La MEKROU à BAROU

Extension des débits mensuels et annuels

Touchebeuf de Lussigny Pierre. (1972). Tananarive : ORSTOM, 6 p. multigr.

1. EXTENSION des DEBITS MENSUELS

Etant donné que les observations hydrométriques ne portent que sur une période de onze ans, avec des lacunes notables, on a essayé de reconstituer les débits mensuels sur une période beaucoup plus étendue en s'appuyant sur des données pluviométriques. On possède, en effet, des relevés pluviométriques d'excellente qualité et remontant à l'année 1921 pour trois postes pluviométriques qui ne sont malheureusement pas situés à l'intérieur du bassin de la MEKROU mais l'encadrent assez bien. Ces trois postes sont les suivants:

	latitude	longitude	altitude
NATITINGOU	10° 19° N	1° 23° E	460 m
BEMBEREKE	10° 12° N	2° 40° E	490 m
KANDI	11° 08' N	2° 56 ¹ E	290 m

Il a été jugé imitile de chercher à reconstituer les débits mensuels des mois de janvier à mai qui sont toujours très faibles ou absolument nuls. Pour chacun des autres mois de l'année compris entre juin et décembre, on a procédé par ordinateur à une analyse de régression linéaire multiple pour rechercher la meilleure relation stockastique liant les débits mensuels observés pour un mois M considéré aux pluviométries mensuelles observées simultanément ou dans les deux mois antérieurs. La sélection des pluviométries mensuelles expliquant au mieux les débits mensuels observés entre 1961 et 1970 a été faite selon la méthode "Stepwise" (1). Les résultats obtemus sont condensés dans le tableau I.

Moyennant certaines hypothèses restrictives (normalité de la distribution marginale de la variable dépendante et des variables explicatives) qui sont dans le cas présent satisfaites de façon approximative; les régressions linéaires auxquelles on aboutit peuvent s'écrire sous la forme générale :

$$Q = b_0 + b_1 P_1 + \dots + b_m P_m$$

Les valeurs des coefficients de régression b_0 , b_1 ... b_m , ainsi que les définitions des variables explicatives P_1 , ... P_m sont données dans le tableau I. Par exemple, pour les débits mensuels de septembre on a l'équation de régression suivante :

$$Q_{SEPT} = -422,85 + 1,903 P_{JUIL} + 0,669 P_{SEPT} + 0,250 P_{AOUT}$$
KANDI NATIT.

^{(1) -} NOTA - Voir "Régressions et corrélations multiples en hydrologie" de P. TOUCHEBEUF, dans Cahiers ORSTOM - Série Hydrologie - n° 4 - 1971 -

TABLEAU I

RECRESSIONS LINEAIRES MULTIPIES

liant les débits mensuels aux pluviométries mensuelles de

NATITINGOU, BEMBEREKE, KANDI et leurs moyennes

Variable dépendante	•	Variables	explicatives	s (Pluies m	ensuelles)	:Coef. de	
Débit mensuel		0	: 1	2	: 3	:multiple	
JUIN	: Variables - explicatives	-	AVRIL KANDI	_	• све • све • све	· · · · · · · · · · · · · · · · · · ·	•
	Coefficients de régression	0 ,66 03	0,0884		· -	0,839	. 2 , 03
JUILLET	Variables explicatives		JUIN MOYENNE	* ************************************	• •		
•	. Coefficients de régression	- 9,9512	0,1764	-	: -	: 0,816 : 0	. 5,50
AOUT	· Variables · explicatives		JUILIET MOYENNE	-	-	difficience construction (company)	
AUUT	. Coefficients de régression	21,2089	0,4148	- -	: : -	0,631	: 18,88 :
	:. Variables · explicatives			SEPTEMBRE NATITINGOU	· AOÛT · NATITINGOU	•	
SEPTEMBRE	. Coefficients de régression	- 422,8516	1,9028	. 0,6689	: · 0,2498 ·	: 0,984 :	: 17,34 :
	· Variables · explicatives	* den 2000 (1900) (1900) (1900 (1900)	SEPTEMBRE NATITINGOU		**************************************	· ·	
OCTOBRE	. Coefficients de régression	- 7,5767:	0,4742	• • -	· · <u>-</u>	. 0,669	. 38 ,9 0
	· Variables :		NOVEMBRE BEMBEREKE	OCTOBRE MOYENNE		:	
NOVEMBRE	. Coefficients de régression	12 ,79 40	1,0358	0,1556		. 0,956	5,56
DID OTHER PROPERTY.	. Variables · explicatives .	edi dili vedici i iza iza enjemp i sessere		NOVEMBRE BEMBERE KE			em crame Monacore crismin
DECEM BRE	. Coefficients de régression	2,0255	0,0671	0,2550	• 	· 0,954	1,84
		2,0255· · ·	0,0671	0,2550	• <u>-</u> ,	: 0,954 :	1,8

Le coefficient de corrélation multiple obtemu pour le mois de septembre est excellent (R=0,984). Il est encore satisfaisant pour novembre (0,956) et pour décembre (0,954), il reste acceptable pour juin (0,839) et juillet (0,816) et ne devient franchement médiocre que pour le mois d'août (0,631).

