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Abstract-The first stage of lateritic weathering of pyroxenes in the Niquelandia area, Brazil, leads either 
to Fe-rich products or to a phyllosilicate clay. In relatively unfractured parent rock the phyllosilicate clay 
contains Ni-rich smectites, the atomic ratio of Ni : octahedral cations ranging from 0.3 to 0.5. These 
smectites were studied by polarized light microscopy, X-ray powder diffraction (XRD), transmission 
electron microscopy, and electron microprobe, and infrared, optical absorption, Mössbauer, and extended 
X-ray absorption fine-structure (EXAFS) spectroscopy. The chemical composition of the smectite is 
constant on the optical microscope scale even to the smallest analyzed particles (3000 8, in diameter and 
about 75 8, thick). From XRD data the mineral is principally a swelling, trioctahedral smectite; however, 
some kerolite-pimelite-like layers are present, and a weak 06,33 reflection indicates the presence of a 
small amount of a dioctahedral phase. Mössbauer results show that all Fe cations are Fe3+ in octahedral 
sites. The structural formula of the smectite is: 

(Ca, o ~ K o . o s ) ~ ~ ~ o . L 7 ~ ~ o . l ~ g 0 . 4 8 ~ ~ 1  47Cr0.0z)(~i3 9zA10 os)O,o(O~)~ 
The results obtained from all the above methods suggest that in the smectites Ni, and, perhaps, a small 
amount of Mg are clustered in pimelite-like domains (or layers), whereas Fe and some Al are clustered 
in nontronite-like domains (or layers). Most selected-area electron diffraction patterns exhibit continuous 
or punctuated (hk) rings, indicating that particles contain several stacked layers. The patterns of some 
thin particles, however, suggest dioctahedral layers having trans-octahedral vacancies, such as in the 
Garfield, Washington, nontronite. Thus, the Ni-Fe-Mg-smectite, which seemingly is homogeneous, ac- 
tually coiisists of mixed trioctahedral and dioctahedral layers or domains. 
Key Words-Chemical composition, Laterite, Mössbauer spectroscopy, Nickel, Nontronite, Pimelite, 
Smectite, Transmission electron microscopy. 

INTRODUCTION 

Archean ultramafic rocks ofNiquelandia, Goias State, 
Brazil, crop out as a body (40 x 2.5 km) elongated in 
the "E-SSW direction. The eastern part of the body 
consists essentially of dunite; the western part contains 
a 20-m-thick lens of pyroxenitic rocks within the du- 
nite. The Jacuba quarry (48'25'W and 14'223) is in 
the western part of the ultramafic body, which here is 
strongly weathered into a 30-m-thick, argillaceous and 
ferruginous, lateritic mantle. 

Colin et al. (1985) reported that the chemical weath- 
ering of pyroxenes leads either to Fe-rich, noncrystal- 
line products and then to goethite, or to a phyllosilicate 
clay. They showed that the phyllosilicate clay consists 
of either smectite in relatively unfractured parent rock 
or a mixture of pimelite and smectite in strongly frac- 
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tured rock. Such an association of smectites and pi- 
melite as weathering products of pyroxenes was de- 
scribed by Eggleton and Bolland (1982), Nahon and 
Colin (1982), Berner and Schott (1982), and Paquet et 
al. (1 982). In the Jacuba material clays in the weath- 
ered rock are particulary enriched in Ni. Ni accounts 
for 3340% of the octahedral cations of the smectites 
and about 85% of those in the pimelite. High Ni OC- 

tahedral contents are known in the kerolite-pimelite 
series (Brindley et al., 1979), however, Ni octahedral 
contents > 14% (Bosio et al., 1975) have not been re- 
ported before for natural smectites. Stevensites and 
saponites, however, having an octahedral atomic ratio 
Numi  f Mg) of O to 1 have been synthesized at low 
temperature (Decarreau, 198 1, 1983). 

olin et al. (1985) studied the 
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Table 1. Microprobe analyses of smectitic clay from poorly 
fractured pyroxenite rocks, Jacuba quarry, Niquelandia, Bra- 
zil. 

