(1970-1971)

par

Jean HOOCK

Docteur es-Sciences

Directeur de Recherches de 1ºORSTOM.

RESUME

Devant la faible production du pâturage naturel de Nouvelle Calédonie, nous avons essayé, dans ce pays, des mélanges fourragers artificiels. Ces méhanges comprennent 5 graminées : Cenchrus ciliaris cv. Viloela (Buffel Grass), Chloris gayana cv. Pioneer (Rhodes Grass), Panicum maximum var. trichoglume cv. Petrie (Green Panic), Paspalum plicatulum cv. Roods Bay (Plicatulum) et Setaria sphacelata cv. kazungula (Kazungula). Les essais comportent de plus 4 légumineuses, en mélanges binaires avec les graminées : Desmodium intortum (Green leaf), Desmodium uncinatum (Silver leaf), Glycine javanica cv. Tinoroo (Glycine) et Phaseolus atropurpureus (Siratro), soit 20 combinaisons différentes. Le sol, sur lequel ces essais ont été implantés, est lourd, de plus il est magnésien. Les températures osciéllent entre 30 et 15º C, avec des minimums de 8-9º C, en Juillet. La pluviométrie annuelle a été de 968 mm avec de 2 à 8 périodes écologiquement sèches, selon la manière dont sont faits les calculs. Dans nos conditions d'expérimentation, c'est le mélange Rhodes Grass-Siratro qui s'est montré le plus productif au cours de 5 pâturages successifs, séparés par des périodes de repousse de 2 mois en moyenne. Cependant, sur de meilleurs sols, en particulier non magnésiens, le mélange Plicatulum-Siratro s'est montré aussi productif. Ce dernier présente, de plus, une grande souplesse d'exploitation en Nouvelle Calédonie, du fait qu'il se conserve longtemps en vert sur pied dans monter en paille. Le Rhodes Grass, au contraire, commence à monter en paille ici régulièrement après un temps de repousse d'environ 2 mois.

SUMMARY

Poor production in natural pastures of New Caledonia has led to testing of artificial fodder mixtures. In these trials the 5 grasses: Cenchrus ciliaris cv. Biloela (Buffel Grass), Chloris gayana cv. pioneer (Rhodes Grass), Panicum maximum var. trichoglume cv. Petrie (Green Panic), Paspalum Plicatulum cv. Rhodes Bay (Plicatulum) et Setaria sphacelata cv. Kazungula (Kazungula), have been paired with the 4 legumes: Desmodium intortum (Green leaf), Desmodium uncinatum (Silver leaf), Glycine javanica cv. Tinaroo (Glycine) et Phaseolus atropurpureus (Siratro), making 20 different combinations. The soil used was heavy and also magnesian. Temperatures varied from 15° C to 30° C, with minima of 8-9° C in July. Annual rainfall was 968 mm, 2 to 8 periods being ecologically dry according to different methods of evaluating this factor.

In these conditions Rhodes Grass-Siratro was the most productive mixture over five successive grazings separated by regrowth periods of two months. On better soils, especially if not magnesian, the mixture Plicatulum-Siratro was however equally productive. It also shows great flexibility of exploitation in New Caledonia as when not grazed it stays green for long periods without drying off. Rhodes Grass on the other hand drys off regularly here after about two months of regrowth.

RESUMEN

Frente a la escasa producion de los pastos naturales, de Nueva Caledonia, hemos probado en este païs, mezclas forrajeras artificiales. Estas mezclas comprenden 5 gramineas : Cenchrus ciliaris cv. Biloela (Buffel Grass), Chloris gayana cv. Pioneer (Rhodes Grass), Panicum maximum var. trichoglume cv. Petrie (Green Panic), Paspalum plicatulum cv. Rhoods Bay (Plicatulum) y Setaria sphacelata cv. Kazungula (Kazungula). Los experimentos toleran ademas 4 leguminosas en mezclas Binarios con las gramiheas, en total 20 combinaciones differentes : Desmodium intortum (Green leaf), Desmodium uncinatum (Silver leaf), Glycine javanica cv. Tinaroo (Glycine) et Phaseolus atropurpureus (Siratro). El suelo, en el cual sus ensayos han sido implantados es complexo y magnesiano. Las temperaturas oscilan de 30 à 15º, con minimum de 8-9º C, en Julio. La pluviometria annual ha estada de 968 mm con como se ricieron los calcules. Nuestros condiciones de experimento es el mezcla: Rhodes-Grass - Siratro quièn se ha revelado el mas productivo en corso de 5 pastos sucesivos, separados para las periodicas de echar renuevos cada 2 meses en général. Sin embargo, sobre suelos mejores en particular sin magnesia, el mezcla Plicatulum-Siratro se ha demostrado tan productivo. Ademas este ultimo presentado una grande facilidad de exploitacion en Nueva Caledonia, porque se conservado mucho tiempo verde sobre el piel. El Rhode-Grass, al contrario, ha subido o crecido en paja aqui regularmente depues un tiempo de echar renuevos proximamente 2 meses.

