Composition et élaboration du rendement de l'arachide

II. La photosynthèse et la récolte (1)

J. FORESTIER*
J.-P. RAFFAILLAC**
Chercheurs ORSTOM
**ORSTOM Adiopodoumé, B.P. V.51 Abidjan
*ORSTOM, 24 rue Bayard 75008 Paris

Résumé

L'étude du rapport fruit/végétation aérienne de l'arachide aboutit à l'observation de rapports défectueux. L'interaction taux net d'assimilation - indice de masse foliaire n'expliquant pas tous les cas, il est suggéré un dérèglement du processus interne qui détermine le grossissement des fruits.

Mots-clés: Rapport fruit/végétation - Taux net d'assimilation - Indice de masse foliaire.

Abstract

COMPOSITION AND YIELD OF THE GROUND-NUT. II. PHOTOSYNTHESIS AND HARVEST.

The study of fruit/aerial vegetation ratio heads to the observation of inadequate ratios for the ground-nut. The interaction between net assimilation rate and foliar weight ratio does not explain all the cases, and a disorder is suggested in the internal process that regulates the fruit growing.

Key words: Fruit to vegetation ratio - Net assimilation rate - Foliar weight ratio.

1. INTRODUCTION

Après avoir observé minutieusement la formation des fruits sur le pied d'arachide (RAFFAILLAC et al 1978), il nous a paru utile de relier leur grossissement et la récolte finale aux possibilités de photosynthèse de l'appareil végétatif.

Dans les résultats bruts de récolte, nous avions observé des résultats égaux ou meilleurs avec certains pieds mutilés qu'avec des plants intacts d'un bien meilleur développement.

Par ailleurs, dans un précédent article (FORESTIER 1976), avait été notée la décroissance progressive du taux d'assimilation nette pendant la phase de maturation. Il nous semblait que cette décroissance pour une

plante à croissance indéterminée comme l'arachide était trop importante, vu l'état végétatif final de la plante. Une explication autre que la sénescence pouvait être recherchée.

2. OBTENTION DES RÉSULTATS

Il s'agit des résultats obtenus sur les expériences mentionnées dans le premier article de RAFFAILLAC (1980) permettant des croissances assez largement différenciées de l'arachide par une différence de fertilité sciemment recherchée ou des mutilations de la plante avant le début du grossissement des graines.

Etant donné d'une part le petit nombre de pieds (trois à cinq) constituant un échantillon à chaque prélè-

⁽¹⁾ Le présent travail a été effectué dans les structures de l'ONAREST à Yaoundé avec la collaboration de l'Ecole Nationale Supérieure d'Agronomie de Nkolbisson, et l'aide technique de MM. Noah Mebenga D. et OWONA NGAMOUGOU A.

vement, d'autre part la microhétérogénéité existante du peuplement dont nous voulions étudier le comportement, nous avons dû choisir un critère pour admettre la compatibilité d'une comparaison entre deux échantillons d'une même parcelle à deux dates de prélèvement. On sait qu'au cours de la phase de maturité, au moins 80 % de la matière sèche formée va vers les fruits. Ainsi deux échantillons d'un même traitement pris à deux dates différentes ayant une trop grande différence de poids de l'appareil végétatif ne peuvent être utilisés pour nos calculs. Enfin, pour diminuer encore les risques de variation, nous avons choisi des laps de temps de 14 à 28 jours pour certains calculs. C'est donc grâce au nombre important d'échantillons (soixante-dix) analysés pour une courte période d'un mois qu'il a été possible de trouver des couples compatibles parmi des plantes de différents développements.

3. RÉSULTATS ET DISCUSSION

3.1. DÉNOMBREMENT ET MASSE DES DIFFÉRENTES PARTIES DE LA PLANTE

L'arachide se compose d'une partie végétative avec système racinaire et système aérien lequel se subdivise en une fraction de tissus conducteurs avec tige, rameaux et pétioles dont les possibilités photosynthétiques ont été négligées, et une fraction de tissus assimilateurs limités ici aux limbes foliaires. Pratiquemment, il a fallu créer une fraction « reste » qui comprend les jeunes feuilles non ouvertes à faible capacité photosynthétique, des fleurs, des stipules, les coussinets d'attache des gynophores, les cotylédons au jeune âge.

Dans la partie reproductive ont été rangés les gynophores, les jeunes fruits, les gros fruits, les coques, les graines et les téguments.

3.1.1. Les feuilles

Le tableau I donne les principales caratéristiques des feuilles pour le cultivar 68-45 selon leur position sur le rameau et la place du rameau. Il s'agit d'une culture en conditions moyennes se rapprochant des conditions de nos autres expériences. De meilleures croissances sont possibles.

Non seulement les feuilles varient de surface avec leur position sur les rameaux mais ausssi leurs masses changent non proportionnellement aux changements de la surface. A part la dernière feuille mesurée sur chaque rameau, qui n'était peut-être pas pleinement développée, on constate que la masse surfacique des feuilles va

TABLEAU I

Caractères des feuilles du cultivar 68-45

Position		Tig	ge princip	pale				Rameau ylédonai	re		Rameau 1º et 2º					Rameau		
feuille	I	II	III	IV	v	1	2	3	4	5	1	2	3	4	5	2	4	5
1		61		18	3.34		22		7	3.09	14	51	0.26	16	3.27	14	6	2.5
2	l	70		19	3.70		50		16	3.12	25	85	0.30	24	3.58	29	10	2.9
3		74		20	3.70	26	103	0.25	28	3.63	38	137	0.27	37	3.72	60	19	3.2
4	ļ	115		30	3.85	41	156	0.26	38	4.08	38	148	0.26	35	4.24	49	23	2.1
5	50	167	0.30	41	4.10	46	214	0.22	50	4.30	35	170	0.21	35	4.84			
6	57	214	0.27	49	4.35	54	225	0.24	53	4.25	33	144	0.23	30	4.84			
7	74	279	0.27	62	4.50	50	236	0.21	45	5.26	29	140	0.21	29	4.79			
8	87	300	0.29	67	4.51	40	210	0.19	40	5.26	28	140	0.20	29	4.79			
9	94	328	0.29	72	4.54	34	188	0.18	36	5.26	28	140	0.20	29	4.79			
10	88	337	0.26	74	4.57	32	185	0.17	34	5.44	22	140	0.16	27	5.28			
11	78	334	0.23	68	4.91	32	185	0.17	34	5.44	16	95	0.17	19	5.00			
12	68	308	0.22	61	5.08	32	185	0.17	34	5.44								
13	56	270	0.21	52	5.19	32	185	0.17	34	5.44					ļ			
14	47	258	0.18	49	5.24	24	151	0.16	29	5.22								
15	38	221	0.17	41	5.39	15	78	0.19	17	4.52								
16-17-18	38	221	0.17	41	5.39	_			- •						Ì			
19-20	33	191	0.17	35	5.52													

Colonne 1 : Poids sec d'un pétiole en mg Colonne 2 : Poids sec d'un limbe en mg Colonne 3 : Rapport pétiole/limbe

Colonne 4 : Surface d'un limbe en cm² Colonne 5 : Masse surfacique en mg/cm² croissant à partir de la première formée sur chaque rameau. De 3,0 à 3,5 mg/cm² pour les premières feuilles, cette masse surfacique atteint jusqu'à 5,5 mg/cm². Dès lors, à mesure du vieillissement de la plante qui permet l'apparition de nouvelles feuilles plus épaisses et voit la disparition des premières feuilles, il est certain que l'on observera une augmentation de la masse surfacique moyenne, et même sans modification de l'indice foliaire, un accroissement de la masse moyenne de limbe par unité de surface du sol.

Notons que pour la plante entière, à demi-densité la masse surfacique moyenne est plus élevée que pour la densité normale, probablement par suite d'un éclairage plus intense de chacune des feuilles (tabl. II).

L'importance du pétiole par rapport au limbe diminue à mesure que la feuille est située plus loin de la base du rameau. Voisin de 25 à 30 % pour les premières feuilles, ce rapport tombe à 16 % pour les dernières feuilles. La moyenne générale est de 22 %.

Pour le cultivar 68-45, les pétioles mesurent de 55 à 105 mm et ont une masse de 2,4 à 5,6 mg/cm de long sur les quatre rameaux de base contre 4 à 9 mg/cm sur la tige principale. Les pétioles les plus importants atteignent 100 mg sur la tige principale, 55 mg sur le rameau cotylédonaire, 40 mg sur les rameaux de niveau II. Le poids moyen d'un pétiole est de 57 mg sur la tige

principale, 35 mg sur le rameau cotylédonaire, 28 mg sur rameau de première et deuxième feuilles, 8 mg sur rameau d'aisselle cotylédonaire.

TABLEAU II

Evolution de la masse surfacique des pieds

	Demi-densité	Témoin Désinfection
32e jour	3.80	3.33
40 ^e jour	3.90	3.51
53e jour	4.59	4.33
60 ^e jour	5.00	4.39
66e jour	4.90	4.09
73 ^e jour	5.48	3.94
80e jour	6.18	4.40
87 ^e jour	7.76	4.51

3.1.2. Le système conducteur aérienne

Le tableau III montre les divers caractères du système conducteur de l'arachide selon le rameau considéré et la croissance obtenue à la fin du stade végétatif (14 à 16 feuilles sur la tige principale).

Le rapport des pétioles d'un rameau au poids du rameau est d'environ 0,29 pour les quatre rameaux de base et 0,35 à 0,40 pour la tige principale. Le rapport est

TABLEAU III

Caractères des éléments d'un rameau en fonction de la croissance

	Longueur moyenne en cm	Poids l rameau en mg	Poids mg /cm long	Nombre pétioles	Poids 1 pétiole mg	Poids de pétioles mg	Pétiole /tige	Poids de folioles mg	Foliole /rameau	Pétiole /foliole
	56	3140	56,4	16	65	1055	0,34	4508	1,43	0,23
Tige	50	2310	46,6	14	62	836	0,36	3698	1,60	0,23
principale	47	2171	46,5	17	58	900	0,41	3451	1,59	0,26
1	42	1381	32,9	14	50	684	0,50	2253	1,63	0,30
	52	1837	35,6	13	41	520	0,28	2479	1,35	0,21
Rameau	48	1583	33	12	41	481	0,30	2153	1,36	0,22
	46	1231	26,9	12	37	428	0,35	1575	1,28	0,27
cotylédonaire	42	1042	24,6	10	33	331	0,32	1382	1,33	0,24
•	36	677	19,0	9	28	237	0,35	922	1,36	0,26
	49	1687	34,6	11	32	349	0,21	885	0,52	0,39
Rameau 1e	43	921	21,4	10	28	262	0,28	887	0,96	0,29
	38	796	20,8	9	29	241	0,30	932	1,17	0,26
et 2 ^e feuille	33	571	17,5	7	26	168	0,29	629	1,10	0,27
	21	285	13,4	4	19	78	0,27	177	0,62	0,44
	35	532	15,4	8	19	154	0,29	630	1,18	0,24
Rameau aisselle	23	251	10,8	4	18	75	0,30	254	1,01	0,30
cotylédonaire	18	222	12,1	4	15	65	0,29	211	0,95	0,31
001,1-00111110	13	120	9,1	3	11	33	0,28	114	0,95	0,30

plus petit pour les rameaux les plus forts (pied de bordure) et plus élevé pour les pieds mal venus (rameaux les plus courts, notamment pour la tige principale et les rameaux cotylédonaires).

Le rapport du poids des folioles au poids du rameau est plus élevé pour la tige principale (1,55), plus faible pour les rameaux de 1^{re} feuille et les rameaux d'aisselle cotylédonaire (environ 1,0), les rameaux cotylédonaires ayant un rapport intermédiaire (1,35).

Schématiquement les différentes masses végétatives de la plante se répartissent ainsi en milligrammes :

	Rameau	Foliole	Pétiole	Total
Tige principale	2 310	3 698	836	6 844
ler rameau cotylédonaire	1.583	2 153	481	4 217
2e rameau cotylédonaire	1 231	1 575	428	3 234
Rameau 1re feuille	921	887	262	2 070
Rameau 2e feuille	796	932	241	1 969

Tableau IV

Tableau de données de l'évolution des différents traitements sur deux répétitions

Jour cycle	Nombre feuilles TP	Nombre feuilles formées /pied	Nombre folioles présentes	Long. rameaux	Poids sec folioles mg	Poids sec tiges mg	Poids sec racines	Poids sec restes	Poids sec fruits	Poids sec total	Traitement
33 41 54 60 67 74 81 88	8.8 11.0 14.2 15.5 17.0 18.7 20.0 22.3	27.4 38.2 61.0 65.0 68.3 83.3 70.7 90.0	109.6 146.4 207.2 206.5 196.3 245.7 201.3 279.3	390 279 379	2919 5005 9155 8891 7575 9086 9466 12035	1951 4481 11206 12107 10545 12620 13067 19081	357 506 702 944 712 854 803 908	613 1196 2466 2325 1812 2721 2700 3295	2489 5851 7697 8564 16487 16190	5839 11189 26018 30118 28341 33845 42523 51509	TEMOIN I
33 41 54 60 67 74 81 88	8.6 10.8 13.5 16.3 17.0 19.7 19.0 21.0	25.0 39.2 57.2 62.7 59.5 75.3 63.3 73.7	100.2 149.6 174.7 180.0 153.5 183.3 172 182	337 253 312	2559 4960 7973 8757 6401 8058 7411 8928	1817 4385 10589 10179 9257 11278 10768 11505	342 487 621 582 577 586 557 635	571 729 2456 2366 1605 2269 1675 2119	4296 6890 9034 12943 16526 20200	5289 10562 25935 28775 26874 35134 36937 43388	DESINFECTION I
33 41 54 60 67 74 81 88	8.8 11.4 14.7 16.0 19.0 20.7 22.0 25.0	26.8 43.6 75.7 79.0 69.0 86.7 82.3 114.3	107.2 173.0 269.7 246.0 201.5 242.7 245.3 349.7	244 245 317	3194 6580 12851 12175 11424 15223 18258 25790	1659 4891 14072 14906 11407 15380 17249 21928	397 721 1155 1302 1712 1435 1417 1369	616 764 3328 3739 3656 5889 5859 6666	5843 4261 6649 8587 11449 20405	5865 12963 37250 36384 34848 46514 54232 76160	DEMI-DENSITE I
33 41 54 60 67 74 81 88	8.6 10.8 14.0 15.7 15.7 19.7 19.3 22.0	25.2 34.2 45.0 59.0 57.3 62.3 74.7 82.3	98.0 133.4 127.7 181.3 182.7 191.3 211.7 216.3	226 268 283	1984 3839 5319 8467 6832 9273 8719 9868	1377 3310 6570 9886 9204 11341 12180 13314	331 485 540 736 813 970 891 1064	437 904 1444 1967 1894 2896 3318 2918	3060 8409 10000 10428 15974 21172	4130 8538 16933 29462 28743 34908 41083 48336	69-50
33 41 54 60 67 74 81 88	8.6 10.8 13.5 14.0 14.7 17.0 20.3 20.0	26.6 40.2 62.5 71.0 59.7 76.0 76.3 80.3	109.4 153.0 191.7 186.0 148.0 171.7 185.7 152.7	290 293 252	2358 4521 6561 7039 6036 6254 7302 6186	1334 3248 7350 7853 7065 8037 9007 8411	353 541 613 732 745 683 627 603	582 1383 2130 2198 1885 1713 1956 1323	4943 8522 5469 10215 11590 12748	4628 9694 21597 26344 21200 26903 30482 29273	68-16

Le rapport du pétiole au limbe est de 0,30 comme il a été observé au tableau I, avec tendance à être plus important pour les rameaux les moins vigoureux.

