	54
	5.2. Regroupement des classes par cluster	5 8