OFFICE DE LA RECHERCHE SCIENTIFIQUE ET TECHNIQUE OUTRE-MER

-:-:-:-:-:-

NOTE SUR LA FERTILITE DE QUELQUES SOLS EN NOUVELLE CALEDONIE

par : P. QUANTIN

INTRODUCTION

Depuis 1964, le problème de la fertilisation minérale nous a été posé à plusieurs reprises par le Service des Eaux et Forêts en vue de favoriser le reboisement de la Nouvelle Calédonie, et aussi par quelques maraîchers de la plaine de la Dumbéa.

Quelques études de sols en vue d'essais de fertilisation minérale, ou à propos de l'étude des relations sol-plante entreprise par M. JAFFRE (1), ont été faites principalement sur les massifs de roches ultrabasiques dans le sud de la Nouvelle Calédonie et à l'Île des Pins, et sur les massifs de roches faiblement métamorphiques de la "Chaîne Centrale" au Col d'Amieu.

Au moment où d'autres observations ont été faites sur le même milieu : analyses de feuilles de diverses essences forestières par M. F. BRUNCK (2), analyses de feuilles de plantes des maquis sur péridotites par M. JAFFRE, essais de fertilisation minérale sur essences forestières par le Service des Eaux et Forêts, il nous a paru utile de rassembler les données d'analyses de sol. On trouvera en annexe les résultats d'analyse de terre servant à justifier notre propos.

N.B.: (1) M. JAFFRE, botaniste de l'ORSTOM

(2) M. BRUNCK, Inspecteur du Centre Technique Forestier Tropical

Collection de Référence

8 12977, 01

I - LES SOLS DERIVES DES MASSIFS DE ROCHES ULTRABASIQUES

A - Roches-mères et matériaux originels

Les massifs de roches ultrabasiques sont composés principalement de péridotites, auxquelles sont associées des intrusions de gabbros et granodio-rites. De ces roches dérivent des sols, des cuirasses ferrugineuses et des alluvions.

- l Les péridotites sont essentiellement composées de silice (SiO $_2$ = 35 à 40%), magnésie (MgO = 35 à 40%), et fer (Fe $_2$ O $_3$ + FeO = 5 à 10%). Elles sont presque dépourvues d'alumine, chaux, potasse, soude et phosphore.
- 2 Les gabbros sont plus riches en silice (SiO = 40 à 50%), alumine (Al $_2$ O = 15 à 20%), chaux (CaO = 10 à 16%) et fer (Fe $_2$ O $_3$ + FeO = 7 à 18%). Mais ils sont plus pauvres en magnésie (MgO = 7 à 13%), et encore presque dépourvus de potasse, soude et phosphore.
- 3 Les granodiorites sont nettement plus riches en silice (SiO₂ = 65%), alumine (Al₂O₃ = 18%), soude (Na₂O= 4,5%) et potasse (K₂O= 2,5%). Mais ils sont plus pauvresen fer (Fe₂O₃ = 3,5%), chaux (CaO= 3 à 4%), et magnésie (MgO= 2 à 3%). Il sont probablement plus riches en phosphore, mais on n'en connait pas la valeur dans les roches de Nouvelle Calédonie.
- 4 Les cuirasses ferrugineuses anciennes des plateaux ou plaines hautes, sont essentiellement composées d'oxydes et hydroxydes de fer, chrome et alumine. Elles sont très pauvres en autres éléments.
- 5 Les alluvions des plaines basses, provenant de l'érosion des sols et des roches altérées sur massifs ultrabasiques, sont enrichies par les eaux d'altérations. Elles sont généralement plus riches en silice, magnésie et alumine que les sols des versants qui les entourent.

B - Les Sols, leur nature et leur fertilité.

Les sols des massifs de roches ultrabasiques, sont généralement des formations anciennes, très évoluées, de nature Ferrallitique. Ils sont presque toujours remaniés par érosion et colluvionnement. Quand l'érosion a été très forte, des éboulis de roche altérée peuvent apparaître en surface ; ce sont alors des Sols Peu Evolués d'Erosion, dont cependant la partie supérieure humifère présente encore des caractères Ferrallitiques. A ces formations sont associées : d'anciennes cuirasses ferrugineuses de plaines hautes ou de plateaux ; des éluvions (alluvions + colluvions) de plaines hautes encore proches des Sols Ferrallitiques dont elles dérivent principalement ; des alluvions rouges des plaines basses très différentes des sols des versants dont elles proviennent.

a) - Massif de roches ultrabasiques du Sud de la Nouvelle Calédonie

1 - Sols Ferrallitiques :

- Echantillons :
 - sols sur péridotites : n° JF. 31, 32 H.1 et DUE 61, 62 71, 72-81, 82
 - sols sur gabbros et granodiorites : n°s JF 11, 12, 13 21, 22, 23 \pm H.5 -
- Nature et composition :

Ce sont tous des Sols Ferrallitiques fortement désaturés en bases et remaniés par érosion et colluvionnement. D'après la nature de la roche mère on distingue trois familles : Sols sur péridotites, Sols sur gabbros,

Sols sur granodiorites. Cette distinction correspond réellement à de sensibles différences dans la composition chimique totale et la nature minéralogique :

- Les Sols Ferrallitiques sur péridotites sont essentiellement ferrugineux. Ils contiennent 60 à 80 % de Fe $_2$ 0 sous forme de goethite. Ils sont normalement presque dépourvus de silice (SiO $_2$ = 0,4 à 3%) et d'argiles, souvent pauvres en alumine (Al $_2$ 0 $_3$ =3 à >8%) et relativement riches en chrome (Cr $_2$ 0 $_3$ =2 à 5%), en nickel (NiO $_2$ =0,2 à >1%) et en manganèse (MnO $_2$ =0,1 à >1%).
- Les Sols Ferrallitiques sur gabbros sont normalement beaucoup moins riches en fer (Fe $_2$ O $_3$ = 5 à >10%), en chrome (Cr $_2$ O $_3$ = 0,1 à >1%) en nickel (NiO= 0,01) et en manganèse (MnO $_2$ = 0,01 à 0,05). Ils peuvent cependant être très fréquemment enrichis en ces éléments dans la partie supérieure du profil par des colluvions venant de sols sur péridotites. Ils sont beaucoup plus riches que les précédents en silice (SiO $_2$ = 10 à >30%) et alumine (Al $_2$ O $_3$ = 10 à >25%). Contrairement aux sols sur péridotites composés essentiellement de goethite (Fe $_2$ O $_3$), les sols sur gabbros contiennent principalement une argile : de la Kaolinite, tandis que les hydroxydes de fer (goethite) et d'alumine (gibbsite) sont relativement secondaires.
- Les Sols Ferrallitiques sur granodiorites ont une composition plus voisine de celle des sols sur gabbros que des sols sur péridotites. Ils sont encore plus riches en silice, notamment sous forme de quartz et ils sont composés essentiellement de silice et d'alumine sous forme de Kaolinite, et secondairement d'hydroxydes de fer (goethite) et d'alumine (gibbsite). Ils ne contiennent normalement plus que peu de chrome, nickel et manganèse, sauf quand ils ont été enrichie fortement dans la partie supérieure du profil (éch. H.5) par des colluvions de sols sur péridotites.

- Fertilité:

- propriétés physiques : Malgré leur richesse en éléments fins argilolimoneux (A + L= 40 à 80%), les sols ferrallitiques sur péridotites, gabbros et granodiorites ont des propriétés physiques favorables, parce que suffisamment bien agrégés et structurés. Leur porosité totale est élevée (P= 60 à 80% dans les sols sur péridotites). Leur drainage interne est lent mais suffisant. Leur capacité de rétention pour l'eau est relativement élevée pour des sols ferrallitiques. Elle est d'environ 25 à 30% pour les sols sur péridotites et de 25 à 40% pour les sols sur gabbros et granodiorites. Ces derniers, à cause de leur richesse en argile peuvent être moins bien drainés à certains niveaux du profil et pour cette raison ils sont capables de mieux retenir l'eau.
- propriétés chimiques : Les trois familles de sols sur péridotites, gabbros et granodiorites ont des propriétés chimiques voisines. Ils sont tous fortement désaturés et très pauvres en bases tant totales qu'échangeables, notamment en calcium potassium et sodium. On remarque des teneurs élevées en magnésium total (MgO= 0,3 à \leq 1%) et échangeable (MgO= 0,2 à 2 meq %gr) relativement aux très faibles quantités des autres bases. Ce déséquilibre est susceptible d'accroître encore les carences en calcium et en potassium. Tous ces sols sont aussi très pauvres en phosphore tant sous sa forme facilement soluble (P2O5 truog #O) que totale (P2O5 total= de O à 0,2 %). Il est probable qu'il y à une déficience sensible en azote, car le rapport C/N varie de 15 à \geq 20. Une déficience en soufre est également possible. Enfin on note principalement sur les sols provenant de péridotites et ceux sur gabbros ou granodiorites recouverts de colluvions des précédents, des teneurs anormalement élevées en chrome, manganèse nickel et cobalt, tandis qu'il y aurait une carence probable en cuivre, en molybdène et peut être en bore.

2 - Sols Peu Evolués d'Erosion, sur péridotites

- Echantillons nº JA.61,62
- Nature et composition

En surface, l'horizon humifère et parfois un horizon B très peu développé et irrégulier, ont une nature et une composition très voisines de celles des sols ferrallitiques avoisinants. Ils peuvent être seulement un peu plus riches en silice, magnésie et nickel.

En profondeur, l'arène d'altération qui constitue un cortex généralement peu développé autour des blocs de péridotite, est nettement différente. Elle est beaucoup plus riche en silice ($SiO_2 = 7\%$), magnésie (MgO=4,6%) et nickel (NiO=1,9%), bien qu'elle soit déjà très riche en fer ($Fe_2O_3 = 56\%$). Une capacité d'échange relativement élevée (T=13 meq % gr) pour une faible quantité d'argile indique la présence d'une argile gonflante (nontronite ou montmorillonite ?). En plus il y a déjà beaucoup d'hydroxydes de fer (goethite) et encore un peu de serpentine (antigorite).

- Fertilité :

Les sols Peu Evolués d'Erosion au niveau du cortex d'altération sont nettement plus riches en magnésie et en nickel que les Sols Ferrallitiques; mais ils sont tout aussi pauvres en chaux, potasse, phosphore et probablement en certains oligoéléments comme le cuivre et le molybdène. Ils sont donc au moins autant infertiles que les Sols Ferrallitiques, si ce n'est encore plus à cause d'un excès accentué en magnésie et en nickel et d'un moindre potentiel de rétention pour l'eau.

3 - Sols Peu Evolués d'Erosion, sur cuirasses ferrugineuses

- Echantillons nº JC.21a, 21b, 21c
- Nature et composition :

Il s'agit de cuirasses formées dans les anciennes plaines hautes, par exemple la Plaine des Lacs. Elles sont actuellement érodées, en cours de morcellement et d'altération sous une végétation particulière caractérisée par le Casuarina Deplancheana. Ces cuirasses (JC.2lc) sont essentiellement constituées d'hydroxydes de fer (Fe $_2$ 0 $_3$ # 80%) sous forme de goethite, et d'un peu d'alumine (Al $_2$ 0 $_3$ = 3 à 5%) et d'oxydes de crhome (Cr $_2$ 0 $_3$ = 3%). Elles sont très pauvres en tous autres éléments dont la silice (Si0 $_2$ = 0,4 à 0,5%) et même en nickel, manganèse, magnésie et cobalt.

- Fertilité :

Les cuirasses offrent un milieu physique particulièrement défavorableLe sol formé à leurs dépens a des caractéristiques chimiques très voisines de
ceux sur péridotites auxquels ils sont associés, et ils sont aussi pauvres
qu'eux en phosphore, chaux, potasse, et en certains oligoéléments. Ils ne doivent leur fertilité qu'à l'abondance de mycorhizes associées aux Casuarina, leur
permettant de concentrer les faibles quantités disponibles de phosphore, chaux,
potasse, etc..., et leur fournissant de l'azote.