Introduction

Les pâturages de Nouvelle Calédonie supportent une végétation graminéenne spontanée ou subspontanée composée des principales espèces suivantes :

Botriochloa pertusa,
Chrysopogon aciculatus,
Dicanthium aristatum,
Heteropogon contortus,
Imperata cylindrica,
Stenotaphrum secindatum, ...

En général ces différentes espèces ne forment, pendant la plus grande partie de l'année, qu'une végétation peu fournie, qui monte rapidement en paille et, surtout, ne présente qu'une seule période de pousse vraiment active par an.

Ces caractéristiques défavorables nous ont amené, peut-être provisoirement, à abandonner l'étude de l'amélioration de ce pâturage pour nous consacrer uniquement à l'installation de pâturages artificiels.

A cet effet un essai de mélanges fourragers a été implanté de la manière suivante : il comprend 5 graminées,

Cenchrus ciliaris cv. Biloela (Buffel Grass),

Chloris gayana cv. Pioneer (Rhodes Grass),

Panicum maximum var. trichoglume cv. Petrie (Green Panic),

Paspalum plicatulum cv. Rhodds Bay (Plicatulum),

Setaria sphacelata cv. Kazungula (Kazungula),

en bandes parallèles recoupées à angle droit par 4 bandes de légumineuses

Desmodium intortum (Green leaf),
Desmodium uncinatum (Silver leaf),
Glycine javanica cv. Tinaroo (Glycine),
Phaseolus atropurpureus (Siratro)

Une bande de graminées pures a été également implantée.

I - Les facteurs du milieu

A. - Le sol

Le sol sur lequel l'essai a été implanté est lourd (58 % d'argile et de limon), il a la composition granulométrique suivante (tableau I):

en % de la fraction < 2 mm

Matière organique : 2,28

Argile : 30,04

Limon : 28,41

Sable fin : 21,95

Sable grossier : 17,32

Gravier : 3 % du total

Tableau I : Composition granulométrique du sol

Le p H - eau sur pâte est de 5,2 et la réserve en eau utilisable (p F 3 = 24,76 - p F 4 = 16,32) est de 8,44 %, ce qui est plutôt moyen.

L'analyse chimique a donné les résultats suivants (tableau II) :

Carbone organique	:	21,45 %
Azote total	:	1,79 ‰
Calcium	:	3,19 me pou 100 gr.
Magnesium	:	11,46 me "
Potassium	:	0,19 he "
Sodium	:	0,43 me "
Phosphore	:	4 ppm

Tableau II : Composition chimique du sol

Le rapport C/N = 12 est normal, par contre le rapport Ca/Mg est particulièrement bas, avec une valeur de 0,28.

B. - La température

Les températures mensuelles figurent sur le tableau III (en /º C):

	max. moyen	min. moyen	min. absolu
Janvier	32, 2	20,6	17
Février	32	20	16
Mars	31,5	20,4	15,2
Avril	28,8	18,1	13,5
Mai	26 , 5	14,7	10
Juin	25,2	15	8,6
Juillet	24	12	7,8
Août	25,6	15,7	11,2
Septembre	26,8	14,8	9
Octobre	28,2	16,3	11
Novembre	28,2	18	14
Décembre	31,1	19,4	14,5

Tableau III : Températures mensuelles (1970)

Juillet a été le mois le plus froid avec 11 jours ayant une température minimale nocturne comprise entre 8 et 10° C. Ces températures minimales ne sont certainement pas un facteur favorable à la pousse des espèces implantées.