Si pour l'ensemble, la tige principale vaut 100, les deux rameaux cotylédonaires valent 109 et les deux

autres rameaux de base 59. Ne considérant que les folioles, si la tige principale porte 100, les rameaux cotylédonaires ont 101 et les deux autres rameaux de base 49: il y a équivalence entre la tige principale et les deux rameaux cotylédonaires pris ensemble pour la masse des limbes.

TABLEAU IV (suite)

Nombre Nombre County C												
33		Nombre	Nombre		Long.							
33		feuilles			rameaux	folioles	rameaux	racines	restes	fruits	total	Traitement
33	cycle	TP		présentes								
11			/pied									
11	33	8.6	27.0	108.0		2129	1277	356	472		4235	
54 13.0 40.2 113.0 4120 4603 474 1047 2298 12543 60T 15.0 47.0 132.0 5447 6933 553 1619 3603 17615 CC 10.0 10.0 38.3 2391 2035 259 4685 TRIGE 67 4.7 46.3 122.3 3983 5363 640 1392 6248 17626 74 4.3 42.3 117.3 148 4047 5034 717 1457 10035 21290 88 4.3 42.3 117.3 148 4047 5034 717 1457 10035 21290 88 8 4.3 53.7 149.7 175 5724 5625 625 1408 14446 27828 88 4.3 21390 88 60 887 731 8829 18959 64 14.46 562.2 164.7 5783 7665 689 1894 3829 18959				149.0		4966	4423	564	1307			
60T 15.0 47.0 132.0 5447 6393 553 1619 3603 17615 C 10.0 10.0 38.3 2391 2035 259 4685 R 5.0 37.0 93.7 3056 4358 553 1360 3603 12930 PRINCIPALE I 67 4.7 46.3 122.3 3983 5563 640 1392 6248 17626 74 4.3 43.3 122.3 154 3406 4481 634 1053 7861 16801 81 4.3 42.3 117.3 148 4047 5034 717 1457 10035 21290 88 4.3 53.7 149.7 175 5724 5625 625 1408 14446 27828 33 9.0 29.0 116.6 2807 1962 332 635 5736 41 11.0 36.0 137.8 4592 3745 528 731 9596 60T 16.0 66.3 215.0 10525 11602 873 2576 6289 31865 C 34.0 129.3 5880 5825 749 R 16.0 32.3 85.7 4645 5777 873 1827 6289 31465 67 17.7 30.7 68.0 3546 4504 713 1728 8501 1893 74 20.0 40.7 110.0 124 4468 5602 875 1462 10425 22832 88 21.0 34.7 62.7 109 3080 4953 563 995 10638 20229 33 8.6 25.8 102.6 2512 1709 284 550 5054 41 10.8 38.2 147.0 4968 4307 531 1116 10922 54 14.0 55.5 148.0 6322 8626 616 2017 2749 20300 60T 15.7 65.3 184.3 8416 11627 824 3294 3436 27597 C 22.7 74.7 3295 3911 679 7885 7015 15099 88 21.0 34.7 62.7 109 3080 4953 563 995 10638 20229 33 8.6 25.8 102.6 2512 1709 284 350 5802 54 14.0 55.5 148.0 6322 8626 616 2017 2749 20300 60T 15.7 65.3 184.3 8416 11627 824 3294 3436 27597 C 22.7 74.7 3295 3911 679 7885 716 2893 7885 7186 716 2038 7885 7886 716 2038 7885 7186 716 2038 7885 7186 711 2038 7885 7186 7186 7186 7186 7186 7186 7186 7186	54	13.0	40.2	113.0		4120	4603	474	1047	2298	12543	
C 10.0 10.0 38.3 2391 2035 259 4685 TIGE R 5.0 37.0 93.7 3056 4358 553 1360 3603 12930 PRINCIPALE I 67 4.7 46.3 122.3 3983 5363 640 1392 6248 17626 81 4.3 42.3 117.3 148 4047 5034 717 1457 10035 21290 88 4.3 53.7 149.7 175 5724 5625 625 1408 14446 27828 88 4.3 53.7 149.7 175 5724 5625 625 1408 14446 27828 33 9.0 29.0 116.6 2807 1962 332 635 431 382 1939 596 54 14.5 56.2 164.7 5783 7665 689 1894 3829 1989 601 16.0 66.3 215.0 10525 11602 873 2576 6289 31865 CC 34.0 129.3 5880 5825 774 9 12454 RAMEAUX 67 17.7 30.7 68.0 3546 4504 713 1728 8501 18993 74 20.0 40.7 110.0 124 4468 5602 875 1462 10425 22832 81 18.3 24.3 49.7 69 3362 3409 457 856 7015 15099 88 21.0 34.7 62.7 109 3080 4953 563 995 10638 20229 133 88 21.0 34.7 62.7 109 3080 4953 563 995 10638 20229 133 88 21.0 34.7 62.7 109 3080 4953 563 995 10638 20229 134 11.0 8.3 8.2 147.0 4968 4307 531 1116 10922 54 14.0 55.5 148.0 6322 8626 616 2017 2749 20330 607 15.7 65.3 184.3 8416 11627 824 3294 3436 15712 COTYLEDO-67 17.5 45.5 115.0 4189 6579 867 1500 5802 18937 AMERSI 8 22.3 59.3 146.7 207 9552 10602 873 885 1233 3608 82 22.3 59.3 146.7 207 9552 10602 873 388 22.3 59.3 146.7 207 9552 10602 873 388 22.3 59.3 146.7 207 9552 10602 873 388 22.3 59.3 146.7 207 9552 10602 873 1233 3608 88 22.3 59.3 146.7 207 9552 10602 871 2333 38.6 52.8 8.4 10.0 46.0 141.7 5725 8857 649 1336 7174 2333 3608 88 22.3 59.3 146.7 207 9552 10602 741 2834 12337 3608 88 22.3 59.3 146.7 207 9552 10602 741 2834 12337 3608 88 22.3 59.3 146.7 207 9552 10602 741 2834 12337 3608 88 22.3 59.3 146.7 207 9552 10602 741 2834 12337 3608 88 22.3 59.3 146.7 207 9552 10602 741 2834 12337 3608 88 22.3 59.3 146.7 207 9552 10606 66 15.7 53.7 146.3 149.0 460 141.7 557.5 880 9606 569 176.5 2208 2209 200 14.3 51.0 168.7 6191 7518 547 1402 2288 228 228 228 228 228 228 228 228	60T	15.0	47.0	132.0			6393	553	1619	3603		
R 5.0 37.0 93.7 3056 4358 553 1360 3603 12930 PRINCIPALE I 67 4.7 46.3 122.3 3983 5363 640 1392 6248 17626 74 4.3 43.3 122.3 154 3406 4481 634 1053 7861 16801 881 4.3 43.3 117.3 148 4047 5034 717 1457 10035 21290 888 4.3 53.7 149.7 175 5724 5625 625 1408 14446 27828 333 9.0 29.0 116.6 2807 1962 332 635 5736 41 11.0 36.0 137.8 4592 3745 528 731 9596 54 14.5 56.2 164.7 5783 7665 689 1884 3829 19859 60T 16.0 66.3 215.0 10525 11602 873 2576 6289 31865 CC 3440 129.3 5880 5825 749 12454 628 628 616 67 17.7 30.7 68.0 3546 4504 713 1728 8501 1893 744 20.0 40.7 110.0 124 4468 5602 875 1462 10425 22832 81 18.3 24.3 49.7 69 3362 3409 457 856 7015 15099 88 21.0 34.7 62.7 109 3080 4953 563 995 10638 20229 33 88.2 147.0 4968 4307 531 1116 116 838.2 147.0 4968 4307 531 1116 116 108 38.2 147.0 4968 4307 531 1116 116 10922 541 110.8 38.2 147.0 4968 4307 531 1116 116 10922 541 110.8 38.2 147.0 4968 4307 531 1116 116 10922 541 110.8 38.2 147.0 4968 4307 531 1116 11092 541 116 116 116 116 11.7 54.5 51 11.5 0 4189 6579 867 1500 880 21.3 34.9 49.0 122.7 74.7 3295 3911 679 7885 749 7885 749 7885 749 7885 749 7885 749 7885 749 7885 749 7885 749 7885 749 749 749 749 749 749 749 749 749 749	C	10.0	10.0	38.3		2391					4685	TIGE
1	R	5.0	37.0	93.7		3056	4358					PRINCIPALE I
81 43 42.3 117.3 148 4047 5034 717 1457 10035 21290 33 9.0 29.0 116.6 2807 1962 332 635 5736 41 11.0 36.0 137.8 4592 3745 528 731 9596 54 14.5 56.2 164.7 5783 7665 689 1884 3829 19859 60T 16.0 66.3 215.0 10525 11602 873 2576 6289 31865 QUATRE C 34.0 129.3 5880 5825 749 12454 RAMEAUX 67 17.7 30.7 68.0 3546 4504 713 1728 8501 18993 74 20.0 40.7 110.0 124 4468 5602 875 1462 10425 22832 8 21.0 34.7 62.7 109 3080 4953	67	4.7	46.3	122.3						6248		
88		4.3	43.3	122.3	154					7861		
33	81	4.3	42.3	117.3	148							
1	88	4.3	53.7	149.7	175	5724	5625	625	1408	14446	27828	
\$\begin{array}{c c c c c c c c c c c c c c c c c c c	33	9.0				2807					5736	
60T 16.0 66.3 215.0 10525 11602 873 2576 6289 31865 QUATRE RAMEAUX R 16.0 32.3 88.7 4645 5777 873 1827 6289 19411 DE BASE I 67 17.7 30.7 68.0 3546 4504 713 1728 8501 18993 81 18.3 24.3 49.7 69 3362 3409 457 856 7015 15099 88 21.0 34.7 62.7 109 3080 4953 563 995 10638 20229 33 8.6 25.8 102.6 2512 1709 284 550 5054 41 10.8 38.2 147.0 4968 4307 531 1116 10922 54 14.0 55.5 148.0 6322 8626 616 2017 2749 20330 60T 15.7 42.7 109.	41		36.0	137.8		4592	3745			2020	9596	
C 34.0 129.3 5880 5825 749 12454 R 16.0 32.3 85.7 4645 5777 873 1827 6289 19411 DE BASE I 67 17.7 30.7 68.0 3546 4504 713 1728 8501 18993 74 20.0 40.7 110.0 124 4468 5602 875 1462 10425 22832 81 18.3 24.3 49.7 69 3362 3409 457 856 7015 15099 88 21.0 34.7 62.7 109 3080 4953 563 995 10638 20229 33 8.6 25.8 102.6 2512 1709 284 550 5054 41 10.8 38.2 147.0 4968 4307 531 1116 10922 54 14.0 55.5 148.0 6322 8626 616 2017 2749 20330 60T 15.7 65.3 188.3 8416 11627 824 3294 3436 27597 C 22.7 74.7 3295 3911 679 7885 RAMEAUX R 15.7 42.7 109.7 5121 7716 824 2615 3436 19712 COTYLEDO- 67 17.5 45.5 115.0 4189 6579 867 1500 5802 18937 NAIRES I 74 19.3 49.0 122.7 174 5725 8557 649 1536 7116 23584 81 18.7 49.0 121.0 182 5770 6675 528 1671 7487 22132 88 22.3 59.3 146.7 207 9552 10620 741 2834 12337 36085 31 8.0 22.2 88.4 1727 986 279 401 3389 40 10.2 34.6 137.0 3376 2810 351 881 7419 52 13.5 46.7 157.0 5850 6601 501 1502 2287 16741 59 14.0 46.0 141.7 5573 5917 593 1542 3865 17490 66 15.7 53.7 166.3 6329 7835 619 1502 2287 16741 59 14.0 46.0 141.7 5573 5917 593 1542 3865 17490 66 15.7 53.7 166.3 6329 7835 619 1499 7235 23517 73 17.5 54.3 160.7 197 5860 7762 637 972 9309 24540 80 18.5 58.0 165.7 193 7160 7859 541 2522 10787 28869 87 19.7 58.3 156.3 198 6712 8659 582 1725 11450 29127 31 7.8 22.8 92.8 1835 1187 271 493 3786 40 10.8 37.2 149.6 4027 3494 359 942 8822 52 13.7 50.2 175.5 7860 9606 569 1765 2208 2209 73 17.7 55.7 165.3 205 6299 7719 582 1542 11704 27847 80 19.3 60.7 154.7 242 6357 8683 638 1680 14404 31762	54		56.2	164.7								
C 34.0 129.3 5880 5825 749 12454 RAMEAUX DE BASE I RAMEAUX A 10.0 124 4468 5602 875 1462 10425 22832 181 18.3 24.3 49.7 69 3362 3409 457 856 7015 15099 88 21.0 34.7 62.7 109 3080 4953 563 995 10638 20229 333 8.6 25.8 102.6 2512 1709 284 550 5054 11 10.8 38.2 147.0 4968 4307 531 1116 2749 20330 60T 15.7 65.3 184.3 8416 11627 824 3294 3436 27597 C 22.7 74.7 3295 3911 679 7885 RAMEAUX R 15.7 42.7 109.7 5121 7716 824 2615 3436 19712 COTYLEDO-67 17.5 45.5 115.0 4189 6579 867 1500 5802 18937 NAIRES I 18.7 49.0 122.7 174 5725 8557 649 1536 7116 23584 18.1 18.7 49.0 121.0 182 5770 6675 528 1671 7487 22132 88 22.3 59.3 146.7 207 9552 10620 741 2834 12337 36085 371 17.5 54.3 160.7 197 5860 7762 637 972 9309 24540 80 18.5 58.0 165.7 193 7160 7895 541 2522 10787 28869 579 14.0 46.0 141.7 5573 5917 593 1542 3865 17490 738.5 118.5 31.5 31 7.5 54.3 160.7 197 5860 7762 637 972 9309 24540 80 18.5 58.0 165.7 193 7160 7895 541 2522 10787 28869 579 19.7 58.3 156.3 198 6712 8659 581 1725 11450 29127 31 7.5 54.3 160.7 197 5860 7762 637 972 9309 24540 80 18.5 58.0 165.7 193 7160 7895 541 2522 10787 28869 579 19.7 58.3 156.3 198 6712 8659 582 1725 11450 29127 31 7.5 54.3 160.7 197 5860 7762 637 972 9309 24540 80 18.5 58.0 165.7 193 7160 7859 541 2522 10787 28869 579 59 14.0 46.0 141.7 5573 5917 593 1542 3865 17490 731 75.5 54.3 160.7 197 5860 7762 637 972 9309 24540 80 18.5 58.0 165.7 193 7160 7859 541 2522 10787 28869 579 59 14.0 46.0 141.7 5573 5917 593 1542 3865 17490 5917 58.3 156.3 198 6712 8659 582 1725 11450 29127 31 7.8 22.8 92.8 18.35 1187 271 493 3786 40 10.8 37.2 149.6 40.7 197 5860 7762 637 972 9309 24540 80 18.5 58.0 165.7 193 7160 7859 541 2522 10787 28869 59 14.3 35.0 168.7 193 7160 7859 541 2522 10787 28869 59 14.3 35.0 168.7 193 7160 7859 541 2522 10787 28869 59 14.3 35.0 168.7 193 7160 7859 541 2522 10787 28869 59 14.3 35.0 168.7 193 7160 7859 541 2522 10787 28869 59 14.3 35.0 168.7 193 715.5 7860 9606 569 1765 2208 2209 2099 7719 582 171.7 1140 1762 17847 27847 27847 2780 193 30762 1775.8 11450 29127 31 17.7 55.7 16	60T	16.0	66.3	215.0				873		6289		QUATRE