Sam- 
ple' SiO, .&O3 Fez03 MgO Ca0 K,O Ni0 Cr203 

Decarreau et al. Clays and Clay Minerals 

1 55.91 5.31 10.57 4.35 0.05 0.54 22.69 0.58 
2 55.14 4.75 10.33 4.44 0.04 0.38 24.21 0.70 
3 , 54.96 1.87 6.46 3.20 0.29 0.50 32.67 0.05 
4 55.07 1.62 5.77 3.51 0.12 0.52 33.24 0.19 
5 54.10 2.58 8.72 6.97 0.11 0.45 26.41 0.67 
6 54.80 1.83 6.11 4.81 0.17 0.35 31.66 0.67 
7 55.14 3.23 13.33 5.16 0.13 0.58 25.11 0.54 
8 56.42 4.83 8.71 4.13 0.09 0.47 25.13 0.22 
9 58.33 1.92 16.09 5.49 0.13 0.68 16.78 0.57 

10 54.84 2.12 9.77 7.98 0.05 0.53 24.13 0.60 
11 55.14 1.37 12.55 4.14 0.18 0.77 25.41 0.43 
12 55.10 1.89 7.30 3.10 0.13 0.48 31.76 0.23 
13 56.57 2.73 15.17 2.89 0.14 0.84 20.81 0.84 
14 55.52 1.68 8.01 4.32 0.08 0.58 29.55 0.26 
15 56.40 4.99 8.02 4.53 0.07 0.56 25.27 0.16 
16 55.94 4.48 8.79 4.99 0.13 0.56 24.92 0.19 
17 56.59 3.82 10.73 5.28 0.14 0.53 22.06 0.85 
18 57.13 4.90 8.86 4.00 0.10 0.61 24.71 0.31 
19 53.22 4.58 10.58 6.62 0.09 0.32 23.53 1.05 

I Samples fiom 1 to 18 refer to point microprobe analyses 
of undisturbed smectitic clay in cracks. Sample 19 is the smec- 
titic clay extracted from weathered pyroxenes by ultrasonic 
methods and used for X-ray powder and electron difiaction 
and spectoscopic studies. Analyses were recalculated on the 
basis of total -i 100%. 

weathered pyroxenites of Jacuba by means of optical, 
electron microprobe, and X-ray powder difiaction 
techniques. The present paper describes Ni-bearing 
smectites formed by the weathering of Jacuba pyrox- 
enes. One sample representative of the smectitic clay 
was extracted in sufficient quantity to allow its study 
by X-ray powder diffraction (XRD), transmission elec- 
tron microscopy (TEM), infrared (IR), Mössbauer, ex- 
tended X-ray absorption fine structure (EXAFS), and 
diffuse reflectance spectroscopy. 

MATERIALS AND METHODS 
Of the samples analyzed by Colin et al. (1985), only 

hose extracted from poorly fractured pyroxenite rocks 
which presented a smectitic clay as a weathering 

product were examined in the present study. Pyroxene 
crystals were hand picked under a binocular micro- 
scope, and the smectitic clay sample was extracted fi-om 
the pyroxenes by ultrasonic cleaning and then dried 
and prepared for XRD, TEM, and spectroscopic anal- 
yses. The chemical composition of the extracted smec- 
titic clay sample is in the range of point microprobe 
analyses of the smectitic clay (Table 1). 

XRD patterns were recorded at 1"28/min with a CGR 
difk?ctometer equipped with a Co tube and a graphite 
monochromator. Scanning electron microscopy (SEM) 
and TEM observations were made using Je01 T200 and 
and JEOL lOOcx microscopes, respectively. Samples 

were chemically analyzed with a Camebax electron mi- 
croprobe using an energy-dispersive X-ray spectrom- 
eter. 

Optical measurements were performed using a Cary 
17D spectrophotometer equipped with a difise re- 
flectance attachment. The IR spectra were obtained at 
ambient temperature using KBr pellets made from 
samples previously heated for 2 hr at selected temper- 
atures (see Figure 4). The concentration of clay in the 
pellets was varied depending on the region of the spec- 
trum to be examined and thermal treatment used. 
Mössbauer spectra were recorded in 5 12 channels of 
an Elscint AME 40 spectrometer in triangular mode. 
A =?CO source in a rhodium matrix of nominal strength 
25 mCi was used with Na1 scintillator as a y-ray de- 
tector. Velocity calibration was made using a high- 
grade metallic Fe lamina. Samples were ground with 
glucose to prevent preferred orientation. Because only 
a small amount of sample was available, spectra were 
accumulated to about 5 x 1 O6 counts per channel. Only 
room temperature spectra were obtained. All data were 
computer-fitted with Lorentzian components by a least 
squares program. 