C. - Les pluies et les périodes écologiquement sèches

La pluviométrie mensuelle (P) est reportée sur le tableau IV (hauteur d'eau en mm) :

	B	Nombre de jour
Janvier	103	10
Février	28	8
Mars	105	7
Avril	151	10
Mai	55	10
Juin	99	15
Juillet	71	12
Août	87	9
Septembre	3 7	6
Octobre	72	6
Novembre	153	17
Décembre	7,5	4
Totaux annuels	968,5	114

Tableau IV : Pluviométrie mensuelle

On voit ainsi qu'il y aurait eu 2 mois écologiquement secs (février et Septembre), si on admet, pour cette définition une hauteur mensuelle d'eau inférieure à 50 mm. Nous pensons qu'il faut prendre ici une hauteur d'eau supérieure à 50 mm, en particulier duffait de la forte évaporation due au vent et à l'insolation; cependant, actuellement, nous ne savons pas encore quelle doit être la hauteur d'eau correcte devant caractériser le mois écologiquement sec en Nouvelle Calédonie.

De plus la répartition des pluies importantes (de plus de 20 mm en 24 h.) est irrégulière et, si on calcule les périodes sèches, non plus d'après les totaux mensuels, mais entre chaque pluie importante, on a les résultats suivants - (tableau V):

 \mathtt{ant}

	P	Nombre de jours	Seuil correspondant à 50 mm par mois
Janvier	8	12	19,8
Février	26	22	36, 3
Mars	1	9	14,8
Avril	10	17	28
Mai	33	29	47,8
Juin Juillet	33	25	41,2
Août	Pas de périod	e écologiquement	sèche.
Septembre Octobre	75	59	97,3
Novembre	Pas de périod	e écologiquement	sèche.
Décembre	1,6	22	36,1
Totaux annuels	187,6	195	32 7 ,5

Tableau V : Périodes écologiquement sèches.

C'est à dire 8 périodes sèches de 25 jours en moyenne, avec une pluviométrie mensuelle moyenne de 29 mm.

Dans l'état actuel de nos connaissances, nous ne savons pas encore dans quelle mesure nous pouvons tenir compte de cette dernière analyse : nous avons estimé, d'après notre observation sur le terrain, et peut-être arbitrairement, que le sol était de nouveau sec une semaine après une pluie importante, cela peut être inexacto. Enfin il faut remarquer que les pluies importantes elles-mêmes, surtout si elles sont continues, ne sont pas ici un facteur écologique favorable : du fait du mauvais drainage, ces pluies provoquent un engorgement asphyxique du sol et la formation de petites mares d'eau stagnante, qui ne conviennent pas à la bonne pousse des espèces testées.

D. - Conclusions

Nous avons observé que nos implantations ne se développaient pas d'une façon optimale, mais nous ne connaissons pas encore l'importance respective des facteurs limitants analysés ci-dessus : structure et chimisme du sol, températures minimales et répartition des pluies.

II - Méthodes d'étude

Deux carrés permanents de comptage, piquetés à demeure sur le terrain, et mesurant chacun lm² de surface, ont été installés sur chaque parcelle de l'essai. La technique des carrés permanents de comptage a été adoptée ici parce que l'implantation de l'essai était hétérogène au départ et aurait nécessité, autrement, un échantillonnage aléatoire hors de rapport avec nos moyens. Tous les 15-20 jours en moyenne et avant et après pâturage, chaque carré permanent a été mesuré en surface (recouvrement) et en hauteur moyennes pour chaque espèce botanique qu'il contenait. La mesure de la hauteur a été effectuée en cm, la mesure de la surface totale de chaque espèce, à l'intérieur du carré de comptage correspondant, a été obtenue à l'aide d'un carré auxilliaire de 10 cm de côté, ce qui représente une surface de 100 cm², soit 1/100 de m² et permet d'avoir le recouvrement de chaque espèce directement en %.