67 17.7 30.7 68.0 3546 4504 713 1728 8501 18993 74 20.0 40.7 110.0 124 4468 5602 875 1462 10425 22832 81 18.3 24.3 49.7 69 3362 3409 457 856 7015 15099 88 21.0 34.7 62.7 109 3080 4953 563 995 10638 20229 33	C		34.0	129.3		5880		0.50		6000		
74 20.0 40.7 110.0 124 4468 5602 875 1462 10425 22832 81 18.3 24.3 49.7 69 3362 3409 457 856 7015 15099 88 21.0 34.7 62.7 109 3080 4953 563 995 10638 20229 333 8.6 25.8 102.6 2512 1709 284 550 5054 10.6 10.8 38.2 147.0 4968 4307 531 1116 10.922 54 14.0 55.5 148.0 6322 8626 616 2017 2749 20330 60T 15.7 65.3 184.3 8416 11627 824 3294 3436 27597 74.7 3295 3911 679 7885 RAMEAUX COTYLEDO-15.7 42.7 109.7 5121 7716 824 2615 3436 19712 COTYLEDO-16.7 17.5 45.5 115.0 4189 6579 867 1500 5802 18937 NAIRES I 18.7 49.0 121.0 182 5770 6675 528 1671 7487 22132 88 22.3 59.3 146.7 207 9552 10620 741 2834 12337 36085 31 18.0 22.2 88.4 1727 986 279 401 3389 40 10.2 34.6 137.0 3376 2810 351 881 7419 52 13.5 46.7 157.0 5850 6601 501 1502 2287 16741 59 14.0 46.0 141.7 5573 5917 593 1542 3865 17490 7235 23517 73 17.5 54.3 160.7 197 5860 7762 637 972 9309 24540 80 18.5 58.0 165.7 193 7160 7859 541 2522 10787 28869 87 19.7 58.3 156.3 198 6712 8659 582 1725 11450 29127 31 7.8 22.8 92.8 1835 1187 271 493 3786 40 10.8 37.2 149.6 40.7 18.5 18.5 18.7 19.7 58.3 156.3 198 6712 8659 582 1725 11450 29127 3509 205 11.7 55.7 165.3 205 6299 7719 582 1752 3349 10824 505 1881 671 7487 205 205 13.7 50.2 175.5 7860 9606 569 1765 2208 22009 59 14.3 51.0 168.7 6191 7518 547 1622 3946 19824 666 18.0 66.0 203.0 9418 11815 441 2733 10725 3509 205 1051 175.5 77 55.7 165.3 205 6299 7719 582 1754 1704 27847 80 19.3 17.7 55.7 165.3 205 6299 7719 582 1754 1704 27847 80 19.3 19.3 60.7 154.7 242 6357 8683 638 1680 14404 31762	R	16.0	32.3	85.7								DE BASE I
81 18.3 24.3 49.7 69 3362 3409 457 856 7015 15099 88 21.0 34.7 62.7 109 3080 4953 563 995 10638 20229 33 8.6 25.8 102.6 2512 1709 284 550 5054 41 10.8 38.2 147.0 4968 4307 531 1116 10922 54 14.0 55.5 148.0 6322 8626 616 2017 2749 20330 60T 15.7 65.3 184.3 8416 11627 824 3294 3436 27597 C 22.7 74.7 3295 3911 679 7885 RAMEAUX R 15.7 45.5 115.0 4189 6579 867 1500 5802 18937 NAIRES I 74 19.3 49.0 122.7 174 5725 8557			30.7							8501		
88 21.0 34.7 62.7 109 3080 4953 563 995 10638 20229 33 8.6 25.8 102.6 2512 1709 284 550 5054 41 10.8 38.2 147.0 4968 4307 531 1116 10922 54 14.0 55.5 148.0 6322 8626 616 2017 2749 20330 60T 15.7 65.3 184.3 8416 11627 824 3294 3436 27597 C 22.7 74.7 3295 3911 679 7885 RAMEAUX R 15.7 42.7 109.7 5121 7716 824 2615 3436 19712 COTYLEDO- 67 17.5 45.5 115.0 4189 6579 867 1500 5802 18937 NAIRES I 74 19.3 49.0 122.7 174 5725 8557 </td <td>74</td> <td>20.0</td> <td>40.7</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>10425</td> <td></td> <td></td>	74	20.0	40.7							10425		
33 8.6 25.8 102.6 2512 1709 284 550 5054 41 10.8 38.2 147.0 4968 4307 531 1116 10922 54 14.0 55.5 148.0 6322 8626 616 2017 2749 20330 60T 15.7 65.3 184.3 8416 11627 824 3294 3436 27597 C 22.7 74.7 3295 3911 679 7885 RAMEAUX R 15.7 42.7 109.7 5121 7716 824 2615 3436 19712 COTYLEDO- 67 17.5 45.5 115.0 4189 6579 867 1500 5802 18937 NAIRES I 74 19.3 49.0 122.7 174 5725 8557 649 1536 7116 23584 81 18.7 49.0 121.0 182 5770 6675 528 1671 7487 22132 88 22.3 59.3 146.7 207 9552 10620 741 2834 12337 36085 31 8.0 22.2 88.4 1727 986 279 401 3389 40 10.2 34.6 137.0 3376 2810 351 881 7419 52 13.5 46.7 157.0 5856 6601 501 1502 2287 16741 59 14.0 46.0 141.7 5573 5917 593 1542 3865 17490 73 17.5 54.3 160.7 197 5860 7762 637 972 9309 24540 80 18.5 58.0 165.7 193 7160 7859 541 2522 10787 28869 87 19.7 58.3 156.3 198 6712 8659 582 1725 11450 29127 31 7.8 22.8 92.8 1835 1187 271 493 3786 40 10.8 37.2 149.6 4027 3494 359 942 8822 52 13.7 50.2 175.5 7860 9606 569 1765 2208 22009 59 14.3 51.0 168.7 6191 7518 547 1622 3946 19824 66 18.0 66.0 203.0 9418 11815 411 2733 10725 35092 73 17.7 55.7 165.3 205 6299 7719 582 1542 11704 27847 80 19.3 60.7 154.7 242 6357 8683 638 1680 14404 31762	81									10620		
41 10.8 38.2 147.0 4968 4307 531 1116 10922 54 14.0 55.5 148.0 6322 8626 616 2017 2749 20330 60T 15.7 65.3 184.3 8416 11627 824 3294 3436 27597 C 22.7 74.7 3295 3911 679 7885 RAMEAUX R 15.7 42.7 109.7 5121 7716 824 2615 3436 19712 COTYLEDO- 67 17.5 45.5 115.0 4189 6579 867 1500 5802 18937 NAIRES I 74 19.3 49.0 122.7 174 5725 8557 649 1536 7116 23584 81 18.7 49.0 121.0 182 5770 6675 528 1671 7487 22132 88 22.3 59.3 146.7 207 9552 10620 741 2834 12337 36085 31 8.0 22.2 88.4 1727 986 279 401 3389 40 10.2 34.6 137.0 3376 2810 351 881 7419 52 13.5 46.7 157.0 5850 6601 501 1502 2287 16741 59 14.0 46.0 141.7 5573 5917 593 1542 3865 17490 66 15.7 53.7 166.3 6329 7835 619 1499 7235 23517 73 17.5 54.3 160.7 197 5860 7762 637 972 9309 24540 80 18.5 58.0 165.7 193 7160 7859 541 2522 10787 28869 87 19.7 58.3 156.3 198 6712 8659 582 1725 11450 29127 31 7.8 22.8 92.8 1835 1187 271 493 3786 40 10.8 37.2 149.6 4027 3494 359 942 8822 52 13.7 50.2 175.5 7860 9606 569 1765 2208 22009 59 14.3 51.0 168.7 6191 7518 547 1622 3946 19824 66 18.0 66.0 203.0 9418 11815 411 2733 10725 35092 73 17.7 55.7 165.3 205 6299 7719 582 1542 11704 27847 80 19.3 60.7 154.7 242 6357 8638 638 1680 14404 31762	88	21.0	34.7	62.7	109	3080	495 <i>3</i>	563	995	10638		
54 14.0 55.5 148.0 6322 8626 616 2017 2749 20330 60T 15.7 65.3 184.3 8416 11627 824 3294 3436 27597 7885 RAMEAUX C 22.7 74.7 3295 3911 679 7885 RAMEAUX C 15.7 42.7 109.7 5121 7716 824 2615 3436 19712 COTYLEDO-67 17.5 45.5 115.0 4189 6579 867 1500 5802 18937 NAIRES I 18.7 49.0 122.7 174 5725 8557 649 1536 7116 23584 81 18.7 49.0 121.0 182 5770 6675 528 1671 7487 22132 88 22.3 59.3 146.7 207 9552 10620 741 2834 12337 36085 88 22.3 59.3 146.7 207 9552 10620 741 2834 12337 36085 88 22.3 59.3 146.7 207 9552 10620 741 2834 12337 36085 88 22.3 59.3 146.7 207 9552 10620 741 2834 12337 36085 88 22.3 59.3 146.7 207 9552 10620 741 2834 12337 36085 88 22.3 59.3 146.7 207 9552 10620 741 2834 12337 36085 88 22.3 59.3 146.7 207 9552 10620 741 2834 12337 36085 88 22.3 59.3 146.7 207 9552 10620 741 2834 12337 36085 88 22.3 59.3 146.7 207 9552 10620 741 2834 12337 36085 88 22.3 59.3 146.7 207 9552 10620 741 2834 12337 36085 88 22.3 59.3 146.7 207 9552 10620 741 2834 12337 36085 88 22.3 59.3 146.7 207 9552 10620 741 2834 12337 36085 88 22.3 59.3 146.7 157.0 5850 6601 501 1502 2287 16741 50.0 14.0 46.0 141.7 5573 5917 593 1542 3865 17490 TEMOIN 5 66 15.7 53.7 166.3 6329 7835 619 1499 7235 23517 73 17.5 54.3 160.7 197 5860 7762 637 972 9309 24540 80 18.5 58.0 165.7 193 7160 7859 541 2522 10787 28869 87 19.7 58.3 156.3 198 6712 8659 582 1725 11450 29127 88 822 13.7 50.2 175.5 7860 9606 659 1765 2208 2209 24540 80 10.8 37.2 149.6 4027 3494 359 942 8822 52 13.7 50.2 175.5 7860 9606 569 1765 2208 2209 59 14.3 51.0 168.7 6191 7518 547 1622 3946 19824 DESINFECTION 5 66 18.0 66.0 203.0 9418 11815 411 2733 10725 35092 73 17.7 55.7 165.3 205 6299 7719 582 1542 11704 27847 80 19.3 60.7 154.7 242 6357 8683 638 1680 14404 31762			25.8				1709					
60T 15.7 65.3 184.3 8416 11627 824 3294 3436 27597 C 22.7 74.7 3295 3911 679 7885 RAMEAUX R 15.7 42.7 109.7 5121 7716 824 2615 3436 19712 COTYLEDO- 67 17.5 45.5 115.0 4189 6579 867 1500 5802 18937 NAIRES I 74 19.3 49.0 122.7 174 5725 8557 649 1536 7116 23584 81 18.7 49.0 121.0 182 5770 6675 528 1671 7487 22132 88 22.3 59.3 146.7 207 9552 10620 741 2834 12337 36085 31 8.0 22.2 88.4 1727 986 279 401 3389 40 10.2 34.6 137.0 3376 2810 351 881 7419 52 13.5 46.7 157.0 5850 6601 501 1502 2287 16741 59 14.0 46.0 141.7 5573 5917 593 1542 3865 17490 66 15.7 53.7 166.3 6329 7835 619 1499 7235 23517 73 17.5 54.3 160.7 197 5860 7762 637 972 9309 24540 80 18.5 58.0 165.7 193 7160 7859 541 2522 10787 28869 87 19.7 58.3 156.3 198 6712 8659 582 1725 11450 29127 31 7.8 22.8 92.8 1835 1187 271 493 3786 40 10.8 37.2 149.6 4027 3494 359 942 8822 52 13.7 50.2 175.5 7860 9606 569 1765 2208 22009 59 14.3 51.0 168.7 6191 7518 547 1622 3946 19824 66 18.0 66.0 203.0 9418 11815 411 2733 10725 35092 73 17.7 55.7 165.3 205 6299 7719 582 1542 11704 27847 80 19.3 60.7 154.7 242 6357 8683 638 1680 14404 31762				147.0						27.40	10922	
C	54	14.0		148.0							20330	