4 - Sols colluviaux, de piémont, des plaines hautes

- Echantillon nº OUE
- Nature et composition :

Par rapport aux Sols Ferrallitiques sur péridotites dont ils proviennent essentiellement, ils sont enrichis par des éléments enlevés aux roches en cours d'altération notamment en silice, alumine, magnésie, nickel, cobalt et manganèse. Ils contiennent encore essentiellement des hydroxydes de fer (Fe₂O₃= 56 %) sous forme de goethite. Mais on trouve en plus un peu de quartz, provenant des dépôts de quartz dans les diaclases serpentineuses, un peu de Kaolinite, des traces de talc, et probablement encore un peu de serpentine arrachée aux roches altérées.

- Fertilité

Ayant une composition et des propriétés physiques et chimiques voisines des Sols Ferrallitiques, les sols de piémont des plaines hautes semblent avoir un niveau de fertilité assez semblable. Cependant il est possible qu'ayant des teneurs relativement plus élevées en nickel, manganèse et cobalt (par suite de leur situation, qui favorise l'accumulation de ces éléments) et parfois même subissant des conditions temporaires d'hydromorphie (qui accroissent la solubilisation de ces éléments pouvant être toxiques) ils soient encore plus infertiles que les Sols Ferrallitiques des versants. C'est ce que tend à montrer une mesure comparée (CSIRO - Adélaïde, 1966) d'activité biologique faite sur le sol de piémont de OUENAROU (OUE= H.6) et un sol normal de versant (H.1). Tandis que le sol normal a une activité de 1.05 par rapport à une solution nutritive équilibrée, le sol de piémont ne présente qu'une moyenne de 0,46, sensiblement inférieure à la normale, ce qui indiquerait un phénomène de toxicité.

5 - Sols Alluviaux récents des plaines basses

- Echantillon: nº TR.2
- Nature et composition :

Ce sont des sols brun-rouges peu différenciés, d'apport alluvial récent, au pied des massifs de péridotites. Ils forment de vastes plaines, dont celle de la rivière DUMBEA. Bien que dérivant principalement de Sols Ferrallitiques et d'altérations de péridotites, les alluvions en diffèrent sensiblement, probablement parce qu'elles ont été enrichies par les eaux au cours de leur transport et de leur dépôt. En plus de matériaux hérités des sols, dont beaucoup de fer sous forme de goethite, un peu de quartz, un peu d'oxyde de chrome, et de traces de talc, elles contiennent beaucoup d'argile dont principalement de la montmorillonite et de la kaolinite. On retrouve ainsi dans la plaine une partie de la silice de l'alumine et de la magnésie enlevées aux roches par altération.

- Fertilité:

Les Sols Alluviaux des plaines basses, ont des propriétés physiques voisines des Sols Ferrallitiques : une bonne stabilité structurale, une forte porosité fine, un assez bon drainage interne et une bonne capacité de rétention pour l'eau. Mais leurs propriétés chimiques diffèrent sensiblement. Ils sont doués d'une capacité d'échange importante (T= 25 à 30 meq % gr) et ils ont un degré de saturation en base très élevé (V # 100). Cependant, ils sont très riches en magnésie tant échangeable (MgO= 24 meq % gr) que totale (MgO= 5,5%) ; ce qui cause un déséquilibre et une déficience relative en chaux et en potasse malgré des teneurs sensibles en ces deux éléments (CaO= 4 meq % gr échangeable et 1,3% total -K_0= 0,27 meq % gr échangeable et 0,65 % total). De plus ils sont encore pauvres en phosphore, aussi bien facilement soluble $(P_2O_5 \text{ Truog= 6 ppm})$ que total $(P_2O_5 = 400 \text{ ppm})$. Il est possible qu'ils soient encore riches en chrome, nickel, manganèse et cobalt ; mais nous n'avons pas analysé ces éléments. Par contre il est vraisemblable qu'ils manquent de certains oligoéléments, dont le cuivre, le molybdène et peut être le bore. On a pu voir sur tomate et haricot des signes foliaires de carence en molybdène. Enfin ils sont relativement mieux pourvus en azote disponible que les Sols Ferrallitiques car il ont une valeur du rapport C/N voisine de 11. Ceci est le signe d'une meilleure activité microbienne et donc d'une meilleure fertilité. C'est ce que confirme le test d'activité biologique, dont la valeur est de 1,5 sur les sols de la plaine de DUMBEA (TR.2 = H.7) alors qu'il n'est que de 1 pour une solution normale et de 0,46 pour le sol de OUENAROU.

Les Sols Alluviaux des plaines basses, seraient donc beaucoup plus fertiles que les Sols Ferrallitiques, mais ils souffrent principalement d'un excès de magnésie, et d'une déficience en phosphore, potasse et probablement molybdène.

b - Les sols sur péridotites de l'Ile des Pins

A l'Ile des Pins, les sols dérivés de péridotites présentent deux phases principales : Les Sols Ferrallitiques du plateau, gravillonnaires ou cuirassés ; les Sols Colluviaux de piémont, autour du plateau.

1 - Sols du plateau

Ce sont des Sols Ferrallitiques fortement désaturés, profondément remaniés par érosion, représentant probablement d'anciennes formations de piémont de plaine haute, analogues à celles de la Plaine des Lacs au sud de la Nouvelle Calédonie. On distingue : 1°, soit des sols gravillonnaires et profonds, représentés par les échantillons n° KUN. 11, 12, 13 - PIN. 21, 22 2°, soit par des cuirasses ferrugineuses démantelées en cours d'altération, dont les échantillons n° PIN. 11, 12, donnent un exemple.

- Nature et composition :

Les sols du plateau de l'Île des Pins, ont probablement une composition analogue à ceux des plaines hautes (sols de piémont, ou sols cuirassés) du Sud de la Nouvelle Calédonie. Ils sont composés essentiellement d'hydroxydes de fer et d'oxyde de chrome.

- Fertilité

Leur fertilité est fortement réduite par une carence en chaux, potasse et probablement en quelques oligoéléments. Cependant on remarque une teneur légèrement plus élevée en calcium que ceux du Sud de la Nouvelle Calédonie et une quantité anormalement élevée en phosphore, du moins sous sa forme totale ($P_2O_5=880$ à 4000 ppm), la partie facilement soluble demeurant faible (P_2O_5 Truog= 0 à 8 ppm). Ce serait la raison pour laquelle les sols du plateau de l'Ile des Pins sont relativement plus fertiles que leurs homologues du Sud de la Nouvelle Calédonie. On y observe des graminées, et par ailleurs, les reboisements de pin (Pinus Heliottii) y ont donné de bien meilleurs résultats. C'est ce que confirme le diagnostic foliaire effectué par M. F. BRUNCK sur pin et araucaria.

2 - Sols Colluviaux de piémont sur terrasse littorale calcaire

- Echantillons : no KUN.31 et PIN.31
- Nature et composition :

Ils dérivent probablement des Sols Ferrallitiques du plateau qui les domine. Leur composition est sensiblement voisine. Mais par suite de la présence de calcaire à une profondeur variable dans le sous sol, ils peuvent être enrichis en calcium par remontée biologique.

- Fertilité

Leurs propriétés physiques et chimiques sont sensiblement proches de celles des sols de plateau, manifestant à la fois un peu plus de calcium (CaO échangeable= 2 à 3 meq % gr) et surtout plus de phosphore (P_2O_5 total= 1900 à 2500 ppm) que les sols du Sud de la Nouvelle Calédonie, mais aussi peu de potasse (K_2O échangeable= 0,06 à 0,18 meq % gr). Malgré une teneur élevée en phosphore total., un apport d'engrais phosphaté a eu un effet positif sur Araucaria dans la parcelle de OUINDEA (KUN.31). Il est donc probable

que les sols de plateau ou de piémont de l'Ile des Pins ont un niveau de fertilité bien supérieur à ceux de Nouvelle Calédonie, mais sans doute encore insuffisant.

c - Conclusions sur la fertilité des sols des massifs de roches ultrabasiques

l° - Les sols dérivés de péridotites et roches associées, gabbros et granodiorites, qu'ils soient Ferrallitiques meubles et profonds, ou érodés et rajeunis, cuirassés ou colluviaux, sont généralement très peu fertiles. Aussi se manifestent-ils par une végétation de maquis très particulière. Ceci s'explique par leur grande pauvreté, voire leur carence totale : premièrement en éléments majeurs dont principalement phosphore, calcium et potassium, probablement aussi soufre et azote facilement assimilable ; deuxièmement en oligoéléments dont probablement cuivre et molybdène, et peut être bore. Par contre il y a des excès en magnésium (excès relatif), nickel, chrome, manganèse et cobalt.

Il n'est pas certain que des phénomènes de toxicité dus à des éléments en excès, soient toujours la raison de l'infertilité des sols sur roches ultrabasiques. C'est ce que tend à montrer un test d'activité biologique appliqué à trois de ces sols (C.S.I.R.O. - Adelaïde, 1966). Par contre les carences en éléments majeurs sont des motifs évidents d'infertilité. Dans un essai en pot sur avoine (P. QUANTIN et B. HUGUENIN, 1968, non publié) on a pu vérifier une carence majeure en phosphore, calcium et soufre. Plusieurs essais en pot ou au champ, du Service des Eaux et Forêts ont montré l'intérêt majeur d'une fertilisation phosphatée sur toutes les essences forestières testées, même sans complément azoté et potassique. Pour l'Araucaria, un apport de Calcium s'est également montré efficace. Il est intéressant de constater qu'à l'Ile des Pins, la présence importante de phosphore dans le sol, même s'il est probablement peu soluble, a permis l'installation spontanée de Graminées, et aussi de mieux réussir un essai de reboisement en pin (Pinus elliotii). On n'a pas pu montrer l'efficacité d'une fertilisation complémentaire en azote et potasse, même conjuguée à un apport de phosphore, soufre et calcium, bien que ces deux éléments soient nettement déficients dans le sol et dans les feuilles (F. BRUNCK, 1968). L'effet d'un apport d'oligoéléments (Cu, Zn, B, et Mo) n'a pas été non plus significatif sur une une culture d'avoine. Il reste donc à expliquer pourquoi certains éléments (N, K, Cu, Mo) normalement nécessaires ne sont pas utilisés quand on a supprimé la carence en phosphore, soufre et calcium, et aussi dans quelles conditions d'autres éléments (Ni, Cr, Co, Mn), très abondants dans les sols pourraient devenir toxiques pour les plantes.

2º - Les formations alluviales des plaines basses dérivées des massifs de roches ultrabasiques, bien que très sensiblement enrichies par rapport aux Sols Ferrallitiques dont elles dérivent, semblent souffrir ; mais à un degrée moindre des mêmes défauts : un excès de magnésie provoquant une déficience relative en chaux et surtout en potasse ; une forte déficience en phosphore, une probable carence en certains oligoéléments dont le cuivre et le molybdène ; un risque probable d'excès en nickel, chrome, manganèse et cobalt. Dans le cas des sols alluviaux, un chaulage accompagné d'une forte fumure complète (N, P, K, + oligoéléments) a toujours produit de bons résultats, ce qui semble lever l'hypothèse d'une toxicité en nickel, chrome, manganèse et cobalt. Mais on n'a pas étudié quels sont les éléments nécessaires, ni en quelle proportion.

II - LES SOLS DERIVES DE ROCHES FÀIBLEMENT METAMORPHIQUES DE LA CHAINE CENTRALE

A - Roches Mères :

La Chaine Centrale, près du Col d'Amieu, est essentiellement consetituée de roches plissées et faiblement métamorphiques : les séricitoschistes (ou phyllades), auxquels sont associés des verrues intrusives de serpentines et de dolérites (roches vertes).

