

010016939

.

Ce rapport présente l'ensemble des données acquises par l'équipe de J.Y. GAC (Laboratoire de Géologie, Orstom Dakar, Sénégal) depuis 1983 sur la qualité chimique des poussières atmosphériques déposées en Afrique de l'Ouest.

1

Les lieux d'observations concernés sont Nouakchott (Mauritanie) en 1983, Dakar (Sénégal) de 1983 à 1987, Pété (Sénégal) de 1986 à 1987 et Mbour (Sénégal) de 1986 à 1987.

Les analyses chimiques ont été réalisées pour une part par J. GAUTHEYROU du Laboratoire des Formations Superficielles de l'Orstom à Bondy (France) et pour une autre part par H. PAQUET du Centre de Géochimie de la Surface du CNRS à Strasbourg (France).

Les premiers résultats de ces analyses seront présentés au Congrés de l'IAHS en juillet 1993 au Japon par D. ORANGE. Cette communication correspond à l'article ci-joint en annexe sous sa forme *pre-print* intitulé : **Constituent composition** of Harmattan dust and geochemical balance of atmospheric depositions in continental West Africa.

## 1) Les résultats d'analyse chimique

L

Le lot d'échantillons analysés (85 au total) correspond à :

- 1 échantillon de Nouakchott regroupant la période 3-10/4/83,

- 49 échantillons de Dakar se répartissant en :

- 2 échantillons événementiels de 1983,

- 9 échantillons à regroupement mensuel de 1984,

- 12 échantillons à regroupement mensuel de 1985,

- 12 échantillons à regroupement mensuel de 1986,

- 9 échantillons à regroupement mensuel de 1987,

- 5 échantillons correspondant aux cinq dépôts journaliers les plus élevés de 1987 ;

- 15 échantillons de Pété se répartissant en :

- 9 échantillons à regroupement mensuel de 1986,

- 5 échantillons à regroupement mensuel de 1987,

- 1 échantillon correspondant au plus fort dépôt enregistré en 1987 ;

- 20 échantillons de Mbour se répartissant en :

- 12 échantillons à regroupement mensuel de 1986,

- 8 échantillons à regroupement mensuel de 1987.

|                 |                   |                             | Poussi                   | ères at        | mos          | phér         | iques          | \$               |              |                     | naly                | ses c          | himiq          | ues           |                             |                   |                           |                |                |                             |
|-----------------|-------------------|-----------------------------|--------------------------|----------------|--------------|--------------|----------------|------------------|--------------|---------------------|---------------------|----------------|----------------|---------------|-----------------------------|-------------------|---------------------------|----------------|----------------|-----------------------------|
| tation          | I North           | kchott                      | Dakar                    | Daka           |              | okar         | Dakar          | Daka             | r Da         | kar [               | )akar               | Daka           | r Daks         | r Dek         |                             | ar De             | kar D                     | akar           | Dakar          | Dal                         |
| eel.            | Ň                 | 001                         | ĂË.24.D                  | Z AE.29.0      | IT N         | 7716         | 117717         | 11771            | 8 117        | 719 1               | 17720               | 11772          | 1 1177         | 22 1177       | 23 117                      | 724 11            | 7725 11                   | 7728           | 11772          | 117                         |
| 2ate<br>2(g/m2) | 3-11              | 0/4/83<br>,46               | 21-27/3/8                | 3 25-1/5/      | 33 Ja<br>1   | .03          | Fév-84<br>1,62 | Mar-8            | 4 AV         | r-84   N<br>65      | 1ai-84<br>1,17      | Jui-84         | 1 Oct-8        | 4 Nov-        | 34 Déc<br>3 0,6             | -84 Ja            | n-85 Fé                   | v-85           | Mar-85<br>0,93 | 6 Avr                       |
| aborattire      | 1 5               | stbg                        | Stbg                     | Stbg           | 5            | stbg         | Stbg           | Stbg             | St           | tbg                 | Stbg                | Stbg           | Stb            | ) Stb         | 3 Sti                       | xg S              | tbg S                     | Stbg           | Stbg           | St                          |
| ND2(1)          |                   | 3,1                         | /1,0                     | /3,0           |              | 3,4          | 74,9           | /5,0             |              | 4,4                 | 74,0                | 75,6           | /4,:           | <u> </u>      | / /0                        | <u>,9   7</u>     | 2,1 /                     | 3,5            | /1,8           | + <sup><math>n</math></sup> |
| HD2(2)          |                   | 0.5                         | 93                       | 10.9           | -            | 24           | 13.4           | 123              | - 11         | 19                  | 11 7                | 12.2           | 128            | 12            | 12                          | 8 1               | 24                        | 28             | 13.3           | 12                          |
| ±203            | 1                 | 3,4                         | 3,8                      | 4,0            |              | 5,1          | 5,1            | 4,9              | 5            | ,3                  | 4,9                 | 4,7            | 5,2            | 5,1           | 5,                          | 4 4               | 4,8                       | 4,8            | 5,1            | 4                           |
| 1102<br>in 304  | <u> </u>          | ,64<br>,049                 | 0,68                     | 0,81           |              | ,98<br>,093  | 1,04           | 0,96             | 5 0,0        | ,96<br>065 (        | 0,89<br>0,070       | 0,86           | 0,93           | 9 0,86        | <u>3 0,8</u><br>3 0.0       | 95 0<br>71 0.     | <u>,90   0</u><br>063   0 | ),96<br>.073   | 0,94           | 0,                          |
| m02             | 1                 |                             |                          |                |              | 100          | 0 210          | 0.200            |              | 280                 | 1 220               | 0.010          | 0.25           | 0 0 24        |                             | 20 0              | 460 0                     | 140            | 0.190          |                             |
| 280             | 2                 | .,40                        | 2,00                     | 2,00           |              | 2,00         | 1,50           | 2,00             | 2,           | ,40                 | 2,10                | 2,20           | 2,30           | 2,20          | ) 2,1                       | 0 2               | 20 1                      | ,50            | 1,90           | 2                           |
| 20              | 1 2               | 2,22<br>2,34                | 1,22                     | 2,30           |              | 2,20         | 1,35           | 1,51             | - 1,         | 42                  | <u>1,42</u><br>2,10 | 1,59           | 1,54           | 1,4           | $\frac{1}{5}$ $\frac{1}{2}$ | 6 1<br>8 2        | ,49 1<br>,22 2            | 1,31<br>2,20   | 2,25           | 2                           |
| a20             | 1                 | ,45                         | 1,04                     | 1,24           |              | 0,96         | 0,92           | 1,08             | 0,           | 90                  | 1,02                | 1,11           | 1,08           | 1,0           | 1,2                         | 20 1              | ,43 (                     | ),98<br>( 92   | 0,98           | 1                           |
| aD              | 0                 | ,070                        | 0,060                    | 0,060          | Ó            | ,070         | 0,070          | 0,060            | 0,0          | 070 0               | 0,070               | 0,00           | 0,00           | 0 0,07        | 0 0,2                       | 40 0,             | 280 0                     | ,070           | 0,070          | 0.                          |
| TO              | <u>i 0</u> .<br>i | ,020                        | 0,000                    | 0,010          | 0            | ,040         | 0,030          | 0,020            | 0,0          | 020 (               | 0,030               | 0,020          | 0,02           | 0 0,02        | 0 0,0                       | 30 0,             | 020 0                     | ,040           | 0,040          | 0,                          |
| otal            | 10                | 0,719                       | 98,566                   | 100,7          | 3 98         | 3,923        | 100,8          | 100,9            | 4 99,        | 765                 | 99,13               | 100,9          | 3 101,0        | 5 98,19       | 98,3                        | 61 98             | ,063 98                   | 3,173          | 98,145         | 97                          |
|                 |                   |                             |                          |                |              |              |                |                  |              |                     |                     |                |                |               |                             |                   |                           |                |                |                             |
|                 | 1                 |                             |                          |                | <u> </u>     | _            |                |                  | <u> </u>     |                     |                     |                |                |               | <u> </u>                    |                   |                           |                |                |                             |
| Station<br>Ref. | Dak<br> 1177      | ar   Dal                    | ar   Daka<br>730 11773   | r Dakar        | Dal          | (ar D        | akar<br>7734   | Dakar            | Daka         | ar Da<br>36 117     | kar                 | Dakar<br>17738 | Dakar          | Dakar<br>D1   | Daka                        | r Dak             | ar Dal                    | car [          | Dakar          | Dak                         |
| Date            | Mizi-             | 85 Jui-                     | 85 Jul-8                 | 5 A00-85       | Sep          | -85 O        | ct-85          | Nov-85           | Déc-l        | 85 Jar              | 1-86 F              | év-86          | Mar-86         | Avr-86        | Mal-8                       | 6 Jul-8           | 36 Jui-                   | 86 A           | 00-86          | Sep                         |
| abontoir        | e   Stb           | 0 0,9<br>g Stt              | 3 0,29<br>xg Stbg        | 0,14<br>Stbg   | 0,2<br>Sti   | 29 (<br>29 ( | ),38<br>Stbg   | 0,32<br>Stbg     | 0,47<br>Stb( | 7. 0,<br>a Si       | 89<br>bg            | 0,54<br>Stba   | 1,16<br>Stbg   | 0,56<br>Bondy | 0,50<br>Bond                | 0,5<br>v Bone     | 2 0,2<br>dv Bor           | 21<br>Idv E    | 0,39<br>Bondy  | 0,2<br>Bon                  |
| SiO2(7)         | 73,               | 1 72                        | 9 67,7                   | 66,0           | 68           | 8            | 70,0           | 70,0             | 70,3         | 3 70                | ),6                 | 72,4           | 74,0           | 77,3          | 74,4                        | 79,               | 2 72                      | 6              | 76,8           | 69,                         |
| SiO2(;)         |                   |                             |                          |                |              |              |                |                  |              |                     |                     |                |                | 17,5          | 17,9                        | 16,               | 2 52<br>0 20              | ,3             | 59,7<br>17,1   | 44,<br>25,                  |
| A1203           | 1 10,             | 9 12                        | . <u>7 15,2</u><br>8 6,7 | 15,1           | 14<br>6.     | <u>,2 '</u>  | 3,9<br>5.9     | 13,8<br>6.2      | 14,5         | 5 14                | 4,5<br>.6           | 13,1<br>5.4    | 12,6           | 9,4           | 9,7                         | 8,8               | 3 10                      | ,6<br>0        | 8,8            | 13,                         |
| TiO2            | 0.7               | 3 0,8                       | 5 1,04                   | 1,10           | 0,9          | 7            | 1,00           | 1,00             | 1,03         | 3 1,                | 04                  | 0,96           | 0,95           | 0,81          | 0,81                        | 0,7               | 5 0,8                     | 37             | 0,75           | 0,8                         |
| MnOI            | 0,3-              | 13 0,0                      | 55 0,070                 | 5 0,073        | 0,0          |              | ,063           | 0,067            | 0,07         | 2 0,0               | 076                 | 0,072          | 0,080          | 0,079         | 0,078                       | 0,07              | 9 0.0                     | 77 (           | 0.077          | 0.07                        |
| P2O5<br>DaO     | : D,16            | <u>50   0,10</u><br>0   1.8 | 30 0,480                 | 2 80           | 0,3          | 40 0         | ,330           | 0,340            | 0,31         | 0 0,2               | 230 (               | 0,220          | 0,190          | 0,219         | 0,244                       | 0,22              | 25 0,4                    | 75 (           | 0,412          | 0,38                        |
| MgO             | 1,2               | 3 1,4                       | 4 1,83                   | 1,82           | 1,8          | 3            | ,60            | 1,71             | 1,65         | 5 1,                | 56.                 | 1,52           | 1,56           | 1,50          | 1,56                        | 1,3               | 2 3,0<br>1 1,5            | 50             | 1,37           | 2,0                         |
| Na20            | 1 1.0             | o 2,2<br>6 1,0              | 2 0,88                   | 0,86           | 2,2          | 2            | ,06            | 2,14             | 2,28         | <u>3 2,</u><br>4 0, | 33<br>96            | 2,31<br>1,05   | 2,35           | 0,87          | 1,12                        | 0.9               | 0 0,8<br>2 0,9            | 37<br>95       | 0,87           | 1,3                         |
| #20+<br>Ba0     | 1.8               | 0 1,9                       | 4 0,72                   | 1,67           | 1,8          | 2 1          | 070            | 1,07             | 0,02         | 2 1,                | 09                  | 0,58           | 0,00           | 2,08          | 2,85                        | 0,8               | 6 2,1                     | 6              | 1,83           | 2,6                         |
| SrO             | 0,72              | 20 0,0                      | 20 0,030                 | 0,030          | 0,0          | 30 0         | ,020           | 0,030            | 0,03         | 0 0,0               | 030                 | 0,020          | 0,020          | 0,005         | 0,034                       | . 0,03            | 0,0<br>i                  | 4/ (           | 1,037          | 0,04                        |
| Total           | 198,1             | 99 98,0                     | 63 99,27                 | 6 98,333       | 98,1         | 81 98        | ,363           | 98,927           | 99,98        | 32 98,              | 906 9               | 9,422          | 100,12         | 97,917        | 97,14                       | 3 99,1            | 4 97,8                    | 39 9           | 8,166          | 97,4                        |
|                 | ·········         |                             | · · · · ·                |                |              | <u> </u>     |                |                  |              |                     | 1                   |                |                |               |                             |                   | 1                         |                | T              |                             |
|                 |                   |                             |                          |                |              |              |                |                  | =            |                     |                     |                |                |               |                             |                   |                           |                |                |                             |
| tion            | Dakar             | Dakar                       | Dakar                    | Dakar D        | akar         | Daka         | ar Da          | kar D            | akar         | Daka                | Dak                 | ar Da          | ikar D         | akar [        | Dakar                       | Dakar             | Dak                       | ar C           | Dakar          | Da                          |
| æ               | Oct-83            | Nov-86                      | Déc-86                   | Jan-87 F       | 511<br>9v-87 | Mar-         | 37 AVI         | -87 M            | al-87        | Jul-87              | Jul-                | 87 A0          | 0-87 S         | 218 ac        | 12/87                       | ae87-5<br>27/2/87 | 8 ae87-<br>7 10/3/        | 68 ae<br>87 24 | 4/3/87         | ae87<br>19/                 |
| m2)             | 0,48<br>Bondy     | 0,35<br>Bondy               | 0,40<br>Bondy            | 0,30 0         | ),52<br>ondv | 0,8          | 5 0,<br>IV Bo  | 96 1<br>ndv B    | ,18          | 0,43                | 0,3                 | 9 0<br>dy Br   | ,29 (          | 0,35          | 2,05<br>Siba                | 1,34              | 4,3                       | 5              | 2,45           | 3,                          |
| 2(T)            | 78,1              | 73,6                        | 70,8                     | 71,5           | 3,1          | 76,8         | 5 75           | ,8 7             | 5,4          | 75,7                | 73,                 | 3 7            | 4,4 T          | 1,2           | 87,3                        | 67,9              | 73,                       |                | 67,4           | 69                          |
| 2(1)<br>2(2)    | 17,3              |                             | 49,7                     | 53,4 1<br>18,1 | 5,7<br>7,4   | 16,5         | 5 17           | ,5 5<br>,3 1     | 7,2          | 58,1<br>17,6        | 55                  | 6 5<br>8 1     | 5,8 ÷          | 9,9           |                             |                   |                           |                |                |                             |
| 03<br>03        | 8,5<br>5.4        | 10,6                        | 11,9<br>8.8              | 10,0           | 0,0<br>8 1   | 9,2          | 9              | 3                | 8,8<br>5.0   | 9,1                 | 10                  | 1 8            | 9,7 '          | 1,5           | 11,9                        | 11,7              | 10,5                      | 5              | 11,8           | 10                          |
| 2               | 0,75              | 0,94                        | 0,92                     | 0,87           | 0,80<br>),80 | 0,8          | 5 0,1          | 87 0             | ,72          | 0,84                | 0,8                 | 4 0            | ,84 (          | 0,80          | 4,0<br>0,89                 | 0,89              | 0,84                      |                | 4,7<br>0,90    | 0,                          |
| 2               | 0,079             | 0,089                       | 0,103                    | 0,079 0        | ,079         | 0,07         | 9 0,0          | 79 0             | 087          | 0,089               | 0,0                 | 39 0,          | 089 0          | ,095          | 0,063                       | 0,064             | 0,05                      | 8 0            | 0,065          | 0.0                         |
| 25              | 0,244             | 0,297                       | 0,400                    | 0,412 0        | 255          | 0,24         | 0 0,2          | 50 0             | 135          | 0,258               | 0,30                | <u>37 0,</u>   | 350 0          | ,670 (        | 0,180                       | 0,180             | 0,11                      | 0 0            | 0,140          | 0,1                         |
| 2               | 1,62              | 1,58                        | 1,50                     | 1,50           | ,50          | 1,40         | 1,             | 35 1             | ,80          | 1,50                | 1,5                 | 0 1            | 47 1           | ,75           | 1,43                        | 1,19              | 1,00                      | í –            | 1,41           | 1.                          |
| 20              | 1,08<br>0,18      | 1,12<br>0,15                | 1,07<br>0,16             | 0,94           | ,05<br>),21  | 1,00         |                | 95   1<br>12   0 | ,05          | 0,95                | 0,9                 | 7 0<br>6 0     | ,97 1<br>.15 ( | ,17           | 2,12                        | 1,95              | 2,13                      |                | 2,17           | 1,                          |
| 2+              | 2,34              | 3,34                        | 4,05                     | 4,43 4         | ,21          | 2,75         | 3,2            | 73 3             | .94          | 3,67                | 4,1                 | 6 4            | 17 3           | ,41           | 8,24                        | 8,75              | 5,43                      |                | 8,52           | 8,                          |
| <br>}           | 0,032             | 0,012                       | 0,020                    | 0,030 0        | ,028<br>,020 | 0,03         | 0 0,0<br>0 0,0 | 39 0,<br>15 0,   | 031          | 0,038               | 0,03                | 53 0,<br>12 0, | 030 0          | 030 (         | ,060                        | 0,060             | 0,06                      |                | 0,060<br>0,010 | 0,0                         |
| al              | 97,665            | 96,659                      | 95,949                   | 95,566 95      | ,792         | 97,24        | 9 96.2         | 273 96           | .058         | 96,333              | 95.8                | 41 95          | 831 96         | .595 A        | 1.763                       | 91.254            | 94 56                     | 8 9            | 1.475          | 91                          |
|                 |                   |                             |                          |                |              |              |                |                  | مہ خ         |                     |                     |                |                |               | <u></u>                     |                   |                           |                |                | <u>, , ,</u>                |
|                 |                   |                             |                          |                |              |              |                |                  |              |                     |                     |                |                |               |                             |                   |                           |                |                |                             |