EXAFS measurements were performed at thle Ni and 
Fe K-edges with the synchrotran radiation at LURE- 
DCI (Orsay, France) (storage ring operating at 1.72 
GeV and 200 mA). The X-ray beam was monochro- 
matized with a "channel cut" Si(400) crystal. Both 
spectra were recorded in transmission mode from 200 
eV below the absorption edge of Fe and Ni to 800 eV 
above, using 2-eV steps. Further experimental details 
are found in Raoux et al. (1 980) and Calas et al. (1 984). 
The data analysis followed the standard procedure de- 
scribed by Manceau and Calas (1986). EXAFS oscil- 
lations were extracted from the absorption spectrum. 
The resulting interference function was then Fourier 
transformed, yielding the radial distribution in the real 
space centered on the element studied. Further analysis 
was made by back-transforming separately each struc- 
tural peak of the radial distribution function. Finally, 
the structural parameters were determined by a fitting 
procedure using the theoretical atomic scattezing fac- 
tors tabulated by Teo and Lee (1980). The adjusted 
parameters of the fit were: (1) the nature of the scat- 
terer; (2) the interatomic distance, R (3) the coordi- 
nation number, N (4) the mean-square distance de- 
viation, u (A), related to the Debye-Waller term 
exp(-2qzkZ); and (5) the electron mean free path, I? 

related to the exponential dumping term 
exp(-2Rjrj/k) (k = wavevector). For a particular atom- 
ic shell, N and I? are strongly positively correlated; 
hence I' was determined from reference phyllosilicates 
for which N is known. For R values, the use of theo- 
retical phase shifts does not permit an accurate absolute 
determination of distances (sfr0.03 A), but a good rel- 
ative precision (better than kO.01 A) can be obtained 
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Figure 1. Scanning electron micrographs of smectitic clay 
sample (honeycomb structures (S)) in the weathering profiles 
developed on pyroxenites, Jacuba quarry, Niquelandia, Bra- 
zil: (upper) on the surface ofweathered pyroxenes (P); (lower) 
a pseudomorph of pyroxene. 

by using identical procedures for the data analysis. Be- 
cause scattering factors depend strongly on the atomic 
number of atoms, in EXAFS elements with close atom- 
ic numbers (e.g., Mg and Si or Ni and Fe) cannot be 
distinguished if they occur as neighboring atoms. 

CHARACTERIZATION OF THE 
SMECTITIC CLAY 

Optical microscopy 
Smectitic clay was observed in thin section as 50- 

150-pm wide areas, apparently developed at the ex- 
pense of parent pyroxenes, i.e., tightly joined enstatite 
(-69% of the rock) and diopside crystals (-27% of the 
rock). Smectite was found at grain edges and in fissures 
and cracks that penetrate pyroxene crystals. The weath- 
ering clay separated parent minerals into several frag- 
ments which exhibited simultaneous extinction under 
crossed nicols. Moreover, the smectitic clay presented 
an extinction parallel to the c axis of the original py- 
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Figure 2. X-ray powder dihction patterns 
clay sample. (A) O01 reflections of oriented aggregates(AD = 
air dry; G1 = glycolated); (B) 06,33 reflecti0 
powder. 

roxene crystal. Al these observations suggest an in situ 
weathering of parent pyroxene into smectite. 

Scanning electron microscopy 
Under the SEM, the clay appeared as short (about 

0.5 pm) and interlocked laminae organized into hon- 
eycomb structures either on the bare surface of pyrox- 
ene (Figure la) or pseudomorphous after pyroxene 
(Figure lb). Such structures are well known and are 
common in smectitic soils. 

Chemical microprobe analyses 
From 18 point microprobe analyses of the clay (Ta- 

ble l), an average formula was calculated on the basis 
of O,,(OH),; iron is expressed as Fe3+, according to 
Mössbauer data (see below): 

(Ca.ol JL.05)(~o. 17Fe0.5Mg0.48Nil .4700.02) 

This formula is unsual in that: (1) the total number of 
divalent cations (1.95) is low for a trioctahedral smec- 
tite, which usually contains between 2 and 2.8 divalent 
cations; (2) it,contains 0.69 trivalent cations,.whereas 
the upper limit for the number of R3+ cations in this 
type of octahedral sheet is generally 0.5 (Weaver and 
Pollard, 1973); and (3) the Al-for-Si tetrahedral sub- 
stitution (0.08) is also low for a saponite, which gen- 
erally contains 0.3-0.9 substitutions. Thus, this for- 
mula does not correspond to any typical smectite cited 
in the literature. 