- l Les séricitoschistes sont des roches à grain fin, stratifiées et plissées, très friables. Ils sont caractérisés par un mica blanc très fin et hydraté: la séricite, qui donne à la roche son toucher soyeux. Ils sont esentiellement constitués de quartz très fin et de séricite et donc principalement composés de silice (SiO $_2$ >60%) d'alumine et de potasse.
- 2 Les dolérites sont des roches vert ou bleu foncé, massives. Ce sont des roches basiques proches des basaltes andésitiques, dont probablement elles dérivent. Elles sont composées essentiellement de silice (SiO $\sim 50\%$), alumine (Al O ~ 15 à 20%), fer (Fe O $\sim 10\%$), calcium (CaO $\sim 10\%$) et magnésium (MgO ~ 5 à 10%). Elles contiennent aussi des quantités sensibles de sodium, potassium, titane, manganèse et relativement peu de phosphore.
- 3 Les serpentines forment des filons de couleur verte, généralement de faible épaisseur. Elles sont caractérisées par un seul minéral : la serpentine. Elles sont constituées essentiellement de silice (SiO $_2$ = 35 à 40%), magnésie (MgO= 35 à 40%) et fer (Fe $_2$ O $_3$ + FeO = 7 à 18%). Elles sont presque totalement dépourvues d'alumine, chaux, potasse, soude et phosphore.

B - Les sols, leur nature et leur fertilité

a) - Sols sur séricitoschistes

Les sols dérivés de séricitoschistes ont normalement la physionomie de Sols Ferrallitiques. Clest notamment le cas des sols rouges 8000 forêt dense, ŝitués sur les haut-versants, témoins d'une ancienne pénéplaine. Mais généralement sur les versants Est et les arêtes, sous une savane secondaire à niaouli (Melaleuca leucodendron), les sols ont été très fortement dégradés par érosion ; actuellement on observe le plus souvent des Sols Peu Evolués d'érosion, de couleur beige ou brune, caractérisés par un horizon d'altération très profond, probablement témoin d'un ancien Sol Ferrallitique. On peutdistinguer trois phases principales : — Les sols rouges Ferrallitiques des haut-versants, sous forêt dense. Les Sols bruns ou beiges Peu Evolués d'érosion des versants à crêtes érodées, sous savane à niaouli nain, Gleichenia et Lycopodium. Les Sols bruns ou beiges Colluviaux des bas-versants, sous savane à gros niaouli et Graminées.

1 - Sols Ferrallitiques rouges

- Echantillons nº CAM. 41, 42
- Nature et composition :

Les sols rouges sur séricitoschistes, sont profondément développés et ils ont des caractéristiques morphologiques et chimiques de Sols Ferrallitiques fortement désaturés. A défaut d'analyse minéralogique, nous avons de sérieux motifs de penser qu'ils sont essentiellement constitués de silice sous forme de quartz, d'argiles des types Kaolinito et illites mélangés, et d'hydroxydes de fer sous forme de goethite.

- Fertilité :

propriétés physique: Les sols rouges Ferrallitiques ont des propriétés/favorables. Ils sont argilo-limoneux (A+L = 55 à > 70%), sans être trop denses et imperméables. Assez bien structurés, ils ont une porosité fine importante, d'où une assez bonne capacité de rétention pour l'eau (\sim 35%) et un drainage interne lent, mais suffisant.

- propriétés chimiques : Ils sont fortement acides (pH= 4 à 5) et très fortement désaturés (V= 3 à 10 %). Ils sont pauvres en bases échangeables : chaux, magnésie, potasse et soude, bien qu'ils aient une teneur assez élevée en magnésie et potasse totales. La faible quantité de potasse échangeable relativement à la potasse totale est une caractéristique des argiles de type illite. Ceci laisse prévoir une très probable rétrogradation de la potasse après d'éventuels apports d'engrais potassique. Les quantités de phosphore total sont moyennes dans tout le profil (P2O5 = 1200 à 1500 ppm) et celles de phosphore facilement soluble, semblent suffisantes dans l'horizon humifère (P2O5 Truog = 23 ppm). Enfin, la valeur assez élevée du rapport carbone/azote de la matière organique (C/N= 16) laisse à penser à une déficience en azote facilement assimilable. En résumé, on peut prévoir une déficience en azote, chaux et potasse, une légère déficience en phosphore n'est pas exclue. On ne connait pas les teneurs en oligoéléments.

2 - Sols Peu Evolués d'érosion, de couleur brune ou beige

- Echantillons nº: CAM. 31, 32
- Nature et composition, fertilité :

Les sols bruns ou beiges sur séricitoschistes, ont une composition minérale voisine de celle des Sols Ferrallitiques, dans la partie supérieure du profil. Dans l'horizon d'altération ils sont plus riches en sables et en éléments de roche incomplètement altérés.

Comme les Sols rouges Ferrallitiques, ils sont acides, fortement désaturés en bases échangeables, dont la chaux et la potasse, malgré une teneur assez élevée en potasse totale. Ils sont plus pauvres en phosphore, surtout en phosphore facilement soluble (P205 truog= 8 ppm). Ils sont encore moins riches en azote facilement assimilable. On peut penser que les sols beiges ou bruns sur séricitoschistes ont une fertilité médiocre, du fait de leur déficience en azote, phosphore, chaux, potasse et probablement, aussi en soufre. De plus, ils peuvent souffrir périodiquement d'aridité sur les parties les plus érodées, notamment les arêtes.

3 - Sols Colluviaux de bas-versants

- Echantillon: nº CAM.31
- Fertilité:

En comparaison avec les sols des versants qui les dominent, les sols colluviaux sont probablement enrichis par des apports latéraux (drainage oblique). Ils sont moyennement désaturés en bases et moyennement pourvus en chaux, potasse et phosphore facilement soluble. Mais leur teneur en azote facilement assimilable est probablement médiocre. On peut penser que les sols colluviaux ont un niveau de fertilité moyen. Ceci se manifeste par un meil—leur développement de la végétation naturelle en bas de pente.

b - Sols sur dolérites

- Echantillons : nº CAM. 21, 22 51, 52
- Nature et composition /

Sur les versants, ce sont des Sols Peu Evolués d'érosion, de couleur brune, à horizon d'altération peu développé (profondeur = 50 cm à <1 m). C'est la phase de sols sur dolérites la plus répandue. Contrairement aux sols sur séricitoschistes analogues, ils sont bien saturés et eutrophes. On remarque que la végétation naturelle est une savane secondaire riche en Graminées, et pauvre en Fougères.

En bas de pente, dans les fonds de vallée et sous forêt, les sols sur dolérites sont plus développés. Ils ont une couleur brun-rouge et une texture plus argileuse. On peut les rapprocher des Sols Brun Eutrophes Tropicaux. Ils sont souvent remaniés en surface par colluvionnement.

Il est probable, à défaut d'analyse minéralogique, que les sols sur dolérites sont encore riches en minéraux en cours d'altération, car ils contiennent d'assez fortes quantités de magnésie. On peut penser à cause de la valeur assez élevée de leur capacité d'échange, qu'ils sont composés d'un mélange d'argiles de types kaolinite et montmorillonite.

- Fertilité

- propriété physiques! Les Sols bruns Peu Evolués d'érosion, souffrent périodiquement d'aridité du fait de leur fort drainage interne et de leur faible profondeur, malgré une bonne capacité de rétention pour l'eau dans la partie supérieure du profil. Les Sols brun-rouges des bas-versants, bénéficient d'un régime hydrique plus régulier et de meilleures propriétés physiques dans tout le profil.
- propriétés chimiques : Les Sols bruns et brun-rouges sur dolérites, sont faiblement à moyennement désaturés en bases (V= 50 à 100%). Ils sont riches en chaux et magnésie, tant sous leur forme échangeable que totale ; mais ils sont très pauvres en potasse (K_0 échangeable = 0,08 à 0,16 meq % gr). La phase des sols bruns Peu Evolués d'érosion est particulièrement pauvre en phosphore tant sous la forme totale (P_0= 150 à 200 ppm) que facilement soluble (P_0= 1 Truog = 6 ppm), tandis que les sols brun-rouges des basversants sont moyennement pourvus en phosphore. Enfin, les sols bruns Peu Evolués d'érosion sont probablement déficients en azote facilement assimilable, parce que la valeur du rapport C/N est élevée (\sim 15). On n'a pas d'analyses d'oligoéléments, mais on sait que les sols sur basaltes sont souvent riches en manganèse.

En résumé, les sols sur dolérites, ont une déficience en phosphore et en potasse. Il est possible qu'ils soient aussi pauvres en azote.

c - Sols sur serpentines

- Echantillons nº 37.1 et 2 CAM. 61
- Nature et composition

Les sols sur serpentines sont des sols noirs ou brun-foncé, peu épais, profonds de quelques décimètres. On peut les classer : Sols Peu Evolués d'érosion à horizon d'altération peu développé. Ils sont caractérisés par leur couleur foncée, leur structure fortement développée. Ils contiennent en plus de la serpentine altérée une argile gonflante de type montmorillonite et un peu de goethite (Fe $_2\mathrm{O}_3$). Ce sont des sols totalement saturés (eutrophes), riches en magnésie. La végétation spontanée, est une savane pauvre en Fougères comme sur les sols bruns issus de dolérites, mais elle est surtout caractérisée par une Casuarinée (Gymnostoma collina) tolérant les sols riches en magnésie.

- Fertilité

Les sols noirs sur serpentines sont totalement saturés en bases. Mais ils sont excessivement riches en magnésie tant sous sa forme échangeable que totale, et relativement ils sont pauvres en chaux et très pauvres en potasse. Ils sont également pauvres en phosphore tant total que facilement soluble. Ils peuvent être déficients en azote facilement assimilable. Enfin ils ont des teneurs anormalement élevées en nickel, manganèse et cobalt, et par contre ils pourraient être pauvres en d'autres oligoéléments comme les sols sur péridotites (?). Leur fertilité est donc probablement limitée par leur excès de magnésie et leur déficience en phosphore et en potasse.

BIBLIOGRAPHIE

- BRUNCK (F.) 1968 Compte rendu d'un déplacement effectué en Nouvelle Calédonie. C.T.F.T., Paris, non publié.
- C.S.I.R.O., ADELAIDE 1966 Laboratory examination of soils from New Caledonia. Technical memorandum 30/66, non publié.
- PRATT (P.F.) et al. 1964 Reaction of phosphate with soluble and exchangeable Nickel. Soil Sc. Soc. of Amer. Proc. 28, p. 363-365.
- SEGALEN (P.) 1968 Les tournées en Nouvelle Calédonie et à l'Ile de Vaté (Nouvelles Hébrides) ; partie scientifique, Rapport ORSTOM, centre de BONDY, multigraphié, non publié.

ESSAIS DE FUMURE MINERALE EN POT SUR ESSENCES FORESTIERES

ET SOLS ROUGES DERIVES DE ROCHES ULTRABASIQUES

par le Service des Eaux et Forêts de Nouvelle Calédonie

Divers essais de fertilisation minérale ont été mis en place entre 1964 et 1966 par F. BARETS, ingénieur du Service des Eaux et Forêts, avec la collaboration de P. QUANTIN, pédologue de 1'ORSTOM; Les résultats nous ont été aimablement communiqués par le Service des Eaux et Forêts; bien qu'ils n'aient pas encore été publiés, nous en donnons quelques uns à titre d'exemple pour montrer l'efficacité d'une fumure phosphatée sur les sols dérivés de roches ultrabasiques!

Sol testé : Sol rouge colluvial de piémont, des plaines hautes, de la Station Forestière de OUENAROU

Plantes testées: Pinus elliotii, Pinus pinea, Agathis Moorei, Araucaria Cooki, Spermolepis gummifera.