#### . 14 L = . . :

\* \* \* \*

|                 |         |         |        |        |        |                                                                                                                 |        |        |        |                                                                                                                | _                                      |        |        |        |        |        |        |        |
|-----------------|---------|---------|--------|--------|--------|-----------------------------------------------------------------------------------------------------------------|--------|--------|--------|----------------------------------------------------------------------------------------------------------------|----------------------------------------|--------|--------|--------|--------|--------|--------|--------|
|                 |         |         |        |        |        |                                                                                                                 |        |        |        |                                                                                                                |                                        |        |        |        |        |        |        |        |
|                 |         |         |        |        |        |                                                                                                                 |        |        |        |                                                                                                                |                                        |        | ·      |        |        |        |        |        |
|                 |         |         | l      | 1      |        |                                                                                                                 |        |        |        |                                                                                                                |                                        |        |        |        |        |        |        |        |
| Stration        | Péri    | Pété    | Pété   | Pété   | Pété   | Pété                                                                                                            | Pété   | Pété   | Pété   | Pété                                                                                                           | Pété                                   | Pété   | Pété   | Pété   | Pété   | Mbour  | Mbour  | Mbour  |
| Rest.           | i Pi    | P2      | P3     | P4     | P5     | Pð                                                                                                              | P7     | P8     | P9     | P10                                                                                                            | P11                                    | P12    | P13    | P14    | P15    | M1     | M2     | M3     |
| Gatte           | IFev-36 | Maar-88 | Avr-88 | Mal-86 | Jul-86 | Jul-86                                                                                                          | Oct-86 | Nov-86 | Déc-86 | Jan-87                                                                                                         | Fév-87                                 | Mar-87 | Avr-87 | Mai-87 | 5/5/87 | Jan-86 | Fév-86 | Mar-86 |
| <b>X</b> (m/m2) | 0,41    | Q,45    | 0,28   | 0,49   | 0,35   | 0,31                                                                                                            | 0,27   | .0,26  | 0,64   | 0,34                                                                                                           | 0,67                                   | 0,89   | 0,79   | 1,65   | 20,86  | 0,29   | 0,24   | 0,35   |
| amoratore       | Bonry   | Bondy   | Bondy  | Bondy  | Bondy  | Bondy                                                                                                           | Bondy  | Bondy  | Bondy  | Bondy                                                                                                          | Bondy                                  | Bondy  | Bondy  | Bondy  | Bondy  | Bondy  | Bondy  | Bondy  |
| SICO2(T)        | 77,2    | 75,1    | 73,7   | 75,5   | 76,5   | 77,4                                                                                                            | 76,9   | 79,2   | 76,3   | 78,3                                                                                                           | 79,8                                   | 80,1   | 78,9   | 74,0   | 74,0   | 73,0   | 75,3   | 76,9   |
| SICO2(1)        | 1 59,\$ | 56,0    | 52,6   | 55,7   | 57,6   | 59,3                                                                                                            | 58,8   | 62,3   | 56,7   | 60,5                                                                                                           | 63,3                                   | 64,3   | 62,0   | 54,5   | 55,2   | 51,8   | 56,2   | 58,0   |
| Si(D2(2)        | 18,1    | 1.9,2   | 21,1   | 19,8   | 18,9   | 18,1                                                                                                            | 18,1   | 16,9   | 19,6   | 17,8                                                                                                           | 16,5                                   | 15,8   | 16,9   | 19,5   | 18,8   | 21,4   | 19,1   | 18,9   |
| 117203          | 10,3    | 1:1,0   | 12,4   | 11,2   | 11,0   | 10,4                                                                                                            | 10,3   | 9,6    | 11,0   | 10,5                                                                                                           | 9,4                                    | 9,0    | 9,5    | 10,4   | 9,8    | 12,5   | 11,1   | 10,3   |
|                 | 11 5,2  | 5,3     | 5,9    | 5,5    | 5,6    | 5,4                                                                                                             | 5,0    | 4,8    | 5,3    | 4,9                                                                                                            | 4,6                                    | 4,5    | 4,8    | 5,5    | 5,6    | 6,3    | 5,8    | 5,3    |
| TTCD2           | i 0,91  | 0,92    | 1,03   | 1,00   | 1,00   | 1,00                                                                                                            | 0,80   | 0,80   | 0,97   | 0,95                                                                                                           | 0,87                                   | 0,87   | 0,92   | 0,92   | 0,75   | 1,12   | 1,00   | 1,00   |
| Mm304           |         |         |        |        |        |                                                                                                                 |        |        |        |                                                                                                                |                                        |        |        |        |        |        |        |        |
| MmO2            | 0,035   | 0,103   | 0,119  | 0,118  | 0,110  | 0,099                                                                                                           | 0,095  | 0,095  | 0,095  | 0,103                                                                                                          | 0.071                                  | 0,079  | 0,079  | 0,095  | 0,099  | 0,099  | 0,095  | 0,103  |
| P2205           | 1 0,140 | 0,135   | 0,141  | 0,115  | 0,130  | 0,125                                                                                                           | 0,170  | 0,190  | 0,160  | 0,200                                                                                                          | 0,165                                  | 0,140  | 0,150  | 0,120  | 0,112  | 0,294  | 0,305  | 0,275  |
| C=0             | 0,52    | fi,,10  | 0,69   | 0,67   | 0,60   | 0,55                                                                                                            | 0,56   | 0,52   | 0,60   | 0,72                                                                                                           | 0,66                                   | 0,16   | 0,77   | 2,15   | 2,70   | 0,87   | 0,95   | 0,85   |
| ManD            | 1,25    | 1,40    | 1,44   | 1,50   | 1,42   | 1,37                                                                                                            | 1,30   | 1,20   | 1,20   | 1,05                                                                                                           | 1,02                                   | 1,10   | 1,10   | 1,70   | 1,75   | 1,44   | 1,30   | 1,40   |
| K220            | 1 1,73  | 1,27∙   | 1,32   | 1,31   | 1,15   | 1,12                                                                                                            | 1,15   | 1,00   | 1,02   | 0,95                                                                                                           | 0,90                                   | 0,92   | 0,87   | 1,15   | 1,09   | 1,06   | 1,05   | 1,02   |
| Nai20           | 1 0,10  | 0,12    | 0,11   | 0,11   | 0,12   | 0,10                                                                                                            | 0,11   | 0,10   | 0,08   | 0,10                                                                                                           | 0,07                                   | 0,10   | 0,09   | 0,15   | 0.18   | 0,22   | 0,17   | 0,14   |
| H22D+           | 2,47    | 3,52    | 3,15   | 3,00   | 2,38   | 2,55                                                                                                            | 3,63   | 2,50   | 3,28   | 2,23                                                                                                           | 2,46                                   | 3,00   | 2,71   | 3,74   | 3,90   | 3,16   | 2,94   | 2,73   |
| Eao             | 0,032   | 0,020   | 0,041  | 0,021  | 0,027  | 0,034                                                                                                           | 0,032  | 0,029  | 0,030  | 0,031                                                                                                          | 0,026                                  | 0,024  | 0,150  | 0,120  | 0,112  | 0,040  | 0,038  | 0,025  |
| SittD           | 0,075   | 0,015   | 0,012  | 0,010  | 0,015  |                                                                                                                 |        | 0,020  | 0,015  | 0,020                                                                                                          | 0,010                                  | 0,010  | 0,010  | 0,005  | 0,005  |        |        | 0,010  |
|                 |         |         |        |        |        |                                                                                                                 |        |        |        |                                                                                                                |                                        |        |        |        |        |        |        |        |
| Tontal          | 97.3    | 95,48   | 96,85  | 97     | 97,62  | 97,45                                                                                                           | 96,37  | 97,504 | 96,72  | 97,77                                                                                                          | 97,54                                  | 97     | 97,29  | 96,26  | 96,1   | 96,843 | 97,058 | 97,273 |
|                 |         |         |        |        |        | Conception of the second se |        |        |        | the second s | A 44 A 4 |        |        |        |        |        |        |        |

|               |              |         |        |        |        |        |        |        |        |        |        |        |        |        |        |        | 1 1    |
|---------------|--------------|---------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
|               |              |         |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |
|               |              |         |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |
| tation        | Mboar        | Mbour   | Mbour  | Mbour  | Mbour  | Mbour  | Mbour  | Mbour  | Mbour  | Mbour  | Mbour  | Mbour  | Mbour  | Mbour  | Mbour  | Mbour  | Mbour  |
| ef.           | <u>}</u> }/4 | M5      | M8     | M7     | M8     | M9     | M10    | M11    | M12    | M13    | M14    | M15    | M16    | M17    | M18    | M19    | M20    |
| _====         | AVT-16       | M;al-88 | Jul-88 | Jul-86 | Aoû-86 | Sep-86 | Oct-86 | Nov-86 | Déc-86 | Jan-87 | Fév-87 | Mar-87 | Avr-87 | Mal-87 | Jui-87 | Jui-87 | A00-87 |
| Ci@/m2)       | 0,31         | 0,51    | 0,52   | 0,20   | 0,48   | 0,20   | 0,31   | 0,22   | 0,26   | 0,21   | 0,33   | 0,54   | 0,86   | 1,72   | 0.82   | 0.40   | 0.27   |
| lanoratore    | Boncy        | Bondy   | Bondy  | Bondy  | Bondy  | Bondy  | Bondy  | Bondy  | Bondy  | Bondy  | Bondy  | Bondy  | Bondy  | Bondy  | Bondy  | Bondy  | Bondy  |
| iC)2(T)       | (77,4        | 77,4    | 78,5   | 74,4   | 77,6   | 69,3   | 76,1   | 74,8   | 72,4   | 73,6   | 76,4   | 77,8   | 75,7   | 79,1   | 78,8   | 75,6   | 71.0   |
| iC)2(1)       | 59,7         | 60,5    | 60,5   | 53,5   | 59,8   | 43,4   | 57,2   | 54,8   | 50,9   | 54,2   | 58,6   | 61,7   | 57,6   | 62,1   | 62,3   | 57,4   | 48,8   |
| JaiC)2(2)     | 17,7         | 17,0    | 18,0   | 20,9   | 17,8   | 25,9   | 18,9   | 20,0   | 21,6   | 19,4   | 17,8   | 16,1   | 18,1   | 17,1   | 16,5   | 18.2   | 22,2   |
| A12103        | 9,5          | 9,2     | 9,4    | 11,5   | 9,6    | 14,6   | 9,8    | 11,1   | 12,3   | 11,5   | 10,1   | 9,5    | 9,1    | 9,3    | 9,0    | 9,8    | 12,4   |
| Te2203        | 5,0          | 4,8     | 4,9    | 5,6    | 4,9    | 6,8    | 5,5    | 5,9    | 6,3    | 6,3    | 5,4    | 4,8    | 4,8    | 4,9    | 4.8    | 4.8    | 6.0    |
| iC32          | 0,91         | 0,78    | 0,80   | 0,81   | 0,77   | 0,90   | 0,78   | 0,90   | 1,06   | 1,00   | 0,94   | 0,90   | 0,72   | 0.90   | 0.77   | 0.85   | 0.90   |
| In304         |              |         |        |        |        |        |        |        |        |        |        |        | ·      | ·····  |        |        |        |
| MmD2          | : 0,099      | 0,103   | 0,110  | 0,099  | 0,087  | 0,111  | 0,089  | 0,095  | 0,109  | 0,095  | 0,089  | 0,087  | 0,087  | 0,087  | 0,079  | 0.087  | 0.079  |
| P205          | 0,312        | 0,220   | 0,182  | 0,275  | 0,170  | 0,220  | 0,244  | 0,360  | 0,266  | 0,450  | 0,275  | 0,215  | 0,137  | 0,185  | 0,142  | 0.180  | 0,180  |
| <u>aO</u>     | 0,94         | 1,40    | 0,90   | 1,06   | 0,87   | 0,84   | 0,87   | 0,95   | 0,94   | 1,50   | 0,97   | 0,85   | 2,05   | 0,82   | 0,97   | 0.77   | 0.74   |
| Crp:          | 1,3:         | 1,55    | 1,45   | 1,75   | 1,55   | 2,00   | 1,75   | 1,45   | 1,37   | 1,45   | 1,31   | 1,20   | 1,80   | 1,20   | 1,47   | 1,30   | 1,65   |
| . 20          | 0,92         | 0,95    | 0,95   | 1,19   | 1,00   | 1,40   | 1,16   | 1,15   | 1,16   | 1,00   | 1,06   | 1,00   | 1,10   | 0,92   | 1,07   | 1,05   | 1,30   |
| Naizo         | 0,12         | 0,10    | 0,11   | 0,17   | 0,12   | 0,17   | 0,13   | 0,16   | 0,15   | 0,17   | 0,14   | 0,11   | 0,12   | 0,11   | 0,12   | 0.14   | 0,18   |
| H <u>2C)+</u> | 3,42         | 3,46    | 2,67   | 3,11   | 3,30   | 3,72   | 3,59   | 3,10   | 4,01   | 3,00   | 3,38   | 3,61   | 4,35   | 2,45   | 2,80   | -5,44  | 5,54   |
| <u>aÖ</u>     | 0,025        | 0,027   | 0,026  | 0,034  | 0,025  | 0,038  | 0,030  | 0,033  | 0,035  | 0,032  | 0,031  | 0,027  | 0,030  | 0,027  | 0,025  | 0,026  | 0.033  |
| rO            | 0.012        | 0.010   | 0,005  |        | 0,005  |        | 0,005  |        | 0,005  |        | 0,005  | 0,005  | 0,005  | 0,005  | 0,005  | 0,005  |        |
| -             |              | _       |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |
| Tonal         | 95,599       | 96,54   | 97,333 | 96,888 | 96,697 | 96,279 | 96,408 | 96,898 | 95,995 | 96,997 | 96,62  | 98,394 | 95,649 | 97,554 | 97,201 | 94,558 | 94,462 |

## 2) Lescalculs de moyenne

La moyenne annuelle est obtenue en pondérant les valeurs mensuelles par le taux moyen journalier de dépôt du mois considéré. Ensuite, la moyenne interannuelle est obtenue par une simple moyenne arithmétique des moyennes annuelles précédemment calculées.

## Tableau 2 : Paramètres statistiques par station

|          | DAKAR   |       |       |         |    |       |          |           |       |       |           |
|----------|---------|-------|-------|---------|----|-------|----------|-----------|-------|-------|-----------|
| STAT     | Moyenne | Max   | Min   | Mediane | NB | NEVAL | Ecartype | Ecartypep | Var   | Varp  | Sommeprod |
| C(g/m:2) |         |       |       |         |    |       |          |           |       |       |           |
| SiO2(T)  | 73,2    | 79,2  | 66,0  | 73,4    | 42 | 42    | 2,8      | 2,8       | 7.9   | 7.7   | 73.7      |
| SiO2(1)  | 55,9    | 63,2  | 44,0  | 56,2    | 18 | 18    | 4,6      | 4,5       | 21,3  | 20,1  | 44.2      |
| SiO2(2)  | 18,4    | 25,5  | 16,0  | 17,7    | 18 | 18    | 2,2      | 2,1       | 4,8   | 4,6   | 13,8      |
| A203     | 11,8    | 15,2  | 8,5   | 12,3    | 42 | 42    | 2,0      | 1,9       | 3,8   | 3,8   | 11,8      |
| F#203    | 5,6     | 7,8   | 4,0   | 5,6     | 42 | 42    | 0,8      | 0,8       | 0,6   | 0,6   | 5,3       |
| 1102     | 0,90    | 1,10  | 0,72  | 0,89    | 42 | 42    | 0,09     | 0,09      | 0,01  | 0,01  | 0,90      |
| Wn304    | 0,069   | 0,093 | 0,049 | 0,069   | 21 | 21    | 0,009    | 0,008     | 0,000 | 0,000 | 0,042     |
| WnO2     | 0,083   | 0,103 | 0,072 |         | 21 | 21    | 0,007    | 0,007     | 0,000 | 0,000 | 0,033     |
| F2O5     | 0,286   | 0,670 | 0,135 | 0,245   | 42 | 42    | 0,123    | 0,121     | 0,015 | 0,015 | 0.239     |
| CaO      | 2,24    | 4,00  | 1,50  | 2,20    | 42 | 42    | 0,47     | 0,46      | 0,22  | 0,21  | 2,13      |
| WgO      | 1,54    | 2,00  | 1,23  | 1,50    | 42 | 42    | 0,16     | 0,16      | 0,02  | 0,02  | 1,50      |
| \$20     | 1,70    | 2,35  | 0,87  | 2,08    | 42 | 42    | 0,60     | 0,59      | 0,36  | 0,35  | 1,85      |
| Na2O     | 0,76    | 1,43  | 0,12  | 0,96    | 42 | 42    | 0,42     | 0,42      | 0,18  | 0,17  | 0,84      |
| H2O+     | 1,96    | 4,43  | 0,00  | 1,83    | 42 | 42    | 1,36     | 1,34      | 1,85  | 1,80  | 1,66      |
| EaO      | 0,063   | 0,280 | 0,026 | 0,070   | 42 | 42    | 0,048    | 0,048     | 0,002 | 0,002 | 0.068     |
| SrO      | 0.024   | 0.040 | 0.012 | 0.020   | 34 | 34    | 0.008    | 0.008     | 0.000 | 0.000 | 0.022     |

