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WHY ARE CLOSED SIGN SYSTEMS
ISOMORPHIC TO MATHEMATICAL GROUPS?

Peter LUCICH

I thank Dr Bertrand Gerard for the opportunity to contribute this paper.
Parts of the argument have been taken from Lucich(1987) which provides
analyses and evidence in greater elaboration

ABSTRACT

Two Australian Aboriginal kinship systems are used as examples of closed
sign systems which are isomorphic to one set of abstract groups. The
isomorphism allows the pursuit and utilisation of other formal properties
such as homomorphism, and the correspondences point to common sets
of structures which stand for combined cognitive operations or
transitions. The latter in turn are required by practices whiche merge
under particular social preconditions, and according to interests that bear
homogeneity, reciprocity, alignment and systematisation.




320 SEMINFOR 2

Socially constructed sign systems with properties of closure are found in
certain forms of kinship reckoning, in mosaic designs, in cycles of time
and number, and in equally tempered musical scales. Their underlying
codes or metalanguages are isomorphic to the group-theoretic structures
of mathematics. The recovery of multi-generator free groups paves the
way for applying the findings of neurobiology as indicatedby Churchland
(1986: 220), and the insights of cognitive psychology as suggested in
different ways - by Cassirer{1944), Piaget(1971). de Mey(1982), and
Leyton{1986:125). .

The first part of this paper is a demonstration of isomorphism, while the
second part points to the bridging assumptions and the societal contexts
within which the isomorphisms become relevant. The form of social
organization most germane to the demonstration is in the field of
elementary kinship, notably that of the Aboriginal Australians. The
relevance to kinship cognition is in the distributions of terms and
genealogical kintypes onto the models frequently proposed by
ethnographers, models characterised by periodicity and symmetry. Such
models are also constructed by mathematicians in a tradition that
includes Weil(1949/70), White(1963), Courrége(1965), Boyd(1969),
Cargal(1978), de Meur and Jorion{1981), and Tjon Sie Fat{1981).

When specific sibling and spouse equation rules formally define
equivalences in a genealogieal tree they also entail homogeneous
structures which match the axioms of group theory. Those axioms and
structures identify patterns. permutations and the limits to the possible.
In particular, the mathematical properties of defining relations,
isomorphism, conjugacy and homomorphism are paralleled respectively
in the spouse equations, deep structures, skew rules and sociocentric
classes of the ethnographers' kinship models. '

A first step in model construction is to start from the concept of a free
group generated by X and Y. The realisation for Australian kinship
requires that X and Y each stand for a distinct type of reckoning or
tracing action. Generator X stands for the action of tracing the relation or
transition to ZHsib (sister's husband's sibling)! , and generator Y stands
for the action of tracing the relation or transition to BC (brother's child).
The actions are regarded as reversible, and the class of ego and siblings is

1 The convention here is that B = Brother, D = Daughter, F = Father, H =,Husband.M =Mother, S
=Son,W=Wife,Z=Sister, and sib= sibling.

This is the presentation ofa group in terms of a free group, since any group js isomoiphic to a
factorgroup of a free group (Scott1964: 187). According to the convention used by Baumslag and

Chandler(1968: 253), HB is isomorphic to | XY, X2 . X Y2|2. Y—4(XY)4 f
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taken as the identity element. The Cayley diagram for this group is shown
in Figure 1 which is adapted from d'Adhemar (1976:136). The double
lines signify generator X and the single lines signify generator Y. Words
consisting of any product or sequence of various powers of X and Y will
then define particular classes of kin (including their equivalent siblings).
The next step is to define a particular cluster of cousins as equal to
spouse. Different spouse equations produce different structures of
homogeneous redundancy. If the defining relations happen to be

x2 = x1lvy2xvy?)2- 1, vi= xnt

then there are four specific third cousins in the same class as BWsib
{Lucich 1987: 146-8, 195). The redefinition of Figure 1 according to
these relations? produces the group Hgasa factor group of Figure 1. This

is shown in Figure 2 as a central column surrounded by helical paths. Its
vertices are labelled according to another factor group known as 32l,a,.

This is produced when Y% is relabelled as the identity element, and the
multiplicationtable for that group is in Thomas and Wood (1980).3

Generator X and Y can also permute so that the same structure may have
two realisations. Realisation One has ,

x=X1=2zHsb, Y=BC,
while Realisation Two has

X =x"1=BcC, Y = ZHsib.