Traitements:

- l Dans une première série, on a testé plusieurs éléments majeurs, un à un, dont : Ca, Mg, K, N, P et S, plus l'effet du chaulage, sur Pinus elliotii et Agathis Moorei.
- 2 Dans une deuxième série, on a voulu comparer l'effet combiné de plusieurs éléments associés au phosphore, dont : P+N, P+S+N, P+S+N+C chaux. On a malheureusement négligé de tester l'effet associé de la potasse,
- 3 Une troisième série avait pour objet de tester la réponse au phosphore d'autres espèces dont Araucaria Cooki, Spermolepis gummifera et Pinus pinea.

Résultats: On trouvera ci-après 3 tableaux résument les principaux résultats. en mesure d'accroissement de la longueur des plantes après leur transplantation en pot.

1 - lère série : essai simple, élément par élément. La croissance a été mesurée entre le 9.9.1964 et le 20.7.66, soit pendant 22 mois.

	Accroissemer	nts en Ĉm.
TRAITEMENTS	Agathis Moorei	Pinus elliotii
Témoin .	21,5	Ž7 , 8
Phosphore seul - Phosphate naturel, dose I - Phosphate bicalcique, dose I - " " dose II	99,4 115,1 137,2	71;1 80,5 100,6
Phosphore + Soufre : - Superphosphate, dose I	111,2	81,7
Azote seul : - Urée dose I	12,0	24,4
Azote + Soufre : - Sulfate d'Ammoniaque dose I	26 , 9	39,4
Calcium, dose I " dose II	12,5 13,5	34,6 31,9
Magnésium, dose I " dose II	18,4 17,3	32,6 31,8
Potassium, dose I " dose II	18,7 22,4	37 , 5 39 , 9

On remarque que seul l'élément phosphore a eu un effet significativement positif. Les autres éléments ont été inefficaces. L'azote employé seul a même eu un effet dépressif (chlorose) en début de végétation, qui s'est atténué progressivement par la suite.

2 - 2ème série: essai d'éléments associés au phosphore

	Accroissements en cm								
TRAITEMENTS	du 13-5-1965 (14 m		du 13 – 5–1965 au 15–5–1967(24 mois)						
	Agathis Moorei	Pinus. elliötii	Pinus elliotii						
Chaulage	17 , 5	13,7	38,0						
P + N= Phosphate bicalcique + urée	62 , 0	13,4	50, 8						
P+N+S : Phosphate bicalcique + sulfate d'Ammoniaque	69 , 2	52,8							
P+N+S+Ca : Superphosphate + urée + chaux, dose I	72 , 4	21 , 2	80,7						
" " dose II	62 ,1	20,0	88,6						
(1) Comparaison avec la lère série après 22 mois de Croissan ce		and an infection of the contract of the contra	A CONTRACTOR OF THE STATE OF TH						
– Témoin	21 ; 5 (1)		27,8 (1)						
🗕 Phosphate bicalcique, dose I	115,1 (1)		80 , 5 (1)						

On remarque qu'un complément d'Azote et de Soufre à la fumure phosphatée n'ont pas amélioré significativement la croissance du Kaori et du pin. Par contre l'apport complémentaire de chaux aurait eu un effet légèrement significatif sur la croissance du pin.

3 - 3ème série : test de l'effet des phosphates sur 3 autres espèces :

		Accroissements en cm								
TRAITEMENTS	Araucaria Cooki 11 - 6-1965 au 15-5-1967	Spe rmol epis gummifera I7-11-1966 au 18-1-1968	Pinus pinea 17 - 11 - 1966 au 18 - 1-1968							
Témoin	11,5	9,9	22,5							
Phosphate naturel	74,7	23,05	41,1							
Phosphate bicalcique	-	-	43,4							
Superphosphate	68,5	20 , 30	41,7							
Chaulage	16,4	-	_							
Sulfate d'Ammoniaque	9,9	-								

On retrouve l'effet nettement positif des phosphates sur la croissance, observé déjà dans les 2 essais précédents. Le chaulage employé seul aurait eu un effet légèrement positif sur la croissance de l'Araucaria Cooki, tandis que l'azote employé seul est inefficace.

ESSAI DE FUMURE MINERALE EN POT SUR AVOINE ET SOLS ROUGES DERIVES DE ROCHES ULTRABASIQUES

per : P. QUANTIN et B. HUGUENIN Centre ORSTOM de Nouméa

- Sol = Sol rouge colluvial de piémont, de plaines hautes, de la Station Forestière de OUENAROU
- Végétation = Avena sativa cultivée en pot pendant 2 mois avec arrosage controlé, sous une serre, 5 pots par traitement.

TRAITEMENTS	Accroissements par rapport au témoin, en % du poids sec de racines + feuilles
Témoin	o
Cu	+ O , 5
Zn	- 1,4
В	- 10, 4
Mo	- 4,7
Cu,Zn,B et Mo	~ 2 , 8
N, P, K, S	- 15, 8
N,P,K,S + oligoéléments	– 12 , 9
N,P,K,Ca	- 38 , 7
N,P,K,Ca + oligoéléments	- 62 , 2
N,P,K,S,Ca	→ 53 , 3
N,P,K,S,Ca + oligoéléments	+ 61,7

TESTS D'ACTIVITE BIOLOGIQUE D'OURMESE

Ils ont été effectués par J.R. HARRIS, du CSIRO, ADELAIDE, en 1966, sur des sols prélevés par P. QUANTIN en Nouvelle Calédonie.

Les bactéries utilisées sont P = Pseudomonas aeruginosa,

N = Nocardia rubra

A = Azotobacter chroccoccum

Les résultats sont exprimés en rapport du taux d'oxygène consommé relativement à une solution physiologique témoin. (La valeur normale est évidemment 1).

Sol et échantillon	Р	N	А
H.l — Sol Ferrallitique sur péridotites, phase remaniée de bas—versant (Sud Nouvelle Calédonie)	1,08	1,05	1,04
H.5 - Sol Ferrallitique sur granodiorites, remanié par apport colluvial en sur- face de sols ferrallitiques sur pé- ridotites (Sud Nlle Calédonie)	0, 79	0 , 72	0,78
H.6 — DUE — Sol C olluvial de piémont de plaines hautes, des massifs ultra— basiques (Station forestière de OUENAROU)	0,38	O , 55	0,45
H.7 - TR.2 - Sol Alluvial des plaines basses, des massifs ultrabasiques (Plaine de DUMBEA)	1,35	1,56	1,64

RELATIONS SOL-PLANTE : DISCUSSION DES RESULTATS DE DIAGNOSTIC FOLIAIRE OBTENUS PAR F. BRUNCK (1968)

Au cours d'une tournée d'inspection en Avril 1968, Monsieur F. BRUNCK, du Centre Technique Forestier Tropical a fait plusieurs prélèvements de feuilles sur des Eucalyptus, Pins, Araucarias et Kaoris. On pept remarquer que les résultats d'analyse de feuilles correspondent généralement assez bien à ceux d'analyse de sol, même s'il ne nous est pas toujours possible d'expliquer le comportement naturel des plantes testées. Nous ferons seulement quelques remarques à propos de la comparaison des résultats d'analyse de sol et de feuilles et de l'interprétation du diagnostic foliaire.

I - SOLS SUR ROCHES ULTRABASIQUES

- 1 Sud de la Nouvelle Calédonie, Stations de OUENAROU et du CARENAGE
 - type de sol : Il s'agit de sols colluviaux, de piémont, des plaines hautes.
 - diagnostic foliaire : F. BRUNCK remarque principalement dans les feuilles de 5 plantes : Eucalyptus saligna, Agathis Moorei et 3 espèces de Pinus, une forte carence en phosphore et en potasse, une déficience en azote, et des teneurs anormalement élevées en nickel, manganèse et magnésium.

- discussion :

- a) F. BRUNCK pense que les teneurs normales de calcium dans les feuilles peuvent s'expliquer par l'effet de la carence en potassium ; il est en effet certain que les sols sont très déficients en cal-
- b) Il ne fait pas mention d'analyses de soufre, cuivre et molybdène, éléments probablement déficients dans le sol, ni de celle du cobalt, élément qui pourrait être anormalement excessif et toxique.
- c) Il remarque un accroissement des teneurs en nickel dans les feuilles en même temps que celles de phosphore, après un apport de superphosphate, et il en conclut qu'un apport de superphosphate peut accroître l'intoxication des plantes par le nickel.

Ceci demande à être discuté :

- 1º Il n'est pas statistiquement certain que l'apport de superphosphate a accru corrélativement l'absorption du nickel, car les prélèvements de feuilles ont été faits en petit nombre sur des parcelles différentes, dont on ne sait pas si les sols sont comparables.
- 2° On sait que les phosphates apportés au sol peuvent insolubiliser les formes solubles de nickel sous forme d'un sel (P.F. PRATT et al. 1964). Dans ce cas il n'est pas impossible que du nickel soit ensuite absorbé avec les phosphates, d'où un accroissement proportionnel des deux éléments dans les feuilles.

- 3° Mais il est loin d'être prouvé que l'accroissement de l'absorption de nickel a augmenté l'intoxication de la plante par cet élément. En effet, tous les essais de fertilisation phosphatée, allant d'une faible à une très forte dose, ont provoqué un très net accroissement de végétation sur toutes les plantes testées.
 - d) Les analyses de feuilles comme celles de sol laissent à penser à une forte carence en potasse. Cependant, on n'a pas obtenu dans des essais en pot sur des pins, kaoris et araucarias, un accroissement sensible de végétation avec une fumure potassique, qu'elle soit appliquée seule ou associée aux autres éléments déficients : N P S et Ca. F. BRUNCK remarque que la fumure phosphatée a encore augmenté dans les feuilles le déséquilibre du rapport P/K. Cependant ceci ne s'est pas traduit par une diminution de la végétation, bien au contraire. Comment expliquer que les espèces testées aient pu se contenter de teneurs anormalement basses en potasse ? On a remarqué par ailleurs (1) que la végétation naturelle contient souvent dans les feuilles des teneurs anormalement élevées en sodium (de 1 à 3%). Le sodium étant un élément fréquemment apporté par les pluies océaniques, pourrait-on faire l'hypothèse d'une compensation de la déficience en potassium par la présence du sodium, comme cela a déjà été remarqué pour le cocotier ?

2 - Ile des Pins

- types de sols : Il s'agit de Sols Ferrallitiques gravillonnaires de plateau, de sols cuirassés de plateau, et de Sols Colluviaux de piémont. Rappelons que tous les sols de l'Ile des Pins, sont sensiblement plus riches en phosphore et en calcium que ceux du Sud de la Nouvelle Calédonie.
- diagnotic foliaire : F. BRUNCK remarque une déficience généralisée : notamment de faibles teneurs en potasse et en bore, d'assez faibles teneurs en azote, phosphore, chaux et magnésie.

- discussion :

- a) Par rapport aux feuilles de plantes poussant sur des sols semblables du Sud de la Nouvelle Calédonie, on remarque une carence aussi importante en potasse, une déficience plus sensible en bore, une déficience aussi sensible en azote, une teneur légèrement plus faible en magnésium, mais surtout un niveau plus élevé en phosphore, bien qu'il soit encore un peu faible (P = 0,96 % au lieu de 0,39% sur Pinus elliotii).
- b) Les différences observées dans les feuilles entre arbres poussant dans le Sud de la Nouvelle Calédonie et ceux de l'Ile des Pins, correspondent bien à celles observées dans les sols et sur la végétation. Les sols de l'Ile des Pins étant plus riches en phosphore, les plantes en ont absorbé davantage. Ceci explique pourquoi un apport d'engrais phosphaté au champ, à faible dose (400 Kg de superphosphate/ha) n'a eu aucun effet sur la croissance de Pinus elliotii. On comprend bien aussi pourquoi le développement des pins a été meilleurs sur la parcelle Sud que sur la parcelle Nord, car le sol de la première contient deux fois plus de phosphore. Enfin une forte fumure phosphatée a sensiblement marqué sur la végétation de l'Araucaria à la parcelle de OUINDEA.