|         | MBOUR   |       |       |         |    |       |          |           |       |       |           |
|---------|---------|-------|-------|---------|----|-------|----------|-----------|-------|-------|-----------|
| STAT    | Voyenne | Max   | Min   | Mediane | NB | NBVAL | Ecartype | Ecartypep | Var   | Varp  | Sommeprod |
| C(gm2)  |         |       |       |         |    |       | ļ        |           |       |       |           |
| SICAT   | 75,5    | 79,1  | 69,3  | 75,9    | 20 | 20    | 2.6      | 2,6       | 7.0   | 6.7   | 76.6      |
| ŚICZ1)  | 56.4    | 62,3  | 43.4  | 57.5    | 20 | 20    | 4.9      | 4.8       | 24.1  | 22.9  | 58.3      |
| SIC:(2) | 19,1    | 25,9  | 18,1  | 18,5    | 20 | 20    | 2,3      | 2,3       | 5,5   | 5,2   | 18,3      |
| A1233   | 10,6    | 14,6  | 9,0   | 10,0    | 20 | 20    | 1,5      | 1,5       | 2,2   | 2,1   | 10,0      |
| Fe233   | 5,4     | 6,8   | 4,8   | 5,3     | 20 | 20    | 0,6      | 0,6       | 0,4   | 0,4   | 5,2       |
| TICZ    | 0,89    | 1,12  | 0,72  | 0,90    | 20 | 20    | 0,11     | 0,10      | 0,01  | 0,01  | 0,87      |
| Mn:04   |         |       |       |         |    |       | 1        |           |       |       |           |
| Mn02    | 0,094   | 0,111 | 0,079 | 0,095   | 20 | 20    | 0,010    | 0,009     | 0,000 | 0,000 | 0,092     |
| P2C5    | 0,244   | 0,450 | 0,137 | 0,232   | 20 | 20    | 0,078    | 0,076     | 0,006 | 0,006 | 0,216     |
| CaO     | 1,01    | 2,05  | 0,74  | 0,92    | 20 | 20    | 0,31     | 0,30      | 0,10  | 0,09  | 1,03      |
| MgJ     | . 1,49  | 2,00  | 1,20  | 1,45    | 20 | 20    | 0,21     | 0,21      | 0,05  | 0,04  | 1,44      |
| K20     | 1,08    | 1,40  | 0,92  | 1,06    | 20 | 20    | 0,12     | 0,12      | 0,02  | 0,01  | 1,04      |
| Na2O    | 0,14    | 0,22  | 0,10  | 0,14    | 20 | 20    | 0,03     | 0,03      | 0,00  | 0,00  | 0,13      |
| H2C+    | 3,49    | 5,54  | 2,45  |         | 20 |       | 0,82     | 0,80      | 0,68  | 0,65  | 3,35      |
| BaO     | 0,030   | 0,040 | 0,025 |         | 20 |       | 0,005    | 0,005     | 0,000 | 0,000 | 0,029     |
| SrD     | 0,006   | 0,012 | 0,005 |         | 13 |       | 0,003    | 0,002     | 0,000 | 0,000 | 0,005     |

|         | PETE    |       |       |         |    |       |          |           |       |       | l         |
|---------|---------|-------|-------|---------|----|-------|----------|-----------|-------|-------|-----------|
|         |         |       |       |         |    |       |          |           |       |       |           |
| STAT    | Moyenne | Max   | Min   | Mediane | NB | NBVAL | Ecartype | Ecartypep | Var   | Varp  | Sommeprod |
| C(g/m2) |         |       |       |         |    |       |          |           |       |       |           |
| SIO2(T) | 77.1    | 80.1  | 73.7  | 77.1    | 14 | 85    | 21       | 20        | 42    | 30    | 78.9      |
| SiO2(1) | 58,8    | 64,3  | 52,6  | 59,0    | 14 | 33    | 3,5      | 3,4       | 12,1  | 11.2  | 58.7      |
| SiO2(2) | 18,3    | 21,1  | 15,8  | 18,1    | 14 | 33    | 1,5      | 1,4       | 2,1   | 2,0   | 18,2      |
| Al2O3   | 10,4    | 12,4  | 9,0   | 10,4    | 14 | 65    | 0,9      | 0,9       | 0,8   | 0,7   | 10,3      |
| Fe2O3   | 5,2     | 5,9   | 4,5   | 5,3     | 14 | 65    | 0,4      | 0,4       | 0,2   | 0,2   | 5,1       |
| TiO2    | 0,93    | 1,03  | 0,80  | 0,92    | 14 | 65    | 0,07     | 0,07      | 0,01  | 0,00  | 0,92      |
| Mn304   |         |       |       |         |    |       |          |           |       |       |           |
| MnO2    | 0,097   | 0,119 | 0,071 | 0,095   | 14 | 36    | 0,014    | 0,013     | 0,000 | 0,000 | 0,093     |
| P2O5    | 0,149   | 0,200 | 0,115 | 0,141   | 14 | 62    | 0,026    | 0,025     | 0,001 | 0,001 | 0,143     |
| CzO     | 0,74    | 2,15  | 0,16  | 0,64    | 14 | 65    | 0,45     | 0,43      | 0,20  | 0,19  | 0,94      |
| MgO     | 1,29    | 1,70  | 1,02  | 1,28    | 14 | 65    | 0,19     | 0,19      | 0,04  | 0,04  | 1,32      |
| K20     | 1,09    | 1,32  | 0,87  | 1,11    | 14 | 65    | 0,15     | 0,14      | 0,02  | 0,02  | 1,07      |
| Na2O    | 0,10    | 0,15  | 0,07  | 0,10    | 14 | 65    | 0,02     | 0,02      | 0,00  | 0,00  | 0,11      |
| H2O+    | 2,89    | 3,74  | 2,23  | 2,85    | 14 | 65    | 0,51     | 0,49      | 0,26  | 0,24  | 3,03      |
| BaO     | 0,044   | 0,150 | 0,020 | 0,031   | 14 | 65    | 0,039    | 0,038     | 0,002 | 0,001 | 0,060     |
| SrO     | 0,013   | 0.020 | 0.005 | 0.014   | 12 | 55    | 0.004    | 0.004     | 0.000 | 0.000 | 0.010     |

| Tircle Ti - | Ctemical | compositio | n of atmo: | spheric du | st collec    | ted in      | n Sen | egal   |         |             |               |             |        |        |                      |              |       |
|-------------|----------|------------|------------|------------|--------------|-------------|-------|--------|---------|-------------|---------------|-------------|--------|--------|----------------------|--------------|-------|
|             | <u> </u> | Poussié    | ères atr   | nosphé     | LL<br>riaues | 5           |       |        | Analys  | ses ch      | imic          | ues         |        |        |                      |              |       |
|             | <u></u>  |            |            |            |              |             |       |        |         | T           |               | 1           |        | •      | <u>  </u>            | -+           |       |
|             | NOYEMIN  | E DAKAR    |            |            |              |             |       | MOYENN | E MBOUR | 2           |               |             | MOYENN | E PETE |                      |              |       |
| <u>-</u>    | 1984     | 1985       | 1986       | 1987       | ER MH        | (#A)        | PEC)  | 1986   | 1987    | ]<br>出了MI   | ·+/-          | EC          | 1986   | 1987   | ]<br>[]*] <b>M</b> ] | +/-          | EC.   |
| n           | 9        | 12         | 12         | 9          |              | 42          | i til | 12     | 8       | ]{* ·       | 20            |             | 9      | 5      |                      | 14           |       |
|             | '        |            |            | L          | 胞調           |             |       |        |         | 41 <u>1</u> |               | ين.<br>ماري |        |        | 机计划                  | 6.8          |       |
| 902(T)      | 74.3     | 72,0       | 74,2       | 74,7       | 73,8         | 14          | 2,8   | 75,9   | 77,2    | 76,5        | <u>+/-</u> `  | 2,6         | 76,3   | 17,3   | 78,8                 | <b>+/-</b> ' | 2,0   |
| 4203        | 12,6     | 12,9       | 11,3       | 9,5        | 11.63        | +/:-:       | 1,9 🔠 | 10,5   | 9,6     | 10,1        | -+/           | 1,5         | 10,8   | 9,8    | 10,3                 | +/-,:        | 0,9   |
| F=203       | 5,1      | 5,1        | 5,7        | 5,7        | 1.5,4        | <i>1717</i> | 0,8   | 5,4    | 5,0     | 5,2         | <b>;+/-</b> ] | 0,6         | 5,3    | 5,0    | 5,2                  | +/-          | 0,4 1 |
| 702         | 0,95     | 0,92       | 0,89       | 0,82       | 0.89         | +/- (       | 0,09  | 0,88   | 0,86    | 0,87        | +/-           | 0,10        | 0,94   | 0,90   | 0,92                 | +/-          | 0,07  |
| finO2       | 0,073    | 0,067      | 0,080      | 0,084      | 0,076        | ÷1- (       | 0,007 | 0,100  | 0,086   | 0,093       | +/- '         | 0,009       | 0,103  | 0,086  | 0,094                | +/-          | 0,013 |
| 7205        | 3,224    | 0,215      | 0,262      | 0,276      | 0,244        | +/- 1       | 0,121 | 0,248  | 0,191   | 0,219       | +/-           | 0,076       | 0,143  | 0,143  | 0,143                | +/-          | 0,025 |
| CaO         | 2,04     | 2,07       | 2,08       | 2,46       | 2,16         | '∔/÷ I      | 0,46  | 0,97   | 1,09    | 1,03        | +/-           | 0,30        | 0,67   | 1,15   | 0,91                 | +/-          | 0,43  |
| NgO         | 1,47     | 1,50       | 1,53       | 1,54       | 1 1.51       | 计尺          | 0,18  | 1,51   | 1,39    | 1,45        | +/-           | 0,21        | 1,34   | 1,31   | 1,33                 | +/-:         | 0,19  |
| +20         | 2,20     | 2,21       | 1,57       | 1,01       | 1,75         | 4/- (       | 0,59  | 1,05   | 1,02    | 1,04        | +/-           | 0,12        | 1,16   | 1,00   | 1,08                 | +/-          | 0,14  |
| Na2O        | 1,03     | 1,10       | 0,76       | 0,21       | 0,77         | +/- 1       | 0,42  | 0,14   | 0,12    | 0,13        | +/-           | 0,03        | 0,10   | 0,11   | 0,11                 | +/           | 0,02  |

# <u>Tableau 3</u> : Moyennes par année et par station pondérées par le dépôt moyen mensuel (C des tableaux 1)

Tableau 4 : Moyennes par trimestre à Dakar et Mbour

| • -      | · · i=-   | Poussiè | res atmo | osphér | iques  |        |        | Analys | ses ch | imique | S      |        |        |        |        |
|----------|-----------|---------|----------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
|          | MOYENNE D | AKAR    |          |        |        |        |        |        |        |        | MOYEN  | INE MB | OUR    |        |        |
| <u> </u> | 1.25      |         | 1.14     | 0.91   | 0.24   |        |        |        |        |        |        |        |        |        |        |
| -        | 1984/1    | 1984/3  | 1985/1   | 1985/2 | 1985/3 | 1986/1 | 1986/2 | 1986/3 | 1987/1 | 1987/2 | 1986/1 | 1986/2 | 1986/3 | 1987/1 | 1987/2 |
| SIC:2(T) | 74.8      | 73,3    | 72,9     | 67,8   | 70,1   | 74,2   | 73,8   | 74,4   | 75,1   | 72,9   | 76,8   | 75.0   | 74,5   | 77.7   | 73.7   |
| SIC:2(1) | 0,0       | 0,0     | 0,0      | 0,0    | 0,0    |        | 53,7   | 55,4   | 58,0   | 54,2   | 58,3   | 54,6   | 54,4   | 60,5   | 53,9   |
| SiCi2(2) | 0.0       | 0,0     | 0,0      | 0,0    | 0,0    |        | 20,1   | 19,0   | 17,2   | 18.7   | 18,4   | 20,3   | 20,1   | 17,2   | 19,8   |
| A12:03   | 12,4      | 12,9    | 12,5     | 14,8   | 14,1   | 11,8   | 10,6   | 10.2   | 9,2    | 10,5   | 10,1   | 11,2   | 10,9   | 9,4    | 10,8   |
| Fe203    | 5.0       | 5,2     | 4.7      | 6,8    | 6,1    | 5,5    | 6,3    | 6,0    | 5,5    | 6,3    | 5,2    | 5,5    | 5,9    | 4.9    | 5,3    |
| TiC2     | 0.96      | 0,92    | 0,89     | 1.02   | 1.01   | 0,91   | 0,81   | 0,86   | 0,81   | 0,83   | 0,91   | 0,81   | 0,91   | 0,85   | 0,87   |
| Mn:304   | 0.075     | 0,068   | 0,066    | 0.073  | 0,068  | 0,000  | 0,000  | 0,000  | 0.000  | 0,000  | 0,000  | 0,000  | 0,000  | 0,000  | 0,000  |
| MnO2     | 0,000     | 0,000   | 0,000    | 0,000  | 0,000  | 0,078  | 0,078  | 0,090  | 0,082  | 0,091  | 0,103  | 0.095  | 0.097  | 0,086  | 0,084  |
| P2C5     | 0,216     | 0,243   | 0,165    | 0,459  | 0,325  | 0,217  | 0,422  | 0,310  | 0,229  | 0,473  | 0,251  | 0,205  | 0,284  | 0,193  | 0,180  |
| CaO      | 1,96      | 2,23    | 1,91     | 2.72   | 2,51   | 2,01   | 2,40   | 2,11   | 2,53   | 2,16   | 1,01   | 0,91   | 0,92   | 1,14   | 0,76   |
| MgO      | 1.45      | 1,51    | 1,43     | 1,83   | 1,65   | 1,52   | 1,57   | 1,56   | 1.53   | 1.58   | 1,43   | 1,70   | 1,54   | 1,38   | 1,44   |
| K2O      | 2,19      | 2,24    | 2,21     | 2,13   | 2,22   | 1,83   | 1.00   | 1,08   | 1,00   | 1.04   | 0,98   | 1,13   | 1,16   | 1,00   | 1.15   |
| Na20     | 1.00      | 1,10    | 1,14     | 0,93   | 0,99   | 0,91   | 0,88   | 0,16   | 0,19   | 0,28   | 0,13   | 0,14   | 0,14   | 0,12   | 0,16   |
| H2O+     | 0,35      | 0,71    | 1,92     | 1,35   | 0,83   | 1,04   | 2,12   | 3,18   | 3,69   | 3,91   | 3.05   | 3,35   | 3,59   | 3,13   | 5.48   |
| BaO      | 0,068     | 0,112 - | 0,093    | 0,070  | 0,070  | 0,059  | 0,042  | 0.030  | 0,033  | 0.031  | 0,029  | 0,030  | 0,032  | 0,028  | 0,029  |
| SrO      | 0.027     | 0,022   | 0,032    | 0,030  | 0,027  | 0.015  | 0,000  | 0,010  | 0,017  | 0,008  | 0,007  | 0,003  | 0,004  | 0,005  | 0.003  |
|          |           |         |          |        |        |        |        |        |        |        |        |        |        |        |        |
| Total    | 100,49    | 100,61  | 100,00   | 100,00 | 100,00 | 100,03 | 100,00 | 100,00 | 100,00 | 100,00 | 100.00 | 100,00 | 100.00 | 100,00 | 100,00 |
| C(ci/m2) | 1,08      | 0,90    | 1,01     | 0.24   | 0,39   | 0,70   | 0,27   | 0,41   | 0,7.1  | 0,34   | 0,37   | 0,29   | 0,26   | 0,71   | 0.34   |

### <u>Tableau 5</u> : Moyennes interannuelles par station et inter-stations (DPM)

### MI: moyenne arithmétique

MIxC : moyenne interannuelle inter-stations pondérée par le dépôt moyen annuel, des moyennes interannuelles arithmétiques de chaque station MIC : moyenne interannuelle inter-stations non pondérée, des moyennes interannuelles pondérée par le dépôt moyen mensuel de chaque station MICxC : moyenne interannuelle inter-stations pondérée par le dépôt moyen annuel, des moyennes interannuelles pondérée par le dépôt moyen mensuel de chaque station

|         | DAKAR  | PETE   | MBOUR  | DPM    | 1                                     | 1      | 1      |
|---------|--------|--------|--------|--------|---------------------------------------|--------|--------|
|         |        |        |        |        |                                       |        |        |
|         | MI     | MI     | MI     | MI     | MIxC                                  | MIC    | MICxC  |
| SiO2(T) | 73,8   | 76,8   | 76,5   | 75,7   | 75,5                                  | 75,6   | 75.4   |
| SiO2(1) | 57,1   | 58,5   | 58,2   | 57,9   | 57,8                                  | 57,6   | 57,6   |
| SiO2(2) | 18,0   | 18,3   | 18,4   | 18,2   | 18,2                                  | 18,4   | 18,3   |
| AI2O3   | 11,6   | 10,3   | 10,1   | 10,7   | 10,8                                  | 10,9   | 10.9   |
| Fe2O3   | 5,4    | 5,2    | 5,2    | 5,2    | 5,3                                   | 5,3    | 5.3    |
| TiO2    | 0,89   | 0,92   | 0,87   | 0,90   | 0,89                                  | 0,90   | 0,90   |
| Mn304   | 0,070  |        |        | 0,070  | 0,028                                 | 0,070  | 0,029  |
| MnO2    | 0,082  | 0,094  | 0,093  | 0,090  | 0,089                                 | 0,092  | 0,091  |
| P2O5    | 0,244  | 0,143  | 0,219  | 0,202  | 0,207                                 | 0,199  | 0,205  |
| CaO     | 2,16   | 0,91   | 1,03   | 1,37   | 1,45                                  | 1,29   | 1.38   |
| MgO     | 1,51   | 1,33   | 1,45   | 1,43   | 1,44                                  | 1,43   | 1.44   |
| K20     | 1,75   | 1,08   | 1,04   | 1,29   | 1,34                                  | 1,34   | 1,39   |
| Na2O    | 0,77   | 0,11   | 0,13   | 0,34   | 0,38                                  | 0,35   | 0,40   |
| H2O+    | 1,9    | 3,0    | 3,3    | · 2,7  | 2.7                                   | 2.7    | 2.6    |
| BaO     | 0,063  | 0,056  | 0,029  | 0,050  | 0,051                                 | 0.041  | 0.044  |
| SrO     | 0,021  | 0,010  | 0,005  | 0,012  | 0,013                                 | 0,013  | 0,014  |
|         |        |        |        |        |                                       |        |        |
| Total   | 101,44 | 100,00 | 100,00 | 100,53 | 100,59                                | 100,56 | 100,62 |
| C(g/m2) | 0,54   | 0,38   | 0,41   |        | · · · · · · · · · · · · · · · · · · · |        |        |

## 3) Représentations graphiques des compositions chimiques

Ţ

North Co.