Les écarts-types résiduels S,qui figurent dans la dernière colonne du tableau I, permettent d'évaluer la précision avec laquelle tel débit mensuel peut être calculé pour une année donnée. Soit Q' la valeur calculée du débit mensuel et Q sa valeur vraie, il y a 90 chances sur 100 pour que Q soit compris entre les limites :

$$Q^{2} - 1,64 S$$
 et $Q^{2} + 1,64 S$

qui définissent "l'intervalle de confiance à 90 %" de Q.

L'ensemble des débits mensuels qui ont pu être reconstitués par des régressions multiples pour la période 1921 - 1960, a été porté dans le tableau II. Les débits de janvier à mai de cette même période ont été déterminés à partir des débits du mois de décembre précédent, en utilisant les relations suivantes qui ont pu être déduites approximativement des étiages réellement observés :

$$Q_{JANV} = 0.3 (Q_{DEC} - 1)$$
 $Q_{FEV} = 0.125 (Q_{DEC} - 3.5)$
 $Q_{MARS} = 0.035 (Q_{DEC} - 7)$
 $Q_{AVRIL} = 0$
 $Q_{MAI} = 0$

Dans le tableau II on a également porté les débits mensuels de la période d'observation (1961 - 1971), après avoir eu soin de compléter les lacunes par les mêmes méthodes que pour la période reconstituée.

On dispose ainsi des débits mensuels sur une période continue de 51 ans. Bien entendu, les débits reconstitués n'ont pas la même précision que les débits observés. Mais la valeur exacte du débit de tel mois de telle année n'a pas dans le cas présent un intérêt capital. Ce qui importe essentiellement pour l'étude du projet de barrage, c'est de disposer d'une série statistique de débits qui soit bien représentative du régime de la MEKROU sur une période aussi longue que possible. C'est dans cette perspective que les données du tableau II trouvent tout leur intérêt.

Il faut noter toutefois que les débits reconstitués par l'application d'une équation de régression multiple tendent à avoir une variance plus faible que les débits vrais. Les valeurs extrêmes reconstituées pour un mois donné tendent notamment à être un peu plus rapprochées de la valeur moyenne que les valeurs extrêmes vraies.

TABLEAU II

MEKROU à BAROU

DEBITS MENSUELS RECONSTITUES ou OBSERVES (en m³/s)