Realisation One has BWsib equivalent to FM(MBC)BDC and three other
third cousins, while Realisation Two has BWsib equivalent to FMBSC (a
second cousin) andFM(MBC)BDC plus others (Lucich1987: 195).

The helical structure can be apened out as shown in Figure 3, which as
Realisation Two allows the allocation of kin terms from the Worora tribe

2 The homomorphisms relevant to elementary kinship also include those between infinite groups and
their factor groups, as illustrated in the relationships between 230 (infinite} space groups and the 32
(finite) crystallographic point groups (CoxeterandMoser1957: 35).

3 3 The factor group 32G,a, is produced by adjoining the relation Y4*= 1.

The notation is from Hall and Senior(1964). This group has a factor group of structure C_ which is the

homomorphic image produced when its subgroup lsta 1 is redefined as the kernel (Lucich1987:107).
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of the Kimberley area of Western Australia (Lucich 1987: 330). The
allocations are such that the inter-term relations correspond to
appropriate inter-vertex relations on the model. For greater contrast.
generator Y is shown as a dotted line.

Realisation One can serve as the scaffold for the kin terms of the Aluridja
of South Australia (Elkin 1939: 210-32; 1940: 307, 344; Lucich 1987:
265-89). In other words the Worora and Aluridja systems can both be
displayed as transforms of each other on the same group structure of H*.
The distribution of terms on vertices is not exactly 1:1, and is subject to
other specific rules.

The _factor group 321‘731 is also a factor group of the P 44 Wallpaper group

where generator X stands for a half-turn, and generator Y stands for a
quarter-turn. A visual realisation is shown in Figure 4 together with a P,

subgroup realised as white arrows. There are only 17 possible wallpaper
designs in the strict sense and some of their Cayley diagrams correspond
to particular spouse equation structures. In this example the diagram for

P4 can be used to display 32r,a; and the two kinship realisations as
shownin Figures 5 and6. The Hg or helical version in Figure 2 remains a
more accurate model of spouse equivalence, since the planar format of P,
separates particular cousins which are combined as spouses in the H8
model. ;
Further, the P, subgroup of P, is the kernel of the C_homomorphic
image corresponding to generation levels in Realisation One and
patrimoieties in RealisationTwo. There is an asymmetry here in that

Py

P2 02. but P2 X 02 # P4

4 The defining relations for p4 are given by Coxeter and Moser (1957:46) as

x2=vt ot =pm? -

Factorgroup 3267a 1 is produced by adjoining the relations (YXY) (xv ) =1

The relevant <, factor group is produced by redefining the index 2 subgroup p2 as the kernel. .
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. This suggests that sociocentric classes are more easily derived from
kinship structures than the reverse relation. The planar realisation in P 4

is isomorphic to these kinship systems, provided that certain simplifying
conditions are met, and the structural entailments allow the above
speculations on the derivations of the two-class systems. In this view the
elementary kinship structures are usefully seen as multiple super-
imposed homomorphic images. Developmental transformations can also
be modelled through those factor groups which correspond to possible
precursors. Finally, for each system the meaning of any element is
ultimately definable by the combining of generators. Vertex 5 (for
example) is XYX which is umari in Aluridja and ibaia in Worora.
Translation then depends on appropriate substitutions for X and Y. The
isomorphisms are summarised in Table 1.

Table 1 Four realisations of P 4 and its P, subgroup

Cayley Diagram Wallpaper Aluridjsa Worora
gogures 5,66 F‘ig:rc 4 Figure! Figure 6
uble line Half turn Marriage Pastrifiliation
Generator X (ZHsib,BWsib) (BC,Fsib)
Dotted line ‘Quarter turn Patrifiliation Marriage
Generator Y (BC® (ZHsib)
Continous Displaced Matrifiliation - Cross-generation-
line Generator quarter turn (ZHsib)(BC) affinal cycle
XY=2 ‘ or ZC (Fsib)(ZHstb) or FZH
Vertex ‘ Lquivalence Equivalence Equivalence
‘ class of class of class of
-congruence motions -classificatory siblings
' -paths from reference -paths from ego
Vertex umari ibaia
1XYX) (ZDHsib}) (FZC)
P, subgroup “WHITE OWN OWN
' MOTIFS GENERATION PATRIMOETY
11x88x : LEVEL -
11 11x 14 14x
33x 16 16x
9 9x 6 6x
(C2 coset)

The kinship entries in the table are an interchange or permutation of
marriage and patrifiliation, and the fact that the Aluridja and Worora
groups of operations can be precisely aligned or mapped onto each other
illustrates one particular isomorphism.