X-ray powder difraction data 
The XRD pattern of air-dried oriented partides shows 

a complex O0 1 reflection composed of an intense peak 
at 14.4 8, and a weaker peak at 10.4 W. After saturation 
with ethylene glycol, a O01 peak at 17.35 A and a 002 

(Si,.,,Alo.os)Olo(OH)z 
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Figure 3. Transmission electron micrographs of the smectitic clay sample: (upper) isolated particles; (lower) aggregated 
particles; (right) selected-area electron diffraction pattern of isolated layer. 

peak at 8.3 %, were visible, indicating a swelling of all 
the layers (Figure 2a). The layers subsequently col- 
lapsed to 9.83 %, after heating for 4 hr at 490°C. XRD 
patterns exhibited dissymmetric (kh) bands cliaracter- 
istic of a turbostratic stacking of layers. The 06,33 re- 
flection presented a strong maximum at 1.53 8, and a 
secondary maximum at 1.5 1 8, (Figure 2b), leading to 
b parameter values of 9.18 and 9.06 A, respectively. 
The apparent dimensions of crystal coherence, ob- 
tained using the Scherrer equation are about 90 %, in 
the plane of layers and 75 8, along the c axis (using the 
intense O01 reflection). 

On the basis of the XRD data, the smectitic clay 
sample seems to consist mainly of a swelling, triocta- 
hedral smectite; however, this identification does not 
take into account either the shoulder at 10.4 8, on the 
left flank of the major O01 reflection (Figure 2a) or the 
fact that the 06,33 reflection of the powder patterns 
also indicates the presence of a dioctahedral phase. The 
10.4-8, shoulder could be due to the presence of min- 
erals of the kerolite-pimelite series. If so, the swelling 
of kerolite layers (Figure 2a) could result from the small 
size (see below) or low crystallinity of the crystallites 
(Wiewiora et al., 1982). These authors showed that the 
proportion of swelling layers in similar Ni-kerolites 
was increased by ultrasonic treatments. 

Finally, XRD reflections similar to those displayed 
in Figure 2 have also been obtained on samples col- 
lected directly on the thin sections by means of mi- 

crodrilling )(Colin, 1984). These microsamples were 
X-rayed by the method described by Proust (1 983). 

Transmission electron microscopic observations 
TEM observations showed that the smectitic clay 

consists of particles about 3000 8, in diameter (Figure 
3a), locally forming aggregates as large as 1 pm in size 
(Figure 3b) and having diffuse boundaries. Chemical 
analyses of the 3000-%,-size particles gave peaks of Si, 
Mg, Al, Ni, Fe, and Cr and NiO/Fe20, ratio of 1.28- 
2.21, i.e., close to those obtained by electron micro- 
probe analyses. 

The smectitic clay sample was then treated ultra- 
sonically for 5 min and diluted in distilled water to 
obtain single-layer particles for the electron microdif- 
fraction. Indeed, isolated layers yielded biperiodic se- 
lected-area diffraction (SAD) patterns. Observed in- 
tensities were then directly related to the distribution 
of atoms in ,the planar cell of the layer and were not 
affected by interference among various layers of the 
clay mineral stacking. Despite ultrasonic treatment, 
most particles remained thick and opaque and gave 
continuous, broadened (hk) rings in SAD patterns. The 
few, thin observed particles were distributed among 
two populations. Most ofthe thin particles were round- 
ed and had diameters of about 300 %,. SAD patterns 
showed punctuated rings suggesting that this kind of 
thin particle contained several stacked layers. The oth- 
er few thin particles were elongated (about 100 x 500 
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Figure 4. Infrared spectra of the smectitic clay: (A) after 
dehydration of the sample at 200°C under vacuum (KBr pellet; 
sample concentration = 2%); and (B) after partial dehydroxyl- 
ation of the sample at 600°C for 2 hr (KBr pellet; sample 
concentration = 4%). I = 3200-3800-~m-~ region; II = 600- 
900-cm-l region. 