^{(1) -} Analyses de feuilles faites pour M. JAFFRE, botaniste de l'ORSTOM par le Laboratoire de pédologie de Nouméa.

c) - On ne sait pas si la déficience en bore observée dans les feuilles de pins, a eu un effet dépressif sur la végétation.

II - COL D'AMIEU

- · 1 Sols sur dolérites, de la Station Forestière.
 - type de sol : Sol brun Peu Evolué d'érosion, à caractères eutrophes, sous savane.
 - diagnostic foliaire: F. BRUNCK: note que tous les éléments majeurs dont N, P, K, Ca, Mg, et un oligoélément le Bore, sont légèrement déficients dans les feuilles de Pinus elliotii — Dans celles d'Araucaria, il ne remarque plus que des déficiences légères en K, Ca et bore.

- discussion :

- a) D'après les analyses de sol, il ne faut pas s'attendre à une déficience en Calcium et en Magnésium, mais à une carence en phosphore et potassium et à une déficience en azote.
- b) Le très bon développement de l'Araucaria, plante exigeante en chaux, confirme que le sol n'est pas déficient en calcium et en magnésium.
- c) On s'explique mal pourquoi les carences en phosphore et en potasse n'ont pas eu d'effet sur la végétation, puisque les pins (Pinus elliotii) ont eu un développement anormalement rapide. On pourrait vraisemblablement faire l'hypothèse d'une action symbiotique hautement favorable de mycorhizes.

2 - Sols alluviaux de la OUAOU.

- type de sol : Il s'agit d'un sol alluvial sous forêt dense composé essentiellement de débris très altérés de séricitoschistes arrachés aux sols beige Peu Evolués de versant. Il pourrait être rapproché des sols Colluviaux de piémont dont nous avons fait l'analyse, et on pourrait penser qu'il a un niveau moyen de fertilité, avec seulement une légère déficience en azote facilement assimilable.
- diagnostic foliaire : F. BRUNCK remarque sur Agathis Mooerei une nette déficience en phosphore et bore, et une légère déficience en azote et potasse.

- discussion :

- a) La forte rétention du sol (riche en illites) pour la potasse peut expliquer une légère déficience en cet élément. Mais pour la corriger il faudrait faire un apport très important d'engrais potassique.
- b) L'analyse de sol ne permet pas de prévoir une forte déficience en phosphore. Il est possible qu'une faible fumure phosphatée sera efficace.
- c) On n'a pas noté de signes foliaires de carence en bore ; mais il serait intéressant de le vérifier.

Sud-Houvelle Calidonie - 1 -	1		nallitique			C	مه شمالم م	As of area	Allewians
		_							
Fiche I (Decages courants)	those no		phase the	erode	- Ment	Curaine	- storing	at to a c	Sid Plu E vol
Renseignements	mains. L	de versant, es Dalmates	maguis - Mo	raio kiki	Oucharon	forer = C	evarina d	week Remod	sil Plu E god of Apport reco plaine Dum
		1		1		[1	1
No référence Profondeur en cm.	3f. 31 0-45	Jf. 32 130-160	JA.61 0-15	JA,62 50	0-20	JC.21 a	5-20	JC.20	TR.2
Terre fine °/.	100	1302100	100	100	100	79.2	47,2	#0	100
CO3 Ca sur terre fine %/0		1,00	100	/	1,00	1112	RILL	_	
CO3 Ca actif								<u></u>	
(4)									
ANALYSE PHYSIQUE (1)				_	1	}			
Argile { avec dispersion '/.	32,59	42.31	27,91	22,90	13,70	7,32	11,64		
Argue { sans dispersion */. Limon avec dispersion */.		10.	0.4		00.6	2	6.4		
Argile + Limon asses dispersion %	24.86	15,47	28,08 55,99	23,44 46,34	22,57 36,27	3,47 10,84	5.78		
avec dispersion °/-	21,79	32,37	23.09	31,20	48.14	34,21	52,86	,	
Sable fin sans dispersion %/0									
Sable gros avec dispersion °/.	19,36	9.55	17,94	22,10	11,38	40,15	16,87	/	/
sans dispersion /.		1	 , 	9.4	,	,			
Humidité à 105° hysposis picté °/. Humidité pF 4,2	18,51	22,79	4,26	3,80	3.80	6,85	5,23		
Humidité équiv. (pF 3) °/o	25,35	28,60	22,01	15.50	28,34	32,62 34,45	13,70	-	
H, Osel Line		29.86	29,16	18,03	/	37,75	11.00	,	
Coefficient dispersion A + L	1-7								
. Coefficient d'agrégation									
ANALYSE CHIMIQUE(&)									
Carbone organique °/	24,45	1.67	16,56	2,00	23,55	17,10	70,80		34,1
Azote total °/ Mat. org. totale °/	1.04	0.079	0,896	0.168	1,24	4,27	3.51		2, 98
Mat. org. totale °/ C/N	23,51	2.88	28,55	3,45	40,60	132,92	124,06		57.97
Humus (Ac. humique %/	02.7	21,14	18.48	11,70	18,99	, 81D @	20,10		11,00
() (Ac. fulvique °/				••••••				*******************	****************
		-							
Complexe d'échange					_				
pH (eau)	5,1	5,6	6,1	7,05	5,8	4,00	3.6	,	6,7
pH (K Cl)	0010	A 49.				0.00.	5 14 (
Ca0 { meq. p. 100 gr.	0,213	0,034	0,393	1112	2,00	0,224	0,146		1.14
b !	0,282	0.089	0,524	0,161	0,00	0,774	0,282		4,84
- Mg 0 meq. p. 100 gr.	1.40	0,44	2,60	0.80	0,53	3.84	1,40	/	24,00
K 2 0 }	0.025	< 0,001	0,037	0,008		0,052	0,042		0,13
. neg. p. 100 gr.	0,05	< 0.002	0,08	0.02	0,00	0,11	0,09	/	0,27
Na20 }		0,006	0,022	0,024		0,098	0,084		
Waleur S : meq. p. 100 gr.	2,29	0.02	0,07	1,29!	3 2,53	5.07	0,27		28,36
T (Capacité d'échange) meq. p. 100 gr.		≥ 0.38 ?	7.60	12.96	/	35,60	24.80	,	25,6+ ?
	28.34	€65.91?	54.61	9.95?	1	14,24	9.19	1	z leo
P 2 0 s soluble acides faibles p.p.m. (méthode Tues)	0	0	0	٥	2	0 ?	5	/	6
Pouvoir rétention pour P		1 -							
	<u> </u>	 						~ ****	
Eléments de réserve (3)									
P205 () °/••	0.153	0,00	0,167	0,111	0,313	0,431	0,222	0,278	0,40 x
K 2 0 () °/••	0.1	< 0,1	< 0, 1	< 0,1	0.034	0,1	0,1	<0,1	0,65 4
Ca 0 () °/ce	0.2	0.1	0,4	0,1	0.56	0,4	0,4	0,2	13.35 x
Mg 0 () °/00 (Na ₂ O) °/00	6.4 <0,1	<0,1	11,3	45,6	11,2	3,3	1.8	0,8	55.02 +
Sels solubles	1 20,7	1801	< 0,1	0,1	0,03	- 1	0,3	< 0,1	
C1 °/			 						
S 0 3 °/ ₆₀ Couleur ` (code Cayeux		 							
à sec code Munsell	· J.			***************************************					***************************************
Coulene (code Caveny	I		<u> </u>						
bosside code Munsell (1) Arnalyse physique Am T	SYRYL	54 4/	542 3/2	54R 5/R		5 4 5 K	54 3/2		
	15- /-					THE RESERVE OF THE PARTY OF THE			NAME OF TAXABLE PARTY.

⁽¹⁾ Armelyse physique sur terre totale humide, ropporte, an Arl secht = 105° (3) Armelyse divingue sur Terre fine sechre - air, ropporte au sol seche-air (3) Arthorism for Cloy H + SOU Hz

FICHE II S. Nie Calidonie 1.

(Dosages spéciaux)

Renseignements.

									IMP. MEUNIES	188 11 53 %
N' référence Profondeur en cm.		J F .31	JF,32.	JA . 61	JA.62	(H.6) OUE x	JC,212	JC. 216	l ¡JC, शट	(H . 1),
ANALYSE CHIMIQUE	(1)		 	 	1	1			-	
(sur sol sticks - air)	• •		i	ì	ŧ	!	1		l	
Attaque totale (}				1	i	1	1		
Résidu inattaqué		7.43	5.93	5,80	10,24	† _ `	3.26	2,44	1,76	
Si 0 2 combiné		1,17	0.93	4.44	7,00	. 22.6	0.52	0.48	0,44	5,9
Perte au feu	- 0/0	21.19	18.30	17,60	12,53	31.9	32,88		12,40	26.7
Fe 203		43,03	47.66	61,48	56,37	56.0	53,25		78,08	71,2
Al 203	c 1	22.30	22,15	5.84	3.36	11,2	5,54	3.08	4,42	13,5
Si 0 2/Al 2 0 3		0,09	0.07	1,29	3.55	3,43	0,16	0,26	0,13	0,24
Si 0 2 Al 2 0 3 +- Fe 2 0 3	• 1	0.04	0,03	0,12	0,30	1 "5" H.D.	0,02	0,02	0,01	0+14 -
Ti 0 2	10	0,26	0,23	0,11	0,05	0.33	0.28	0,19	0,18	0, 32
Mn0 ¿	»/.	0,10	0,18	0,55	0,03	1.53	0.07	. 0,17 1_0,11	0.10	÷ - : :- : •
Nio	`, [/] ^ 1	0,20	0.37	0,95	1.88	0.74	0,25			1,31
Cr 2 0 3	%	3,60	3,51	2,73	2,91	. 4 _e 0	. 9.25 . 3.75	, 0,22	0,33	0,36
Market Miles	*	0,02	0,01	0.04	0,01	0.29	1	2.71	<u>3,17</u>	
Mg 0	100	0.64	0,63	1.13	4,5%		0,00	0.04	0.02	0.09
	:/o#	0,01	1 0, 0 1	< 0,01		1,6	0.33	0.18	0,08	0.63
K ₂ O	- 1		1		< 0,01	0.04	0,01	2.21	< 0.01	0.04
Nago	· /; ;	< 0.01	< 0.01	< 0.01	0,01	0,16	•	0,03	10.02	0.09
P205	7.	S0, Q	< 0.01	0,02	. 0,01	0.08.	0.04	0,05	_0,03	80.0
Cuò	۰,					< 0.000		1 .		0.0053
Zno	0 ?	•	1		1	0,036				0.023
C. 0	• ;	0,0006	0,0016	0,005	0,006	0.140	2000,0	6,0000	0,004	0.023
ANALYSE PHYSIQUE			1							
Fraction limon fin	٠/،		i	ŧ	1	•			,	•
Fraction limon grossier	%	-	L	i					:	
Argile (Benzène)	٠ , ` .			•	1			!		
Argile + Limon (Benzene)	•/_		i ·	1	:		ļ <u>.</u>	- :		
Sable fin (Benzène)			; i					` !		
Sable grossier (Benzène)	·• ·		t		,			⊢ :	<u>-</u>	
Argile + Limon (Alcool)	0/ 1			•			:	- :		
Sable grossier (Alcool)	10 1		;							
Indice d'instabilité I s	٠٠ ا		: -	:		, ,				
Poids specifique réel	- }					·				٠. •,
Poids specifique apparent	· i						·	: ساست ۱۰۰ م	!	
					,		!	. :		_
Porosité totale					,		: 			
Porosité pour l'air	· • •		!							
Perméabilité K cm h	J	i	i		i	,	i		ı	