R 15.7 42.7 109.7 5121 7716 824 2615 3436 19712 COTYLEDO- 67 17.5 45.5 115.0 4189 6579 867 1500 5802 18937 NAIRES I 74 19.3 49.0 122.7 174 5725 8557 649 1536 7116 23584 81 18.7 49.0 121.0 182 5770 6675 528 1671 7487 22132 88 22.3 59.3 146.7 207 9552 10620 741 2834 12337 36085 31 8.0 22.2 88.4 1727 986 279 401 3389 40 10.2 34.6 137.0 3376 2810 351 881 7419 52 13.5 46.7 157.0 5850 6601 501 1502 2287 16741 59 14.0 46.0 141.7 5573 5917 593 1542 3865 17490 66 15.7 53.7 166.3 6329 7835 619 1499 7235 23517 73 17.5 54.3 160.7 197 5860 7762 637 972 9309 24540 80 18.5 58.0 165.7 193 7160 7859 541 2522 10787 28869 87 19.7 58.3 156.3 198 6712 8659 582 1725 11450 29127 31 7.8 22.8 92.8 1835 1187 271 493 3786 40 10.8 37.2 149.6 4027 3494 359 942 8822 52 13.7 50.2 175.5 7860 9606 569 1765 2208 22009 59 14.3 51.0 168.7 6191 7518 547 1622 3946 19824 66 18.0 66.0 203.0 9418 11815 411 2733 10725 35092 59 14.3 51.0 168.7 6191 7518 547 1622 3946 19824 66 18.0 66.0 203.0 9418 11815 411 2733 10725 35092 73 17.7 55.7 165.3 205 6299 7719 582 1542 11704 27847 80 19.3 60.7 154.7 242 6357 8683 638 1680 14404 31762	60T	15.7	65.3	184.3				824		3430	7005	DAMEAUV
67 17.5 45.5 115.0 4189 6579 867 1500 5802 18937 NAIRES I 74 19.3 49.0 122.7 174 5725 8557 649 1536 7116 23584 81 18.7 49.0 121.0 182 5770 6675 528 1671 7487 22132 88 22.3 59.3 146.7 207 9552 10620 741 2834 12337 36085 31 8.0 22.2 88.4 1727 986 279 401 3389 40 10.2 34.6 137.0 3376 2810 351 881 7419 52 13.5 46.7 157.0 5850 6601 501 1502 2287 16741 59 14.0 46.0 141.7 5573 5917 593 1542 3865 17490 66 15.7 53.7 166.3 6329 7835 619 1499 7235 23517 73 17.5 54.3 160.7 197 5860 7762 637 972 9309 24540 80 18.5 58.0 165.7 193 7160 7859 541 2522 10787 28869 87 19.7 58.3 156.3 198 6712 8659 582 1725 11450 29127 31 7.8 22.8 92.8 1835 1187 271 493 3786 40 10.8 37.2 149.6 4027 3494 359 942 8822 52 13.7 50.2 175.5 7860 9606 569 1765 2208 22009 59 14.3 51.0 168.7 6191 7518 547 1622 3946 19824 66 18.0 66.0 203.0 9418 11815 411 2733 10725 35092 73 17.7 55.7 165.3 205 6299 7719 582 1542 11704 27847 80 19.3 60.7 154.7 242 6357 8683 638 1680 14404 31762	C	1.5 7	22.7	14.7				924		3436	10712	
74		13./	42.1	109.7							18937	NAIRESI
81 18.7 49.0 121.0 182 5770 6675 528 1671 7487 22132 88 22.3 59.3 146.7 207 9552 10620 741 2834 12337 36085 31 8.0 22.2 88.4 1727 986 279 401 3389 40 10.2 34.6 137.0 3376 2810 351 881 7419 52 13.5 46.7 157.0 5850 6601 501 1502 2287 16741 59 14.0 46.0 141.7 5573 5917 593 1542 3865 17490 66 15.7 53.7 166.3 6329 7835 619 1499 7235 23517 73 17.5 54.3 160.7 197 5860 7762 637 972 9309 24540 80 18.5 58.0 165.7 193 7160 7859 541 2522 10787 28869 87 19.7 58.3 156.3 198 6712 8659 582 1725 11450 29127 31 7.8 22.8 92.8 1835 1187 271 493 3786 40 10.8 37.2 149.6 4027 3494 359 942 8822 52 13.7 50.2 175.5 7860 9606 569 1765 2208 22009 59 14.3 51.0 168.7 6191 7518 547 1622 3946 19824 66 18.0 66.0 203.0 9418 11815 411 2733 10725 35092 73 17.7 55.7 165.3 205 6299 7719 582 1542 11704 27847 80 19.3 60.7 154.7 242 6357 8683 638 1680 14404 31762		17.5	40.0		174		9557					
88 22.3 59.3 146.7 207 9552 10620 741 2834 12337 36085 31 8.0 22.2 88.4 1727 986 279 401 3389 40 10.2 34.6 137.0 3376 2810 351 881 7419 52 13.5 46.7 157.0 5850 6601 501 1502 2287 16741 59 14.0 46.0 141.7 5573 5917 593 1542 3865 17490 66 15.7 53.7 166.3 6329 7835 619 1499 7235 23517 73 17.5 54.3 160.7 197 5860 7762 637 972 9309 24540 80 18.5 58.0 165.7 193 7160 7859 541 2522 10787 28869 87 19.7 58.3 156.3 198 6712 8659 582 1725 11450 29127 31 7.8 22.8 92.8 1835 1187 271 493 3786 40 10.8 37.2 149.6 4027 3494 359 942 8822 52 13.7 50.2 175.5 7860 9606 569 1765 2208 22009 59 14.3 51.0 168.7 6191 7518 547 1622 3946 19824 66 18.0 66.0 203.0 9418 11815 411 2733 10725 35092 73 17.7 55.7 165.3 205 6299 7719 582 1542 11704 27847 80 19.3 60.7 154.7 242 6357 8683 638 1680 14404 31762	/4 01	19.3	49.0		192					7487		
31 8.0 22.2 88.4 1727 986 279 401 3389 40 10.2 34.6 137.0 3376 2810 351 881 7419 52 13.5 46.7 157.0 5850 6601 501 1502 2287 16741 59 14.0 46.0 141.7 5573 5917 593 1542 3865 17490 66 15.7 53.7 166.3 6329 7835 619 1499 7235 23517 73 17.5 54.3 160.7 197 5860 7762 637 972 9309 24540 80 18.5 58.0 165.7 193 7160 7859 541 2522 10787 28869 87 19.7 58.3 156.3 198 6712 8659 582 1725 11450 29127 31 7.8 22.8 92.8 1835 1187 271 493 3786 40 10.8 37.2 149.6 4027 3494 359 942 8822 52 13.7 50.2 175.5 7860 9606 569 1765 2208 22009 59 14.3 51.0 168.7 6191 7518 547 1622 3946 19824 66 18.0 66.0 203.0 9418 11815 411 2733 10725 35092 73 17.7 55.7 165.3 205 6299 7719 582 1542 11704 27847 80 19.3 60.7 154.7 242 6357 8683 638 1680 14404 31762		22.2	50.2		207					12337		
40 10.2 34.6 137.0 3376 2810 351 881 7419 52 13.5 46.7 157.0 5850 6601 501 1502 2287 16741 59 14.0 46.0 141.7 5573 5917 593 1542 3865 17490 66 15.7 53.7 166.3 6329 7835 619 1499 7235 23517 73 17.5 54.3 160.7 197 5860 7762 637 972 9309 24540 80 18.5 58.0 165.7 193 7160 7859 541 2522 10787 28869 87 19.7 58.3 156.3 198 6712 8659 582 1725 11450 29127 31 7.8 22.8 92.8 1835 1187 271 493 3786 40 10.8 37.2 149.6 4027 3494 359 942 8822 52 13.7 50.2 175.5 7860 9606 569 1765 2208 22009 59 14.3 51.0 168.7 6191 7518 547 1622 3946 19824 66 18.0 66.0 203.0 9418 11815 411 2733 10725 35092 67 17.7 55.7 165.3 205 6299 7719 582 1542 11704 27847 80 19.3 60.7 154.7 242 6357 8683 638 1680 14404 31762					207							
52 13.5 46.7 157.0 5850 6601 501 1502 2287 16741 59 14.0 46.0 141.7 5573 5917 593 1542 3865 17490 66 15.7 53.7 166.3 6329 7835 619 1499 7235 23517 73 17.5 54.3 160.7 197 5860 7762 637 972 9309 24540 80 18.5 58.0 165.7 193 7160 7859 541 2522 10787 28869 87 19.7 58.3 156.3 198 6712 8659 582 1725 11450 29127 31 7.8 22.8 92.8 1835 1187 271 493 3786 40 10.8 37.2 149.6 4027 3494 359 942 8822 52 13.7 50.2 175.5 7860 9606 569 1765 2208 22009 59 14.3 51.0 168.7 6191 7518 547 1622 3946 19824 66 18.0 66.0 203.0 9418 11815 411 2733 10725 35092 66 18.0 66.0 203.0 9418 11815 411 2733 10725 35092 73 17.7 55.7 165.3 205 6299 7719 582 1542 11704 27847 80 19.3 60.7 154.7 242 6357 8683 638 1680 14404 31762		8.0	22.2	88.4								
59 14.0 46.0 141.7 5573 5917 593 1542 3865 17490 TEMOIN 5 66 15.7 53.7 166.3 6329 7835 619 1499 7235 23517 73 17.5 54.3 160.7 197 5860 7762 637 972 9309 24540 88 89 80 18.5 58.0 165.7 193 7160 7859 541 2522 10787 28869 2869 88 1835 1187 271 493 3786 3786 40 10.8 37.2 149.6 4027 3494 359 942 8822 822 8822		10.2	34.6	137.0							7419	
66 15.7 53.7 166.3 6329 7835 619 1499 7235 23517 73 17.5 54.3 160.7 197 5860 7762 637 972 9309 24540 80 18.5 58.0 165.7 193 7160 7859 541 2522 10787 28869 87 19.7 58.3 156.3 198 6712 8659 582 1725 11450 29127 31 7.8 22.8 92.8 1835 1187 271 493 3786 40 10.8 37.2 149.6 4027 3494 359 942 8822 52 13.7 50.2 175.5 7860 9606 569 1765 2208 22009 59 14.3 51.0 168.7 6191 7518 547 1622 3946 19824 66 18.0 66.0 203.0 9418 11815 411 2733 10725 35092 66 18.0 66.0 203.0 9418 11815 411 2733 10725 35092 673 17.7 55.7 165.3 205 6299 7719 582 1542 11704 27847 80 19.3 60.7 154.7 242 6357 8683 638 1680 14404 31762	52		46.7							2287		
73	59					5573		593		3865		TEMOIN 5
80 18.5 58.0 165.7 193 7160 7859 541 2522 10787 28869 87 19.7 58.3 156.3 198 6712 8659 582 1725 11450 29127 31 7.8 22.8 92.8 1835 1187 271 493 3786 40 10.8 37.2 149.6 4027 3494 359 942 8822 52 13.7 50.2 175.5 7860 9606 569 1765 2208 22009 59 14.3 51.0 168.7 6191 7518 547 1622 3946 19824 0ESINFECTION 566 18.0 66.0 203.0 9418 11815 411 2733 10725 35092 73 17.7 55.7 165.3 205 6299 7719 582 1542 11704 27847 80 19.3 60.7 154.7 242 6357 8683 638 1680 14404 31762	66				40-			619	1499	1233		
87 19.7 58.3 156.3 198 6712 8659 582 1725 11450 29127 31 7.8 22.8 92.8 1835 1187 271 493 3786 40 10.8 37.2 149.6 4027 3494 359 942 8822 52 13.7 50.2 175.5 7860 9606 569 1765 2208 22009 59 14.3 51.0 168.7 6191 7518 547 1622 3946 19824 66 18.0 66.0 203.0 9418 11815 411 2733 10725 35092 73 17.7 55.7 165.3 205 6299 7719 582 1542 11704 27847 80 19.3 60.7 154.7 242 6357 8683 638 1680 14404 31762					197					9309	24340	
31 7.8 22.8 92.8 1835 1187 271 493 3786 40 10.8 37.2 149.6 4027 3494 359 942 8822 52 13.7 50.2 175.5 7860 9606 569 1765 2208 22009 59 14.3 51.0 168.7 6191 7518 547 1622 3946 19824 66 18.0 66.0 203.0 9418 11815 411 2733 10725 35092 73 17.7 55.7 165.3 205 6299 7719 582 1542 11704 27847 80 19.3 60.7 154.7 242 6357 8683 638 1680 14404 31762		18.5	58.0	165.7	193	7160					20009	
40 10.8 37.2 149.6 4027 3494 359 942 8822 52 13.7 50.2 175.5 7860 9606 569 1765 2208 22009 59 14.3 51.0 168.7 6191 7518 547 1622 3946 19824 66 18.0 66.0 203.0 9418 11815 411 2733 10725 35092 73 17.7 55.7 165.3 205 6299 7719 582 1542 11704 27847 80 19.3 60.7 154.7 242 6357 8683 638 1680 14404 31762	87	19.7	58.3	156.3	198	6712	8639	382	1/25	11430		
52 13.7 50.2 175.5 7860 9606 569 1765 2208 22009 59 14.3 51.0 168.7 6191 7518 547 1622 3946 19824 66 18.0 66.0 203.0 9418 11815 411 2733 10725 35092 73 17.7 55.7 165.3 205 6299 7719 582 1542 11704 27847 80 19.3 60.7 154.7 242 6357 8683 638 1680 14404 31762	31										3786	
59 14.3 51.0 168.7 6191 7518 547 1622 3946 19824 DESINFECTION 5 66 18.0 66.0 203.0 9418 11815 411 2733 10725 35092 73 17.7 55.7 165.3 205 6299 7719 582 1542 11704 27847 80 19.3 60.7 154.7 242 6357 8683 638 1680 14404 31762	40									2200	22000	
66 18.0 66.0 203.0 9418 11815 411 2733 10725 35092 73 17.7 55.7 165.3 205 6299 7719 582 1542 11704 27847 80 19.3 60.7 154.7 242 6357 8683 638 1680 14404 31762	52							309 547	1/03	2016		
73 17.7 55.7 165.3 205 6299 7719 582 1542 11704 27847 80 19.3 60.7 154.7 242 6357 8683 638 1680 14404 31762	59		51.0									DESINFECTION 5
80 19.3 60.7 154.7 242 6357 8683 638 1680 14404 31762		18.0		203.0	205	9418 6200	7710			10/23	22U7Z 279A7	
		17.7			203 242	0299 6257	1/17 8692					
8/ 20.3 //.3 210.3 239 7031 12217 044 2720 21101 43741												
	87	20.3	11.5	210.3	239	3031	12217	U 44	2720	21101	73771	