<u>Figure 1</u> : Evolution des teneurs en fonction de l'intensité du dépôt (échantillons événementiels de Dakar en 1987)





## Figure 2 : Evolution des teneurs moyennes annuelles à Dakar

Å

<u>Tableau 6</u> : Dépôts moyens mensuels et annuels (en g/m²/jour)

| Année        | J    | F    | H    | A    | н     | J    | J    | A    | S    | 0    | N    | D    | Hoyenne |
|--------------|------|------|------|------|-------|------|------|------|------|------|------|------|---------|
| DAKAR        | 1    | 1.62 |      | 0.65 | 1 1 7 |      |      |      |      |      |      |      | 8       |
| 1985         | 0.88 | 1,62 | 0.93 | 1.10 | 0.70  | 0.93 | 0.29 | 0.14 | 0.29 | 0 38 | 0,46 | 0,60 | 0.65    |
| 1986         | 0,89 | 0,54 | 1,16 | 0,56 | 0,50  | 0,52 | 0,21 | 0,39 | 0,21 | 0,48 | 0,35 | 0,40 | 0,52    |
| 1987         | 0,30 | 0,52 | 0,85 | 0,96 | 1,18  | 0,43 | 0,39 | 0,29 | 0,35 | 0,37 | 0,18 | 0,37 | 0,52    |
| 1988         | 0,93 | 0,87 | 0,66 | 0,42 | 0,53  | 0,52 | 0,22 | 0,16 | 0,15 | 0,18 | 0,17 | 0,22 | 0,50    |
| 1999         | 0,30 | 0,80 | 0,00 | V,05 | 0,72  | 0,80 | 0,22 | 0,13 | 0,10 | 0,15 | 0,16 | 0,25 | 0,42    |
| Hoyenne      | 0,73 | 0,99 | 0,88 | 0,72 | 0,80  | 0,64 | 0,27 | 0,22 | 0,23 | 0,31 | 0,27 | 0,40 | 0,54    |
| HBOUR        | i    |      |      |      |       |      |      |      |      |      | ,    |      | 2       |
| 1986         | 0,29 | 0,24 | 0,35 | 0,31 | 0,51  | 0,52 | 0,20 | 0,48 | 0,20 | 0,31 | 0,22 | 0,26 | 0,32    |
| 1987         | 0,21 | 0,33 | 0,54 | 0,86 | 1,72  | 0,62 | 0,40 | 0,27 | 0,29 | 0,32 | 0,11 | 0,23 | 0,49    |
| NGNITH       |      |      |      |      |       |      |      |      |      |      |      |      | й       |
| 1987         |      |      |      |      |       | -    | 0,32 | 0,18 | 0,18 | 0,29 | 0,16 | 0,35 | I - I   |
| 1988         | 0.0/ | 0,50 | 0,62 | 0,38 | 0,38  | 0,47 | 0,30 | 0,05 | 0,09 | 0,15 | 0,14 | 0,22 | 0,34    |
| 1303         | 0,50 | 0,47 | 0,43 | 0,42 | 0,31  | 0,4/ | 0,14 | 0,00 | 0,10 | 0,15 | 0,24 | 0,30 | 0,29    |
| KEDOUGOU     |      |      |      |      |       |      |      |      |      |      |      |      |         |
| 1987         | -    | -    | -    | -    | -     | 0,08 | 0,06 | 0,06 | 0,03 | 0,04 | 0,06 | -    | -       |
| PETE         |      |      |      |      |       |      |      |      |      |      |      |      | ·       |
| 198 <b>6</b> | -    | 0,40 | 0,45 | 0,28 | 0,49  | 0,35 | 0,31 | -    | -    | 0,27 | 0,26 | 0,64 | 0,38    |

() : valeur annuelle estimée.



# <u>Figure 3</u> : Evolution des teneurs moyennes mensuelles à Dakar en fonction de l'intensité du dépôt

<u>Figures 4 et 5</u> : Evolution des teneurs moyennes mensuelles à Pété et à Mbour en fonction de l'intensité du dépôt

. ور ...





1120

Chimin aémsols

E.S.

Fichier AEPTM XLS - Page 1/1

Chimie aémsols

connario din.

Fichier AEMBM,XLS - Page 1/1

# 4) Calculs des facteurs d'enrichissement des eaux de pluie de Bakel (NE du Sénégal) par les poussières atmosphériques

Trois facteurs d'enrichissement des eaux de pluie par les poussières atmosphériques sont testés ici, seul celui défini dans le tableau 7 a été retenu dans l'article qui suit en annexe.

Les chlorures et les sulfates sont utilisés pour caractériser l'origine marine des masses d'eau de pluie. La teneur référence est fixée dans un premier essai à la teneur enregistrée dans l'océan (tableau 7), dans les deux essais suivants à la teneur enregistrée dans les eaux de pluie du mois d'août de Bakel (tableaux 8 et 9). Le mois d'août a été choisi car il est le mois le plus pluvieux, on peut donc supposer que ce mois-là l'influence des poussières atmosphériques est négligeable.

## <u>Tableau 7</u> : Facteurs d'enrichissement par rapport aux chlorures (le signal de base étant les chloruresde l'océan)

| lui              | e Ba                                                 | kel 1                                                  | 983                                          |      |                        |                                       |           |       |         | <br>                  |                         |        |          |        |           |           |
|------------------|------------------------------------------------------|--------------------------------------------------------|----------------------------------------------|------|------------------------|---------------------------------------|-----------|-------|---------|-----------------------|-------------------------|--------|----------|--------|-----------|-----------|
|                  | Bradi<br>-<br>TDS<br>527<br>129<br>124<br>152<br>351 | Dakar<br>Cg/m2<br>0,57<br>0,28<br>0,26<br>0,24<br>0,38 | Bakel<br>Pimm<br>73<br>25<br>172<br>38<br>12 |      |                        |                                       |           |       |         | Ed :                  | = (X/                   | ′CI)i/ | (X/CI    | )océ   | an -      | 1         |
| D.<br>D.<br>- D. |                                                      | <b>5</b> 0                                             | TDS<br>100                                   |      | 0,6<br>0,4<br>0,2<br>0 | 2 <b>.</b>                            | 100       | •     | P<br>00 | 60 TC<br>40 20<br>0 0 | DS <b>*</b><br>* *<br>1 | 00     | P<br>200 |        |           |           |
|                  | i Juin I                                             | Juillet                                                | Août                                         | Sent | l Oct                  | Movenne                               | EC.       | %EC   | 3       | 1                     | Ed(IN)                  | E4(17) | Ed(AT)   | Ed(SE) | F(OF)     | X/Clocéan |
| HCC:3            | 415                                                  | 123                                                    | 80                                           | 75   | 235                    | E-186 5-                              | 143       | 77.3  | HCO3    | <br>HCO3              | 151.9                   | 83.9   | 56.0     | 37.8   | 82.7      | 0.023     |
| ī.               | 118                                                  | 63                                                     | 61                                           | 84   | 122                    | 90                                    | 29        | 32.6  | CI      | <br>CI                | 0.0                     | 0.0    | 0.0      | 0.0    | 0.0       | 1         |
| 1: <b>4</b>      | 40                                                   | 64                                                     | 28                                           | 44   | 66                     | 48                                    | 16        | 33,6  | SO4     | <br>SO4               | 0,0                     | 1,9    | 0.3      | 0,5    | 0,5       | 0,354     |
| 1-2              | 57                                                   | 1                                                      | 1                                            | 1    | 2                      | 12                                    | 25        | 201,1 | NO2     | <br>NO2               |                         |        |          |        | - <u></u> |           |
| INC3             | 35                                                   | 12                                                     | 9                                            | 19   | 31                     | 21                                    | 1         | 54,0  | NO3     | NO3                   |                         |        |          |        |           | •         |
| PC4              | 111                                                  | 3                                                      | 1                                            | 10   | 14                     | 8                                     | 6         | 71,0  | PO4     | PO4                   |                         |        |          |        |           |           |
| #                | 246                                                  | 98                                                     | 57                                           | 103  | 218                    | 1.144                                 | 83        | 57,2  | Ca      | <br>Ca                | 14,6                    | 10,6   | 6,0      | 8,2    | 12,3      | 0,134     |
| <u> </u>         | 134                                                  | 22                                                     | _15                                          | 26   | 46                     | 61                                    | 75        | 124,5 | Mg      | <br>Mg                | 6,7                     | 0,6    | 0,2      | 0,5    | 0,8       | 0,213     |
| 11               | 73                                                   | 12                                                     | 8                                            | 16   | 40                     | [46]31                                | -29       | 94,7  | K       | <br>К                 | 19,7                    | 5,0    | 3,1      | 5,0    | 9,2       | 0,032     |
| 51               | 749                                                  | 15                                                     | 18                                           | 34   | 49                     | 16 <b>63</b>                          | 56        | 105,9 | Na      | <br>Na                | 0,4                     | -0,7   | -0,7     | -0,6   | -0,8      | 0,91      |
|                  |                                                      | 110                                                    | 70                                           | 48   | 109                    | B41:87                                | 46        | 68,3  | NH4     | NH4                   |                         |        |          |        |           |           |
| 1 3104           | 40                                                   | 4                                                      | 3                                            | 8    | 20                     | ····································· | <b>16</b> | 103,5 | H4SIO4  | <br>H4SIO4            | L                       |        |          |        |           |           |
| ī.s              | 52.7                                                 | 18.9                                                   | 12.4                                         | 16.2 | 35.1                   |                                       |           |       |         | <br>                  |                         |        |          |        | · · · ·   |           |



# <u>Tableau 8</u> : Facteurs d'enrichissement par rapport aux chlorures (le signal de base étant les chlorures enregistrés en août à Bakel)

Į

<u>Tableau 9</u> : Facteurs d'enrichissement par rapport à la somme CI+SO<sub>4</sub> (le signal de base étant enregistré en août à Bakel)