A) and showed biperiodic diffraction patterns (Figure 
3c) in which 02 reflections were as intense as 06,33, 
whereas the 1 1 and 1 reflections were very weak. This 
type of SAD pattern corresponds to a dioctahedral lay- 
er in which transoctahedral position? are v.acant, as 
observed for the Garfield nontronite by Besson et al. 
(1983). TEM observations show that the smectite par- 
ticles contain several layers (about 5 according to XRD 
results) not easily dispersed, and having predominant 
biperiodic, turbostratic characters. These natural free 
particles a few hundred Angstroms in diameter have 
a chemical composition (TEM analyses) that varies in 
the same range as that obtained by SEM analysis of 
about 1 pm3 of smectitic clay. Only after strong ultra- 
sonic treatment of the sample were a few layers giving 
nontronite-like electron diffraction patterns detected. 

ItzjÏrared spectroscopic results 
Figure 4 presents details of the IR spectra recorded 

on the smectitic clay sample. In the OH-stretching re- 
gion of the dehydrated sample (Figure 4-1A), two OH- 
stretching bands were clearly resolved. The band at 
3630 cm-I was at about the same frequency and had 
the same width as the N,, (Wilkins and Ito, 1967) OH- 
stretching band of Ni-talc and pimelite (Gerard and 
Herbillon, 1983). The band at about 3570 cm-* was 
much broader and in the range of frequencies char- 
acteristic of the OH-stretching vibrations of nontronite 
(Goodman et al., 1976). In the OH-bending region of 
the IR spectrum (Figure 4-IIA), features characteristic 
of both nontronite and pimelite were also noted. The 
820- and 870-cm-I bands were OH-bending vibrations 
typical of Fe-rich dioctahedral smectite, the former 
arising from OH groups coordinated to two Fe3+ ions, 
and the latter corresponding to the vibration of 
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Figure 5. Optical absorption spectra of the smectitic clay 
sample measured in diffuse reflectance mode. 

(AI,Fe3+)-OH groups (Serratosa, 1960; Heller et al., 
1962). The 705-670-cm-I doublet was characteristic 
of talc-like, Ni-rich, trioctahedral phyllosilicates (Rus- 
sell et al., 1970; Brindley et al., 1979). 

These band assignments were further confirmed by 
the thermal treatment at 6OO0C, which destroyed all 
bands previously assigned to hydroxyls in a nontronite- 
like environment (Figure 4-IB and 4-IIB). After the 
heat treatment, the smectite collapsed irreversibly to 
9.3 A, and only the OH-bands characteristic for a Ni- 
rich talc persisted. Further, from the relative intensities 
of the 7 10-670-cm-' doublet, the Ni/(Ni + Mg) ratio 
of the octahedral sheets in the talc-like domains in the 
sample was about 0.75 (Wilkins and Ito, 1967; Gerard 
and Herbillon, 1983). 

Thus, the IR information (Figure 4) indicates that 
the smectite under study contained two different types 
of domains: one having Ni in the same local hydroxyl 
environment as in the octahedral sheet of pimelite, the 
other containing Fe3+ in the same environment as in 
the octahedral sheet of a dioctahedral Fe-rich smectite. 
Inasmuch as these two domains had different thermal 
stabilities, heating the sample at 600°C induced a de- 
hydroxylation of the nontronite-like domains, but did 
not affect the domains having the same composition 
and the same local order as Ni-rich, talc-like phyllo- 
silicates. 

DiJiuse reflectance spectroscopic results 
The diffuse reflectance spectrum of the smectitic clay 

sample (Figure 5) consists of an intense F e 4  charge- 
transfer band in the ultraviolet and visible range, which 
partially overlaps the bands due to transitions between 
the 3d-orbital energy levels of Fe3+ and Ni2+. The 
shoulders at 22,400 and 27,300 cm-I are in the same 
energy region as in nontronite (Bonnin et al., 1985) 
and are due to octahedral Fe3+ atoms. The two other 
absorption bands at lower energy are due to Ni in 6-fold 
coordination (Manceau et al., 1985). These latter au- 
thors showed that the energy of the crystal field band 
at 9000 cm-I depends on the type of Ni-bearing phyl- 
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Figure 6. Normalized crystal field band from optical ab- 
sorption spectra of smectitic clay sample, synthetic Ni-ste- 
vensite, and pimelite from New Caledonia. 

losilicate and is independent of the Ni content. This 
band may thereby be used as a “fingerprint” of the Ni- 
containing clay mineral species. Comparing the nor- 
malized crystal field to those of pimelite and synthetic 
Ni-stevensite, used as reference compounds (Figure 6) 
the absorption maximum of the sample under study 
falls close to that of the pimelite and is at higher energy 
than that of Ni-stevensite. Thus, the Ni site. i s  appar- 
ently structurally similar to that of pimelite. 