Année	Janvier	Fév r ler	Mars	Avrıl	Mai.	Juin	Juillet	Août	Septembre	Octobre	Novemb r e	Décembre	Module
1921	(2,7)	(0,8)	(0,1)	0,0	0,0	7,51	14,4	41,7	175	159	22,3	6,25	35,8
1922	1,6	0,35	0,0	0,0	0,0	3,15	17,2	47,9	193	96,8	26,9	8,23	32,9
1923	2,2	0,6	0,05	0,0	0 و ٥	3,13	15,0	48,7	27,7	95,9	26,5	6,61	18,9
1924	1,7	0,4	0,0	0,0	0,0	7,20	36,1	70,1	304	157	22,8	7,59	50,6
1925	2,0	0,5	0,0	0,0	0,0	1,76	19,0	69,6	324	126	79,4	21,3	53, 6
1926	6,0	2,2	0,5	0,0	0,0	0,66	16,9	60,9	200	103	22,6	6,24	34,9
1927	1,6	0,35	0,0	0,0	0,0	1,22	24,2	45,2	49,0	152	66,8	17,3	29,8
1928	4,9	1,8	0,35	0,0	0,0	3,22	18,6	79,1	141	79,1	26,9	7,78	30,2
1929	2,1	0,55	0,0	0,0	0,0	1,99	22,4	104	3 7 0	136	115	32,8	65,4
1930	9,5	3,6	0,9	0,0	0,0	5,41	7,72	74,7	198	72,7	25,1	8,82	33,9
1931	2,4	0,65	0,05	0,0	0,0	5,80	21,2	73,8	171	109	23,6	,7,88	34,6
1932	2,1	0,55	0,0	0,0	0,0	1,10	15,2	33,2	2,30	159	32,0	10,4	21,3
1933	2,8	0,85	0,1	0,0	0,0	5,49	20,6	9 5, 3	295	147	55,2	13,1	5 3 , 0
1934	3,6	1,2	0,15	0,0	0,0	4,33	19,0	64,2	112	145	32,3	9,28	32 , 6
1935	2,5	0,7	0,1	0,0	0,0	4,46	16,0	115	171	138	26,7	6,92	40,1
1936	1,8	0,4	0,0	0,0	0,0	4,98	7,79	81,6	320	109	19,8	3,30	45,7
1937	0,7	0,0	0,0	0,0	0,0	0,66	8,58	65,9	101	94,8	23,7	8,98	25,4
1938	2,4	0,7	0,05	0,0	0,0	1,74	15,2	57, 3	272	85, 2	76,9	21,1	44,4
1939	6,0	2,2	0,5	0,0	0ز0	1,24	15,9	58,9	37,6	1 63	55,1	18,4	29,9
1940	5,2	1,85	0,4	: 0 ₀ 0	0,0	2,34	18,5	52,7	35,1	107	33,8	13,3	22,5
1941	3,7	1,0	0,2	0,0	0,0	6,07	10,5	62,6	115	123	20,8	3,35	28,8
- 1942	0,7	- 0,0	0,0	0,0	0,0	2,96	. 5.,59	30,0	129	108	24,4	7,07	25,6
1943	1,9	0,45	0,0	0,0	0,0	1,61	12,8	24,3	174	167	33,4	9,53	35,4
1944	2,6	0,75	0,1	0,0	0,0	6,90	23,0	59,9	177	93,7	26,1	7,10	33,1
1945	1,9	0,45	0,0	0,0	0,0	0,94	19,5	55,2	222	190	27,7	9,51	43,9
1946	2,5	0,75	0,1	0,0	0,0	0,90	14,1	46,4	198	167	39,7	15,5	40,4
1947	4,4	1,5	0,3	0,0	0,0	3 ,83	26,3	66,0	283	148	26,0	6,44	47,1
1948	1,6	0,35	0,0	0,0	0,0	4,77	27,7	88, 3	345	122	15,6	3,47	50,4
1949	0,8	0,0	0,0	0,0	0,0	2,72	17,7	58 , 5	141	74,2	60,1	17,6	31,1
1950	5,0	1,75	0,35	0و0	0,0	2,92	13,9	79,2	152	90,3	22,5	5,43	31,1
1951	1,3	0,2	0,0	0,0	0,0	0,68	16,7	86,5	297	176	56,2	17,1	54 , 3
1952	4,8	1,7	0,35	0,0	0,0	4,37	17,6	52 , 6	278	228	30,1	8 , 44	52,2
1953	3 ,7	0,6	0,05	0,0	0,0	1,5 3	32,2	153	552	164	26,7	11,8	78,8
1954	3,2	1,05	0,15	0,0	0,0	2,73	19,7	43,5	103	123	44,0	11,8	29,3
1955	3,2	1,05	0,15	0,0	0,0	6,59	22,2	115	556	96,1	34,5	10,0	70,4
1956	2,7	0,8	0,1	0,0	0,0	0,71	19,1	60,8	360	142	23,1	6,34	51, 3
1957	1,6	0,35	0,0	0,0	0,0	1,30	28,8	68,0	195	166	34,9	12,1	42, 3
1958	3 , 3	1,1	0,15	0,0	0,0	7,19	16,1	10,6	0,0	164	32,2	8, 86	20,3
1959	2,4	0,7	0,05	0,0	0,0	3,35	12,8	55,8	217	178	21,4	4,45	41,3
1960	1,0	0,1	0,0	0,0	0,0	3,21	17,5	65,8	3 6 3	221	27,7	10,2	59,1
1961 1962	2 , 8	0,8	0,1	<u>0,0</u>	<u>0,0</u>	<u>1,69</u>	<u>21.7</u>	<u>57.5</u>	<u>124</u>	<u>57.7</u>	<u>8,32</u>	0,89	21,3
	<u>0.01</u>	0,0	<u>0,0</u>	<u>0,0</u>	<u>0,0</u>	<u>5.66</u>	<u> 29.0</u>	<u>86.9</u>	<u>316</u>	<u>142</u>	<u>31,3</u>	<u>10.3</u>	<u>51.8</u>
1963 1964	2,27	0,8	0,1	<u>0,0</u>	<u>0,0</u>	4,09	21,7	76,6	180	<u>130</u>	<u>35.6</u>	<u>9.4</u>	31,0
1965	2 , 5	0,7	0,1	<u>0,0</u>	<u>0,0</u>	<u>5,01</u>	22,6	<u>85.8</u>	<u>235</u>	<u>76.4</u>	<u>17.2</u>	3.05	3 7, 4
1966	0 , 6	0,0	0,0	0.0	<u>0,0</u>	2,52	<u>6,66</u>	<u>36,5</u>	<u>147</u>	46 , 2	21,8	5,68	22,2
1967	1,4 0.65	0 , 25	0,0	0 <u>.</u> 0	<u>0,0</u>	5 , 0	21,0	53 , 0	<u>110</u>	<u>104</u>	<u>28,6</u>	3 <u>.85</u>	27,3
1968	<u>0,6</u> 5 1 29	0,03	0.0	0 <u>.0</u>	<u>0,0</u>	2 , 0	<u>5.88</u>	<u>67</u>	<u>233</u>	<u>173</u>	<u>27.0</u>	<u>6.91</u>	43,0
1969	1,29 2,33	0,3 <u>0,60</u>	0 <u>.0</u>	0 <u>.0</u>	0 <u>.0</u>	15.3 5.77	29.7	111	<u>198</u>	116 188	<u>26,6</u>	7.42	<u>42.1</u> ·
1970	2,33 5,86	2,16	0,02 0,48	0.0 0.0	0.0 0.0	<u>5.77</u>	<u>28,3</u> 10.1	93 <u>.</u> 8	<u>356</u> 168	188	<u>71.7</u>	20,5	<u>63.9</u>
1971	1.36	0,23	0.0	0.0	0.13	0.03 1.03	<u>10,1</u> 17,9	<u>97.4</u> 21.7	<u>168</u> 115	<u>199</u>	24.1 7.03	<u>4.63</u>	42.6
-/1-	_ <u></u>		<u>~1~</u>		<u> </u>		-12/	71.7	<u>115</u>	41.8	7.03	1.08	21.4
Moyenne	2,7	0,8	0,1	0,0	0,0	3,5	18,4	67,8	207	130	34,1	9,7	39,5