Hauteur et surface moyennes ont permis de calculer l'accroissement de volume de la production fourragère de chaque espèce, et cela sans avoir à en faucher la végétation, ce qui est indispensable lorsqu'on veut étudier le phénomène dans ses conditions naturelles. Les volumes de fourrage ainsi calculés, avant et après pâturage, ont donné de plus les coefficients de pâturage, espèce par espèce, dans les conditions mêmes de leur utilisation par le bétail.

Ces données numériques nous ont permis de tracer plus d'une centaine de courbes de croissance : dans un premier temps nous étudierons les espèces implantées, graminées, puis légumineuses, ensuite les espèces adventices, d'abord les espèces annuelles, enfin les adventices pérennes.

Pour chaque espèce nous considérerons 4 périodes de croissance :

- 1º) de l'implantation (21/1/70) au premier pâturage (P 1). Ce premier pâturage a été fait trop tardivement, les clôtures n'étant pas achevées dans les délais, aussi prendront nous, comme première référence, l'état de la végétation au 15/5, c'est-à-dire 4 mois après l'implantation, date normale à laquelle le premier pâturage aurait dù être fait. Ce premier pâturage a duré 6 jours avec une charge de 157 bêtes/ha.
- 2º) du premier pâturage au second (P 1 à P 2, du 17/6 au 3/9). Cette période correspond à la saison froide. Le temps de repousse a duré 79 jours et le deuxième pâturage 19 jours avec une charge de 18 bêtes/ha.

3º) du second au quatrième pâturage (P 2 à P 4, du 21/9 au 17/12, soit 88 jours)

Nous ne tiendrons pas compte du troisième pâturage; ce dernier a été fait
accidentellement à contre-temps, après seulement 23 jours de repousse. Ses
résultats ne sont donc pas comparables à ceux des autres pâturages, qui ont
eu lieu après 2 mois de repousse en moyenne. La fin de cette période de croissance a correspondu à la sécheresse quasi absolue du mois de décembre. Le
quatrième pâturage a duré 26 Jours avec une charge de 18 bêtes/ha.

4º) du quatrième au cinquième pâturage (P 4 à P 5, du 11/1/71 au 4/3), soit 50 jours.

Cette période a supporté une forte pluviosité. Le cinquième pâtuarge a duré 5 jours avec une charge de 95 bêtes/ha.

III - Croissance des Graminées implantées

Les résultats sont résumés sur le tableau VI.

Pour mieux permettre de voir et comparer entre eux les taux de craissance des différentes espèces, seuls les volumes de végétation produits au 15/5 seront exprimés en chiffres calculés sur le terrain (dm³ au m²), les volumes produits au cours des pâturages suivants seront calculés en % de ces volumes initiaux. Enfin les coefficients de pâturage sont calculés en % du volume offert au début de chaque pâturage.

•	Rhodes G.	Green P;	Plicatul.	Kazungula	Buffel G.
Volume de P 1 Volume de P 2 Volume de P 4	310 91 % 102 % 109 %	378 122 % 74 % 63 %	260 72 % 56 % 83 %	150 114 % 119 % 118 %	187 83 % froid 67 % sec 60 % pluie
Volume de P 5 Volume moyen	101 %	86 %	70 %	117 %	70 %
Coeff. pât. P 1	92	85	96	95	90
" " P 2	90	85	90	90	85
" " P 4	88	79	78	59	83
" " P 5	90	85	87	85	89
" " moyen	90	83	88	82	87

Tableau VI. : Composité croissance des graminées implantées.

L'espèce qui a le plus fort accroissement en volume après 5 pâturages est le Kazungula, viennent ensuite le Rhodes Grass, puis le Green Panic enfin le Plicatulum et le Buffel Grass avec des volumes égaux. Le Kazungula semble peu sensible aux périodes calédoniennes de froids et de fortes précipitations. Le Green Panic est l'espèce qui est la moins affectée par le froid. il l'est beaucoup plus par la sécheresse et encore plus par l'eau stagnante. Le Rhodes Grass est peu affecté par le froid et supporte bien les vatiations de pluviosité. Enfin, en Nouvelle Calédonie, le Plicatulum et le Buffel Grass sont sensibles au froid, à la sécheresse et encore plus aux pluies abondantes. Cependant ces résultats doivent être modifiés selon l'abondance de la production de fourrage initiale au 15/5 et c'est cette considération primordiale qui nous fait classer le Rhodes Grass en tête de liste. Les coefficients de pâturages vérifient ce jugement : c'est le Rhodes Grass qui a le plus fort coefficient, viennent ensuite le Plicatulum et le Bufffel Grass, puis le Green Panic et le Kazungula. Ces deux dernières espèces ont de hautes tiges lignifiées à la base et qui ne sont pas consommées par le bétail. Il faut cependant remarquer que tous ces coefficients de pâturages sont excellents. Dans l'ensemble les volumes de fourrage: obtenus sont moyens ou même franchement médiocres et les facteurs édaphiques en sont en partie responsables. C'est ainsig que, sur de bonnes terres non magnésiennes, on peut entretenir actuellement 7 bêtes/ha sur le mélange Plicatulum-Siratro avec un temps de repousse de 1 mois entre chaque pâturage.