| Plui                                                                                                                                                  | e Ba                                                                                                                                                                 | akel 1                                                                         | 1983                                                                        |                                                                                        |                                                                                                                                                                                   |                                                                                                                                                                             |                                                                           |                                                                                                         |                                                                                |   |                                                                                                                   | ſ                                                                                                                                                                                                                                                                                                                                                                                         | `x /                                                                                                     | >                                                                            |                                                                                                                                     |                                                                                                           |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|-----------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|---|-------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|--|
| ,                                                                                                                                                     | 860                                                                                                                                                                  | Dille                                                                          | 8115                                                                        |                                                                                        | -                                                                                                                                                                                 |                                                                                                                                                                             |                                                                           |                                                                                                         |                                                                                |   |                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                           | 10.0                                                                                                     |                                                                              |                                                                                                                                     |                                                                                                           |  |
|                                                                                                                                                       | TDS                                                                                                                                                                  | Calma                                                                          | Dom                                                                         |                                                                                        | -                                                                                                                                                                                 |                                                                                                                                                                             |                                                                           |                                                                                                         |                                                                                |   | 7-                                                                                                                | 1                                                                                                                                                                                                                                                                                                                                                                                         | . at 2                                                                                                   |                                                                              |                                                                                                                                     | λ                                                                                                         |  |
| I IIN                                                                                                                                                 | 52.7                                                                                                                                                                 | 0.57                                                                           | 73                                                                          |                                                                                        | -                                                                                                                                                                                 |                                                                                                                                                                             |                                                                           |                                                                                                         |                                                                                |   | E. :                                                                                                              | =                                                                                                                                                                                                                                                                                                                                                                                         | · · · · ·                                                                                                |                                                                              |                                                                                                                                     | 1.                                                                                                        |  |
|                                                                                                                                                       | 18.9                                                                                                                                                                 | 0,07                                                                           | 25                                                                          |                                                                                        | -                                                                                                                                                                                 |                                                                                                                                                                             |                                                                           |                                                                                                         |                                                                                |   | de                                                                                                                | (                                                                                                                                                                                                                                                                                                                                                                                         | X /                                                                                                      | 1                                                                            |                                                                                                                                     |                                                                                                           |  |
| ACUT                                                                                                                                                  | 12.4                                                                                                                                                                 | 0.26                                                                           | 172                                                                         |                                                                                        | -                                                                                                                                                                                 |                                                                                                                                                                             |                                                                           |                                                                                                         |                                                                                |   |                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                           | 110.                                                                                                     | 10                                                                           |                                                                                                                                     |                                                                                                           |  |
| SEPT                                                                                                                                                  | 16.2                                                                                                                                                                 | 0.24                                                                           | 38                                                                          |                                                                                        | -                                                                                                                                                                                 |                                                                                                                                                                             |                                                                           |                                                                                                         |                                                                                |   |                                                                                                                   | 1                                                                                                                                                                                                                                                                                                                                                                                         | 14                                                                                                       | 54/6                                                                         |                                                                                                                                     |                                                                                                           |  |
| JICTO                                                                                                                                                 | 35,1                                                                                                                                                                 | 0,38                                                                           | 12                                                                          |                                                                                        | -                                                                                                                                                                                 |                                                                                                                                                                             |                                                                           |                                                                                                         |                                                                                |   |                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                          |                                                                              |                                                                                                                                     |                                                                                                           |  |
|                                                                                                                                                       | 1                                                                                                                                                                    |                                                                                |                                                                             |                                                                                        | -                                                                                                                                                                                 |                                                                                                                                                                             |                                                                           |                                                                                                         |                                                                                |   |                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                          |                                                                              |                                                                                                                                     |                                                                                                           |  |
| 1                                                                                                                                                     |                                                                                                                                                                      |                                                                                | ·                                                                           | ,<br>                                                                                  |                                                                                                                                                                                   |                                                                                                                                                                             |                                                                           |                                                                                                         |                                                                                |   |                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                          |                                                                              |                                                                                                                                     |                                                                                                           |  |
| 1 0.                                                                                                                                                  | ±, C                                                                                                                                                                 | ~                                                                              | -                                                                           |                                                                                        | 08.0                                                                                                                                                                              |                                                                                                                                                                             |                                                                           |                                                                                                         |                                                                                |   | 80.TE                                                                                                             | os                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                          |                                                                              |                                                                                                                                     |                                                                                                           |  |
| 0                                                                                                                                                     |                                                                                                                                                                      |                                                                                |                                                                             |                                                                                        | 0,0                                                                                                                                                                               |                                                                                                                                                                             |                                                                           |                                                                                                         |                                                                                |   | 40                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                          |                                                                              |                                                                                                                                     |                                                                                                           |  |
|                                                                                                                                                       |                                                                                                                                                                      |                                                                                |                                                                             |                                                                                        | 0,4                                                                                                                                                                               | !<br>                                                                                                                                                                       |                                                                           | _                                                                                                       |                                                                                |   | 40                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                          |                                                                              |                                                                                                                                     |                                                                                                           |  |
| U.                                                                                                                                                    | 4                                                                                                                                                                    |                                                                                | TDS                                                                         |                                                                                        | 0,2                                                                                                                                                                               | -                                                                                                                                                                           |                                                                           | -                                                                                                       | Р                                                                              |   | 20                                                                                                                | 11 <u>11</u>                                                                                                                                                                                                                                                                                                                                                                              | 1                                                                                                        | ■ P                                                                          |                                                                                                                                     |                                                                                                           |  |
| - K                                                                                                                                                   | <u> </u>                                                                                                                                                             | <b>CO</b>                                                                      |                                                                             |                                                                                        | 이드                                                                                                                                                                                |                                                                                                                                                                             | <u>.</u>                                                                  |                                                                                                         | -                                                                              |   |                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                           | ~~                                                                                                       |                                                                              |                                                                                                                                     |                                                                                                           |  |
|                                                                                                                                                       | U                                                                                                                                                                    | 50                                                                             | 100                                                                         |                                                                                        | 0                                                                                                                                                                                 |                                                                                                                                                                             | 100                                                                       | 2                                                                                                       | 200                                                                            |   | 0                                                                                                                 | 10                                                                                                                                                                                                                                                                                                                                                                                        | 00                                                                                                       | 200                                                                          |                                                                                                                                     |                                                                                                           |  |
| •                                                                                                                                                     |                                                                                                                                                                      |                                                                                |                                                                             |                                                                                        |                                                                                                                                                                                   |                                                                                                                                                                             |                                                                           |                                                                                                         |                                                                                |   | L                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                          |                                                                              |                                                                                                                                     |                                                                                                           |  |
|                                                                                                                                                       |                                                                                                                                                                      |                                                                                |                                                                             |                                                                                        |                                                                                                                                                                                   |                                                                                                                                                                             |                                                                           |                                                                                                         | 1                                                                              |   |                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                          |                                                                              |                                                                                                                                     |                                                                                                           |  |
|                                                                                                                                                       | Juin                                                                                                                                                                 | Juillet                                                                        | Anit                                                                        | Sent                                                                                   |                                                                                                                                                                                   |                                                                                                                                                                             |                                                                           |                                                                                                         |                                                                                |   |                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                          |                                                                              |                                                                                                                                     |                                                                                                           |  |
| HCO3                                                                                                                                                  | 415                                                                                                                                                                  | 400                                                                            | 11046                                                                       |                                                                                        | i net                                                                                                                                                                             | Movenne                                                                                                                                                                     | FC                                                                        | %FC                                                                                                     | 1                                                                              | 1 |                                                                                                                   | Eae( IN)                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                          | Ese(AT)                                                                      | Eae/SE                                                                                                                              | Eae(OE)                                                                                                   |  |
|                                                                                                                                                       |                                                                                                                                                                      | 1 123                                                                          | 80                                                                          | 75                                                                                     | 235                                                                                                                                                                               | Moyenne<br>运行88 前                                                                                                                                                           | EC                                                                        | %EC                                                                                                     | HCO3                                                                           |   | CO31                                                                                                              | Eae(JN)                                                                                                                                                                                                                                                                                                                                                                                   | Eae(JT)                                                                                                  | Eae(AT)                                                                      | Eae(SE)                                                                                                                             | Eae(OE)                                                                                                   |  |
| 74                                                                                                                                                    | 118                                                                                                                                                                  | 63                                                                             | 80<br>61                                                                    | 75                                                                                     | 235<br>122                                                                                                                                                                        | Moyenne<br>186 fi<br>190                                                                                                                                                    | EC<br>143<br>29                                                           | %EC<br>77,3<br>32,6                                                                                     | HCO3<br>CI                                                                     | H | ICO3.1                                                                                                            | Eae(JN)                                                                                                                                                                                                                                                                                                                                                                                   | Eae(JT)<br>0,1<br>-0.3                                                                                   | Eae(AT)<br>0,0<br>0.0                                                        | Eae(SE)<br>-0,3                                                                                                                     | Eae(OE)                                                                                                   |  |
| 개<br>변 <b>4</b>                                                                                                                                       | 118                                                                                                                                                                  | 63<br>64                                                                       | 80<br>61<br>28                                                              | 75<br>84<br>44                                                                         | Oct<br>235<br>122<br>66                                                                                                                                                           | Moyenne<br>186<br>190<br>148                                                                                                                                                | EC<br>143<br>29                                                           | %EC<br>77,3<br>32,6<br>33.6                                                                             | HCO3<br>CI<br>SO4                                                              |   | ICO3.1<br>I<br>O4                                                                                                 | Eae(JN)                                                                                                                                                                                                                                                                                                                                                                                   | Eae(JT)<br>0,1<br>-0,3<br>0.6                                                                            | Eae(AT)<br>0,0<br>0,0<br>0,0                                                 | Eae(SE)<br>-0,3<br>0,0<br>0,1                                                                                                       | Eae(OE)<br>±0,48<br>-0,1<br>0,1                                                                           |  |
| 71<br>1:04<br>1:102                                                                                                                                   | 118<br>40<br>57                                                                                                                                                      | 63<br>64<br>1                                                                  | 80<br>61<br>28<br>1                                                         | 75<br>84<br>44<br>1                                                                    | Oct<br>235<br>122<br>66<br>2                                                                                                                                                      | Moyenne<br>1887<br>1901<br>148<br>148                                                                                                                                       | EC<br>143<br>29<br>18<br>25                                               | %EC<br>77,3<br>32,6<br>33,6<br>201.1                                                                    | HCO3<br>CI<br>SO4<br>NO2                                                       |   | ICO3.1<br>I<br>O4<br>IO2                                                                                          | Eae(JN)<br>51,9,5<br>0,1<br>-0,2<br>31,1                                                                                                                                                                                                                                                                                                                                                  | Eae(JT)<br>0,1<br>-0,3<br>0,6<br>-0,3                                                                    | Eae(AT)<br>0,0<br>0,0<br>0,0<br>0,0                                          | Eae(SE)<br>-0,3<br>0,0<br>0,1<br>-0,3                                                                                               | Eae(OE)<br>±0,41<br>-0,1<br>-0,1<br>-0,1                                                                  |  |
| 71<br>1:04<br>1:02<br>[MIO2<br>[MIO3                                                                                                                  | 118<br>40<br>57<br>35                                                                                                                                                | 123<br>63<br>64<br>1<br>12                                                     | 80<br>61<br>28<br>1<br>9                                                    | 75<br>84<br>44<br>1<br>19                                                              | Oct<br>235<br>122<br>66<br>2<br>31                                                                                                                                                | Moyenne<br>188<br>190<br>148<br>148<br>112<br>12<br>12                                                                                                                      | EC<br>143<br>29<br>18<br>25<br>11                                         | %EC<br>77,3<br>32,6<br>33,6<br>201,1<br>54,0                                                            | HCO3<br>CI<br>SO4<br>NO2<br>NO3                                                |   | ICO3.1<br>104<br>102<br>103                                                                                       | Eae(JN)<br>51,95<br>0,1<br>-0,2<br>31,1<br>E01,24                                                                                                                                                                                                                                                                                                                                         | Eae(JT)<br>0,1<br>-0,3<br>0,6<br>-0,3<br>-0,1                                                            | Eae(AT)<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0                                   | Eae(SE)<br>-0,3<br>0,0<br>0,1<br>-0,3<br>(4);0,5                                                                                    | Eae(OE)<br><u> <u> </u> </u>      |  |
| אוס<br>אוס2<br>אוסז<br>אסיר                                                                                                                           | 118<br>40<br>57<br>35<br>11                                                                                                                                          | 123<br>63<br>64<br>1<br>12<br>3                                                | 80<br>61<br>28<br>1<br>9<br>1                                               | 75<br>84<br>44<br>1<br>19<br>10                                                        | Oct           235           122           66           2           31           14                                                                                                | Moyenne<br>186<br>90<br>148<br>148<br>12<br>12<br>12<br>12                                                                                                                  | EC<br>143<br>29<br>18<br>25<br>11                                         | %EC<br>77,3<br>32,6<br>33,6<br>201,1<br>54,0<br>71,0                                                    | HCO3<br>CI<br>SO4<br>NO2<br>NO3<br>PO4                                         |   | CO3.1<br>1<br>04<br>102<br>103.2<br>04                                                                            | Eae(JN)<br>51,9<br>-0,2<br>31,1<br>521,2-1<br>1,15,2-1                                                                                                                                                                                                                                                                                                                                    | Eae(JT)<br>0,1<br>-0,3<br>0,6<br>-0,3<br>-0,1<br>1,1                                                     | Eae(AT)<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0                            | Eae(SE)<br>-0,3<br>0,0<br>0,1<br>-0,3<br>(A) 0,5                                                                                    | Eae(OE)<br>±0,41<br>-0,1<br>-0,1<br>-0,1<br>-0,1<br>-0,6<br>+5,6                                          |  |
| が1<br>第04<br>第02<br>第03<br>アロ4<br>読者                                                                                                                  | 118<br>40<br>57<br>35<br>11<br>245                                                                                                                                   | 123<br>63<br>64<br>1<br>12<br>3<br>98                                          | 80<br>61<br>28<br>1<br>9<br>1<br>57                                         | 75<br>84<br>44<br>1<br>19<br>10<br>103                                                 | Oct           235           122           66           2           31           14           218                                                                                  | Moyenne<br>(188)<br>(190)<br>(148)<br>(148)<br>(148)<br>(148)<br>(144)<br>(144)                                                                                             | EC<br>143<br>29<br>18<br>25<br>11<br>8<br>83                              | %EC<br>77,3<br>32,6<br>33,6<br>201,1<br>54,0<br>71,0<br>57,2                                            | HCO3<br>CI<br>SO4<br>NO2<br>NO3<br>PO4<br>Ca                                   |   | CO3.1<br>04<br>02<br>03.<br><b>C4</b>                                                                             | Eae(JN)<br>5,1,9,4<br>0,1<br>-0,2<br>31,1<br>5,1,2,4<br>(,,5,2,4<br>1,4                                                                                                                                                                                                                                                                                                                   | Eae(JT)<br>0,1<br>-0,3<br>0,6<br>-0,3<br>-0,1<br>1,1<br>0,2                                              | Eae(AT)<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0                     | Eae(SE)<br>-0,3<br>0,0<br>0,1<br>-0,3<br>(0,5<br>-(2,5,0)<br>0,3                                                                    | Eae(OE)<br>±0,41<br>-0,1<br>-0,1<br>-0,1<br>-0,1<br>0,6<br>+5,6<br>0,8                                    |  |
| 71<br>104<br>102<br>103<br>104<br>118<br>118                                                                                                          | 118<br>40<br>57<br>35<br>11<br>248<br>194                                                                                                                            | 123<br>63<br>64<br>1<br>12<br>3<br>98<br>22                                    | 80<br>61<br>28<br>1<br>9<br>1<br>57<br>15                                   | 75<br>84<br>44<br>1<br>19<br>10<br>103<br>26                                           | Oct<br>235<br>122<br>66<br>2<br>31<br>14<br>218<br>46                                                                                                                             | Moyenne<br>188<br>190<br>148<br>12<br>12<br>12<br>12<br>12<br>12<br>12<br>12<br>12<br>12<br>12<br>12<br>12                                                                  | EC<br>143<br>29<br>18<br>25<br>11<br>8<br>375                             | %EC<br>77,3<br>32,6<br>33,6<br>201,1<br>54,0<br>71,0<br>57,2<br>124,5                                   | HCO3<br>CI<br>SO4<br>NO2<br>NO3<br>PO4<br>Ca<br>Mg                             |   | CO3.1<br>04<br>02<br>03.<br>C4<br>a.                                                                              | Eae(JN)<br><b>51</b> ,9,5<br>0,1<br>-0,2<br>31,1<br><b>511</b> ,2-1<br>(,5,2-1<br>1,4<br>(,6,3                                                                                                                                                                                                                                                                                            | Eae(JT)<br>0,1<br>-0,3<br>0,6<br>-0,3<br>-0,1<br>1,1<br>0,2<br>0,0                                       | Eae(AT)<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0              | Eae(SE)<br>-0,3<br>0,0<br>0,1<br>-0,3<br>(0,5<br>-(                                                                                 | Eae(OE)<br>±0,41<br>-0,1<br>0,1<br>-0,1<br>0,6<br>,5,6<br>0,8<br>0,5                                      |  |
| 71<br>104<br>102<br>1002<br>1003<br>704<br>704<br>710<br>7104<br>710<br>7104<br>710<br>7104<br>710<br>7104<br>7104                                    | 118<br>40<br>57<br>35<br>11<br>248<br>194<br>78                                                                                                                      | 123<br>63<br>64<br>1<br>12<br>3<br>98<br>22<br>12                              | 80<br>61<br>28<br>1<br>9<br>1<br>57<br>15<br>8                              | 75<br>84<br>44<br>1<br>19<br>10<br>103<br>26<br>16                                     | Oct           235           122           66           2           31           14           218           46           40                                                        | Moyenne<br>188<br>90<br>148<br>12<br>12<br>12<br>12<br>12<br>12<br>12<br>12<br>12<br>12<br>12<br>14<br>14<br>14<br>14<br>14<br>14<br>14<br>14<br>14<br>14<br>14<br>14<br>14 | EC<br>143<br>29<br>18<br>25<br>11<br>56<br>4<br>83<br>75<br>29            | %EC<br>77,3<br>32,6<br>33,6<br>201,1<br>54,0<br>71,0<br>57,2<br>124,5<br>94,7                           | HCO3<br>CI<br>SO4<br>NO2<br>NO3<br>PO4<br>Ca<br>Mg<br>K                        |   | ICO3.1<br>1<br>04<br>102<br>03<br>03<br>04<br>19                                                                  | Eae(JN)<br><b>\$1,9</b><br>-0,2<br>31,1<br><b>\$1,2</b><br>-,2<br>31,1<br><b>\$1,2</b><br>-,2<br>-,2<br>-,2<br>-,2<br>-,2<br>-,2<br>-,2<br>-,2                                                                                                                                                                                                                                            | Eae(JT)<br>0,1<br>-0,3<br>0,6<br>-0,3<br>-0,1<br>1,1<br>0,2<br>0,0<br>0,1                                | Eae(AT)<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0       | Eae(SE)<br>-0,3<br>0,0<br>0,1<br>-0,3<br>42,0,5<br>-5<br>-5<br>-5<br>0,3<br>0,2<br>-0,4                                             | Eae(OE)<br>±0,41<br>-0,1<br>-0,1<br>-0,1<br>-0,1<br>-0,6<br>,5,6<br>0,8<br>0,5<br>1,4                     |  |
| 71<br>104<br>102<br>103<br>104<br>704<br>704<br>710<br>704<br>710<br>710<br>710<br>710<br>710<br>710<br>710<br>710<br>710<br>710                      | 118<br>40<br>57<br>35<br>11<br>248<br>194<br>78<br>149                                                                                                               | 123<br>63<br>64<br>1<br>12<br>3<br>98<br>22<br>12<br>15                        | 80<br>61<br>28<br>1<br>9<br>1<br>57<br>15<br>8<br>16                        | 75<br>84<br>44<br>1<br>19<br>10<br>103<br>26<br>16<br>34                               | Oct           235           122           66           2           31           14           218           46           40           49                                           | Moyenne<br>188<br>90<br>148<br>12<br>12<br>12<br>12<br>12<br>12<br>12<br>12<br>12<br>12<br>12<br>12<br>12                                                                   | EC<br>143<br>29<br>18<br>25<br>11<br>76<br>83<br>75<br>29<br>56           | %EC<br>77,3<br>32,6<br>33,6<br>201,1<br>54,0<br>71,0<br>57,2<br>124,5<br>94,7<br>105,9                  | HCO3<br>CI<br>SO4<br>NO2<br>NO3<br>PO4<br>Ca<br>Mg<br>K<br>Na                  |   | CO3.1<br>1<br>04<br>02<br>03<br>04<br>a.<br>19<br>                                                                | Eae(JN)<br><b>1</b> ,9                                                                                                                                                                                                                                                                                                                                                                    | Eae(JT)<br>0,1<br>-0,3<br>0,6<br>-0,3<br>-0,1<br>1,1<br>0,2<br>0,0<br>0,1<br>-0,3                        | Eae(AT)<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0, | Eae(SE)<br>-0,3<br>0,0<br>0,1<br>-0,3<br>(0,5<br>(0,5)<br>(0,5)<br>(0,3)<br>0,2<br>(0,5)                                            | Eae(OE)<br>±0,41<br>-0,1<br>-0,1<br>-0,1<br>-0,1<br>-0,1<br>0,8<br>5<br>0,8<br>0,8<br>0,5<br>1,4<br>0,4   |  |
| 71<br>1204<br>1302<br>1302<br>1302<br>1302<br>1304<br>1302<br>1304<br>1304<br>1304<br>1304<br>1304<br>1304<br>1304<br>1304                            | 118           40           57           35           11           245           194           78           149           1                                           | 123<br>63<br>64<br>1<br>12<br>3<br>98<br>22<br>12<br>15<br>110                 | 80<br>61<br>28<br>1<br>9<br>1<br>57<br>15<br>8<br>16<br>70                  | 75<br>84<br>44<br>1<br>19<br>10<br>103<br>26<br>16<br>34<br>46                         | Oct           235           122           66           2           31           14           218           48           40           49           109                             | Moyenne<br>188<br>190<br>12<br>12<br>12<br>12<br>12<br>12<br>12<br>12<br>12<br>12<br>12<br>12<br>12                                                                         | EC<br>143<br>29<br>18<br>25<br>11<br>83<br>75<br>29<br>56<br>46           | %EC<br>77,3<br>32,6<br>33,6<br>201,1<br>54,0<br>71,0<br>57,2<br>124,5<br>94,7<br>105,9<br>68,3          | HCO3<br>CI<br>SO4<br>NO2<br>NO3<br>PO4<br>Ca<br>Mg<br>K<br>Na<br>NH4           |   | ICO31<br>1<br>04<br>02<br>03<br>04<br>a.<br>19<br>                                                                | Eae(JN)<br>51,9,4<br>0,1<br>-0,2<br>31,1<br>521,2,4<br>-1,4<br>-4,5<br>2,4,2<br>-1,0                                                                                                                                                                                                                                                                                                      | Eae(JT)<br>0,1<br>-0,3<br>0,6<br>-0,3<br>-0,1<br>1,1<br>0,2<br>0,0<br>0,1<br>-0,3<br>0,1                 | Eae(AT)<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0, | Eae(SE)<br>-0,3<br>0,0<br>0,1<br>-0,3<br>(0,5<br>(0,5)<br>-0,5<br>-0,4<br>0,5<br>-0,5                                               | Eae(OE)<br><u> <u> </u> </u>      |  |
| 71<br>1104<br>1102<br>1103<br>1103<br>1104<br>1113<br>1114<br>1144<br>1145104                                                                         | 118           40           57           35           11           248           194           78           149           1           40                              | 123<br>63<br>64<br>1<br>12<br>3<br>98<br>22<br>12<br>15<br>110<br>4            | 80<br>61<br>28<br>1<br>9<br>1<br>57<br>15<br>8<br>16<br>70<br>3             | 75<br>84<br>44<br>1<br>19<br>10<br>103<br>26<br>16<br>34<br>46<br>8                    | Oct           235           122           66           2           31           14           218           48           40           49           109           20                | Moyenne<br>188<br>190<br>12<br>12<br>12<br>12<br>12<br>12<br>12<br>12<br>12<br>12<br>12<br>12<br>12                                                                         | EC<br>143<br>29<br>18<br>25<br>11<br>8<br>3<br>75<br>29<br>56<br>46<br>16 | %EC<br>77,3<br>32,6<br>33,6<br>201,1<br>54,0<br>71,0<br>57,2<br>124,5<br>94,7<br>105,9<br>68,3<br>103,5 | HCO3<br>CI<br>SO4<br>NO2<br>NO3<br>PO4<br>Ca<br>Mg<br>K<br>Na<br>NH4<br>H4SIO4 |   | CO3.1<br>04<br>02<br>03<br>04<br>a.<br>19<br>19<br>14<br>44<br>45<br>104                                          | Eae(JN)<br>51,9,4<br>0,1<br>-0,2<br>31,1<br>52,1<br>1,4<br>-1,4<br>-4,5<br>2,4,2<br>-1,0<br>+0,5<br>-1,0                                                                                                                                                                                                                                                                                  | Eae(JT)<br>0,1<br>-0,3<br>0,6<br>-0,3<br>-0,1<br>1,1<br>0,2<br>0,0<br>0,1<br>-0,3<br>0,1<br>-0,1<br>-0,1 | Eae(AT)<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,               | Eae(SE)<br>-0,3<br>0,0<br>0,1<br>-0,3<br>(m): 0,6<br>(m): 0,6<br>(m): 0,6<br>(m): 0,3<br>0,2<br>(m): 0,4<br>0,5<br>-0,5<br>(m): 0,8 | Eae(OE)<br><u>40,41</u><br>-0,1<br>0,1<br>-0,1<br>-0,6<br>,5,6<br>0,8<br>0,5<br>1,4<br>0,4<br>-0,3<br>2,2 |  |
| Til       IID4       IID2       IID3       PO4       Tro       Tro       Tro       Tro       Tro       Tro       Tro       IIH4       IIH4       IIH4 | 118           40           57           35           11           243           194           78           149           1           40                              | 123<br>63<br>64<br>1<br>12<br>3<br>98<br>22<br>12<br>15<br>110<br>4            | 80<br>61<br>28<br>1<br>9<br>1<br>57<br>15<br>57<br>15<br>8<br>16<br>70<br>3 | 75<br>84<br>44<br>1<br>19<br>10<br>103<br>26<br>16<br>34<br>46<br>8                    | Oct           235           122           66           2           31           14           218           46           40           49           109           20                | Moyenne<br>188<br>90<br>112<br>188<br>19<br>12<br>12<br>12<br>12<br>12<br>12<br>12<br>12<br>12<br>12<br>12<br>12<br>12                                                      | EC<br>143<br>29<br>18<br>25<br>11<br>83<br>75<br>29<br>56<br>46<br>16     | %EC<br>77,3<br>32,6<br>33,6<br>201,1<br>54,0<br>71,0<br>57,2<br>124,5<br>94,7<br>105,9<br>68,3<br>103,5 | HCO3<br>CI<br>SO4<br>NO2<br>NO3<br>PO4<br>Ca<br>Mg<br>K<br>Na<br>NH4<br>H4SIO4 |   | CO3.1<br>04<br>02<br>03<br>04<br>a.<br>19<br>19<br>19<br>19<br>19<br>19<br>19<br>19<br>19<br>19<br>19<br>19<br>19 | Eae(JN)<br>\$1,9,4<br>0,1<br>-0,2<br>31,1<br>\$21,24<br><br>6,3<br>4,5<br>4,5<br><br>4,2<br>-1,0<br>*6,5                                                                                                                                                                                                                                                                                  | Eae(JT)<br>0,1<br>-0,3<br>0,6<br>-0,3<br>-0,1<br>1,1<br>0,2<br>0,0<br>0,1<br>-0,3<br>0,1<br>-0,1         | Eae(AT)<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0, | Eae(SE)<br>-0,3<br>0,0<br>0,1<br>-0,3<br>4ac; 0,6<br>                                                                               | Eae(OE)<br><u>(10,41)</u><br>-0,1<br>-0,1<br>-0,1<br>-0,6<br>,5,6<br>0,8<br>0,5<br>1,4<br>-0,3<br>2,2-    |  |
| 71<br>1104<br>1102<br>1103<br>104<br>704<br>704<br>704<br>705                                                                                         | 118           118           40           57           35           11           248           194           78           149           1           40           52,7 | 123<br>63<br>64<br>1<br>12<br>3<br>98<br>22<br>12<br>15<br>110<br>4<br>(15, 3) | 80<br>61<br>28<br>1<br>9<br>1<br>57<br>15<br>8<br>16<br>70<br>3<br>(12, 4   | 75<br>84<br>44<br>1<br>19<br>10<br>103<br>26<br>16<br>34<br>46<br>8<br><i>1</i> 6<br>7 | Oct           235           122           68           2           31           14           218           48           40           49           109           20           35,1 | Moyenne<br>1980<br>1990<br>1991<br>1997<br>1997<br>1997<br>1997<br>1997<br>199                                                                                              | EC<br>143<br>29<br>18<br>25<br>11<br>83<br>75<br>29<br>56<br>48<br>18     | %EC<br>77,3<br>32,6<br>33,6<br>201,1<br>54,0<br>71,0<br>57,2<br>124,5<br>94,7<br>105,9<br>68,3<br>103,5 | HCO3<br>CI<br>SO4<br>NO2<br>NO3<br>PO4<br>Ca<br>Mg<br>K<br>Na<br>NH4<br>H4SIO4 |   | CO3.1<br>1<br>04<br>02<br>03<br>04<br>a.<br>19<br>19<br>14<br>14<br>45<br>104                                     | Eae(JN)<br>\$1,9,4<br>0,1<br>-0,2<br>31,1<br>\$2,1<br>5,2<br><br>1,4<br>5,3<br>4,5<br><br>4,2<br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br> | Eae(JT)<br>0,1<br>-0,3<br>0,6<br>-0,3<br>-0,1<br>1,1<br>0,2<br>0,0<br>0,1<br>-0,3<br>0,1<br>-0,1<br>-0,1 | Eae(AT)<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0, | Eae(SE)<br>-0,3<br>0,0<br>0,1<br>-0,3<br>5<br>5<br>5<br>5<br>6<br>0,3<br>0,2<br>-0,4<br>0,5<br>-0,5<br>0,9<br>2<br>-0,5             | Eae(OE)<br><u>40,41</u><br>-0,1<br>0,1<br>-0,1<br>.0,6<br>5,6<br>0,8<br>0,5<br>1,4<br>-0,3<br>2,2-        |  |