T = total du pied C = partie supprimée Cah. O.R.S.T.O.M., sér. Biol., n^o 42, 1980 : 87-109

3.2. RAPPORTS DES DIFFÉRENTES PARTIES DE LA PLANTE

A partir du tableau IV donnant les résultats de mesures effectuées sur deux blocs de l'expérience qui concerne les traitements favorisant une croissance variée de la plante, nous avons cherché à établir les rapports pouvant exister entre les différentes parties de la plante à chaque date de prélèvement.

3.2.1. Folioles et tissus conducteurs

La première série de rapports concerne la relation entre les folioles et le tissu conducteur aérien. Il va en général en diminuant, de 1,4-1,5 au début de floraison jusqu'à 0,7-0,8 pendant la phase de fructification. Le rapport reste plus élevé pour les plantes à plus grand écartement (demi-densité) (tabl. V).

L'hétérogénéité des résultats de poids moyen des tissus conducteurs aériens par centimètre de longueur de tige pour les trois dernières dates de prélèvement est trop élevée pour tirer quelque conclusion quant aux migrations des matières sèches à la fin de la phase de fructification. Le seul point positif est qu'à grand écartement les rameaux sont plus gros.

TABLEAU IV (suite)

Jour cycle	Nombre feuilles TP	Nombre feuilles formées /pied	Nombre folioles présentes	Long. rameaux	Poids folioles	Poids rameaux	Poids racines	Poids restes	Poids fruits	Poids total	Traitement
31	7.6	21.0	83.8		1633	990	340	427		3390	
40	10.6	33.0	131.2		3551	2995	405	812		7763	
52	14.0	51.7	199.5		8642	8283	728	2126	3316	23095	
59	16.3	92.0	338.3		14723	15127	1342	3820	6841	41853	DEMI-DENSITE 5
66	17.0	65.7	223.3	210	9954	10651	540	3086	7799	32030 42371	
73	18.0	70.7	226.0	219 212	10809 10070	12807 17573	1164 1286	3126 2498	14464 14069	42371 39495	
80 87	19.5 21.0	74.3 90.7	234.0 290.0	230	22332	13166	1777	3629	21921	62224	
31	7.8	21.8	87.8		1599	888	260	328		3076	
40	10.8	32.8	126.6		3320	2796	379	704		7199	
52	13.5	49.0	178.0		6509	8956	644	1605	2530	20244	
59T	13.6	44.6	135.6		4366	6121	519	1240	3451	15692	
C	9.3	9.3	33.3		1758	2112		200		4070	TIGE
R	4.3	35.3	102.3		2608	4009	519	1040	3451	11622	PRINCIPALE 5
66	4.3	40.3	121.7		3946	5434	583	1177	4328	15463	
73	4.0	56.3	175.3	207	4215	5887	450	629	9001	19516	
80	4.7	45.0	123.0	164	3552	4797	528	1026	8450 12576	18352 28479	
87	4.3	58.0	175.3	197	5876	7359	638	2030	12370		
31	7.6	23.6	91.6		1901	1054	284	453		3692	
40	10.6	34.2	132.2		4059	2912	461	960		8393	
52	13.0	43.5	154.2		5450	5014	568	1343	1990	14367	
59T	14.0	49.0	159.3		5720	6077	703	1283	4318	18100	QUATRE
C		27.0	104.0		3468	2920		316		6703	RAMEAUX
R	14.0	22.0	55.3		2252	3157	703	967	4318	11397	DE BASE 5
66	16.0	23.0	49.0		2983	3779	673	1414	5597	14445	
73	18.7	25.7	67.7	66	3519	3769	637	1043 1165	7388 8457	16357 17151	
80 87	18.7 22.0	28.3 38.3	69.7 88.7	72 98	3209 4697	3795 5668	524 668	1896	11255	24183	
31	7.8	21.6	85.2		1731	1058	262	425		3476	
40	10.6	35.8	136.4		3795	3038	406	827		8066	
52	13.3	44.3	155.6		4999	5024	517	1140	2022	13703	
59T	14.3	52.7	174.0		6315	7824	693	1940	3429	20200	RAMEAUX
C		15.0	55.7		2310	2444	_	293		5046	COTYLEDO-
R	14.3	37.7	118.3		4005	5380	693	1647	3429	15154	NAIRES 5
66	16.7	41.7	126.0		4464	5924	603	1453	7750	20194	
73	18.7	45.7	132.7	146	6541	6613	680	2342	10303	26479	
80	19.0	40.0	110.3	141	4815	5393	661	1275	10507	22650	
87	20.7	49.3	144.3	165	5749	6987	850	1881	16169	31636	

92

3.2.2. Fruit/reste aérien de la plante — Rendement biologique

La seconde série de rapports visait à établir un lien entre la partie fructification et l'une des parties végétatives ou un ensemble. Le tableau VI restitue les valeurs obtenues pour les rapports fruit/folioles; fruits/tissus conducteurs; fruits/folioles + rameau); fruits/reste plante. Le mot « fruit » désigne la partie fructification (gynophores, petits et gros fruits). Le « reste plante » exclut le système racinaire.

Compte tenu de quelques anomalies dans les rapports folioles/rameaux imputables aux pesées de folioles ou de tissus conducteurs, la préférence a été donnée aux relations fruits/folioles + rameaux ou fruits/reste plante. Les conclusions sont les mêmes pour ces rapports et nous n'étudierons ici que le dernier : fruit/reste plante, plus facile à mesurer et qui est rattachable à la notion de rendement biologique.

Au lieu de considérer ce rapport uniquement au moment de la récolte, nous avons suivi son évolution pendant toute la période de fructification. La valeur du rapport est restée bonne pendant cette période de fructification car il y a eu peu de disparition de folioles grâce aux traitements anticryptogamiques efficaces. C'est en reportant sur des graphiques les différentes valeurs qu'il

a été possible de montrer l'existence d'une norme et de cas particuliers conduisant aux mauvaises récoltes. Pour le cultivar 68-45, les résultats sont regroupés sur les graphiques 1 à 3 selon que la plante est restée entière ou a subi une ablation partielle de ses rameaux.

Sur le graphique 1, pour la plante entière, l'évolution du rapport se traduit dans l'ensemble par une ligne droite moyenne $Y_G = 0.020 (n - 44)$ avec une limite des maxima YF = (n - 40) et une limite des minima YM = 0.20 (n - 48).

La valeur de a oscille de $0.020 \, a \, 0.0215$ selon les cas examinés, c'est-à-dire que le poids des fruits augmente chaque jour d'une quantité égale à 2 % de la masse végétative aérienne en moyenne. La valeur b correspond à la date théorique à laquelle les fruits auraient commencé à grossir. Plus b est petit, plus il y a de fruits à une date du cycle pour une même masse végétative (b varie de 39 à 48), et plus la plante pourrait porter de fruits au moment de la récolte en principe. Nous avons remarqué déjà qu'il y avait un meilleur départ de la fructification sur le traitement désinfection par rapport au témoin, ce que traduit parfaitement le graphique avec respectivement $y = 0.02 \, (n-44)$ et $y = 0.02 \, (n-48)$.

Pour les grossissements précoces, il semble qu'il y ait un ralentissement à partir du 80e jour pour retomber à la valeur moyenne au moment de la récolte.

TABLEAU V

Rapports des poids entre parties végétatives. Folioles/tiges

Traitement Jour du cycle	TEMOIN	DESIN- FECTION	DEMI- DENSITE	69-50	68-16	TIGE PRINCI- PALE	RAMEAU COTYLEDO- NAIRE	QUATRE RAMEAUX DE BASE
Premier bloc								
33	1.50	1.41	1.93	1.44	1.77	1.67	1.47	1.43
41	1.12	1.13	1.35	1.16	1.40	1.12	1.15	1.23
54	0.82	0.75	0.91	0.81	0.89	0.90	0.73	0.75
60 entier	0.73	0.86	0.82	0.86	0.90	0.85	0.72	0.91
après ablation		1	Ï			0.70	0.66	0.80
67	0.72	0.69	1.00	0.74	0.85	0.74	0.64	0.79
74	0.72	0.71	0.99	0.82	0.78	0.76	0.67	0.80
81	0.72	0.69	1.06	0.72	0.82	0.80	0.86	0.99
88	0.63	0.78	1.18	0.74	0.74	1.02	0.90	0.62
Deuxième bloc								
31	1.75	1.55	1.65			1.80	1.64	1.80
40	1.20	1.15	1.19			1.19	1.25	1.39
52	0.89	0.82	1.04			0.73	1.00	1.09
59 entier	0.94	0.82	1.70			0.71	0.81	0.94
après ablation		l i				0.65	0.74	0.71
66	0.81	0.80	0.93			0.73	0.75	0.79
73	0.75	0.82	0.84			0.71	0.99	0.93
80	0.91	0.73	0.87			0.74	0.89	0.85
87	0.78	0.74	1.70?			0.80	0.82	0.83

TARLEAU VI

Rapports entre la partie fructification et la végétation

Traitement	Jour	cycle	Fruits/	folioles	Fruit/	rameau	Fruit/(fol.	+ rameau)	Fruit/re	ste plante
Trantement	Bloc 1	Bloc 5	Bloc 1	Bloc 5	Bloc 1	Bloc 5	Bloc 1	Bloc 5	Bloc 1	Bloc 5
	54	52	0.27	0.39	0.22	0.35	0.12	0.18	0.11	0.16
	60	59	0.66	0.69	0.48	0.65	0.28	0.34	0.25	0.30
TEMOIN	67	66	1.02	1.14	0.73	0.92	0.42	0.51	0.39	0.46
	74	73	0.94	1.59	0.68	1.20	0.39	0.68	0.35	0.64
	81 88	80 87	1.74	1.51 1.71	1.26 0.85	1.37	0.73	0.72	0.65	0.61
			 	 	 	 	0.52	0.74	0.47	0.67
	54	52	0.53	0.28	0.41	0.23	0.23	0.13	0.20	0.11
DEGNATES	60	59	0.79	0.64	0.68	0.52	0.36	0.29	0.32	0.26
DESINFEC-	67	66	1.41	1.14	0.98	0.91	0.58	0.51	0.52	0.45
TION	74	73	1.61	1.86	1.15	1.52	0.67	0.83	0.60	0.75
	81 88	80 87	2.23 2.26	2.26 2.33	1.53	1.66 1.73	0.91 0.99	0.96 0.99	0.83 0.90	0.86
		- 67	2.20	2.33	1.76	1./3	0.99	0.99	0.90	0.87
	54	52	0.45	0.38	0.42	0.40	0.22	0.20	0.19	0.17
	60	59	0.35	0.46	0.29	0.45	0.16	0.23	0.14	0.20
DEMI-	67	66	0.58	0.78	0.58	0.73	0.29	0.38	0.25	0.33
DENSITE	74	73	0.56	1.34	0.56	1.13	0.28	0.61	0.24	0.54
	81	80	0.63	1.40	0.66	1.22	0.32	0.65	0.28	0.58
	88	87	0.79	0.98	0.93	1.66	0.43	0.64	0.38	0.57
	54	52	0.56	0.39	0.50	0.28	0.26	0.16	0.24	0.15
	60T	59T	0.66	0.79	0.56	0.56	0.30	0.33	0.27	0.29
TIGE	60R	59R	1.18	1.32	0.83	0.86	0.49	0.52	0.41	0.45
PRINCIPALE	67	66	1.57	1.10	1.17	0.80	0.67	0.46	0.58	0.41
I KINCH ALE	74	73	2.31	2.14	1.75	1.53	1.00	0.95	0.88	0.89
	81	80	2.48	2.38	1.99	1.76	1.11	1.01	0.95	0.89
	88	87	2.52	2.14	2.57	1.71	1.27	0.95	1.13	0.82
	54	52	0.43	0.40	0.32	0.40	0.18	. 0.20	0.16	0.18
	60T	59T	0.41	0.54	0.30	0.44	0.17	0.24	0.15	0.21
RAMEAUX	60R	59R	0.67	0.86	0.45	0.64	0.27	0.37	0.22	0.31
COTYLEDO-	67	66	1.39	1.74	0.88	1.31	0.54	0.75	0.47	0.65
NAIRES	74	73	1.24	1.58	0.83	1.56	0.50	0.78	0.45	0.66
	81	80	1.30	2.18	1.12	1.95	0.60	1.03	0.53	0.92
_	88	87	1.29	2.81	1.16	2.31	0.61	1.27	0.54	1.11
	54	52	0.66	0.37	0.50	0.40	0.28	0.19	0.25	0.17
	60T	59T	0.60	0.75	0.54	0.71	0.28	0.37	0.25	0.30
QUATRE	60R	59R	1.35	1.92	1.09	1.37	0.60	0.80	0,51	0.68
RAMEAUX	67	66	2.40	1.88	1.89	1.48	1.06	0.83	0.87	0.68
DE BASE	74	73	2.33	2.10	1.86	1.96	1.04	1.01	0.90	0.89
	81	80	2.09	2.64	2.06	2.23	1.04	1.21	0.92	1.04
	88	87	3.45	2.40	2.15	1.99	1.32	1.09	1.18	0.92
			69-50	68-16	69-50	68-16	69-50	68-16	69-50	68-16
	54	}	0.58	0.75	0.47	0.67	0.26	0.36	0.23	0.31
AUTRES	60	l	0.99	1.21	0.85	1.09	0.46	0.57	0.41	0.50
VARIETES	67		1.46	0.91	1.09	0.77	0.62	0.42	0.56	0.36
	74	1	1.12	1.63	0.92	1.27	0.51	0.71	0.44	0.64
	81	1	1.83	1.59	1.31	1.29	0.76	0.71	0.66	0.63
	88	1	2.15	2.06	1.59	1.52	0.91	0.87	0.91	0.80

Parfois après un départ normal, on trouve une ou deux valeurs plus élevées entre le $70^{\rm e}$ et le $82^{\rm e}$ jour, suivies d'un retour aux valeurs normales. Cet excès momentané peut correspondre soit au phénomène de croissance exponentielle des organes, soit à un prélèvement provenant de plantes ayant eu un meilleur départ de fructification. Dans le cas de croissance exponentielle, on peut concevoir une meilleure croissance des fruits jusqu'au $80^{\rm e}$ jour avec YB = 0.025 (x -47) suivie d'un ralentissement marqué pendant la dernière semaine.

Pour certains traitements ou certains échantillons défavorisés, le rapport fruit/reste végétation après quelques valeurs normales n'augmente plus ou seulement très lentement soit dès le 60° jour (témoin 1), soit seulement après le 75° jour (témoin 5). Ce ralentissement de croissance des fruits pourrait donc commencer à un moment quelconque de la phase de fructification. Evans (1956) avait remarqué déjà que la vitesse de gain de poids restait plus élevée à partir d'une certaine date sur les parcelles qui se révèleront plus productives.