It is also possible to select other generators such as XY or Z (which stands
for matrifiliation in the Aluridja model).
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The distribution of black and white in Figure 4 involves the same formal
resource that allocates generation levels and patrimoieties to the kinship
models for Aluridja and Worora respectively, as shown in the capitalised -
entries in Table 1. In other words, the relation of homomorphism creates
the reduced homomorphic image of structure C2 which is variously

realised as a regular two-colour contrast or the endogamous moiety
system or the patrimoiety system.

Any axiomatic treatment must be broadened to include not only
elementary kinship and wallpaper design but also other cultural systems
of permutations, especially the equally tempered musical scale. Here the
free group is C_, and the factor group is C,; o ‘which relations  also

correspond to the twelve hours on a clockface(Budden1972:429-31,436-
8).

Table II from Lucich (1987: 438) summarises some of the isomorphisms.

“Table 2 Strucutureof codes for different domains and purposes

[COMAN MEANS _ END
Group - - Homomorphic Image Purpose
Elementary -~ = CexD,pl C4xCg, Do, Dy _ Balanced
kinship ‘ reciprocity,
cm cm-col 1615¢c1.Dg Align different.
. systems, )
F'4 P4g H8, 321731 Reduction
Visual symetries Ceox Dy, pl v ' Express the code
, ’ : “cmP 4 P4t _ Enhance the
. . : code via
Coo Deo Cn D colours
Equal - Coo Ci2 Align different |
temperament keys and :
instruments
‘Kula Des Equalised -
reciprocity

Permutation systems (Dg D4 Dg Dy x D), Ag) Systematisation

The tlable shows that the same purposes and structures can recur across
entirely separate domains and cultures, and the first three entries display
a common pattern of reduction to simple structures by using the
homomorphisms of infinite groups. - ' :
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The examples depend on homogeneous structures of equivalence classes,
and the diverse manifestations are here reduced to their structures of
combined operations. One necessary assumption is that the agents
umversally and at some level are able to make computations isomorphic to
relational products of the separate operations (Lehman 1985: 24-7, 40-1).
It is further necessary that they can accomplish the appropriate
homomorphic reductions. , :

The heading END/Purpose takes the ‘argument from the formal to the
explanatory. Isomorphisms emerge when agents’' purposes imply
reciprocity, alignment or systematisation, when the domains require
regular, successive, reversible and coordinated transitions, and when the
mind is capable of formal operational thought. The latter point refers to
Piaget's assumptions about combinatorial thought, human cognitive
capacities and their realisation in socially shared scliemata. However, it is
not mind alone which is the cause here, otherwise the manifestations
would be everywhere. ‘

Table HI (Lucich 1987: 445) shows the distribution of those domains
which become the vehicle for intended homogeneous structures of
cognitive operations.

Table 3 Distribution of combinatorial sign systems by domain and societal type

Domain Hunter-gatherer Communal Theocratic _Civilizational
Elementary kinship +4+4+ + -

Visual symmetries + ++ +++

Equal temperament ‘ : +++
Permutation systems ++ + + +

The societal typology shouldbe regarded as averybroad classification based
on technology and scale, and the table entries are only approximate
measures of emphasis. The point of the table is that it is the varying social
context (and not just the mind) which calls forth the appropriate
purposes.

An explanatory synthesis therefore entails the complementary claims of
mind and social exigency. Under certain preconditions, practices with
symmetries of combined operations are created to achieve particular
purposes. Their associated sign systems are restricted in the
combinations of their elements, with practical limits expressible finally in
terms of logical consistency.
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Figure 1 Free group G generate by {x,y }
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g

Figure 4 The P, subgroup of P, realised as the kernel of the latter's
two-colour contrast ‘
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Figure 8 Realisation T One of P 4 with vertices labelled according ‘to 3217a
and Aluridja kinship
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