Dans la mesure où les écarts des valeurs observées de la variable dépendante par rapport à l'hyper-plan de régression sont distribués normalement et de façon homoscédastique, il est théoriquement possible d'apporter une correction aux valeurs calculées par l'équation de régression. Il suffit de leur ajouter un terme correctif tiré au hasard dans une distribution normale dont l'écart-type est égal à l'écart-type résiduel de la régression multiple. Dans le cas présent, la normalité et l'homoscédasticité des écarts ne peuvent être vérifiées sérieusement, faute de données d'observation en nombre suffisant. Il a donc été jugé préférable de ne pas compliquer les calculs en y ajoutant un terme correctif de valeur douteuse.

2. MODULES

Dans la dernière colonne du tableau II figurent les modules (ou débits moyens annuels) qui résultent directement des débits mensuels reconstitués ou observés.

La distribution statistique de cette série de 51 modules peut être étudiée en essayant de lui ajuster diverses lois théoriques (1). Les résultats obtemus par ordinateur sont les suivants :

a) Paramètres d'ajustement

Paramètres	Loi de GAUSS (normale)	Lol de GALTON (log - normale)	:Loi de PEARSON III: (Gamma in - complète)
. Position	39,4 m ³ /s (moyenne)	4 m ³ /s	17 m ³ /s
. Echelle	13,9 m ³ /s	32 , 35551	9,81643
: . Forme	(écart-type)	0,39828	: 2,30426

b) Modules correspondant à diverses fréquences

Fréquence de dépassement	Période de retour (année)	: Lol de GAUSS	Lol de GALTON	Lol de PEARSON III
0,05	20	62,2 m ³ /s	66,8 m ³ /s	68 m ³ /s
0,10	10	57,1	58 , 4	59
0,20	5	. 51,1	49,8	50
0,50	2	39 , 4	36 , 8	36
. 0,80	: 5	27,7	27,7	27
0,90	10	21,6	23,9	24
0,95	: 20	: 16 , 5	21,2	22
0,98	50	11	18,7	20
0,99	: 100	7	. 17,3	19

⁽¹⁾ NOTA - Volr Cahlers ORSTOM - Série Hydrologie - Vol. VI - nº 3 - 1969 -

Pour les fréquences extrêmes on note des écarts assez sensibles entre les valeurs données par les trois lois. Pour choisir les valeurs les plus adéquates on doit tenir compte des considérations suivantes :

- a) la variance de notre série de 51 modules est un peu atténuée artificiellement du fait que ces modules résultent en grande partie des débits
 mensuels reconstitués par des équations de régressions linéaires multiples sans
 correction résiduelle. Les modules des années très humides sont donc plutôt
 sous-estimés tandis qué ceux des années très sèches sont surestimés;
- b) reportée graphiquement la distribution statistique des modules apparaît immédiatement comme assez nettement dissymétrique et hyper-gaussique. La loi de GAUSS tend donc à donner des valeurs sous-estimées pour les fréquences extrêmes.