L'ablation d'une partie de la végétation au $60^{\rm e}$ jour provoque une augmentation sensible du rapport, d'environ 0,16 puisque les fruits des deux premières émissions ne sont pas ôtés (fig. 2). Par la suite le rapport augmente proportionnellement à la partie végétative restante avec un coefficient un peu plus fort que pour la plante entière $Y_{\rm c} = 0,0245 \, (n-41)$

due peut être à une meilleure efficacité de la photosynthèse pour le feuillage restant.

Cet accroissement de 20 % du coefficient, ainsi qu'un gain dans la précocité théorique du départ de la fructification permet en fin de cycle un rapport fruit/reste végétatif supérieur de 0,25 à celui des plantes normales.

Si le ralentissement précoce dans la progression du rapport existe pour l'un des traitements (rameaux cotylédonaires 1), il n'est pas observé pour les huit derniers jours dans la moitié des cas.

La figure 3 se rapporte au traitement demi-densité. Au bloc 5, le rapport augmente en moyenne selon la droite YM correspondant au niveau inférieur des valeurs du rapport pour la plante entière à densité normale. Ce rapport ne croît presque plus à partir du 80e jour. Pour le bloc 1, le rapport devient celui d'une mauvaise fructification comparée au développement végétatif. Il n'y a apparemment pas de différence de comportement entre densité normale et demi-densité, sinon que le rapport est généralement plus faible pour ce dernier traitement.

En étudiant les différentes fractions de la fructification nous avons essayé de voir si une mauvaise fructification par rapport à la masse végétative se traduit par des caractères mesurables précocement.

Le tableau VII montre que pour les plantes entières, et même pour les plantes ayant subi des ablations, un mauvais indice de fructification se traduit par un excès en poids de gynophores et de petits fruits par rapport aux gros fruits. Le taux des graines une semaine avant la récolte représente seulement 55-56 % de la partie fructification contre 60 % et plus pour les plantes fructifiant bien. Aux stades plus précoces, les mêmes différences s'observent.

Les tableaux VIII et IX permettent de compléter les observations avec le nombre de gynophores et le grossissement des graines.

Un nombre de fruits insuffisant en grossissement conduit à une augmentation de gynophores comme si la plante s'efforçait d'établir un équilibre entre les possibilités de production de matière sèche et les possibilités de stockage. Pour les plantes avec un bon indice à densité normale, il existe pour les gynophores présents, une meilleure formation des fruits et un pourcentage plus élevé de fruits qui grossissent parmi ceux formés. A demi-densité, la différence se fait uniquement sur un plus gros pourcentage de fruits qui grossissent.

Vu le nombre restreint de fruits formés sur les plantes à mauvais indices, les graines existantes deviennent plus grosses.

3.3. LE BILAN NET DE PHOTOSYNTHÈSE OU TAUX NET D'ASSIMI-LATION

Le taux net d'assimilation a été calculé pour la phase végétative à partir de la floraison et jusqu'au début de grossissement des graines pour estimer la fertilité de l'essai à l'aide de la formule:

$$\frac{Pn - Po}{Ln - Lo} \quad \times \quad \frac{\log Ln - \log Lo}{Tn - To}$$

où p représente le poids total de la plante au début (Po) et en fin de période considérée (Pn), L le poids du limbe, respectivement Lo et Ln aux mêmes instants To et Tn (nombre de jours du cycle) de début et de fin de période de mesure.

Ce taux net a été ramené au poids du limbe et non à sa surface, des travaux antérieurs (Forestier 1973) ayant montré que l'unité de surface mettait en évidence des différences dues à des phénomènes au niveau de l'épaisseur des feuilles compensées par d'autres caractères tel que la grandeur de la feuille ou leur nombre sur la plante.

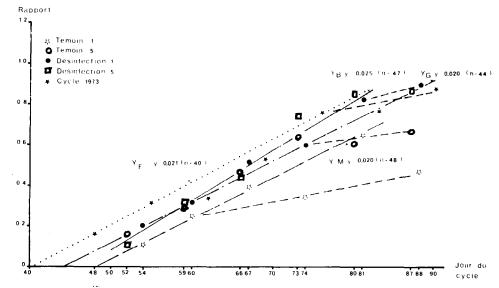
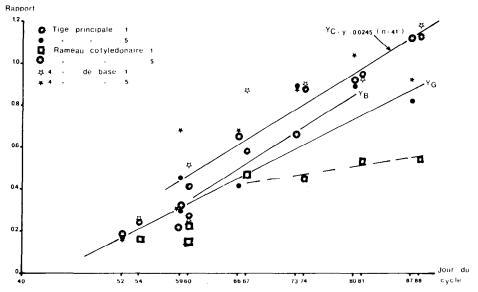



Fig. 1. — Rapport fructification/végétation sur plante entière.

 $Fig.\ 2-Rapport\ fructification/v\'eg\'etation\ sur\ plante\ mutil\'ee.$

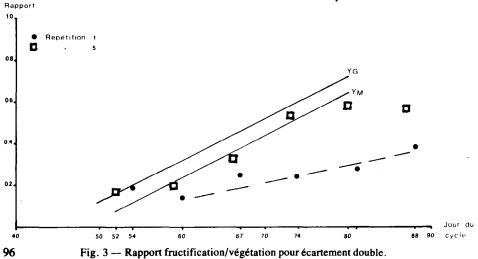


Fig. 3 — Rapport fructification/végétation pour écartement double.

TABLEAU VII

Rapports entre les fractions de la fructification

Bon indice		Dési	nfection		Tém	oin		Tige principa	ale
Jour du cycle	59°	73°	80°	88°	67°	73°	81°	67°	88°
Longueur gynophores cm	178	217	264	298	243	175	266	192	231
Poids gynophores mg	810	988	1196	1351	1103	796	1206	871	1049
Poids petits fruits	146	262	189	273	249	208	128	162	237
Poids coques) gros	2377	3633	3682	5570	3469	3214	4522	2973	4552
Poids graines fruits	1087	6018	7472	12366	3783	4558	8262	2982	9035
Poids total fruit calculé	4420	10901	12539	19560	8604	8776	14118	6988	14873
" " pesé	3946	11704	14404	20200	7697	9309	16487	6248	14446
% gynophore	18	9	9.5	7	13	9	8.5	12.5	7
% petits fruits	3	2	1.5	1.5	3	2.5	1	2.5	1.5
% coques gros fruits	54.5	34	29	28.5	40	36.5	32	42.5	30.5
% graines " "	24.5	55	60	63	44	52	58.5	42.5	61
Indice défectueux	Témoin		Rameau cotylédonaire				DEMI-DEN	SITÉ	
			cotyle	donaire	Bon ii	ndice		Indice médio	cre
Jour du cycle	74°	88°	74°	88°		87°			88°
Longueur gynophores cm	334	362	243	402		421			801
Poids gynophores mg	1516	1642	1103	1824		1911			3637
Poids petits fruits	294	327	307	448		200			539
Poids coques) gros	3539	5514	3452	3925		6178			6086
Poids graines fruits	3568	9283	2686	7769		13406			13127
Poids total fruit calculé	8917	16766	7548	13966	1	21695	1		23389
" " " pesé	8564	16190	7116	12337		21921			20405
% gynophores	17	10	14.5	13	l	9			15.5
% petits fruits	3	2	4	3		1			2.5
	40	33	35.5	28.5	1	28.5			30.5
% coques gros fruits	+ +0								

TABLEAU VIII

Dénombrement des gynophores avec ou sans fruits

Traitement	Rameau cotylédonaire	Rameau cotylédonaire	Demi-d	ensité	Témoin	Désinfection
Valeur de l'indice	Faible	Bon	Mauvais	Bon	Mauvais	Bon
Nb gyno. sans fruit	72	40	178	114	84	46
Nb petits fruits	85	81	111	55	56	42
Nb gros fruits	26	30	52	55	51	50
Total des fruits	111	111	163	110	107	92
Nb total gynophore	183	151	341	224	191	138
% gyno. sans fruit % gyno. avec petit fruit % gyno. avec gros fruit % gyno. avec fruits % gros Fr/total Fr	39.5	26.5	52	51	44	33.5
	46.5	53.5	32.5	24.5	29.5	30.5
	14	20	15.5	24.5	26.5	36
	60.5	73.5	48	49	56	66.5
	23	27	32	50	47.5	54

TABLEAU IX

Grossissement des graines

	Plante n	nutilée			Plan	te entière	
	Rameau cotylédonaire	Tige principale	Demi-d	ensité	Témoin	Désinfection	
Valeur de l'indice	Mauvais	Bon	Mauvais	Bon	Mauvais	Bon	
Jour du cycle	88	88	88	87	88	88	
% graine 8 mm " 9 mm " 10 mm " 11 mm " sup, égal 12	17 34 42 7	36 34 26 4	10 15.5 39.5 32 3	5 18 46 30 1	25 32 23.5 8.5	17.5 43 28 8.5 3	

3.3.1. Taux net d'assimilation en phase végétative

Le tableau X montre les différents résultats obtenus pour l'ensemble des traitements du cultivar 68-45 avant toute ablation. Les valeurs médianes témoignent d'une fertilité d'une bonne moyenne. Elles sont un peu moins élevées pendant la seconde période que pendant la première. Ceci peut s'expliquer par la différence dans les indices foliaires (IF) ou les indices de masse foliaire (IMF) pendant les deux périodes. L'indice foliaire est le coefficient de la surface foliaire par unité de surface de champ. L'indice de masse foliaire est la masse de limbe foliaire par unité de surface de champ en mg/cm² (ou 10¹ gm/m² ou kg/are). Cet indice de masse foliaire

Tableau X

Taux net d'assimilation en période végétative
(mg M.S._g limbe_jour)

	Bio	oc 1	Bío	oc 5
Période	33-41	41-54	31-40	40-52
Témoin	173	166	182	173
Désinfection	182	186	201	192
Tige principale	262		194	229
Quatre rameaux	133	153	184	105
Rameaux cotylédonaires	204	129	194	161
Demi-densité	189	199	197	238
Médiane cv 68-45	189	166	194	173
69-50	196	147		
68-16	191	167		

TABLEAU XI

Comparaison d'indice foliaire et d'indice de masse foliaire

		Indice	masse fe	oliaire (n	ng/cm ²)				Indice	foliaire		
		Bloc 1			Bloc 5			Bloc 1			Bloc 5	
Jour du cycle	33°	41°	54 ⁰	31°	40°	52°	33°	41°	54°	31°	40°	52º
Témoin	7.30	12.51	22.89	4.32	8.44	14.63	2.14	3.60	5.89	1.27	2.41	3.31
Désinfection	6.40	12.40	19.93	4.59	10.07	19.65	1.95	3.60	5.05	1.42	2.78	3.84
Tige principale	5.32	12.42	10.30	4.00	8.30	16.27	1.59	3.25	2.21	1.21	2.29	3.74
4 rameaux base	7.02	11.48	14 46	4.75	10.15	13.63	2.18	2.96	3.67	1.32	2.46	2.78
Rameau cotylédonaire	6.28	12.42	15.81	4.33	9.49	12.50	1.83	3.40	4.06	1.28	2.44	2.78
Demi-densité	4.00	8.23	16.06	2.04	4.44	10.80	1.02	2.09	3.59	0.55	1.15	2.29
69-50	4.96	9.60	13.30				1.50	2.64	3.21			
68-16	5.90	11.30	16.40				1.73	3.14	4.34			
Médiane des 5 premiers traitements	6.40	12.42	15.81	4.33	9.49	14.63	1.95	3.40	4.06	1.28	2.44	3.31
Masse surfacique médiane des 5 premiers traitements	3.35	3.65	3.93	3.38	3.63	4.53				<u> </u>		 -

paraît préférable d'emploi à l'indice foliaire à partir du fait que la photosynthèse est rapportée à la masse du limbe et non à sa surface : il correspond au produit de l'indice foliaire par la masse surfacique moyenne.

Le graphique 4 regroupe ces résultats ainsi que ceux du tableaux XII relatif à des mesures effectuées sur le bac rempli de terre au cours du premier cycle cultural 1973.

TABLEAU XII

Indice foliaire et indice de masse foliaire pour une expérience en bac de terre

Jour cycle	Indice masse foliaire	Indice foliaire	Masse surfacique
34°	5.69	1.60	3.54
41°	11.11	2.80	3.98
48°	15.80	3.50	4.50
54°	17.22	3.55	4.85

3.3.2. Taux net d'assimilation en phase de fructification

Le taux net d'assimilation pendant la phase de fructification chute brusquement pour la plupart des traitements. Comme nous l'avons signalé précédemment, pendant cette phase, le taux d'assimilation net a été calculé seulement pour des prélèvements de plantes présentant à peu près la même masse végétative ou foliaire. Lorsqu'il existe une trop grande différence, il est estimé que les deux échantillons ne sont pas comparables. S'il s'en trouve un autre de même valeur pendant la fin du cycle, le taux d'assimilation net est calculé pour une période plus longue. Le calcul du taux net d'assimilation (TNA), vu la faible modification des masses de limbe emploie la formule.

$$\frac{\frac{Pn - Po}{(Tn - To)}}{\frac{Ln + Lo)}{2}} = \frac{2(Pn - Po)}{(Tn - To)(Ln + Lo)}$$

c'est à dire l'accroissement total de poids par jour ramené à l'unité du poids du limbe pendant la période considérée.

3.3.2.1. Taux net d'assimilation sous forme brute. Le tableau XIII présente les différentes valeurs brutes obtenues. On constate une certaine hétérogénéité mais la plupart des valeurs moyennes sont comprises entre 55 et

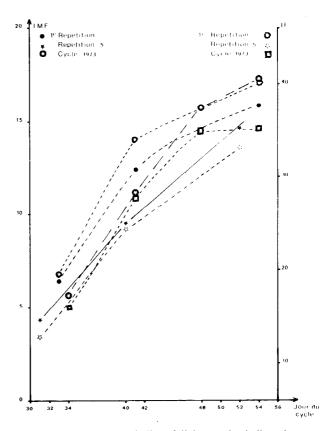


Fig. 4 — Evolution des indices foliaires et des indices de masse foliaire.

90 mg/gramme de limbe par jour ; ce qui est relativement limité par rapport à la période végétative aux moyennes de 165 à 195 mg/g/jour.

Ce calcul brut peut être sujet à discussion au moins pour deux raisons. La matière sèche de réserve de l'arachide contient un fort pourcentage de glycérides dont le pouvoir calorique est de 9,1 calories par gramme contre 4,1 pour les glucides et 4,5 pour les protides. Il est possible d'estimer que la synthèse d'un gramme de glycérides correspondrait énergétiquement à celle de 2,14 grammes de tissu végétatif normal.