- (H.1): sol forallitique, place remainer de bas-versont, prélève en du face, km 23 routs Noune à syste - Une analyse d'oligoeléments a et freits par M. PINTA (ORSTONI-BINTY) sur un échantillon : DE-53, de sol fenallitique remanie sur périditité. de la région Dunber - EST, filler par J. J. TRESCASES (ORSTON- NOUMER) En dehour des éléments fe, Al, Ti, Mn, Co et Vi quipout tréaboudoit oundations for destacer indotables d'oliqueion est : Mo, Sn, Ps, Cu, Li, Ga, Bi, Be, Sr et Rs sont a 10 pm Bar = 30 frm 100 rrm 4 28 = 40 ppm Zn = do 170 = 240 frm Extraction Acide for Clout + SOUTHZ (ORSTOM-NOUMEN) analyse totale for flumesce ox (CSIRO-ADELAIDE) e chartellong (+1)

(H.1): estertiller est Fezer, som forme he motile + goethite; un per de grants
(H.6) = OUE: becomes to Fezer, som forme goethite; un per de karolinite; traces de tale

: beautour d'argiles ; ka olimte + mont morillonite, de fez 03, = go thite ; un peu de quarte; tr. de tole

Mineralgie (CSIRO-ADELAIDE)

(H,7) = TR.2

-Nouvelle Calédonie - 2 -	Sols	deriver	de 2	abbnos	Jgran	odionite	s attoci	és aux p	erido
	Sole B.	mms Fevr	alliti geil	fortem	ent desert	unes, the	ide um an	ide de ve	mant
Fiche I (Dosages courants)	phase w	Unicale po	ofonde.	phose call	wide pear	profonda	phase à	accumul	atim
Aanseignemerts	ENDER OF	Unitale p e gobbios Niconli et	daho bushi Glaichenia	The walk is	L godbass Vouther	ten burjace	manife	te en person	face
			,	1	1	1	I	1	1
No référence	JF. 11		JF. 13	JF.21	JF.22	 		C. 81	C.8
Profondeur en cm.	0-15	1	120-150	0-20	100	80-100 100		100	10 - 3
Terre fine */. CO3 Ca sur terre fine */.	100	100	100	100	100	190		700	100
CO ₃ Ca actif		1						 	<u> </u>
		<u> </u>							
ANALYSE PHYSIQUE (1)						1			
, (avec dispersion °/.	32,62	37,53	18,24	45,10	39.94	49,32		23,41	38.7
Argue sans dispersion %/.	.	<u> </u>							
Limon avec dispersion %/0	11,07	26,18	19,93	22, 28	34,61	9,67		16,76	28.
Argile + Limon dispersion °/.	43,69	63,71	38,17	67,38	74,35	59,04		40.17	60,9
Sable fin (avec dispersion °/.	20,25	21,01	30,36	14,43	13,40	20,89		1.17	18,0
sans dispersion °/. (avec dispersion °/.	31,43	14,75	31,30	12,23	11,90	19,77	<u> </u>	2,98	16,8
Sable gros sans dispersion %.		11967.3	31130	12103	11.679			S/1.1.8	10,0
Humidité à 1050 hygroscopicité %.	3,08	5,14	2,41	4,75	6,62	3,79		ا فی ب	2,
Humidité pF 4,2	22,00	27,39	18,48	27.08	26,96	24,58		125,8	21,1
Humidité équiv. (pF 3) °/.	36,89	33,11	26.64	38,74	33,25	33,94		187,5	27.
H2O solfrais %	37,28	32,68	23,32	32.95	30,75	31,57		126,2	26.8
Coefficient dispersion A + L Coefficient d'agrégation			- · - · · · · · ·	<u> </u>					i I
									<u> </u>
ANALYSE CHIMIQUE(2)	0. 3		104	, , ,					
Carbone organique °/00 Azote total °00	26.03	2,88	1,01	33.00	1,89	1,62		292,50	23,8
Azote total Mat. org. totale "/o"	44.88	0.397	0,093	2,18 56,89	3,26	5,131 2,88		14,35 504,87	41,1
C/N	14.83	7,25?		15.14	15,62	12,75		20,38	17,6
Humus Ac. humique °'	1.H.4	1, 20.	 	1 . 1 . 2	1,700	1-110		~0.20	1 1710
() Ac. fulvique °/									
Complexe d'échange									
pH (eau)	5,1	4.9	4,6	5,0	4.9	5.1		3,3	4,
pH (K Cl)	a aa a baha a		د، د ستاناند م						
0/20	0.213	0,022	0.045	0,099	0,022	0,045		0,258	0,00
Ca0 { meg. p. 100 gr.	0,76	0.08	0,16	0,32	0.08	0,16		0,92	0.00
Mg0 (meg p 100 gr	0,444	0,194	0,137	0,419	0.306	0,258		2.51	0,03
	2,20	0,96	0,68	2,08	1.52	1,28		12.45	0,16
K 2 0	0,023	0,002	0,005	0,03	0,006	0,002		0,304	0.0
meq. p. 100 gr.	0.05	0,004	0,01	0,06	0,01	0,004 0,0ly		0,64	0,04
Na ₂ 0 { meq. p. 100 gr.	0.08	0,14	0.05	0,0%	0,00	0,08		0.539 1.74	0,01
Valeur S : meq. p. 100 gr.	3,08	1.18	0,90	2,54	1,83	1,52		15,75	0,28
T (Capacité d'échange) meq. p. 100 gr.	9,60	12,32	7,28	10,24	12,40	6,40		105,41	6,50
V (Coefficient saturation) °/.	32,08	9,58	12,36	24,80	14,76	23,75		16,94	3.51
P 2 0 5 soluble acides faibles p.p.m.									
(méthode Twos	0	0	0	0	0			25	ટ
Pouvoir rétention pour P									
Eléments de réserve (3)									
P 2 0 5 () °, '	0,139	0,028	0,014	0,125	.0,125	0,014		0,266,	
K 2 0 () °/••	_0,1 <u>57</u> _	< 0,1		0,1	0,2	< 0,1		0.358	0,00
Ca 0 () */••		1.2.		1.1	0,1	0,1		0,84	0,14
Mg 0 () °/••	4,2	2,}	2,9	4.0	4.9	4,4		3,02	5,14
Ma (Na 20)°/	0,2	0,1	0,1	0,3	0,4	<0,1		0,42	0,05
Seis solubles								γ	
Cl °/						i		:	
5 0 3								-	
Couleur (code Cayeux								·	
à sec code Munsell	*******								
0 400				Y				**** ** /	
Couleur (code Cayeux		54R 5/8	. ,, , , ,				,.,,,,		

⁽²⁾ Arnolyse physique our time totale humide, rapported on sol sich at 1850 (2) Arnolyse chimique surface fine siche-air, rapported on sol siche-air (3) [Extraction for CLOy H + SOuth 2.

(Dosages spéciaux) Renseignements.

				:					IMP. NEUNIES	183 11 63 5
N' référence		JF. 1)	JF. 12	JF. 13	JF.21	JF.22	7F. 23	(H.5)		
Profondeur en cm.										
ANALYSE CURROUS	(1)				 		 			
ANALYSE CHIMIQUE	U)	<u> </u>	ļ	1			-			
Attaque totale ()									
Résidu inattaqué	°/。	48,61	22.82	37,34	22,59	22,54	37.91			
Si 0 2 combiné	<u>°/。</u>	13,61	28,33	25,48	20,03	28,87	20,38	32.0	,	
Perte au feu	°/。	14,21	14,30	9,80	21,56	15.58	11.23	30.6		
Fe 203	%	9.50	9,42	5,15	9.66	6,91	6,55	42.3		,
Al 203		12,47	24.57	20,94	24,04	25,55	22,68	15,1		
Si 0 2/Al 2 0 3		1,86	1,96	2,07	1,42	1,92	1,53	3,60		
Si 0 2/Al 2 0 3 + Fe 2 0 3		1,25	1,58	1,79	1,13	1,64	1,29		İ	
Ti 0 2	°/a	0,25	0,25	0 20	0,25	0,11	0,33	0,37		
Mn0 2.	%	0,05	0,03	0,02	0,03	0,01	0,03	0,34		
Nio	°/。	< 0,01	0,01	0,01	< 0,01	0,01	< 0,01	0,26		
Cr 203	°/	1,01	0.04	<0.01	0,47	0,03	0,92	5.1		
Ca O	^/. 	0,02	0.12	0,01	0,11	0,01	0,01	0.02		
Mg O	°/	0,42	0,27	0,29	0,40	0,43	0,44	1,2		Ī
Cuin K20	°/.•	0,01	<0,01	0.01	0,01	0,02	< 0.01	0,03		
Nez O	%	0,02	0,01	0,01	0,03	0,04	< 0,01	0,07		
P205	4	0,01	< 0,01	< 0,01	0.01	0,01	< 0.01	0,05		
Cu O	· °/。	. ,	_			-	-	0.0032		
Zn O	°/。		1	-	/	/	-	0.019		
Co O	°/。	0,0005	< 0,0003	<0,0003	< 0,0003	< 0,0003	0,0017	0.007		1
ANALYSE PHYSIQUE										
Fraction limon fin	%	1				i				ĺ
Fraction limon grossier	°/。	[†			1				
Argile (Benzène)	0			T		1				
Argile + Limon (Benzène)	•/。	<u> </u>			· - · · - · - · - · - · - · - · - · - ·	 			ļ	
Sable fin (Benzène)	°/•					T ·-		I	i	
Sable grossier (Benzène)	•,•			-						 -
Argile + Limon (Alcool)	%		\$ == :====: :==== : * *				<u></u>			
Sable grossier (Alcool)	°/。		T				r			1
Indice d'instabilité I s							+			<u> </u>
Poids specifique réel			 	†	i		 			1
Poids specifique apparent			<u> </u>	T	!		i			
Porosité totale	- °/•		! !	T		i	 	,		1
Porosité pour l'air	•/•				· · · · · ·		 			
Perméabilité K cm'h	,			1	T		i			

-NB-(1) Extraction Acide for Cloy++SOy++z (ORSTOM - NOUMEA)
-x Schanfillon (H), analyse to Tale for fluorescence X (CSIRO-ADELAIDE)

- Minéralogie (CSIRO-ADELAIDE):

H.5: beauesup de fe 203 som forme de goethite, un peu de Kaolinite

NB: Il s'agit de la partie supérieure d'un sol ferrallitique son

grandionites, remaniée peu des apports collusioner de pols formés

sur péridotites, d'on l'enrichissement en Cr, Ni, Fe et Mn.

- Oligoéléments: Une analyse faite par MiPINTA (ORSTOM-BONDY) Au l'échantillon ON-30 prélève par J. J. TRESCASES (ORSTOM-NOUMEA) de sol sur gablesse de l'île OVEN, donné les résultats finisants pour le sol superficiel: Mo, Sn, Pb - Li, Ga, Bi, Be, Sr et Rb < 10 ppm — Ba < 30 ppm — Zn < 100 ppm

Cu: de < 10 = 16 trm V: de 24 = 160 prm Zn: de 160 = 450 prm

Comme dans les sols sur péridotites, les éléments Hu, Cr et N's sont abondants.

Renseignements.