## 5) Bilan géochimique des apports atmosphériques

## Composition chimique moyenne des pluies (orange, 1992)

Fiux calculés pour 700 mm de pluie par an. F= Vol • Masse = (700 mm • 1 ha) • X mg/l) = (7000m3)\*(X.10(-3)kg/m3) = 7\*X kg/ha/yr

|         |      | Qualité o | himique: |      | Flux chimique |          |          |          |  |
|---------|------|-----------|----------|------|---------------|----------|----------|----------|--|
|         | sah  | soud      | guin     | MOY  | sah           | soud     | guin     | MOY      |  |
| 2(mm)   | 400  | 1100      | 1200     | 700  | 400           | 1100     | 1200     | 700      |  |
| · · · · | mg/l | mg/i      | mg/l     | mg/l | kg/ha/yr      | kg/ha/yr | kg/ha/yr | kg/ha/yr |  |
| HCO3    | 9,5  | 6,5       | 4,8      | 6,2  | 38,00         | 71,50    | 57,60    | 43,32    |  |
| a       | 2,7  | 1,2       | 0,3      | 1,0  | 10,80         | 13,20    | 3,60     | 7,16     |  |
| SC4     | 2,0  | 1,0       | 1,0      | 1,1  | 8,00          | 11,00    | 12,00    | 8,04     |  |
| NO:3    | 1,0  | 0,5       | 0,5      | 0,6  | 4,00          | 5,50     | 6,00     | 4,02     |  |
| PO4     | 0,2  | 0,3       | 0,3      | 0,3  | 0,80          | 3,30     | 3,60     | 2,00     |  |
| Ca      | 2,2  | 1,5       | 1,9      | 1,8  | 8,80          | 16,50    | 22,80    | 12,47    |  |
| Mg      | 0,6  | 0,2       | 0,1      | 0,2  | 2,40          | 2,20     | 1,20     | 1,50     |  |
| X       | 0,9  | 0,6       | 0,2      | 0,5  | 3,60          | 6,60     | 2,40     | 3,27     |  |
| Na      | 1,0  | 0,3       | 0,3      | 0,4  | 4,00          | 3,30     | 3,60     | 2,83     |  |
| NH4     | 1,2  | 1,0       | 0,3      | 0,7  | 4,80          | 11,00    | 3,60     | 5,03     |  |
| SiC2    | 0,7  | 0,4       | 0,7      | 0,6  | 2,80          | 4,40     | 8,40     | 4,04     |  |
|         |      |           |          |      |               |          |          |          |  |
| Total   | 22,0 | 13,5      | 10,4     | 13,4 | 88,0          | 148,5    | 124,8    | 93.7     |  |



. .

N PARA



### Composition chimique moyenne des dust (orange, 1992)

|          | 1      |          | Flux     | chimiqu  | e        | }        | Flux chimique |          |          |          |  |
|----------|--------|----------|----------|----------|----------|----------|---------------|----------|----------|----------|--|
|          | Dust   | sah      | soud     | guin     | MOY      | MOY      | sah           | soud     | guin     | MOY      |  |
| C(a/m2)  |        | 200      | 120      | 40       | 105      | 160      | 120           | 72       | 24       | 72       |  |
|          |        | 1,5      | 1,5      | 1,5      | 1,5      | 2        | 2             | 2        | 2        | 2        |  |
| e(mm/yr) |        | 0,133    | 0,080    | 0,027    | 0,070    | 0,080    | 0,060         | 0,036    | 0,012    | 0,036    |  |
|          | %oxvde | ko/ha/vr | ko/ha/vr | ko/ha/yr | kg/ha/yr | kg/ha/yr | kg/ha/yr      | kg/ha/yr | kg/ha/yr | kg/ha/yr |  |
| SiO2(T)  | 75.7   | 1514.7   | 908,8    | 302,9    | 795,2    | 1211,8   | 908,8         | 545,3    | 181,8    | 545,3    |  |
| AJ203    | 10.7   | 213.1    | 127.8    | 42,6     | 111,9    | 170,5    | 127,8         | 76,7     | 25,6     | 76,7     |  |
| Fe2O3    | 5.2    | 104.9    | 62,9     | 21,0     | 55,1     | 83,9     | 62,9          | 37,8     | 12,6     | 37,8     |  |
| TiO2     | 0.90   | 17.9     | 10,7     | 3,6      | 9,4      | 14,3     | 10,7          | 6,4      | 2,1      | 6,4      |  |
| MnO2     | 0.088  | 1.8      | 1,1      | 0,4      | 0,9      | 1,4      | 1,1           | 0,6      | 0,2      | 0,6      |  |
| P2:05    | 0.202  | 4.0      | 2,4      | 0,8      | 2,1      | 3,2      | 2,4           | 1,5      | 0,5      | 1,5      |  |
| CaO      | 1.37   | 27.3     | 16,4     | 5,5      | 14,3     | 21,9     | 16,4          | 9,8      | 3,3      | 9,8      |  |
| Mao      | 1.43   | 28.6     | 17.1     | 5,7      | 15,0     | 22,9     | 17,1          | 10,3     | 3,4      | 10,3     |  |
| K20      | 1.29   | 25.7     | 15.4     | 5,1      | 13,5     | 20,6     | 15,4          | 9,3      | 3,1      | 9,3      |  |
| Na2O     | 0,34   | 6,7      | 4,0      | 1,3      | 3,5      | 5,4      | 4,0           | 2,4      | 0,8      | 2,4      |  |
|          | Total  | 1944.8   | 1166.9   | 389.0    | 1021.0   | 1555,8   | 1166,9        | 700,1    | 233,4    | 700,1    |  |

12

| Gerchen  | nical balan | ce of atm | ospheric i | inputs in o | continental W | lest Africa  | a (in kg/ha | /yr)     |          |   |
|----------|-------------|-----------|------------|-------------|---------------|--------------|-------------|----------|----------|---|
| • •      | Flux dissou | s         |            |             |               |              | Flux partic | ulaire   | 1        |   |
|          | saih        | soud      | guin       | MOY         |               | sah          | soud        | guin     | MOY      |   |
| Р(тп)    | 400         | 1100      | 1200       | 700         | Cd(g/m2)      | 200          | 120         | 40       | 210      |   |
| <b>t</b> | kg/h:a/yr   | kg/ha/yr  | kg/ha/yr   | kg/ha/yr    | Ce(g/m2)      | 120          | 72          | 24       | 126      |   |
| HCON     | 38,00       | 71,50     | 57,60      | 43,32       | d(g/cm3)      | 1,8          | 1,8         | 1,8      | 1,8      |   |
| CI       | 10,50       | 13,20     | 3,60       | 7,18        | e(mm/yr)      | 0,067        | 0,040       | 0,013    | 0,070    |   |
| .504     | 8,00        | 11,00     | 12,00      | 8,04        |               | kg/ha/yr     | kg/ha/yr    | kg/ha/yr | kg/ha/yr |   |
| NO3      | 4.00        | 5,50      | 8,00       | 4,02        | SIO2(T)       | 908,8        | 545,3       | 181,8    | 954,3    |   |
| PO4      | 0,80        | 3,30      | 3,60       | 2,00        | A12O3         | 127,8        | 76,7        | 25,6     | 134,2    |   |
| Ca       | 8,80        | 16,50     | 22,80      | 12,47       | Fe2O3         | 62,9         | 37,8        | 12,6     | 66,1     |   |
| Mg       | 2,40        | 2,20      | 1,20       | 1,50        | TIO2          | 10,7         | 6,4         | 2,1      | 11,3     |   |
| K        | 3,60        | 6,60      | 2,40       | 3,27        | MnO2          | 1,1          | 0,6         | 0,2      | 1,1      |   |
| Na       | 4,00        | 3,30      | 3,60       | 2,83        | P2O5          | 2,4          | 1,5         | 0,5      | 2,5      |   |
| NH4      | 4,210       | 11,00     | 3,60       | 5,03        | CaO           | 16,4         | 9,8         | 3,3      | 17,2     |   |
| 5102     | 2,80        | 4,40      | 8,40       | 4,04        | MgO           | 17,1         | 10,3        | 3,4      | 18,0     |   |
|          |             |           |            |             | K2O           | 15,4         | 9,3         | 3,1      | 16,2     |   |
| Total    | 88,00       | 148,50    | 124,80     | 93,67       | Na2O          | 4,0          | 2,4         | 0,8      | 4,3      |   |
|          | Flu         | x dissous |            |             | Flux          | particulaire |             |          | W Africa |   |
|          | sah         | soud      | auin       | 1           | sah           | soud         | quin        |          | Ftotal   |   |
|          | ka/h:a/yr   | ko/ha/vr  | ko/ha/vr   |             | kg/ha/yr      | ko/ha/yr     | ko/ha/yr    |          | ko/ha/vr |   |
| HCCI     | 38.0        | 71.5      | 57.6       |             |               |              | ,           |          | 71.5     |   |
| CI       | 10,8        | 13,2      | 3,6        |             |               |              |             |          | 13,2     |   |
| N        | 4,6         | 9,8       | 4,2        |             |               |              |             | •        | 9,8      |   |
| S        | 2.7         | 3,7       | 4,0        |             |               |              |             |          | 3,7      |   |
| P        | 0,3         | 1,1       | 1,2        |             | 0,5           | 0,3          | 0,1         |          | 1,4      |   |
| Na       | 4,0         | 3,3       | 3,6        |             | 1,5           | 0,9          | 0,3         |          | 4,2      |   |
| Ca       | 8,8         | 16,5      | 22,8       |             | 11,7          | 7,0          | 2,3         |          | 23,5     |   |
| ĸ        | 3"6         | 6,6       | 2,4        |             | 6,4           | 3,8          | 1,3         |          | 10,4     | • |
| Mg       | 2.4         | 2,2       | 1,2        |             | 10,3          | 6,2          | 2,1         |          | 8,4      |   |
| Si       | 1,3         | 2,1       | 3,9        |             | 424,8         | 254,9        | 85,0        |          | 257,0    |   |
| Al       | !           |           |            |             | 33,8          | 20,3         | 6,8         |          | 20,3     |   |
| Fe       | 1           |           |            |             | 22,0          | 13,2         | 4,4         |          | 13,2     |   |
| Π        |             |           |            |             | 6,4           | 3,9          | 1,3         |          | 3,9      |   |
| Mn       | 1           |           |            |             | 0,7           | 0,4          | 0,1         |          | 0,4      |   |

Cd : dépôt de poussières mesuré ;

Ce : dépôt de poussières restant au sol après la remobilisation par le vent.

### 6) Quelques remarques

1. La diminution des teneurs en sodium entre les échantillons D5 et D6 (Dakar en août et septembre 1986) est inexpliquée ! ? Par contre, la diminution des teneurs en potassium enregistrée entre les échantillons de Dakar de mars et avril 1986 correspond au changement de laboratoire d'analyse !!! (tabeau 1)

2. Pour les événements de dépôts les plus importants à Dakar, la silice augmente alors que l'alumine et les oxydes de Ti et Mn diminuent nettement ; les autres oxydes de Fe, Ca, Mg et P semblent légèrement diminuer (figure 1).

3. Alors que de 1983 à 1987 à Dakar, le dépôt moyen annuel de poussières semble diminuer, les teneurs des poussières en silice, en oxydes de Fe, Mg, Ca et P augmentent (figure 2). Les baisses de teneurs en oxydes de K et Na peuvent être dues à des difficultés d'analyse.

4. L'évolution des teneurs moyennes mensuelles des poussières déposées à Dakar montre que les oxydes de P, Fe, Mg, Ca et dans une moindre mesure Ti et Al diminuent avec l'augmentation du dépôt ;.à l'opposé, la silice semble augmenter (figure 3). A Mbour, l'évolution est similaire alors que rien de significatif n'apparaît sur les résultats de Pété (figures 4 et 5).

5. Les tableaux 8 et 9 prouvent que les eaux de pluie ont leur composition chimique modifiée même lors du mois d'août, en pleine saison des pluies !