Mössbauer spectroscopic results 
The Mössbauer spectrum (Figure 7) of the smectitic 

clay sample shows only one symmetrical doublet hav- 
ing parameter values corresponding to Fe(II1) (isomer 
shift = 0.352 relative to iron metal; quadrupole split- 
ting = 0.401; peak width = 0.404; all values in mm/ 
s). This doublet can be fitted with one Lorentzian line 
with an acceptable value of xz = 1.28. 

No improvement in x2 was achieved by adding 
another doublet. Both the isomer shift (IS.) and quad- 
rupole splitting (Q.S.) values are typical of Fe3+ in cis- 
octahedral (M,) sites of smectites and related minerals 
(Goodman et al., 1976; Rozenson and Heller-Kallai, 
1977; Coey, 1980; Heller-Kallai and Rozenson, 1981; 
Bonnin et al., 1985). The peak width of the doublet is 
large, but still in the range of values found for equiv- 
alent doublets in Mössbauer spectra of smectites (Ro- 
zenson and Heller-Kallai, 1977; Bart et al., 1980). The 
broadening of Lorentzian lines is due to Fe3+ ions lo- 
cated in slightly different octahedral sites having sim- 
ilar but not identical Mössbauer parameters. This type 
of result is related to crystal structures containing de- 

From Mössbauer spectra, the sample appears to con- 
tain no detectable Fe2+; all ferric cations appear to be 
located in octahedral sites (there is no evidence of tet- 
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Figure 7. Mössbauer spectrum of the smectitic clay sample 
at room temperature. 

rahedrally coordinated Fe3* ions); and most Fe3+ cat- 
ions are located in M, sites. 

Coey et al. (1984) noted that the M, quadrupole 
splitting value in 2:1 dioctahedral clay layers was 
broadly correlated to the decreasing Fe occupancy in 
the octahedral sheet. For the smectitic clay sample the 
Q.S. value is 0.40 mm/s, a smaller value than those of 
montmorillonite and beidellite -(0.441Õ.56 mm/$ 
(Rozenson and Heller-KaIlai, 1977) and near those of 
nontronites (0.25-0.34 mm/s) (Goodman et al., 1976). 
The Mössbauer data suggest therefore that in the smec- 
titic clay sample under study, octahedral Fe is in an 
environment somewhat similar to that of nontronite. 

Extended X-ray absorption fine structure 
spectroscopic results 
Reference phyllosilicates. Successive stages of data re- 
duction, as described above, are illustrated for Ni-talc 
(synthesized by B. Velde) and Garfield nontronite 
(sample API 33-a), taken as reference compounds (Fig- 
ure 8). Because the present study involves the distri- 
bution of Ni and Fe atoms within the octahedral sheet 
of the smectite, only the second peak (at about 2.8 A) 
of each radial distribution was investigated. The mag- 
nitude of this peak for the Ni-talc is particularly strong 
compared with Ni(OH)z (Manceau and Calas, 1986), 
so that a contribution of the four nearest Si atoms 
which would enhance this peak was expected. An in- 
verse transform of this peak yielded a filtered signal 
(Figure 9) having a monotonic decreasing envelope 
which resulted from the contribution of both a 3d ele- 
ment (Ni) and a light element (Si). The experimental 
signal was simulated by a combination of Ni and Si 
shells (Figure 9): for the former N = 6, R = 3.00 A, 
c = 0.09 A, I’ = 1.00 A-,; for the latter N = 4, R = 
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(EXAFS) signal of the second peak in radial distribution at 
the Ni K-edge. Solid circles = experiment, continuous line = 
fit. 

3.21 A, cr = 0.08 A, I? = 1.05 A-2. Like Ni-talc, the 
inverse transform of the second peak of nontronite 
yielded a partial EXAFS signal without a maximum 
in the envelope (Figure 10). The amplitude of the EX- 
AFS signal was only correctly fitted in the whole k- 
range by assuming an additional contribution from the 
tetrahedral sheet. A good fit was obtained with a com- 
bination of 4 Si at 3.22 A and 3 Fe at 3.04 A. All 
parameters that were adjusted are reported in Table 2. 
During the fitting procedure of the partial EXAFS spec- 
tra of the smectitic clay, structural parameters relative 
to the tetrahedral sheet, u and r, were kept constant at 
the values determined for the reference compounds. 