MP. MÉLINIES 122 11

				1		1		
N' référence	OUE.61	OUE .62	OUE . H	OUE.72	OVE.81	OVE. 82		
Profondeur en cm.	0-10	120-130	0-100	>100	40 -60	> 100		
ANALYSE CHIMIQUE (1)						·		
Attaque totale ()	Ì						
Résidu inattaqué	1. 0,26	0,33	0,66	0,28	7.67	85,47		
Si 0 2 combiné °	/. [1,41	1,92	1,00	2,21	3,16	3,54		
Perte au feu	% 12,94	12.91	13,62	13,76	14,20	1,48		
Fe 203	% 72,74	71,27	69.07	70,07	59,43	5,69		
Al 203	1. 5.31	5.08	7.98	5,56	8,62	3.02		
Si 0 2/Al 2 0 3	0,45	0,64	0,21	0,67	0,62	2,00		
Si 0 2/Al 2 0 3 + Fe 2 0 3				L				
Ti 0 2	26			i				
	% 0,25	1,44	0,43	1,09	0,16	0.06		
Ni0	/。!							
	1/0			4		!		
« A control (EU)								
Petrituperaklarigue) Mg 0 °/	0,53	0,81	0,65	0,80	0,68	2,39		
-(mitroposeklarique) o	09.				1	•		
		İ		i		1.		
78					r			
Constructions •	/。							
	7/。				i.			
	<i>!</i> 。			i i				
ANÁLYSE PHYSIQUE								
Fraction limon fin	7.				•			
	7.				i			
	10				i			
	7.				i			
	7.	·			ļ- · ·	·		i
	10	`		l	······································			
	7.	†i			[
	7/.	<u> </u>						i
Indice d'instabilité I s								.
Poids specifique réel	3,95	3,89		,	3,69			
Poids specifique apparent	1,34	1,35			1,00			
	1. 66.07	65.29			72,90	_		<u>j</u>
	/• 	100,01			1-1/5			
Perméabilité K. cm/h		: -						

AUTRES DETERMINATIONS

Extraction acide. Analyse chimique faits par J.J. TRESCASES - NB; (1) (ORSTOM-NOUMER) sur échantillons prélèves pou P. QUANTIN

_ hatme des sols

profil 6: Sol Fernallitique remanié par évotion dus péridotites phase haut-versant avec recomment de bloce de cuirable ferregineure en surface.

-61 Sol Brun Ronge colluiral, sous le défor de bloce de cuirable.

trofit 7: Sol Fernallitique remainé par évosion sur péridotites, phase alluviale de mi-versaux, avec depôt de graviers et bloss de cuinaise fernagineuse en emplece.

-77 Sol Rong Fonco collusial and graviers ferriginary

-72 Horizon B, One, normal

trofil ?: Sol-Fernallitique remanue par Erstion sur péridotites, phase de versant avec frofil tronque et paintements de péridotites en metace.

-81 Horizon B-C, Rouge, normal.

-82 Horizon C-D, crêne d'altération, peu gaisse, au contact de la roche

Ile des Pins -1-	Sol	s Brun	R	Ouep	Ferr	allitiqu	les	Sw	r Pér	idotite	, ce
	nou	enneme drodec e	w a	-4	rtement	désatur	es (ر (?	thase o	u plate	an
Renseignements	brisée, a	drodé e e	₹ 40	1 +	sol conc arcelle	stionns Sud	(grav	ille	ns) érodé forcelle	Tremo	mie d
No référence	PIN M	PIN 12			PIN 21	PIN-22			Kun 11	KUN 18	KUN 13
Profondeur en cm.	0-20	60-80				80-120			0-15	15-30	
Terre fine •/.	60,7	87,9			100	100			96,2	99.2	97,3
CO ₃ Ca sur terre fine '/. CO ₃ Ca actif '/.									/	-	
ALLEGE PLACE (1)							==†				
ANALYSE PHYSIQUE ()	2 2 5	40.4			1100	11.54			1	0.2-	22,69
Argile { avec dispersion °/. sans dispersion °/.	7.32	10.01			41.83	44.37		••••••	14,94	23,35	20.09
Limon avec dispersion %. Argule + Limon eens dispersion %.	13,28	10,43			10,79	9,88			16,88	23,00	24.75
(avec dispersion %/	20.60 55,28	20,84 59,77			22,62 37,16	54,39 31,90			31,82	27,19	23,65
sans dispersion °/.											,
Sable gros { avec dispersion °/. sans dispersion °/.	19.80	17.90			36,17	12,60			34,20	24,65	28,48
Humidité à 1050 Hygrosupiete %	5,53	4,21			4,08	4, 17			3,69	3,19	2,78
Fiemidité pF 4,2	15,11	11,66			13,64	16,28			15.82	18,98	17,31
Humidité équiv. (pF 3) %.	<u>215,55 ?</u>	17,06			16.46?	30,84			24.53	26,01 27,38	82.76
Coefficient dispersion A + L	14,42	14,52			19,64	30,55			24 1U7	~7.38	21,49
Coefficient d'agrégation	(*****						. 1				
ANALYSE CHIMIQUE (2)											
Carbone organique '/	23,70	8,31			22.58	6,23		,	17,70	10,20	2,46
Azote total °/00	2,34	0,775			1,09	0,378			1,32	0,63	0,14
Mat. org. totale °/	40,86	lu', 33			38,93	10,74	. 邦		30,51	17,58	4,20
C/N Humus (Ac. humique °/	10,13	10,72		<u> </u>	20,72	16,48	}		13.41	16,19	17,57
() (Ac. full vique °/											
								-			
Complexe d'échange		1 0				· .	1	1	-0	. .	, ,
pH (e2u) pH (K Cl)	5,2	4,9		 	5,5	5.7	-		5,8	5,4	6,3
• / • •	0,415	0,067			0,617	0,034			0,510	0,056	0,022
Ca0 meq. p. 100 gr.	1,48	0,24			2,20	0,12			1.82	0.20	0.08
Mg 0 (meq. p. 100 gr.	0,161	0,04 0,20			3,00	0,056			0,33	0,07	0,005
med. p. 100 gr.	0,053	0,098			0,057	0,004			0.038	0,015	0,02
M 2 0 meq. p. 100 gr.	0,11	5,02			0,12	0,01			0,08	0,03	0,005
Na2 0	0,052	0,014 0,04			0.035	0,006			0,018	0,012	0,000
Waleur S: meq. p. 100 gr.	2,56	0,50			0,11 5,40	0,43			0,06 3,60	0,04	0,00
T (Capacité d'échange) meq. p. 100 gr.	6,16	1,84			9.36	1,20			5,15	2,15	0,48
V (Coefficient saturation) °/•	41,56	27,17			58,12	35,83			69,90	28,65	22,91
P 2 0 5 soluble acides faibles p.p.m.				1	_	,				,	
(méthode Trueg) Pouvoir rétention pour P	8	3	-		6	3	+		3	0	1
				-				_	-		
Eléments de réserve (3)			l				1				
P 2 0 5 () °/	4,04	3,45			2,03	1,70			1,55	1,25	0,88
K 2 0 () °/∞ Ca 0 () °/∞	0,15	0,09			0,06 0,62	0.04			0,06	0,05	0.06
Mg 0 () */	12,20	9,48	$\neg \dagger$		5.70	2,82	+		5,64	0.14 4.64	3.68
(Na.20)*/	< 0.05	<0:05			0,05	< 0,05			0,09	0,10	0,09
Sels solubles		1 -		7							
<u>Ci</u> •/											
S 0 3 °/			\dashv								
Couleur code Cayeux	***************************************				····· <u>·</u>						
Couleur code Cayeux			1				I		~		
humide code Munsell											
(1) Analyse physique s	us polt	ral h	umi A	de,	with	TEL a	مو س	γ ີ: ^-	sechi T	105	

Analyse chimitue un terre fine se the air, rapportée au sol si cul-air (6) Extraction for ClOut + South

Tche I (Dosages courants)	a/ versa	laine + Leu	Salve m	b/ friem	out alt	25 jm	c/plain	10-15 m. y sur calcan 3º Commune	
Renseignements	toute c	acroper	T Caena ge.	miague + Becken	ā foug Out	déa_	jachere Co	resture.	3º COMMA
No référence	,	KUN-21			KUN-31			PIN-31	
Profondeur en cm.		0-15			0-15			0-20	
Terre fine °%. CO3 Ca sur terre fine °%.		97.0			99,1			100	
CO ₃ Ca actif									
ANALYSE PHYSIQUE(1)								Professional Research	
Argile { avec dispersion %/0 sans dispersion %/0		12,82			15,60			15.31	<u> </u>
imon avec dispersion %/.		21,09			24,70			12,09	
Argile + Limon and dispersion %.	· ·	33,91			40,30		 	27.40	
able fin sans dispersion	•	24,40			3.2,36			20,88	
(avec dispersion %/.		38,30			2.3,08		I	18,26	
able gros sans dispersion					- , ,				
Humidité à 105° hygnoscopiato %. Humidité pF 4,2		20,98	•		21,87		 	_4,4 2 16,38	
Iumidité équiv. (pF 3) °'.		26,52			29.87		İ	24.79	<u></u>
H2 O sol frais %		26,89	-		29,54			21,64	
Coefficient dispersion $A+L$ Coefficient d'agrégation								# II H H	
, ANALYSE CHIMIQUE(2)			ATTENDED TO THE STATE OF THE ST						
Carbone organique		18.90			23,70		1	19,20	
zote total ° 00	· • ·	1,54			1,27			1,36	† · · · ·
Mat. org. totale		_32,58		-	40.86			33,10	ļ
C/N Humus Ac. humique °	-	12,27			18,66			14,12	-
) (Ac. fulvique °/00	1		•	.,					
Complexe d'échange									
H (eau)		6,5	-		5.4			5,3	4
H (K Cl)		2 01			0.00			0,561	
meq. p. 100 gr.		3,04			3,06			2.00	
		0,65		• .	0,514			0,484	
Mg 0 meq. p. 100 gr.		3,23			2,55		_	2,40	
M2 0 meq. p. 100 gr.		0.167			0,087		,,,,,,	0,029	<u> </u>
	, , , , , , , , , , , , , , , , , , ,	0.02	,		0,043		<u>†</u>	0,045	-
meq. p. 100 gr.		0.06			0.14			0,15	
Valeur S: meq. p. 100 gr.		14,49			5,93			4,61	1
(Capacité d'échange) meq. p. 100 gr. (Coefficient saturation)	,	≥ 13,40° ≥ 100			12,98		-	8.40 54,88	1
(Coefficient saturation)		100			46143			24,88	-
2 0 5 soluble acides faibles p.p.m.		5			3			5	
(méthode Twos) Pouvoir rétention pour P								J	ĺ
iléments de réserve (3)			,	,					
?205 () "/		1.88			1,88			2,50	
20 (,	0,18		•	0,10		1	0,06	
Ca 0 () °/••		3,79			≥ 0_86	-		0,70	77
Mg 0 () °/ (N ∞ 2 ℓ)) °/		8,87			11,8 20,04	w	ł	6,55	
iels solubles		0,00	:===	<u> </u>	0,00			- <u>- • 4</u>	
CI °/				-					
503	-			·					
Couleur , code Cayeux									
à sec code Munsell									
Couleur code Cayeux numide code Munsell		1	ļ	ļ	ķ į		1		

⁽²⁾ Another chimique surtene fine situe i ropportée au sol seine au (3) Extraction par CLO4 + + SO4 +2