IV - Les Légumineuses implantées

Les conclusions que nous pouvons tirer du tableau des légumineuses (tableau VII) sont beaucoup plus nettes que celles du tableau des graminées et le Siratro est inconstablement la meilleure des espèces de légumineuses que nous avons testées en Nouvelle Calédonie; son volume au 15/5, son coefficient d'accroissement moyen et son coefficient de pâturage sont les meillleurs. On remarquera cependant que, comme celui des 3 autres légumineuses, son développement est freiné par la période froide, de plus les 3 autres légumineuses sont sensibles aux pluies abondantes et la Glycine par la sécheresse. Enfin les coefficients de pâturage sont partout excellents, avec un maximum remarquable de 98 % pour le Siratro.

	Siratro	Silver L.	Glycine	Green L.	_
Volume de P l	127	19	13	61	
Volume de P 2	84 %	58 <i>%</i>	23 %	56 %	froid
Volume de P 4	219 %	147 %	8 %	120 %	sec
Volume de P 5	183 %	47 %	1 %	43 %	pluie
Volume moyen	162 %	84 %	11 %	73 %	
Coeff. pât. Pl	98	96	99	97	
" " P 2	98	95	90	82	
" " P 4	97	97	96	95	
n n P5	98	95	85	92	
" " moyen	98	96	92	91	

Tableau VII: croissance des légumineuses implantées.

V - Les espèces adventices annuelles

Les principales adventices annuelles rencontrées sur notre essai sont les suivantes (tableau VIII) :

Ageratum conyzoides (Baume) (Composées)

Cyperus (Pycreus) polystachyus (Cypéracées)

Digitaria adscendens (Graminées)

Eleusine indica (Graminées)

Fimbristylis diphylla (Cypéracées)

Spilanthes acmella (Composées)

Elles ne semblent pas constituer ici une bien grande menace pour le pâturage; une seule d'entre elles, Cyperus polystachyus, présente un coefficient d'accroissement supérieure à 100 % mais son volume initial au 15/5 est presque négligeable (0,4 dm³ - m²), nous verrons par la suite si elle prend ou non un développement inquiétant. Toutes les autres adventices annuelles regressent presque complètement, en particulier sous l'action du pâturage contrôlé. A ce propos on constatera que toutes ces espèces présentent des coefficients de pâturage élevés (plus de 85 % en moyenne), elles ne constituent donc pas un volume de fourrage perdu pour le bétail.

	Baume	Cyp.poly.	adscend.	Eleusine	Fimbrist.	Spilant.
Volume de P l	3	0,4	37	12	2	13
Volume de P 2	200	% 0%	0 %	0,8%	15 %	146 %
Volume de P 4	. 23	% 125%	0,3%	0,3 %	20 %	15 %
Volume de P 5	7	% 375%	5 %	0,8%	100 %	15 %
Volume moyen	77	% 167%	2 %	0,6%	45 %	59 %
Coeff.pat. P	1 94	83	69	89	85	96
u u P	2 90		-	60	100	95
" " P	4 86	90	90	100	75	90
n n P	5 70	95	96	86	84	97
" " moye	en 85	89	85	84	86	94

Tableau VIII : de croissance des adventices annuelles.