On en conclut que pour les fréquences de dépassement faibles, c'està-dire pour les années très humides, la loi de PEARSON III, qui, donne les résultats les plus forts, doit être celle qui convient le mieux.

Pour les années très sèches, la loi de PEARSON ainsi que celle de GALTON donnent au contraire des résultats trop optimistes, tandis que ceux de la loi de GAUSS sont presque certainement trop pessimistes. Nous choisirons donc des valeurs intermédiaires qui paraissent les plus vraisemblables.

En définitive, nous proposons les valeurs approximatives suivantes :

- Module décennal humide	:	$60 \cdot m^3/s$
- Module quinquennal humide	:	50 "
- Module médian	:	37, "
- Module quinquennal sec	:	26,5 11
- Module décennal sec	:	21,5 "
- Module vicennal sec	:	18 "
- Module cinquantennal	:	15 ¹¹

TABLEAU III

MEKROU à BAROU

Classement des modules

:	Rang	•	Année	:	Modulè	•	Fréquence		Rang	•	Année	Module :	Fréquence
٠	1	:	1953		78,8	•	0,0098	: :	26	·• ·	1921	35,8	0,500
•	2		1955	•	70,4		0,0296		27	:	1943	35 , 4	0,520
;	3	•	19 29	•	65,4		0,049	: •	28	:	19 26	34,9	0,540
:	4	•	1969	:	63,9	:	0,069	: :	29	:	1931	34,6	0,559
•	5		1960	•	59,1	:	0,088	: :	30	:	1 9 30	33,9	0,579 :
:	6	:	1951	:	54,3	:	0,108	: :	3 1	:	1944	33 ,1	0 ,59 8
	7		1925	:	53,6	:	0,127	: :	32	:	1922	. 32,9	0,617
:	8	:	1933	:	53,0	:	0,147	::	33	:	1934	32,6	0,636
•	9	•	1952	:	52,2	:	0,167	• :	34	:	1 9 49	31,1	0,656
٠	10	•	1962	:	51,8	:	0,186	: :	35	•	1950	3 1,1	0,676
:	11	•	1956	•	51,3	:	0,206	: :	36	•	196 3	31,0	0,696
:	12	:	1924	:	50,6	:	0,225	: :	3 7	:	1 9 28	30,2	0,715
:	13	:	1948	:	50,4	:	0,245	: :	38		19 39	29,9	0,735
:	14	:	1947		47,1	:	0,265	: :	39	•	1927	29,8	0,756
:	15	:	1936	:	45,7	:	0,284	: :	40	:	1954	29 , 3	0,775
:	16	:	1 9 38	:	44,4	:	0,304	: :	41	•	1941	28,8	0 ,7 94
:	17	•	1945	:	43,9	:	0,324	: :	42	•	1966	. <u>27.3</u>	. 814 و 0
:	18	:	1967	:	43,0	:	0,344	<i>:</i> :	43	:	19 42	25,6	0 ,8 33
:	19	:	1970	•	42,6	:	0,364	: :	44	:	1 9 37	: 25,4	0 ,85 3
:	20	•	1957	:	42 , 3	:	0 , 383	: :	45	:	1940	22,5	0,873
:	21	•	1968	:	42,1	:	0,402	: :	46	•	1965	22,2	0 ,89 2
•	22	:	1959	:	41,3	:	0,421	. :	47	•	1971	21,4	0 ,9 12
:	23		1946	•	40,4	:	0,441	. :	48	•	1961	21,3	0 ,9 31
:	24	•	1935		40,1	:	0,460	: :	49	•	19 32	21,3	0,951
	25	:	1964		<u> 37,4</u>	•	0,430	:	50	:	1958	20,3	0,970
•		:	~,	•	2137	:	-,	: ·	51	:	1923	18,9	0,9902

La MEKROU a BAROU Distribution statistique des modules observés module (m^3/s) et reconstitues • __ module observe (1961-1971) • ___ module reconstitue (1921-1960) Ajustements de GAUSS et GALTON 60 50 40 30 0,5 Fréquence de dépassement