Par ailleurs, pour un même poids de limbe il y a eu perte de certaines feuilles et formation de nouvelles. Nous avons donc essayé de calculer, en supposant l'équivalence glycérides-glucides proportionnelle au pouvoir calorique, et en tenant compte des pertes de feuillage, un taux net d'assimilation corrigé d'équivalence calorique comparable à celui de la période végétative.

BOUFFIL (1947) signale dans sa thèse qu'au 63° jour les amandes bien développées ont seulement 37 % de glycérides du poids sec, et nos mesures montrent qu'el-

TABLEAU XIII

Taux net d'assimilation sous forme brute pendant la période de fructification

Bloc 1 Période	54-60	60-74	60-81	60-88	67-74	67-81	67-88	74-81	74-88	81-88
Témoin	76	30	64					134		
Désinfection	57	54	37	59					69	
Tige principale		86				65	100			
Quatre rameaux		54				-				
Rameau cotylédonaire		51			134	46	119			
Demi-densité		53		75				66	103	
69-50		44	64	73				98	****	
68-16	141	141	27		133		63		27	
Bloc 5										
Période	59-60	59-73	59-80	59-87	66-73	66-80	66-87	73-80	73-87	80-87
Témoin		88				57	41			6
Désinfection		92	90				56	88		
Tige principale					154	55				
4 rameaux de base			100		84	62		34		
Rameau cotylédonaire	170		81			38				
Demi-densité	61			39	143	53				

les représentent moins de 30 % du nombre total d'amandes, et qu'elles pèsent chacune environ un quart de la matière sèche finale de graine de même taille. Ceci fait qu'au 60° jour, les glycérides ne représentent que le seizième de leur poids final sur une plante.

TABLEAU XIV

Teneur en glycérides des graines pendant la phase de fructification

Jour du cycle	Nombre grosses graines	Poids sec 1 graine	Teneur en huile graine dévelop. (d'après Bouffil)	huile	%de l'huile finale
60°	0.33	0.25	37	3	6 %
60° 67°	0.60	0.30	40	7.2	14 %
74°	0.80	0.55	45	19.8	40 %
74° 81°	0.90	0.75	48	32.4	65 %
88°	1	0.90	50	45	90 %
88° 95°	i	1.00	50	50	100 %

3.3.2.2. Taux net d'assimilation sous forme corrigée. C'est ainsi que pour la période 60e-88e jour du traitement désinfection du bloc 1, dont le taux net d'assimilation brut est de 59 mg/g limbe/jour, le calcul correctif peut s'opérer comme il suit:

	60e	88e
Nombre de feuilles formées par pied	62,7	73,7
Nombre de folioles théorique	251	295

Nombre de folioles observées	180	182
Nombre de folioles manquantes	71	113
Nombre de feuilles manquantes	18	28

On peut considérer que du 60^e au 80^e jour sont tombées les folioles des feuilles 19 à 28 inclues soit :

la huitième de la tige principale	300 mg
la neuvième de la tige principale	328 mg
la quatrième du rameau cotylédonaire 1	156 mg
la cinquième du rameau cotylédonaire 1	214 mg
la cinquième du rameau cotylédonaire 2	214mg
la sixième du rameau cotylédonaire 2	225 mg
la troisième des deux rameaux 1 ^{re} et 2 ^e feuille	274 mg
la quatrième des deux rameaux 1 ^{re} et 2 ^e feuille	296 mg
soit un total de	2 007 mg

Le poids des limbes étant 8757 et 8928 mg, le poids moyen pour chaque jour de cette période peut être estimé à 8842 mg. La perte des vieilles folioles absorbe pour sa compensation un taux net d'assimilation de 8 mg/g limbe par jour. (2007/(8,842 × 28).

Sachant que le coefficient d'équivalence glycérides matière sèche végétative est 2,143 (9,0/4,2), il y a un supplément de 1,143 fois le poids de lipides à décompter.

•	60e	88e
Poids de « fruit »	6890	20200
Coefficient poids de graines	24,5 %	63 %
Poids de graine	1688	12726
Teneur en huile	37	50
Poids d'huile	625	6363

Le poids de glycérides supplémentaires est de 5738 mg ce qui correspond à un équivalent de matière sèche végétative de 5738 × 1,143 soit 6559 mg ou un taux net d'assimilation de 6659/8,842 × 28 soit 26,5 mg/gramme limbe par jour.

Le taux net d'assimilation corrigé pendant cette période est donc de 59 + 8 + 26 = 93 mg/g/jour.

En faisant des calculs analogues pour un certain nombre de cas on obtient les taux nets d'assimilation corrigés figurant au tableau XV.

TABLEAU XV

Taux net d'assimilation corrigé

Traitement	Bloc	Période	T.N.A. brut	T.N.A. corrigé
Désinfection	1	60-88	59	93
Désinfection	5	59-80	90	138
Désinfection	5	66-87	56	93
Témoin	1	60-81	64	94
Cycle 1973		61-75	51	72
Cycle 1973		75-82	19	34
Tige principale	5	66-73	154	201
Tige principale	5	59-80	104	150
Tige principale	1	67-88	100	138
Rameau cotylédon	1	67-74	134	152
Rameau cotylédon	1	67-88	119	139
Rameau cotylédon	5	59-80	81	119
4 rameaux de base	5	59-80	100	146

Pour les plantes entières, le taux net d'assimilation corrigé est proche de 95 mg/g/jour pour l'ensemble de la période de fructification dans nos conditions de culture. Pour les plantes mutilées, le taux net d'assimilation corrigé paraît en moyenne plus élevé que pour les plantes entières.

3.4. TAUX NET D'ASSIMILATION CORRIGÉ ET INDICE DE MASSE FOLIAIRE

Watson (1958) a montré une relation entre le taux net d'assimilation et l'indice foliaire pour le chou et la betterave, en faisant varier l'indice foliaire par diminution de la densité des plantes ou une nutrition azotée plus ou moins abondante.

Estimant que le taux net d'assimilation est mieux exprimé par rapport à la masse de limbe plutôt qu'à la surface, nous avons essayé d'établir une relation T.N.A. — I.M.F. (indice de masse foliaire) pour la période végétative et de vérifier sa valeur pour l'ensemble de la vie de la plante.

En effet dans le tableau XI, l'indice de masse foliaire moyen est de 16, mais va jusqu'à 23 pour certains cas. Or si l'indice foliaire n'augmente plus beaucoup pendant la phase de maturation, la masse surfacique du limbe devient plus forte, et l'indice de masse foliaire continue donc à croître et atteint des valeurs de 24 à 25 mg/cm².

L'indice de masse foliaire moyen pendant la période végétative à variation rapide a été calculé à partir de la masse moyenne du limbe obtenue selon la formule :

$$\frac{Pn - Po}{\log Pn - \log Po}$$

et pendant la phase de fructification à partir de la moyenne arithmétique. Le tableau XVI regroupe les résultats pour le cycle cultural 1976 avec le cultivar 68-45.

A l'exception des deux derniers traitements, les autres valeurs peuvent se regrouper près d'une droite y = ax + b. Pour mieux déterminer les coefficients a et b, nous avons essayé d'inclure les résultats de mesures effectuées en 1973 avec le même cultivar dans des cultures en bac (voir tabl. XVII).

En réunissant les résultats de ces deux séries sur le graphique 5, il est possible de tracer une droite

$$y = -7.8 x + 265$$

où y est le taux d'assimilation net, corrigé si nécessaire, en mg/g limbe par jour, et x l'indice de masse foliaire en mg/cm² (ou en g. 10¹/m²).

TABLEAU XVI

Taux net d'assimilation et indice de masse foliaire.

Cultivar 68-45 en 1976

Traitement	Période	I. M. F.	T.N.A. corrigé et (brut)
Moyenne 5 traitements, bloc 1	33-41	9.1	189
,, ,, ,, ,, ,, ,,	41-54	14.1	166
" " " 5	31-40	6.6	194
,, ,, ,, ,, ,,	40-52	11.9	173
Bloc 1, Témoin	33-54	13.7	176
" "	33-41	9.9	173
" "	60-81	23.0	94 (64)
". Désinfection	33-41	9.4	182
າາ າາ	33-54	11.9	205
"	60-88	22.1	93 (59)
Bloc 5, "	31-40	7.3	201
" "	59-80	15.7	138 (90)
** "	66-87	23.1	93 (56)
Bloc 1, Demi-densité	33-54	8.7	215
" 5, "	31-52	4.2	234
Bloc 1, Rameau cotylédonaire	33-41	9.3	204
_,, ,,	67-88	16.3	139 (119)
"	67-74	12.4	152 (134)
" Tige principale	67-88	12.1	138 (100)
Bloc 5, "	66-73	9.4	201 (154)
" Rameau cotylédonaire	59-80	11.0	119 (81)
" Quatre rameaux de base	59-80	6.8	146 (100)

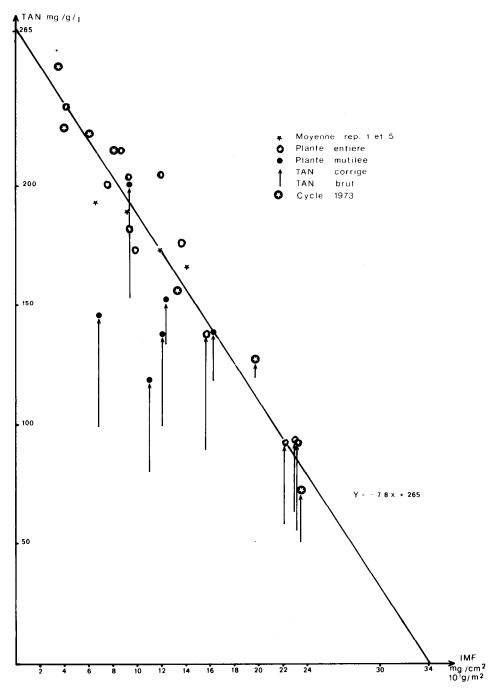
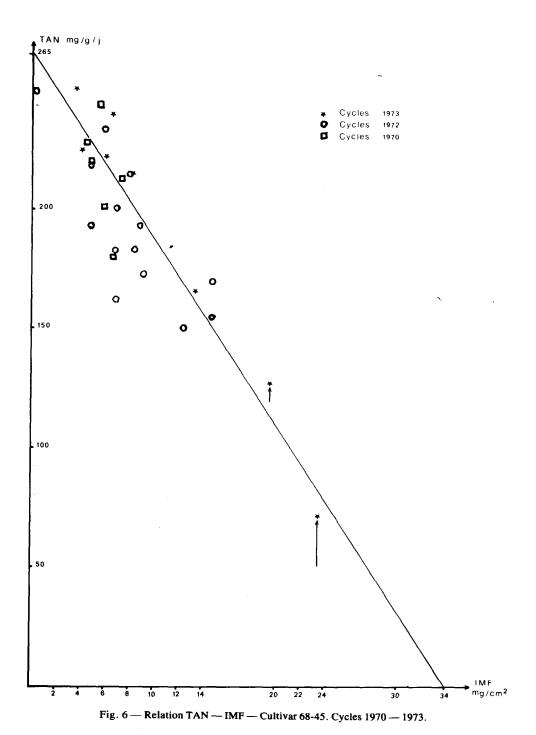



Fig. 5 — Relation TAN — IMF — Cultivar 68-45. Cycles 1976 et 1973.

Cah. O.R.S.T.O.M., sér. Biol., nº 42, 1980: 87-109

TABLEAU XVII

Taux d'assimilation net et indice de masse foliaire.

Cultivar 68-45 en 1973

Période	I.M.F.	T.N.A. corrigé et (brut		
20-27	3.5	250		
27-34	4.0	225		
27-41	6.0	222		
34-41	8.1	215		
41-48	13.3	156		
48-61	19.7	127 (120)		
61-75	23.5	72 (51)		

Sur la figure 6, nous avons essayé de grouper les résultats obtenus avec le cultivar 68-45 pour les relations T.N.A. - I.M.F. pendant la période végétative à divers cycles culturaux, les mesures nécessaire n'ayant pas été toutes effectuées pendant la phase de fructification.

TABLEAU XVIII

Relations TNA - IMF du cultivar 68-45 pendant divers cycles culturaux

Cycle cultural	Période	IMF	TNA
Premier cycle 1970	23-49	4,4	228
-		4,7	220
		5,5	244
		5,9	201
Deuxième cycle 1970	26-59	6,5	180
		7,3	213
Premier cycle 1972	27-48	5,9	233
		6,7	183
		6,8	162
		6,9	200
		7,9	215
	29-50	8,3	183
		8,7	193
		9,1	173
Deuxième cycle 1972	24-40	4,7	219
		4,7	193
	40-60	12,4	150
		14,7	155
		14,7	170
1973	26-42	6,5	240

Ces résultats ne s'éloignent pas de la relation précédemment fixée.

Pour les essais 1976 comme pour ceux des autres années, il existe quelques valeurs nettement supérieures à la droite moyenne, indication de meilleures possibilités de photosynthèse de l'arachide avec des conditions de fertilité optimum, et beaucoup de valeurs nettement inférieures à cette même droite montrant une photosyn-

thèse réduite, dont une des causes principales est peutêtre une fertilité moindre du sol.

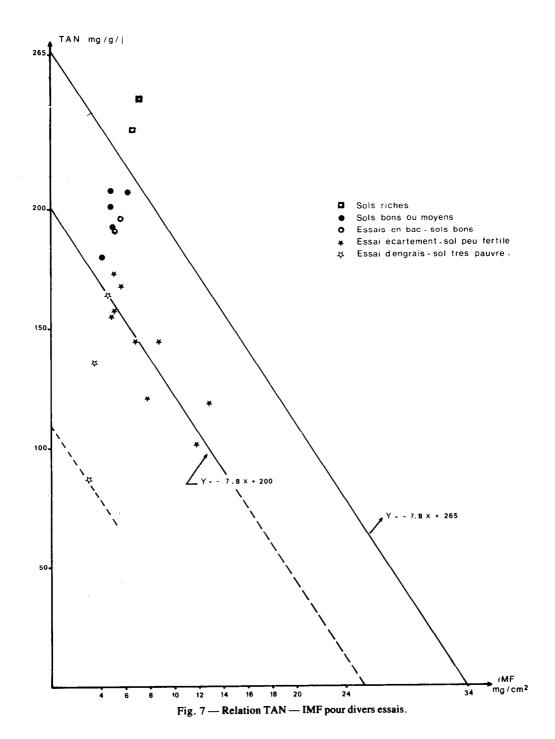
Pour tester cet effet de la fertilité, la figure 7 montre des résultats obtenus avec diverses variétés sur des sols riches, moyens ou même franchement médiocres (tabl. XIX).