7) Annexe : article pour l'IAHS Symposium de juillet 1993 au Japon

Name : ORANGE Didier

Title : Constituent composition of Harmattan dust and geochemical balance of atmospheric depositions in continental West Africa

Full postal address : ORSTOM, BP 893, Bangui, République Centrafricaine

Telephone : (236) 61 20 89

Fax: (236) 61 68 29

-

a Station and

Net Astraction

Papers for IAHS Proceedings / 11-23 July 1993 - IAHS Symposium H2 - Tracers in Hydrology

vencer unullap

182

# Constituent composition of Harmattan dust and geochemical balance of atmospheric depositions in continental West Africa

D. ORANGE,
Laiboratoire d'Hydrologie, ORSTOM, BP 893, Bangui, République Centrafricaine
J.Y. GAC,
Laiboratoire de Géologie, ORSTOM, BP 1386, Dakar, Sénégal
M.1. DIALLO,
Département de Géographie, Université de Dakar, Sénégal

Abstract - In West Africa, atmospheric dusts, corresponding to the Saharian dust particles brought by Harmattan wind, represent a seasonal climatic event as rainy season. They are constituted basically by silt fraction and about 75% of their total deposited mass are formed by silica. The strong sensibility of calcium contents allows to use this element as tracer of source regions. Phosphate is only chemical specy with a seasonal behaviour. The atmospheric dusts modify the chemical quality of rain waters which are alkaline and strongly mineralized. A geochemical balance of atmospheric inputs is established by continental West African climatic zone. It reveals the existence of an African chemical signature of the atmospheric fluxes which represent a contribution in order from 1300 kg/ha/yr in sahelian zone to 365 kg/ha/yr in guinean zone. Silicium represents always the third of the total atmospheric inputs. On the other hand, there are different distributions of chemical species between the two forms of atmospheric inputs according to the climatic zone. Over the whole continental West Africa, the geochemical balance of dry and wet deposits is in the following order : Si >> HCO<sub>3</sub> > Ca > Al > Fe > Cl > K > N > Mg > (> Na > Ti > S > P > Mn).

#### **INTRODUCTION** -

During the last decade, many studies have shown the importance of atmospheric dust transport above African continent and their influence on the climate (D'Almeida, 1986, 1989; Tsoar & Pye, 1987; Bergametti *et al.*, 1989; Joussaume, 1990; Legrand, 1990). The present article concerns the role of atmospheric dust on the chemical properties of rain water in continental West Africa and the results on the geochemical balance of atmospheric inputs. In first, we determine the characteristics and constituent composition of the Harmattan dust falling in West Africa. After, we compare these with the rain water chemistry. And in conclusion, a geochemical balance of wet and dry atmospheric inputs in continental West Africa is established.

Daily measurements of dust deposition were performed in few points of Senegal country from 1984 to 1989 by ORSTOM. It has been already shown that in West Africa

atmospheric dust is an important seasonal climatic event as rainy season (Orange & Gac, 1990 ; Orange, 1992). Their depositions vary between about 200 g/m<sup>2</sup>/y in the sahelian zone and about 40 g/m<sup>2</sup>/y in the guinean zone, with at least 40% of these dust inputs which are remobilized by the wind. Their contribution to input-output sediment budget seems negligible and does not change the mechanical erosion balance. But their impact is important in the chemical weathering budget because they modify the chemical quality of rain waters. Indeed the dust deposition is not insignificant during the wet season : it represents 25% of the total annual dust flux.

#### MATERIALS AND METHODS

۴. . .

and the second sec

Collecting systems of atmospheric dust have been set in three points of the Senegal (Fig. 1). This material is presented in Orange *et al.* (1990). It is a simple pyramidal receptacle of 40 cm of depth and 0.25 cm<sup>2</sup> of collecting surface, located at 5 m above the ground and it delivers deposited dust into a collecting bottle when daily washed with distilled water. The samples are hence filtered on 0.45  $\mu$ m pore-size filters, dried up at 70°C and weighted.

For the chemical analysis of the dust depositions, the samples have been collected together by month. There were 42 analysis results for Dakar from 1984 to 1987, 20 for Mbour, 80 km southwards on the Atlantic coast, from 1986 to 1987, and 14 for Pete, 400 km eastwards into the continental sahelian zone, from 1986 to 1987.

Samples of rain waters have been collected in two points of Senegal, at Bakel into the sahe is a negative sahe is a negative season and at Kedougou into the sudanian zone during the 1987 rainy season (Fig. 1). The sampling method and the results of chemical analysis have been previously presented in Orange & Gac (1990).

#### CONSTITUENT COMPOSITION OF HARMATTAN DUST

The analysed material is basically represented by silt fraction. Size distribution measurements of atmospheric dust from Dakar have shown that 91% of particles have a diameter between 2 and 50  $\mu$ m, 6.5% have a diameter below 2  $\mu$ m and only 2.5% represent the sand fraction.

The annual means have been calculated weighting the monthly analysis results by the monthly average of daily dust deposition. The interannual mean is calculated by simple anthmetical average.

For each station, the annual means of dust chemical composition show a large stability. So the interannual means are characteristics of each station. There are not big variations between the three stations. The atmospheric dust is always basically siliceous. Silica is expressed in quartz (about 60%) or integrated in clay minerals (from 15 to 20%) (Orange,

Papers for IAHS Proceedings / 11-23 July 1993 - IAHS Symposium H2 - Tracers in Hydrology

1992). The most abundant oxydes after silica are always  $AI_2O_3$  (about 10%) and  $Fe_2O_3$  (about 5%).

Comparitively to the soil chemical composition of this geographical zone (Moberg *et al.*, 1991), atmospheric dust is more siliceous, less aluminous and equal ferrous. Furthermore, atmospheric dusts are very enriched in calcium, magnesium, potassium and sodium. So dusts are a source of cations, as West Africa soils are cations depleted.

In details, there are small differences of chemical species behaviour between dust colliected in Dakar, very inhabited coast city, Mbour, a small coast city, and Pete, a small continental city. At Dakar, silica is less abundant. The results of the X-ray diffraction analysis show that this missing part of silica corresponds to the quartz fraction. On the other hand, oxydes of calcium, potassium and sodium are more abundant, except magnesium oxyde. These three chemical species seem to be linked to a human pollution. At last, we note the weak content of phophorus in the dust from Pete in comparison of the two other sampling points. Phosphorus can be used as a tracer of dusts falling over area close to the coast.

The chemical composition of atmospheric dust does not show variation according to season. In Dakar, silica seems less important during wet season, but it is not confirmed by the two other sampling stations. Phosphorus is the only chemical specy having an annual cyclic evolution. Its high contents during wet season are accounted for by organic matter burning. Indeed biological emissions as particulate from vegetation are the major sources of phosphorus to the atmosphere (Stallard & Edmond, 1981).

In terms of monthly variability, the most variable chemical species are in decreasing order Na<sub>2</sub>O, P<sub>2</sub>O<sub>5</sub>, K<sub>2</sub>O, CaO at Dakar, P<sub>2</sub>O<sub>5</sub>, CaO, Na<sub>2</sub>O at Mbour and CaO at Pete. Their standard deviation is superior at 20% (table 3). The fact that calcium is the only chemical specy variable at each station, notes the large contribution of calcareous encrusting for the atmospheric dust generation (Paquet *et al.*, 1984 ; Loÿe-Pilot *et al.*, 1986 ; Coudé-Gaussen, 1989 ; Clarke & Karani, 1992). This element can be used as tracer of source regions.

We have no explication for the strong variability of sodium and potassium in dust composition. Their low level of concentration can be at the origin of analytical problems. The comparison with bibliographic data does not allow to supply a solution (Moberg *et al.*, 1991).

#### CHEMICAL PROPERTIES OF RAIN WATERS

In comparison with the world average, rain waters of continental sahelo-sudano-guinean zones are strongly mineralized (from 10 mg/l to 50 mg/l) and contain bicarbonates and calcium (Mathieu, 1976; Roose, 1980; Lewis, 1981; Travi *et al.*, 1987; Orange & Gac, 1990; Yaïr *et al.*, 1991). Orange & Gac (1990) have shown that dissolved matter contents increase with increasing aridity and encounter of cloud masses of the monsoon with the Harmattan winds

which are charged with dust particles. Furthermore the pH is slightly alkaline. In this geographical country characterized by savannah, the incorporation into rain water of Harmattan dust counteract the effect of acidic rain noted in tropical forest, southwards of our study region (Loÿe-Pilot *et al.*, 1986 ; Jaffrezo, 1987 ; Lacaux *et al.*, 1987 ; Caboi *et al.*, 1992).

At Bakel, the highest concentrations are observed at the beginning and at the end of the rainfall season ; a decrease in rain concentrations is observed during wet season (table 4). So, precipitations play a significant role in the self-cleaning of the atmosphere. This phenomenon was noted previously by several studies (Buat-Ménard *et al.*, 1974 ; Lewis, 1981 ; Jaffrezo, 1987 ; Orange & Gac, 1990).

For silica dissolved in rain water, the contribution of atmospheric dust is obvious. For the other chemical species, to characterize the load increasing due to the flushing of the dust suspended in the lower atmosphere, we use an enrichment factor noted  $E_d(X)$  of any chemical element X in rain water by the dust, defined as :

$$E_{d}(X) = [(C_{X}/C_{C})_{rain} / (C_{X}/C_{C})_{ocean}] - 1$$

where  $C_X$  is the concentration of the element X,  $C_{CI}$  is the concentration of chloride used as reference. Indeed chloride characterizes the marine source in agreement with previous studies (Stallard & Edmond, 1981; Meybeck, 1984). If  $E_d(X)$  is negative, then the chemical specy X is enriched in rain water. We have used the  $C_X/C_{CI}$  ratio given by Savenko (1976).

The results (table 5) show that the enrichment is stronger in June and October. Magnesium is enriched only in June while bicarbonate, calcium and potassium are enriched during the whole wet season. Bicarbonate is the chemical specy the most enriched. We see again here the importance of calcareous encrusting in the rainfall chemistry. We have no data concerning phosphate and nitrate. In conclusion, results from rain chemistry show the relative importance between wet and dry atmospheric inputs.

### **GEOCHEMICAL BALANCE OF ATMOSPHERIC DEPOSITIONS**

13

The uniformity of chemical composition of West African rainfall and atmospheric dust noted by bibliographic study of Orange & Gac (1990) allow to calculate geochemical balance of atmospheric depositions by using data collected in three typical points of each concerned climatic zone : sahelian, sudanian and guinean zones.

The average chemical composition of dissolved atmospheric inputs in continental West Africa has been estimated from the chemical composition of rain waters collected in sahelian zone (at Bakel), in sudanian zone (at Kedougou) and in guinean zone (at Korhogo, Ivory Coast (Roose, 1980)) weighted by rainfall amount of each station (Orange, 1992) (table 6).

The total load of dissolved inputs in continental West Africa is about 13 mg/l. In terms of equivalents, the order of total annual loads for soluble cations is Ca>NH<sub>4</sub>>Mg>Na>K. For soluble anions, the order of load is  $HCO_3>Cl>SO_4>NO_3>PO_4$ . Soluble silicon load is low but superior at the world average. Bicarbonate is largely the major ionic specy (Fig. 2). Lewis (1981) gives the same order for the total annual load of soluble anions in a tropical watershed of Venezuela with a similar environment. For the soluble cations, the relative contribution of calcium and ammonium is more important in our study, because of the large part of Harmattan dust in the continental West African atmospheric inputs.

The particulate inputs are calculated by arithmetical average from the average chemical composition of dust collected at Dakar, Mbour and Pete. The result has already been presented in table 2.

The geochemical balances of atmospheric inputs are calculated by using the results of the hydroclimatic study about West Africa done by Orange (1992). For the present period, the average annual rainfall amount is about 400 mm/yr in sahelian zone, 1100 mm/yr in sudanian zone and 1200 mm/yr in guinean zone. With a remobilization rate of 40% (Orange, 1992), the mean annual deposition of atmospheric dust is estimated at 120 g/m<sup>2</sup> in sahelian zone, 70 g/m<sup>2</sup> in sudanian zone and 25 g/m<sup>2</sup> in guinean zone.

The results show that the atmospheric dusts constitute always the major part of atmospheric inputs whatever continental West African climatic zones (Fig. 3). Their contribution is the most important in sahelian zone, where they represent 93% of the total inputs. In sudanian zone, their contribution goes down to 83% of the total inputs and in guinean zone they fall to 66% only of the total inputs. So in continental West Africa, the inputs of atmospheric dust represent between 2 and 14 times the inputs of rainwater.

In term of mass balance, the flux of atmospheric inputs is the most important in sahelian zone, because of the strong contribution of dust particles to the total atmospheric inputs in this climatic zone. It is about 1288 kg/ha/yr in sahelian zone while it is only about 365 kg/ha/yr in guinean zone ; that represents a variation of 72% between these two West African extremes. In sudanian zone, the total atmospheric inputs amount to 868 kg/ha/yr.

The distribution between dissolved and particulate chemical species is presented in table 7. Inorganic carbon, being only in the bicarbonate form, chlore, nitrogen and sulphur are brought into the landscape exclusively in dissolved form. Phosphorus, sodium, calcium, potassium, magnesium and silicium are represented in the two forms of inputs (wet and dry) with different distributions according to climatic zone. For instance, calcium is principally brought in particulate form in sahelian zone while it is above all brought in dissolved form in guinean zone. The silicium is always present especially in particulate form. Finally, aluminium, iron, titanium and manganese are exclusively in particulate form.

In details, the mass contribution of chemical species is function of the climatic zone because of different distributions between wet and dry atmospheric inputs according to climatic zone (table 7). However, the succession of main chemical species brought by the atmospheric inputs is the same whatever the climatic zone : Si, HCO<sub>3</sub>, Ca, AI, Fe. The silicium is always the most abundant chemical element brought into the continental West African landscape ; it represents always about the third of the atmospheric inputs. After the silicium, we find always in the decreasing order the bicarbonate. Its contribution into the whole atmospheric inputs varies from 3% in sahelian zone to 16% in guinean zone. Then calcium is more or less abundant than aluminium and iron according to the importance of the part of atmospheric dust into the whole atmospheric inputs. In sahelian zone, aluminium and iron mass fluxes are superior than calcium mass flux, and inversely in sudanian and guinean zones (table 7). For the other analysed chemical species, there is no characteristic order. We note only the strong variability of nitrogen inputs between the three climatic zones. From 0.8% of the total atmospheric inputs in sahelian zone, they amount to 20% of them in sudanian and guinean zones.

At last, in conclusion, table 7 gives an estimation of the mass contribution for each chemical specy over the continental West Africa. This global balance has been established regarding the sudanian zone as representative of West Africa. The flux of total atmospheric inputs over the continental West Africa amounts to about 850 +/- 50 kg/ha/yr, with one third represented by silicium. The chemical mass balance of dry and wet atmospheric inputs in continental West Africa is in the following order : Si >  $HCO_3$  > Ca > AI > Fe > CI > K > N > Mg (> Na > Ti > S > P > Mn).

### CONCLUSIONS

: اور The geochemical balance of atmospheric depositions underlines the importance of Harmattan dust in continental West Africa. Wet precipitations playing a significant role in the self-cleaning of the atmosphere, the water soluble fraction of the tropospheric aerosols governs the dissolved salts contents of rain waters.

The chemical analysis of atmospheric dust falling in Senegal has shown that there are not big variations of chemical composition over the whole studied zone. The atmospheric dust is always basically constituted by silt fraction and silica represents 75% of the total mass deposited on the ground. It appears also that dusts are a source of cations for the soil formation. In the main, there is no variation of the chemical composition according to the season ; phosphorus is the only chemical specy having an annual cyclic evolution due to the cyclic vegetation behaviour. At last, this study notes the large sensibility of particulate calcium to trace the source regions. The impact of atmospheric dusts is important in the chemical weathering budget of West African landscapes, because they modify the chemical quality of rain waters and so the chemistry of surface waters. The enrichment, especially in bicarbonate, calcium, potassium and sillicium, due to the flushing of the dust particles suspended in the lower atmosphere is the highest at the beginning and at the end of the wet season. Bicarbonate is the chemical specy the most enriched.

The atmospheric dusts constitute always the major part of atmospheric inputs whichever continental West African climatic zones. The flux of atmospheric inputs is the most important in sahelian zone ; there is a variation of 72% between the two extreme West African climatic zones. Phosphorus, sodium, calcium, potassium, magnesium and silicium are represented in the two forms of inputs (wet and dry) with different distributions according to climatic zone. Of course, silicium is always present especially in particulate form. The succession of main chemical species brought by the atmospheric inputs is the same whatever the climatic zone : Si, HCO<sub>3</sub>, Ca, Al, Fe. The flux of total atmospheric inputs over the continental West Africa amounts to about 850 +/- 50 kg/ha/yr, with one third represented by silicium.

These results underline the impact of atmospheric dust on the chemistry of surface waters. Indeed playing an important role on the chemical composition of rain waters, the knowledge of the Harmattan dust geochemistry is necessary to understand the present chemical weathering of West Africa landscapes.

Acknowledgements - This paper is an expanded version of a part of a doctoral thesis written in the Geological Laboratory of ORSTOM in Dakar (Senegal) and in the *Centre de Géochimie de la Surface (CGS)* of CNRS in Strasbourg (France). Special thanks are due to J. Gautheyrou from the *Laboratoires des Formations Superficielles* of ORSTOM at Bondy (France) for the analysis of atmospheric dust collected on 1986 and 1987, to H. Paquet from the *Centre de Géochimie de la Surface* of CNRS at Strasbourg (France) for the analysis of atmospheric dust collected on 1984 and 1985, and G. Krempp from the *Centre de Géochimie de la Surface* of CNRS at Strasbourg (France) for rain water analysis.

#### REFERENCES

Bergametti G., Gomes L., Remoudaki E., Desbois M., Martin D., Buat-Ménard P. (1989) -Present transport and deposition patterns of African dusts to the north-western Mediterranean. Paleoclimatology and Paleometeorology : Modern and Past Patterns of Global Atmospheric Transport, Leinen and Sarnthein Eds, 227-252.

Busie.