Smectitic clay sample. The radial distribution func- 
tions at the Ni and Fe K-edges are compared in Figure 
8 with those of the model compounds. The Fourier 
transform of the smectite at the Ni K-edge is close to 
that of the Ni-talc, which indicates a similar local order. 
Agood fit involves 5.5 Ni(Fe) at 3.05 Aand 0.3 Mg(A1) 
at 3.05 A (Figure 9, Table 2). The decreasing amplitude 

FE K-EDGE A 
.o2 

1 3 5 7 9 
WAVEVECTOR ( Å - l )  

Figure 10. Filtered extended X-ray absorption fine structure 
(EXAFS) signal of the second peak in radial distribution at 
the FeK-edge. Solid circles = experiment; continuous line = 
fit. 

of the second peak in the radial structure function (Fig- 
ure 8) resulted from both a slight reduction of the num- 
ber of Ni second neighbors and an increase of the Ni- 
Ni(Fe) distance, which separates the contributions from 
the Ni-Si and Ni-Ni(Fe) atomic pairs. 

For radial distributions around Fe, the magnitude 
of the second peak is clearly lower than that of a trioc- 
tahedral structure. The slight decrease of the second 
peak of the smectitic clay sample by comparison with 
that of nontronite originates either from an increase of 
disorder (u) in the Fe second shell, or from a small 
amount of Fe-(Mg,Al) atomic pairs (waves in opposite 
phase). The two structural possibilities cannot be dif- 
ferentiated. In the former hypothesis each Fe atom is 
surrounded by 3 Fe atoms as in nontronite, whereas 
in the second one a good fit is obtained assuming a 
combination of 4 Si at 3.22 A, 2.9 (Fe-Ni) at 3.04 A, 
and 1.2 (Mg-Al) at 3.1 1 A. 

Based on the interpretation of EXAFS results, both 
Ni and Fe atoms are essentially surrounded by heavy 
atoms in the octahedral sheet of the smectitic clay sam- 
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Table 2. Structural parameters of the smectitic clay and reference phyllosilicates, as determined by extended X-ray absorption 
fine structure (EXAFS). 

Ni/Fe (2nd shell) MdAI (2nd shell) Si (3rd shell) 

Samples N R(A) u ( A )  r(A9 N R(A) u ( A )  r(A-9 N R(A) u ( A )  r(A-2) 

Environment of Ni 
Synthetic Ni-talc 4.0' 3.21 0.08 1.05 6.0' 3.00 0.09 1.00 
Smectitic clay 4.0' 3.21' O.OS] 1.05' 5.5 3.05 0.09' 1.00' 0.3 3.05 0.06 1.001 

Garfield nontronite 4.0' 3.22 0.05 2.10 3.0' 3.04 0.09 1.30 
Smectitic clay 4.0' 3.22l 0.05l 2.101 2.9 3.04 0.09l 1.30' 1.2 3.11 0.05 1.30' 

N = coordination number (f20Yo); R = measured distances between neighboring atoms (3~0.03 A); U = Debye-Waller 

Environment of Fe 

factor; r = mean free path of the photoelectron. 
I Fixed parameter. 

ple. The number of neighboring atoms in the second 
shell, however, is that of a trioctahedral sheet for Ni 
and of a dioctahedral sheet for Fe. Thus, from EXAFS 
spectroscopy both Ni and Fe ions appear to be clus- 
tered, respectively, in pimelite-like and nontronite-like 
domains. 

SUMMARY AND CONCLUSIONS 
Crystal chemistry 

The microprobe and bulk analyses of the smectitic 
clay were similar, confirming the average structural 
formula of smectitic clay given above. All Fe ions are 
trivalent and located only in the octahedral sheet of 
the clay. This unusual chemical composition for a 
smectite appears to be the same on the microprobe 
scale (i.e., analyzed areas of more than 1 pm2) to that 
of the smallest isolated analyzed particle (3000 A in 
diameter and about 5 layers thick). 

This chemical constancy contrasts with the crystal 
chemistry heterogeneity pointed out by different tech- 
niques. From XRD results it is clear that the smallest 
isolated particles visible in TEM observations are crys- 
tal mosaics, inasmuch as coherent domains in the (a,b) 
plane are less than 100 8, in diameter. Similarly, all 
spectroscopic methods show atom segregations into 
pimelite-like domains rich in Ni and nontronite-like 
domains rich in Fe. Furthermore, from EXAFS results 
Ni and Fe atoms are clustered in domains having min- 
imum diameters of about 30-40 8, (Manceau and Ca- 
las, 1986). Domain size can therefore be as large as 
the maximum dimension of the mosaic crystals, i.e., 

Few data are available for the lighter elements such 
as Mg and Al. IR data suggest that part of the Al is 
assoyiated with Fe in dioctahedral nontronite-like do- 
mains, whereas small amounts of Mg(A1) occur as 
neighboring ions in Ni- and Fe-clusters (EXAFS re- 
sults). Hence, it is impossible to describe more accu- 
rately the actual location of these atoms in the clay 
structure. 