	• E		R	eige d'	Ezoh'm	Beige Collinger	
inha i (Beceges courants)	fortement	mallitique desarture	1 2	<u> </u>	مُعَمِينًا مَا مُأْمُامُ	moyennement desature	
Renosignements	L'haze na	amale de hant Avus forêt	1,7	name 226 ous bavan	idée de viete e T.Gleichenia	phohe de pichiontse Javane à gros himon	ny Le
D. Référence CAM	41	42		31	32	11	
A September on cm.	0 - 15	100	 	0-10	50	0-15	
ferre hne •/.	100	100	1	100	100	100	
D3 Ca sur terre fine %:0	/	-			-	-	
203 Ca actif °/.	-	-		/	/		
(1)							
ANALYSE PHYSIQUE (1)			1				}
Activity (avec dispersion %/6 sans dispersion %/6	37,38	47,11		36.95	11,52	42,00	
sans dispersion %/0			4			+ +	
Argite + Limon const dispersion °/.	17,38 54,76	24,57		26,09	31,25	25,71	
· area dispersion	24,12	15,75		22.57	46,85	10,99	
Same fin / sans dispersion '/o	24112			1.22.23	401.02	1	.
	14,71	12,06		11,58	21,66	15,17	
sans dispersion %/.						,	
Humidité à 1050 (hygroscopiats)%	3,62	3,51		2,89	1,75	4,30	
Humidité pF 4,2	22,38	27.41	.	19,53	9,94	24,84	
Humdité équiv. (pF 3) %	34,58	34,01		26,85	21,03	37,12	_
Coefficient dispersion A + L	34,23	32,22	+	22,27	17.91	31.55	
Coefficient d'agrégation			1				
			<u> </u>				
ANALYSE CHIMIQUE (2)			1	1	,	j	1
	35,90	2,83	1	15,83	1,40	34,13	- 1
Azote total	2,24	0,28	†	1,20	0,198	2,43	\dashv —
Mat. org. totale °/o	61,89	4.88	-	27,29	2,41	28,84	_
C'N	16.03	10,11	-	13,19	1,0}	14,04	
Humus Ac. humique °100			1				
() (Ac. fulvique °/	-	_		_			
			+				+
Complexe d'échange			1				
pH (eau)	4.1	4.9	ļ	4.9	4,9	5,1	
pH (K Cl)			-	- 1-1		1 20	
Ca0 mag n 100 gr	0.135	0,079	1	0,157	0,034	1,28	
meq. p. 100 gr.	0,129	0,28	· -	0,56	0,12	0,814	
Mg 0 (meq. p. 100 gr.	0,64	0,60		1, 16	0,76	4,04	
•/	0,084	0,013	-	0.08	0,012	0,191	†
K 2 0 meq. p. 100 gr.	0,18	0,03	1	0,17	0,03	0,41	
·/••	0,029	0,026		0,026	0,008	0,006	
Na20 meq. p. 100 gr.	0,09	80,0	1	0,08.	0,03	0,15	
Valeur S: meq. p. 100 gr.	1,39	0,99		1,97	0,94	9,16	
T (Capacité d'échange) meq. p. 100 gr.	17.50	28,58	+	16,98	6,66	18,46	
V (Coefficient saturation) °/.	7,94	3,46	+	11,60	13,96	49,62	
P 2 0 5 soluble acides faibles p.p.m.							
(méthode Tures)	ટ ર્	3	1	8	3	28	_
Pouvoir rétention pour P		1					
(2)	A MPA						
Eléments de réserve (3)							.
P 2 0 5 () °/••	1,44	1,26	L	1,38	0,66	1,21	
K 2 0 () °/••	19,69	.6.88		11,56	8,50	6,26	
Ca 0 () */••	0_28	0,56	+ -	0,14	0,14	1,47	
Mg 0 () */	7.46	9,27		5,04	3,63	6,50	-
	1,38	0,46	+-	2,94	2,68	0,37	+-
Sels solubles							
Cl °/	. <u>.</u>		ļ	ļ			4
S 0 3 °, oo			1	 			+
Couleur code Cayeux	.,,,,,,,				·	ļļ	
à sec code Munsell Couleur code Cayeux		 	 	 - · · · -		F 10 1 1 10 10 10 10 10 10 10 10 10 10 10	
humide code Cayeux	7-4/			2 54- 51	1041 51	208 Atché a	
AND THE PROPERTY OF THE PROPER	P. 3 19 0 /	2.540 4/6	1	3+, 3 1R 3/4	110 1/R 4/8 1	1 170 'R 7/2	ı

(3) Extraction for Cloy H + South

Col d'AMIEU -2-	Solsi	ssus de	٠ '	Ď٥	l e rites	-		Sols	de	Serpen	Tines
	Brun Pe	u Evolué		Bru	in-Eutro	phe-Tropi	cal,	Noi	r, Pen	Evolue d	Erain
Fiche I (Dosages courants)	d'Erosion, - Eutrophe phase de versant sons			remanié par collusion phase de bas-versant				resount, gous savane			
Renseignements	phase a Savane a	te versant Eramin	sous	Sou	s forêt	vallicole	•	1 × C	Lasuar	ina sa	vanc.
No référence CAM	51	52			21	22			61	32-1(4)	37-24)
Profondeur en cm.	0-15	30-40			0-10	100			0-15	0-10	10-25
Terre fine •/.	100	100			92,3	100			100	100	100
CO ₃ Ca sur terre fine °/ ₀											
CO ₃ Ca actif °/.											
ANALYSE PHYSIQUE (1)											
Araila (avec dispersion °/.	27,67	12,86		ļ	39,74	27,68			31,15	28.32	25,16
Limon avec dispersion %/o	20,90	16.26		<u> </u>	17,52	3				22 90	20.0
Argile + Limon exist dispersion °/	48,57	29,62			57,26	24,05			15,67	33,20	38,18
Sable 6n avec dispersion °/.	38,76	51,92			28,99	32,73			39,35	23,00	21,79
sans dispersion °/.				ļ						<u> </u>	
Sable gros 2 vec dispersion %/ sans dispersion %!	7,05	18,09		ļ	6,48	14,96		ļ	6,23	12.64	13,67
Humidité à 1050 hygroscopiete %	5,68	5,36		 	5,66	5.98		 	1,22	4,31_	3,42
Humidité pF 4,2	20,90	12,96			31,38	26.16	,		31,50	3	13.02
Humidité équiv. (pF 3) %	41,12	22,91		ļ	40,53	36,61			42,55	22,14	18,43
Coefficient dispersion A + L	37,64	14,67		<u> </u>	37,69	32,26			33,41	11,24	11,35
Coefficient d'agrégation		·			<u> </u>			 			
ANALYSE CHIMIQUE (v)											
Carbone organique °/00	30,83	2.03			39,90	3, 20			39,60	15,75	6,75
Azote total °	2,02	0,131			3,10	0,217			3,29	1,16	0,485
Mat. org. totale °/00	53,15	3,50			68,79	5,52			68,27	27,15	11,64
C/N Humus Ac. humique °'	15,26	15.50			12,87	11,15			12,04	13,58	13.92
()! Ac. fulvique °/ ₀₀											
Complexe d'échange									V 1. 178.00		
pH (eau)	5,4	6,6			5,5	5.3			6,3	7.0	6,9
pH (K. Cl)					'			-			
C20	1,91	5,56			4,26	0.045			0,628	0,011	0,022
meq. p. 100 gr.	6,80	19.68	·		15,20	0,16		L-+-	2,24	0,04	0,08
Mg 0 meq. p. 100 gr.	1,58 7,68	15,42			8,20	9,20			9,00	3,56	12,32
•/	0,04	0,004			0,074	0,024			0.028	0,02	0,008
K 2 0 meq. p. 100 gr.	0,08	0,008			0,16	0,05			0,12	0,04	0.02
Na2 0 }	0,038	0,086			0,079	0,097			0,029	0,834	0,025
meq. p. 100 gr.	0,12	0,28			0,26	0,31		}	0,09	0.11	0,08
Valeur S: meq. p. 100 gr. T (Capacité d'échange) meq. p. 100 gr.	14,68 21,78	35,38 29,26			23,82	19,06			47,10	20,00	12,50
V (Coefficient saturation)	67,40	≥ 100			84,61	51,05			100	88.75	94,13
D. O. salukla saidas faiklas n. m.											
P 2 0 5 soluble acides faibles p.p.m. (méthode Trues)	6	1 1			16	3			8	೭	2
Pouvoir rétention pour P		!				1		İ			
Eléments de réserve (3)											
P205 () °/	0.10				0	17.		1	- 00		
K20 ()°/••	0,19	0,15			2,55 0,36	1,64 2,24			0.82	0,083	
Ga 0 () °/••	32,81	37,01			11.64	0,42			6,45	0,1 8,9	<u>0,1</u> - 신,9
Mg 0 () */••	24,39	42,94			18.35	17,84			0,03	196,4	259,1
(Na ₂ 0)*/••	2/,03	2,17		ļ.,	0,84	1,89			0,17	1,1	6,4
Sels solubles					į						
<u>Cl</u>					·					w	-
S 03 °, eo Couleur (code Cayeux		-									
à sec code Cayeux code Munsell											
Couleur (code Cayeux								. -			,
1	Brun Fonce	Brun			7,54R 4/4	7.5425/6		N	Sov	Non.	10 YR 572
(1) Analyse physique to			n m i	de,	rapport	tee an	. Po	l se	chla	105	
(2) Analyse chimique su	i time.	fine se	che)	raffor	tée au	- A.	e 1	tche a	- lain	

(3) Extraction par Cloy H + SOUH2 - (4) profil 37, prélet par M. JAFPRÉ, col de PARARI

Nouvelle Caledonie - Nord - Sols Noirs issue de Serpentines

(Dosages spéciaux)

Renseignements.

									:MP. NEUNIES
N' référence		36-1	37.1	37-2					
Profondeur en cm.		0-10	0-10	10-20	 		 		
		0010	0.10	10-20			 		
ANALYSE CHIMIQUE	(1)				1		****	1	
Attaque totale ()	 							
Résidu inattaqué	°/。	31,78	14,32						j
Si 0 2 combiné	%	23,95			<u> </u>		<u> </u>		<u> </u>
Perte au feu	۰/。	14,27					1		
Fe 203	0/0				ļi		i	-	ļ
<u>Al 203</u>	%		4,93	3,29	1		<u> </u>		
Si 0 2/Al 2 0 3		7,15	11,45		<u> </u>		<u> </u>		<u> </u>
Si 02/Al203+Fe 203		3,09	4.87	6,96	<u> </u>		<u> </u>	ļ	ļ
Ti 0 2	· · · · · · · · · · · · · · · · · · ·	. 0,27	0,24	0,15			<u> </u>	<u> </u>	<u> </u>
Mn0 2		0,47	0,28	0,20			· 	<u> </u>	· · · · · · · · · · · · · · · · · · ·
Ni0	°/。	0,27	0,29	0,37	·		<u> </u>		1
Cr 203	°/。	0,24	0,09	0,06			: 		<u> </u>
Ca O		0,65	0,89	0,29	4				ļ
H ₂ 0	<u> </u>	9,78	19,64	25,91	1		<u> </u>	<u> </u>	<u> </u>
k, 0		0,04	0,01_	0,01	1		+		!
Na,0		0,05	0 (11	0,04			<u> </u>		:
P ₂ 05		0,01	0,01	<0.01	<u> </u>		<u> </u>	 	<u> </u>
C.0		0,014	400,0	800,0			i 		
A. A. Carrier and	°/。		<u> </u>	<u></u>			! - 		
	۰۱.		· 				<u> </u>	,	
.ANALYSE PHYSIQUE		1		1				į.	
Fraction limon fin	%	t		<u> </u>	<u>i</u>	4			1
Fraction limon grossier	°/。			<u> </u>			ļ		
Argile (Benzène)	٥,٠	<u> </u>		<u> </u>	ļ			· 	<u> </u>
Argile + Limon (Benzène)	•/•	1						<u> </u>	
Sable fin (Benzène)		l	 	<u> </u> 	·		<u> </u>	<u> </u>	!
Sable grossier (Benzène)	*. •	<u> </u>	t				<u> </u>	<u> </u>	<u> </u>
Argile + Limon (Alcool)	%	<u> </u>			<u></u>		,	!	<u> </u>
Sable grossier (Alcool)	<u>%</u>			· 				<u> </u>	
Indice d'instabilité I s			· 						
Poids specifique réel			<u> </u>		;				
Poids specifique apparent			L					<u> </u>	<u> </u>
Porosité totale	°/6		h.,	:	.,		1		
Porosité pour l'air	9/.			<u> </u>				ļ	<u> </u>
Perméabilité K cm h		1	!	i			•	!	
		1			· ·				

IMP. MÉUNIES 188 11 68 8

AUTRES DETERMINATIONS

- Les profils 36 it 37 out été prélevét par M. Joffré, et analysée fail laboratione de pédologie de Noumes. Ils dont tres voisins du sol CAM. 6 prélevé au Col d'Amieu. Les profils 36 it 37 sont situés au col de PARARI
- Une analyse minéralogique de pol nois sur sergentine, rélève à THIO pour M. Ségalen, et faite pau l'ORSTOM à BONDY, donne la composition surrante: mont movillouite abondante, serpentine (chrysottle), un per de goethite.
- (1) Attagne for ClO4+1 + SOUHZ