Papers for IAHS Proceedings / 11-23 July 1993 - IAHS Symposium H2 - Tracers in Hydrology

- Buat-Ménard P., Morelli J., Chesselet R. (1974) Water-soluble elements in atmospheric particulate matter over tropical and equatorial Atlantic. *J. de Rech. Atm.*, CNRS Ed. VIII(3-4), 661-672.
- Caboi R., Cidu R., Cristini A., Fanfani L., Zuddas P. (1992) Influence of Saharian dust and marine spray on the chemical composition of rain in Sardinia, Italy. *Water-Rock Interaction,* Kharaka & Maest Eds, Balkema, USA, 469-472.
- Clarke A.G., Karani G.N. (1992) Characterisation of the carbonate content of atmospheric aerosols. J. Atm. Chem. 14, 119-128.
- Coudé-Gaussen G. (1989) Les poussières sahariennes et leur contribution aux sédimentations désertiques et péridésertiques. *Thèse Lettres*, Géographie, univ. Paris VI, 715 p.
- D'Almeida G.A. (1986) A model for Saharan dust transport. J. Climate and Appl. Meteo. 25(7), 903-916.
- D'Almeida G.A. (1989) Desert aerosol : characteristics and effects on climate. In : Paleoclimatology and Paleometeorology : Modern and Past Patterns of Global Atmospheric Transport, Leinen and Sarnthein Eds, 311-338.
- Jaffrezo J.L. (1987) Etude du lessivage des aérosols atmosphériques par les précipitations. *Thèse Sciences*, Chimie de la pollution, univ. Paris VII, 164 p.
- Joussaume S. (1990) Three-dimensional simulations of the atmospheric cycle of desert dust particles using a General Circulation Model. *J. Geophys. Res.* **95**(D2), 1909-1941.
- Lacaux J.P., Servant J., Baudet J.G.R. (1987) Acid rain in the tropical forests of the Ivory Coast. *Atm. Env.* **21**(12), 2643-2647.
- Legrand M. (1990) Etude des aérosols sahariens au-dessus de l'Afrique à l'aide du canal à 10 microns de Météosat : visualisation, interprétation et modélisation. *Thèse Sciences*, Physique, univ. Lille, 200 p.
- Lewis W.M. (1981) Precipitation chemistry and nutrient loading by precipitation in a tropical watershed. *Wat. Resour. Res.* **17**, 169-181.
- Loÿe-Pilot M.D., Martin J.M., Morelli J. (1986) Influence of saharan dust on the rain acidity and atmospheric input to the mediterranean. *Nature* **321**, 427-428.
- Mathieu P. (1976) Influence des apports atmosphériques et du pluviolessivage forestier sur la qualité des eaux de deux bassins versants en Côte d'Ivoire. *Cah. ORSTOM, sér. Géol.*, Paris, VIII, 11-32.
- Meybeck M. (1984) Les fleuves et le cycle géochimique des éléments. Thèse Sciences, Géologie, univ. Paris VI, 558 p.
- Moberg J.P., Esu I.E., Malgwi W.B. (1991) Characteristics and constituent composition of Harmattan dust falling in Northern Nigeria. *Geoderma* **48**, 73-81.

Papers for IAHS Proceedings / 11-23 July 1993 - IAHS Symposium H2 - Tracers in Hydrology

- Orrange D., Gac J.Y. (1990) Bilan géochimique des apports atmosphériques en domaines sahélien et soudano-guinéen d'Afrique de l'Ouest (bassins supérieurs du Sénégal et de la Gambie). Géodynamique, ORSTOM, Paris, 5(1), 51-65.
- Onange D. (1992) Hydroclimatologie du Fouta-Djalon et dynamique actuelle d'un vieux paysage latéritique (Afrique de l'Ouest). Mém. Sc. Géol., Strasbourg, 194 p.
- Paquet H., Coudé-Gaussen G., Rognon P. (1984) Etude minéralogique de poussières sahariennes le long d'un itinéraire entre 19° et 35° de latitude nord. Rev. Géol. Dyn. Géogr. Phys. 25, 257-265.
- Roose E. (1980) Dynamique actuelle de sols ferrallitiques et ferrugineux tropicaux d'Afrique occidentale. Thèse Sciences, Géologie, univ. Orléans, 587 p.
- Saverko V.S. (1976) The chemical composition of precipitation over the oceans. Geochem. Int. 13(6), 181-184.
- Stallard R.F., Edmond J.M. (1981) Geochemistry of the Amazon. 1. Precipitation chemistry and the marine contribution to the dissolved load at the time of peak discharge. *J. Geophys. Res.* 86(C<sub>10</sub>), 9844-9858.
- Travi Y., Gac J.Y., Fontes J.C., Fritz B. (1987) Reconnaissance chimique et isotopique des eaux de pluie au Sénégal. Géodynamique, ORSTOM, Paris, 2, 1-11.
- Tsoar H., Pye K. (1987) Dust transport and the question of desert loess formation. Sedimentology 34, 139-153.
- Yair A., Karnieli A., Issar A. (1991) The chemical composition of precipitation and runoff water on an arid limestone hillside, northern Negev, Israël. J. Hydrol. **129**, 371-388.

. Papers for IAHS Proceedings / 11-23 July 1993 - IAHS Symposium H2 - Tracers in Hydrology

#### LIST OF TABLES

Taible 1 Annual mean chemical composition of atmospheric dust collected in Senegal (in % oxiides).

 Taible 2 Geochemistry of atmospheric dustfall in West Africa and average chemical

 composition of a well-drained soil of Northern Nigeria (in % oxides).

Table 3 Variability of chemical species of atmospheric dust collected in Senegal (in % standard deviation).

Taible 4 Monthly chemical composition (in µeq/l) of rain waters collected at Bakel.

Table 5 Enrichment factors Ed of chemical major elements of rainfall collected at Bakel.

Table 6 Average chemical composition (in mg/l) of dissolved atmospheric inputs in sahelian, sudanian and guinean climatic zones.

Table 7 Geochemical balance of atmospheric inputs in continental West Africa (in kg/ha/yr).

**FIGURE CAPTION** 

12

نغته

77

<u>ت</u>

Fig. 1 Geographical location of the sampling area.

Fig. 2 Geochemical feature of rain waters in continental West Africa.

**Fig. 3** Contribution of dry and wet atmospheric inputs in continental West Africa (in kg/ha/yr) (Ft, total flux of atmospheric inputs ; contribution of dust deposition in per cent).

Tehia I Annual Innon Olinor Oal it. μοε... iur ' ាទប្រ' s du 🕐 ulla 1101 afld, "hi co) Laster J

| Station                        | DAKAR     |                   |                   |           |       | MBOUR     |       |                   |           |       |           | PETE  |           |           |       |            |       |
|--------------------------------|-----------|-------------------|-------------------|-----------|-------|-----------|-------|-------------------|-----------|-------|-----------|-------|-----------|-----------|-------|------------|-------|
| Year<br>n                      | 1984<br>9 | <b>1985</b><br>12 | <b>1986</b><br>12 | 1987<br>9 | М     | +/-<br>42 | SD    | <b>1986</b><br>12 | 1987<br>8 | M     | +/-<br>20 | SD    | 1986<br>9 | 1987<br>5 | M     | +⊧/⊾<br>14 | \$D   |
| SiO <sub>2</sub>               | 74.3      | 72.0              | 74.2              | 74.7      | 73.8  | +/-       | 2.8   | 75.9              | 77.2      | 76.5  | +/-       | 2.6   | 76.3      | 77.3      | 76.8  | +/-        | 2.0   |
| Al <sub>2</sub> Õ <sub>3</sub> | 12.6      | 12.9              | 11.3              | 9,5       | 11.6  | +/-       | 1.9   | 10.5              | 9.6       | 10.1  | +/-       | 1.5   | 10.8      | 9.8       | 10.3  | +/-        | 0.9   |
| Fe <sub>2</sub> O <sub>3</sub> | 5.1       | 5.1               | 5.7               | 5.7       | 5.4   | +/-       | 0.8   | 5.4               | 5.0       | 5.2   | +/-       | 0.6   | 5.3       | 5.0       | 5.2   | +/-        | 0.4   |
| TiÕ <sub>2</sub> Č             | 0.95      | 0.92              | 0.89              | 0.82      | 0.89  | +/-       | 0.09  | 0.88              | 0.86      | 0.87  | +/-       | 0.10  | 0.94      | 0.90      | 0.92  | +/-        | 0.07  |
| MnŌ <sub>2</sub>               | 0.073     | 0.067             | 0.080             | 0.084     | 0.076 | +/-       | 0.007 | 0.100             | 0.086     | 0.093 | +/-       | 0.009 | 0.103     | 0.086     | 0.094 | +/-        | 0.013 |
| $P_{2}O_{5}$                   | 0.224     | 0.215             | 0.262             | 0.276     | 0.244 | +/-       | 0.121 | 0.248             | 0.191     | 0.219 | +/-       | 0.076 | 0.143     | 0.143     | 0.143 | +/-        | 0.025 |
| CaO                            | 2.04      | 2.07              | 2.08              | 2.46      | 2.16  | +/-       | 0.46  | 0.97              | 1.09      | 1.03  | +/-       | 0.30  | 0.67      | 1.15      | 0.91  | +/-        | 0.43  |
| MgO                            | 1.47      | 1.50              | 1.53              | 1.54      | 1.51  | +/-       | 0.16  | 1.51              | 1.39      | 1.45  | +/-       | 0.21  | 1.34      | 1.31      | 1.33  | +/-        | 0.19  |
| K20                            | 2.20      | 2.21              | 1.57              | 1.01      | 1.75  | +/-       | 0.59  | 1.05              | 1.02      | 1.04  | +/-       | 0.12  | 1.16      | 1.00      | 1.08  | +/-        | 0.14  |
| Nā <sub>2</sub> O              | 1.03      | 1.10              | 0.76              | 0.21      | 0.77  | +/-       | 0.42  | 0.14              | 0.12      | 0.13  | +/-       | 0.03  | 0.10      | 0.11      | 0.11  | +/-        | 0.02  |

n, number of analysed samples ; M, interannual mean ; SD, standard deviation.

Table 2 Geochemistry of atmospheric dustfall in West Africa and average chemical composition of a well-drained soil of Northern Nigeria (in % oxydes).

| Table 3 Variability of chemical species of atmosphe  | ric |
|------------------------------------------------------|-----|
| dust collected in Senegal (in % standard deviation). |     |

|                                | dust  | soil (1) |
|--------------------------------|-------|----------|
| SiO <sub>2</sub>               | 75.7  | 49.7     |
| Al <sub>2</sub> Õ <sub>3</sub> | 10.7  | 29.6     |
| Fe <sub>2</sub> O <sub>3</sub> | 5.2   | 4.1      |
| TiŌ2                           | 0.90  | 1.64     |
| MnŌ2                           | 0.088 | 0.02     |
| $P_{2}O_{5}$                   | 0.202 | -        |
| CaO                            | 1.37  | 0.08     |
| MgO                            | 1.43  | 0.44     |
| K20                            | 1.29  | 0.90     |
| Na <sub>2</sub> O              | 0.34  | 0.03     |

(1) Moberg et al., 1991.

| Station                        | Dakar | Mbour | Pete |
|--------------------------------|-------|-------|------|
| SiO <sub>2</sub>               | 4     | 3     | 3    |
| Al2Ô3                          | 17    | 14    | 8    |
| Fe <sub>2</sub> O <sub>3</sub> | 14    | 12    | 8    |
| TiŌ2                           | 10    | 12    | 8    |
| MnŌ2                           | 9     | 10    | 14   |
| $P_{2}O_{5}^{-}$               | 50    | 35    | 17   |
| CaO                            | 21    | 29    | 48   |
| MgO                            | 10    | 14    | 14   |
| K <sub>2</sub> 0               | 34    | 12    | 13   |
| Nā <sub>2</sub> O              | 54    | 23    | 17   |
|                                |       |       |      |

Papers for IAHS Proceedings / 11-23 July 1993 - IAHS Symposium H2 - Tracers in Hydrology

|                                           | June | July | August | September | October         |
|-------------------------------------------|------|------|--------|-----------|-----------------|
| Pp(mm)                                    | 73   | 25   | 172    | 38        | 12              |
| NPp                                       | 4    | 1    | 9      | 5         | 3               |
| HCO3                                      | 415  | 123  | 80     | 75        | 235             |
| CI                                        | 118  | 63   | 61     | 84 .      | 122             |
| SOA                                       | 40   | 64   | 28     | 44        | 66              |
| NO3                                       | 35   | 12   | 9      | 19        | 31              |
| POA                                       | 11   | 3    | 1      | 10        | 14              |
| Ca                                        | 246  | 98   | 57     | 103       | 218             |
| Mg                                        | 194  | 22   | 15     | 26        | 46              |
| К                                         | 78   | 12   | 8      | 16        | 40              |
| Na                                        | 149  | 15   | 16     | 34        | 49 <sup>·</sup> |
| NH4                                       | 1    | 110  | 70     | 46        | 109             |
| H <sub>4</sub> SiO <sub>4</sub><br>µmol/l | 40   | 4    | 3      | 8         | 20              |
| TDS<br>mg/l                               | 52.7 | 18.9 | 12.4   | 16.2      | 35.1            |

Table 4 Monthly chemical composition (in µeq/I) of rain waters collected at Bakel.

Fp, amount of collected rain water in mm ;NPp, number of rainfalls ; TDS, Total Dissolved Solute in mg/l.

Table 5 Enrichment factors Ed of chemical major elements of rainfall collected at Bakel.

| September October | August    | July      | June      | X                |
|-------------------|-----------|-----------|-----------|------------------|
| 38 83             | 56        | 84        | 151       | HCO <sub>3</sub> |
| 0.5 0.5           | 0.3       | 2         | 0         | SO₄              |
| 8 12              | 6         | 11        | 15        | Ca               |
| 0.5 0.8           | 0.2       | 0.6       | 7         | Mg               |
| 5 9               | 3         | 5         | 20        | K                |
| -0.6 -0.6         | -0.7      | -0.7      | 0.4       | Na               |
| 5<br>-0.6         | 3<br>-0.7 | 5<br>-0.7 | 20<br>0.4 | K<br>Na          |

 $\overline{E_d} = [(X/Cl)_{rain} / (X/Cl)_{ocean}] - 1.$ 

A CONTRACT

Table 6 Average chemical composition (in mg/l) of dissolved atmospheric inputs in sahelian, sudanian and guinean climatic zones.

|                  | sahelian<br>zone | sudanian<br>zone | guinean<br>zone | continental<br>West Africa |
|------------------|------------------|------------------|-----------------|----------------------------|
| HCO <sub>3</sub> | 9.5              | 6.5              | 4.8             | 6.2                        |
| CI               | 2.7              | 1.2              | 0.3             | 1.0                        |
| SO∉              | 2.0              | 1.0              | 1.0             | 1.1                        |
| NO3              | 1.0              | 0.5              | 0.5             | 0.6                        |
| ₽O∡              | 0.2              | 0.3              | 0.3             | 0.3                        |
| Ca               | 2.2              | 1.5              | 1.9             | 1.8                        |
| Mg               | 0.6              | 0.2              | 0.1             | 0.2                        |
| К                | 0.9              | 0.6              | 0.2             | 0.5                        |
| Na               | 1.0              | 0.3              | 0.3             | 0.4                        |
| NHA              | 1.2              | 1.0              | 0.3             | 0.7                        |
| SiO <sub>2</sub> | 0.7              | 0.4              | 0.7             | 0.6                        |
| TDS              | 22.0             | 13.5             | 10.4            | 13.4                       |

TDS, Total Dissolved Solute in mg/l.

Table 7 Geochemical balance of atmospheric inputs in continental West Africa (in kg/ha/yr).

|        |           | sahelian<br>zone |       | sud:<br>zc  | anian<br>one | guinean contin<br>zone West |             | continental<br>West Africa |
|--------|-----------|------------------|-------|-------------|--------------|-----------------------------|-------------|----------------------------|
|        |           | Fd               | Fp    | Fd          | Fp           | Fd                          | Fp          | Ftotal                     |
|        | HCO3      | 38.0             |       | 71.5        |              | 57.6                        |             | 71.5                       |
| wet    | CI        | 10.8             |       | 13.2        |              | 3.6                         |             | 13.2                       |
| only   | N         | 4.6              |       | 9.8         |              | 4.2                         |             | 9.8                        |
|        | S         | 2.7              |       | 3.7         |              | 4.0                         |             | 3.7                        |
| ······ | в         | 0.3              | 0.5   | 1 1         | 0.2          | 1 9                         | 0.1         | 1 4                        |
| wat    | r<br>No   | 10.5             | 15    | 1.1         | 0.3          | 1.4                         | 0.1         | 1.4                        |
| and    | iva<br>Ca | 4.U<br>0 0       | 1.0   | 3.3<br>16 E | 0.9          | 3.0<br>22 0                 | 0.0         | 4.Z                        |
| diru   | Ud<br>V   | 0.0              | 0.4   | 10.5        | 7.0          | 22.0                        | 2.3         | 23.3                       |
| ary    | K .       | 3.0              | 0.4   | 0.0         | 3.8          | 2.4                         | 1.3         | 10.4                       |
|        | мg<br>Si  | 2.4<br>1.3       | 424.8 | 2.2<br>2.1  | 6.2<br>254.9 | 1.2<br>3.9                  | 2.1<br>85.0 | 8.4<br>257.0               |
|        |           |                  |       |             |              |                             |             |                            |
|        | AI        |                  | 33.8  |             | 20.3         |                             | 6.8         | 20.3                       |
| dry    | Fe        |                  | 22.0  |             | 13.2         |                             | 4.4         | 13.2                       |
| only   | Ti        |                  | 6.4   |             | 3.9          |                             | 1.3         | 3.9                        |
|        | Mn        |                  | 0.7   |             | 04           |                             | 0.1         | 04                         |

Ed, dissolved flux ; Fp, particulate flux.

(j. 1. 1. 1.

Ľ. 1







Chicad States