The heterogeneity of the particles can result from 
various spatial distributions of the domains; e.g., the 

100 A. 

domains of segregation may be in the same layer or in 
alternate layers. If octahedral cations are completely 
segregated in separated di- and trioctahedral layers, the 
structural formula of the smectitic clay would be: 

2~3[Si4Mg0.74Ni2.26010(OH)21 

+ ~ ~ ~ ~ ~ ~ ~ . ~ ~ ~ ~ o . ~ ~ ~ ~ ~ ~ o . ~ ~ ~ ~ . ~ ~ ~ ~ o . o ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ l ~  

which shows that dioctahedral domains (or layers) rep- 
resent one third of the sample. The XRD results in- 
dicate that the smectitic clay is mainly trioctahedral, 
and the TEM observations disagree with the possibility 
of a mechanical mixing of two populations (one trioc- 
tahedral, and other dioctahedral) of clay particles, each 
containing several stacked layers. The observation of 
isolated nontronite-like particles suggests that the 
smectitic clay contains mixed trioctahedraVdioctahe- 
dral layers; however, juxtaposition of Ni-domains and 
Fe-domains within the same layer cannot be complete- 
ly excluded. Furthermore, because of the minimum 
mean size of the Ni-clusters, mixed pimelite-Mg-smec- 
tite-nontronite layers may be present. 

Moreover, segregated layers and/or domains exhibit 
some uncommon features. Ion domains (layers) are not 
strictly nontronite, as shown by Mössbauer spectros- 
copy. In fact, only one doublet for octahedral Fe was 
found in the spectrum of the sample studied, whereas 
two doublets have generally been observed for non- 
tronite and attributed to Si-M3+ tetrahedral substitu- 
tions (Goodman, 1978; Besson et al., 1983) or poorly 
crystallized regions (Bonnin et al., 1985). The most 
important feature is connected with Ni domains. Both 
IR and diffuse reflectance spectra show that Ni is lo- 
cated in pimelite-like octahedral sites. By XRD some 
kerolite layers appear to be present, but most of the 
layers, however, are those of swelling smectites. The 
swelling of these layers can be explained both by the 
small size of particles and/or by a disordered turbo- 
stratic lacking of pimelite and nontronite-like layers. 

. -  

Genetic implications 
From petrographic studies Colin (1984) showed that 

the first stage of the weathering of the Jacuba quarry 



10 Decarreau et al. Clays and Clay Minerals 

pyroxenes was controlled by the degree of fissuring of 
the bed-rock, H~ found smectite containing about 50% 

study) in relatively unfractured Parent rock. In highly 
fractured rock he reported a mixture of smectite (Ni 
33%) and pimelite (Ni 85%). 

chemical study of the smectitic 
clay shows that this distinction is only a matter of the 
observation scale. Smectite particles 3000 8, in di- 

smectite trioctaédrique-solution aqueuse pour les métaux 
M2+ de la première série de transition: sci. G é d .  Mém. 74, 
1-185. Ni in the Octahedral layer (the 'lay Of this Eggleton, R. A. and Bolland, J. W. (1982) Weathering of 
ensfatite to talc through a sequence of transitional phases: 
clays & Clay Minerals 30, 1 1-20. 

Gerard, P. and Herbillon, A. J. (1983) Infrared studies of 
Ni-bearing clay minerals ofthe kerolite-pimelite series: Clays 
& Clay Minerals 31, 143-151. 

Goodman, B. A. (1978) The Mössbauer spectra of non- 
tronites: Consideration of an alternative assignment: Clays 

The present 

ameter consist of both Ni-rich pimelite-like domains 
(or layers) and of Ni-free nontronite-like domains (or 
layers). As the degree of fissuring increases, the particles 
of pimelite separate from ferric-smectite particles. Sub- 
sequently, pimelite particles coalesce to form progres- 
sively larger, centimeter-size aggregates. 
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