TABLEAU XIX

Relation TNA - IMF sur sols divers

Nature de l'essai	Période	I.M.F.	T.N.A.
Ecartement	28-56	4.9	155
		5.1	158
		6.8	145
	l	7.8	121
		8.7	145
		11.8	102
	Ì	12.8	119
Sol riche, deux écartements	22-52	6.6	233
		7.2	246
" peu fertile, 2 écartements	,,	5.1	173
,		5.7	168
Essai en bac	23-49	5.1	191
	25-50	5.6	196
Essai d'engrais, groupe témoin	27-61	3.0	87
(sol très pauvre) groupe PK		3.5	136
groupe NSP		4.5	164
Différents sols : bons	24-53	4.8	207
	26-55	6.1	207
moyens	24-53	4.8	201
,	}	5.0	192
	26-55	4.1	180

Les résultats pour l'essai d'écartement semble se grouper autour d'une droite de régression parallèle à la première telle que


$$y = -7.8 x + 200$$

ce qui correspond à des sols assez peu fertiles. On y retrouve aussi le point correspondant à la meilleure formule d'engrais sur sol très pauvre.

Quant au témoin du sol très pauvre, la valeur de b pour une droite parallèle aux précédentes serait un peu supérieur à 100.

Il serait nécessaire de confirmer sur sol peu fertile ou pauvre, grâce à des mesures effectuées sur des indices de masse foliaire plus élevés pendant la phase de fructification, que les points obtenus permettent effectivement de tracer des droites de pente constante, quelque soit la fertilité du sol.

Si a est constant, à chaque fois que l'indice de masse foliaire augmente de 10 g par mètre carré, chaque gramme produira 7,8 mg de moins au taux net d'assimi-

lation. Ainsi sur un sol fertile, la respiration et les autres pertes seraient supérieures à la photosynthèse si l'IMF était supérieur à $\frac{b}{a}$ soit 34 mg/cm², tandis que ce seuil

serait réduit à 25,6 pour des sols moyennement fertiles.

b augmente comme nous l'avons montré avec la fertilité du sol. Ce serait une constante de photosynthèse pour un niveau de fertilité déterminé propre à une situation donnée. Le coefficient b ne corespond pas à la photosynthèse maximum car la masse surfacique des premières feuilles étant un peu supérieure à 3,0 - la valeur de la photosynthèse est au maximum de 0,9 b. La valeur 265 n'est sans doute pas un maximum pour l'arachide.

3.5. PRODUCTION DE MATIÈRE SÈCHE ET INDICE DE MASSE FOLIAIRE

La production de matière sèche est fonction du produit T.N.A. par I.M.F. ou xy soit : ax² + bx et dans le cas du graphique 5.

$$PMS = xy = -7.8 x^2 + 265 x$$

Le maximum de production Z par unité de surface sera atteint pour $x = \underline{-b} = 17$

c'est-à-dire un indice de masse foliaire de 17 mg/cm² de surface de sol ou 170 g/m² de sol. C'est cette masse de limbe foliaire qui avait déjà été jugée comme optimum pour une bonne production dans une publication précédente (Forestier 1973). Avec une variation de ± 17,5 % de l'IMF soit 140 à 200 g limbe par mètre carré, la diminution de production de matière sèche par unité de surface de sol est seulement de 4 % au maximum. Il serait donc utile pour ce cultivar et sur ce sol de limiter pendant la phase de fructification l'indice de masse foliaire à un maximum de 20 mg/cm². Si la production maximum pour une fertilité donnée change assez peu autour de la valeur optimum de l'IMF vu la variation en sens inverse de l'IMF et du T.A.N., elle varie par contre

beaucoup dès que la valeur optimum de l'IMF est modifiée en fonction de la fertilité du sol. En effet la production maximum Z s'obtient pour un taux net d'assimilation égal à b/2 et un IMF de $-\underline{b}$ soit $Z = -\underline{b^2}$. Comme

b diminue avec la fertilité des sols, la production maximum de matière sèche baissera proportionnellement comme le carré de cette valeur (fig. 8)

3.6. UTILISATION DES PRODUITS DE PHOTOSYNTHÈSE

3.6.1. Répartition globale

Sur cinq répétitions d'un même cultivar poussé en bac de végétation, il a été possible de montrer que du 50° au 102° jour du cycle, date de la récolte, le gain de matière sèche s'est réparti pour 81,6 % dans les fruits et 18,4 % dans la partie végétative. En fait, la fraction de l'énergie utilisée par la plante est encore plus forte pour les fruits si l'on tient compte de leur richesse en lipides et s'élève à 85,8 %. En reculant un peu le départ de la période de fructification, le pourcentage consacré aux fruits pourrait encore être supérieur.

3.6.2. Effet du taux net d'assimilation

Le mauvais grossissement des fruits ne peut être systématiquement dû au taux net d'assimilation. En effet, il est observé aussi bien pour un TNA supérieur à une bonne fertilité (témoin I, période 60-88) que pour un TNA égal à cette fertilité correcte (rameau cotylédonaire I, période 67-74 ou 67-88) ou un TNA de terrain médiocre (témoin 5, période 59-87).

Il n'est donc pas possible d'invoquer une vigueur excessive ou une fertilité insuffisante. Par contre, il est possible de dissocier nettement les conditions de croissance végétative et d'assimilation photosynthétique de la plante de celles nécessaires à une utilisation des produits de photosynthèse profitable pour la récolte des

TABLEAU XX

Valeur de l'utilisation des produits de photosynthèse pendant la phase de fructification

	Rapport fruit	I.M.F.	Taux net d'assimilation			Production	
	/végétation	/végétation	Période	Brut	Corrigé	Valeur	mat. sèche
Désinfection 5	très bon	15.7	59-80	90	138	bonne	excellente
Cycle 1973	moyen	24.7	61-82	39	59	assez bon	moyen
Ram. cotyl. 1	mauvais	12.4	67-74	134	152	assez bon	bonne
" I	mauvais	16.3	67-88	119	139	bonne	excellente
Témoin I	mauvais	26.2	60-88	73	92	très bon	moyen
" 5	mauvais	15.4	59-87	68	90	médiocre	bonne

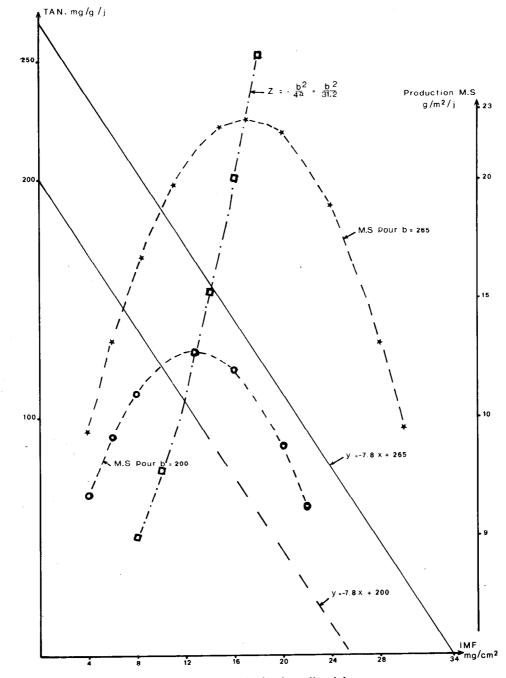


Fig. 8 — Production de matière sèche.

organes de réserve.

Ce dernier tableau XX montre que des indices de masse foliaire très élevés pour des plantes touffues gênent la production de matière sèche pendant la phase de fructification et ne peuvent assurer une fructification à proportion de la végétation (cycle 1973, témoin I). Mais le rapport fruit/végétation est très mauvais pour le traitement d'ablation des rameaux cotylédonaires à la répétition I alors qu'indice de masse foliaire, taux d'assimilation net et production de matière sèche sont ceux d'un terrain fertile: des cas semblables permettent d'assurer que les conditions de fructification sont plus strictes que celles de la production végétative, et que certains facteurs restent à découvrir pour parvenir à faire produire à l'arachide le maximum de graines.

3.6.3. Utilisation sectorielle

Nous avons vu dans l'étude de la répartition des fruits que sur certains pieds produisant beaucoup, il y avait des fruits supplémentaires à la première feuille d'un des rameaux du niveau II ou à la quatrième feuille de la tige principale ou à la troisième feuille du rameau cotylédonaire. L'aspect du pied, et donc ses possibilités de photosynthèse peut-il faire prévoir cette bonne productivité et les sites supplémentaires garnis ? Réciproquement des ablations ou des mutilations de la plante permettent-elles d'expliquer la migration des produits de photosynthèse ?

Il est certain qu'un pied ayant un indice de masse foliaire optimum pour les conditions de fertilité a plus de chance de produire une bonne récolte. Mais il a été possible de noter que les fruits supplémentaires au niveau II sont toujours associés à la présence d'un rameau de niveau II de belle venue, et inversement. Les résultats de l'étude précédente (RAFFAILLAC et al. 1980) démontraient la nécessité de la présence des parties végétatives du rameau pour induire la formation des fruits. L'ablation du rameau à des périodes plus tardives diminue le nombre de fruits récoltables présents à l'exception de ceux existant sur les sites de la première émission végétative. Si l'ablation n'est pas trop importante, par exemple les rameaux de niveau II (20 % de la masse foliaire) la récolte peut être aussi bonne que sur les plantes entières ayant un IMF un peu trop élevé.

Donc la situation de la récolte est prédéterminée par l'induction de grossissement du fruit au début de sa formation (trentième à quarante cinquième jour), induction en rapport avec la présence de fraction végétative. Son importance sur un rameau, surtout pour la marge de bonne récolte (site de seconde ou troisième émission végétative) correspond à la vigueur de ce ra-

meau. Enfin pour l'ensemble du pied existe un correctif exigeant la limitation de l'exubérance végétative pour que la production de matière sèche par unité de surface de sol reste au maximum.

3.6.4. Induction de grossissement du fruit

Cette induction est liée à la présence de la végétation au niveau correspondant. Mais elle n'est pas obligatoire. Nous avons vu que certaines plantes ont un mauvais rapport fruit/partie végétative aérienne. Le tableau VIII montrait que le nombre total de fruits présents était identique ou même supérieur dans le cas de la plante à mauvais rapport.

La nutrition minérale défectueuse ne peut être invoquée puisque le tableau XX démontre que la photosynthèse peut être aussi bonne sur les pieds à mauvais rapport que sur les pieds à rapport correct. Ou alors, il faudrait admettre que les exigences au moment de la fructification sont beaucoup plus étroites que pendant la phase végétative, ou font appel à des éléments jouant un rôle secondaire dans la photosynthèse mais plus important dans le transfert et le stockage de la matière sèche dans les organes de réserve.

Il n'est pas exclu qu'une substance régulatrice de croissance agisse. En effet, sur un pied normal à partir du moment où un certain nombre de fruits grossissent et emmagasinent la matière sèche formée, les autres fruits ont leur développement arrêté à un stade très précoce. Ce mécanisme régulateur apparait sur d'autres plantes à croissance indéterminée végétant en milieu équatorial pour lesquelles les conditions climatiques ne sont pas prépondérantes pour la régulation de la floraison ou la formation des fruits. Parfois, l'un de ces jeunes fruits de l'arachide se développe très rapidement sur un site d'émission plus tardive si les possibilités de photosynthèse du rameau sont excessives par rapport aux fruits servant au stockage. Ceci arrive si un gros fruit est détruit, si le rameau continue de grandir (pied de bordure) ou si le rameau est abîmé avec arrêt de la circulation entre la partie distale portant les folioles et la partie proximale de la tige principale où se trouvent les gros fruits.

De même un grand nombre de nouveaux fruits se développe si l'on ôte toute la récolte vers la fin du cycle normal sans déraciner le pied (FORESTIER 1976). Les fruits existant pourraient donc entraver le développement des fruits plus jeunes. Sur les pieds à mauvais rapport fruit/vegétation aérienne, il est possible que ce mécanisme apparaissse trop rapidement favorisé ou non par des conditions de milieu (micro-hétérogénéité).

Ce mécanisme de contrôle de l'induction du grossissement des fruits serait donc responsable d'une mauvaise utilisation de la matière sèche produite par la plante dans les cas déterminés précocement de fructification insuffisante (60-75° jour). Le raisonnement a été tenu au niveau du fruit dont la croissance est stoppée vers 16-18 mm de long dans le cas de la variété bigraine étudiée. A ce moment les graines ont seulement un millimètre de diamètre. Il y a évidemment grossissement simultané du fruit et des graines à l'intérieur. La stimulation ou le blocage primordial supposé de nature auxinique peut se situer au niveau des graines et non du fruit.

4. CONCLUSION

L'étude du grossissement de la fraction fruits qui comprend 25 % de graines au soixantième jour du cycle et 62 % à la récolte montre un gain journalier moyen de 2,5 % de la matière végétative aérienne soit 6 % de la masse foliaire lorsque les conditions de production de

matière sèche sont à l'optimum ; et plus généralement 2 % et 5 % respectivement.

Indépendamment de la fertilité du sol, le taux net d'assimilation pendant la phase végétative et la phase de fructification est inversement proportionnel à l'indice de masse foliaire selon un coefficient constant si la production de matière sèche est calculée à équivalent calorique constant. Il est alors possible de définir un indice de masse foliaire optimum pour une fertilité donnée du sol afin d'obtenir une production maximum de matière sèche.

L'existence d'un rapport fruit/reste végétatif défectueux dans plusieurs cas se traduit par l'émission d'un grand nombre de gynophores ou de petits fruits ne grossissant pas. L'explication ne pouvant se rapporter à un indice de masse foliaire inadéquat, la possibilité est suggérée d'un dérèglement du processus interne déterminant le grossissement des fruits ou des graines de la plante.

Manuscrit reçu au Service des Publications de l'ORSTOM, le 11 mars 1980.

BIBLIOGRAPHIE

BOUFFIL (F.), 1947. — Biologie, écologie et sélection de l'arachide. Thèse (Ed. Jouve, 15 rue Racine - Paris).

EVANS (A.C.), 1956. — A study of a rosette resistant groundnut variety, Asirya mwitunde - East Afr Agr JI vol. 22, nº 1:27-31.

Forestier (J.), 1973.— Caractères végétatifs, croissance et rendement de l'arachide hâtive. Cah. ORSTOM, série Biol. n° 19: 43-62.

FORESTIER (J.), 1976. — Optimisation des conditions de production

de l'arachide. Cah. ORSTOM, série Biol., vol. II, nº 4 : p 237-248.

RAFFAILLAC (J.P.), FORESTIER (J.), 1980. — Composition et élaboration du rendement de l'arachide. I. Les caractéristiques du rendement et la fructification sur la plante. Cah. ORSTOM, série Biol., nº 42:61-86.

WATSON (D.J.), 1958. — The dependence of net assimilation rate on leaf area index - Annals of botany. NS vol. 22 n° 85: 37-54.