VI - Les espèces adventices pérennnes

Les adventices pérennes mieux armées dans la compétition avec les espèces fourragères implantées pourraient compromettre l'équilibre du pâturage; nous allons voir que, pour le moment du moins, le danger ne semble pas être bien grand ici. Les principales espèces adventices pérennes sont les suivantes (tableau IX):

Mimosa pudica (petite sensitive) (Mimosacées)

Paspalum dilatatum (Dallis Grass) (Graminées)

Paspalum orbiculare (Graminées)

Sida acuta - rhombifolia (herbe à balai) (Malvacées)

Stachytarpheta indica (herbe bleue) (Verbenacées)

	Mimosa	dilatatum	orbiculare	Sida	Stachy.
Volume de P 1	9	0,9	6	31	4
Volume de P 2	44 %	110 %	<i>37 %</i>	77 🔏	114 %
Volume de P 4	222 %	167 %	23 %	74 %	91 %
Volume de P 5	344 %	133 %	52 <i>%</i>	68 %	. 184 %
Volume moyen	203 %	104 %	37 %	72 %	130 %
Coeff.pat. P 1	91	97	54	6 8	86
n n P2	63	93	91	67	80
" " P 4	70	87	57	7 7	28
" 3 P5	96	86	80	81	83
" " moye	n 80	91	70	73	69

Tableau IX : de croissance des adventices pérennes

L'espèce qui a le plus grand volume initial au 15/5 est Sida acutarhombifolia (31 dm³ - m²): elle est buissonnante et lignifiée, on pourrait craindre qu'elle puisse dominer les espèces implantées. Il n'en est rien : son coefficient d'accroissement moyen est inférieur à 100 %, elle a donc tendance à regresser, de plus son coefficient de pâturage n'est pas négligeable. L'adventice qui a le plus fort coefficient d'accroissement est Mimosa pudica, son coefficient de pâturage moyen est bon et c'est une espèce de valeur fourragère élevée. Un cas particulier est celui de Stachytarpheta indica, qui présente un faible coefficient de pâturage en P 4 (28 %). Nous savons déjà que nos pâturages successifs ont eu des temps variables et P 4 est celui qui a duré le plus longtemps (25 jours). Nous avons observé que, en début de pâturage, le bétail choississait peu sa nourriture, la végétation fourragère masquant assez bien les adventices. Au bout de quelques jours, le volume fourrager diminuant, les bêtes se mettent à choisir et un pâturage sélectif commence à s'installer, dont a bénéficié ici Stachytarpheta indica. En P 5, qui n'a duré que 5 jours, le coefficient de pâturage de Stachytarpheta est monté jusqu'à 83 % et ce phénomène est valable pour presque les 4 des espèces étudiées dans ce travail. Cela est un argument de plus en faveur des temps de pâturage courts, les autres arguments sont de protéger les jeunes repousses fourragères qui apparaissent en quelques jours, enfin de permettre, en allongeant les durées de repos de la végétation, un gain de production fourragère qui peut atteindre ici 20 % du volume offert autrement.

VII - Conclusion générale

Les différents mélanges fourragers testés dans notre essai ont donné des résultats fort variables d'une espèce à l'autre et c'est le mélange Rhodes Grass - Siratro qui a donné ici le meilleur résultat. Cependant ces données ne doivent s'appliquer qu'à des médmoures sols magnésiens. Sur des sols plus normaux, les autres espèces de graminées, Paspalum plicatulum en particulier, donnent d'excellents résultats. Cette espèce présente d'autres avantages : elle ne fleurit ici qu'une fois par an, en mars-avril, et peut se conserver longtemps en vert sur pied sans perdre de son appétance, ni monter en paillle, elle a donc une grande souplesse d'exploitation. Les 4 autres espèces de graminées n'ont pas ces avantages ; elles refleurissent en toute saison au bout d'1 mois ½ à 2 mois de repousse et montent ensuite en paille, ce qui impose des dates de pâturages rigoureuses, le Setaria sphacelata cv. Kazungula étant celle qui a le délai de floraison le plus court. Les légumineuses, le Siratro tout particulièrement, sont envahissantes en Nouvelle Calédonie et tendent à étouffer les graminées au bout d'un temps de repousse supérieur à 2 mois ; cette situation est facilement contrôlée par un pâturage intensif au bout de cette période.

Nouméa, le 23 Avril **1**971

Laboratoire de Botanique du Centre ORSTOM.