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ABSTRACT 

A geostatistical approach to areal rainfall estimation using raingage and radar measurements is described. 
The so-called cokriging method is used to obtain a linear estimator of ground-level rainfall depths by combining 
gage and radar data under unbiasedness and optimality constraints. The statistical inference of the spatial 
structure of these two kinds of measurements (required to determine the cokriging system) is discussed in the 
multi- and single-realization context. A simplified version of the cokriging method is then proposed to obtain 
a more tractable system for practical applications. 

A validation procedure based on (i) the estimation of reference rainfall depths and (ii) the selection of a set 
of likeness criteria is defined. The reference values are computed in an original way by integrating raingage 
measurements over radar pixels containing a test raingage using the classical kriging method. 

The test case deals with a set of 11 daily rainfall events observed in the Paris region by the 10 cm "Melodi" 
weather radar system. The available raingage network includes 98 stations spread over 20 O00 km': 69 stations 
have been used for validation purposes and the remaining 29 for the simplified cokriging operating method. 

The available radar dataset presents severe limitations for hydrological applications mainly: in relation to 
ground echo effects within a 52 km radius ofthe radar site. In spite ofthese unfavorable conditions, the proposed 
combination method appears to improve slightly the performance of the raw radar data and to exceed that of 
the classical uniform calibration method. 

Further application of this method using a more appropriate dataset is necessary to confirm these initial 
results. 

. 

1. Introduction 

Accurate knowledge of rainfall patterns is needed 
both in hydrologic and atmospheric sciences. An im- 
portant application is the calculation of areal rainfall 
estimates, constituting one of the main inputs to wa- 
tersheds models (cf. Hudlow, 1983) and a valuable val- 
idation criterion for mesoscale atmospheric model 
outputs (cf. Medal et al., 1984). 

Raingage networks of varying complexity were once 
the only available source of rain measurements. The 
main drawback of this kind of measurement is its point 
nature, requiring the use of simple or sophisticated in- 
terpolation techniques for extension to the whole space 
(e.g., Hall and Barclay, 1975; Thorpe et al.; 1979; 
Creutin and Obled, 1982). In addition, real time ap- 
plications are strongly limited by the heavy costs of 
telemetered data collection. 

Over the last two decades, the development of 
weather radar technology, adding the advantages of 
digital processing to the intrinsic properties of radar 
measurements (high spatial resolution and real time 
availability), have opened very promising possibilities 
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for rainfall estimation. Numerous studies comparing 
gage and radar measurements have carefully explored 
these possibilities (a summary of these studies can be 
found in Wilson and Brandes, 1979). One of their main 
conclusions points to the high variability in space and 
time of the relationship between reflectivity factor Z 
and rainfall rate i?; this is partly due to the variations 
of the raindrop-size distribution N ( 0 )  both within and 
between clouds, but also due to vertical air movements, 
incomplete beam filling, attenuation and beam block- 
age, among many other reasons. (An extensive review 
of the relative importance of these discrepancy factors 
can be found in Zawadzki, 1984.) To reduce the un- 
certainty of the relationship, without making 
coarse assumptions on N(D), two kinds of solutions 
have been proposed (see Doviak, 1983). The more 
promising is probably the development of dual polar- 
ization radar, but it could be a long time before such 
devices become available on an operational basis. The 
alternative answer, more immediately applicable, is the 
raingage-conventional radar combination. 

Various methods for radar calibration by gages have 
been proposed from the simplest, relying on the iden- 
tification of a constant multiplicative calibration factor 
(e.g., Barnston and Thomas, 1983; Harrold et al., 1974) 
to more sophisticated approaches aimed at regional- 
izing the Z-R fluctuations (such as Brandes, 1975; Hil- 
debrand et al., 1979) or taking the rainfall type into 
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áccount (see Collier et al., 1983). All these procedures 
are based on a correction of the multiplicative factor 
of the Marshall-Palmer 2-R relationship. 

Following a rather different approach, this paper uses 
a statistical combination procedure considering ground 
and radar measurements as sampling devices of two 
distinct but correlated signals. This procedure aims at 
a linear estimation of rainfall depths at ground level 
merging gage and radar data under unbiasedness and 
optimality constraints. In its complete form, this 
method is known in atmospheric sciences as multi- 
variate objective analysis (see Gandin and Kagan, 1974; 
Schlatter, 1975) and in earth sciences as cokriging (see 
Journel and Huijbrechts, 1978). The only difference 
between these two approaches is that the first requires 
a multirealization context while the second can be ap- 
plied to a single realization context. For application to 
remote sensed data, certain assumptions have been 
made to reduce the computational burden (see Del- 
homme, 1979). 

After a detailed discussion of the proposed combi- 
nation method, the dataset used in the case study is 
briefly described. Then the various practical steps in 
combination processing are presented. Finally, a com- 
parison is made between the results obtained and other 
calibration or gage interpolation results. 

2. Proposed combination method 

a. Mathematical formulation of cokriging 

General descriptions of multivariate objective anal- 
ysis (MOA) and cokriging systems are available in the 
literature (see Thiebaux, 1973; Myers, 1982). Their 
similarity lies in the aim to satisfy, basically, the same 
statistical criterion (minimum mean square error of 
estimate). To deal with the single realization context, 
cokriging uses an additional unbiasedness constraint. 

The description here is devoted to the case of two 
variables in a single realization context, corresponding 
to the radar-raingage combination need when exten- 
sive records are not available (a dataset including only 
a few realizations does not allow a multirealization ap- 
proach). 

Let zR(x, w )  and z&, w )  denote the radar and 
ground values, respectively, of the rainfall depth at a 
given geographic point x and for a given event o. These 
two functions are measured over a radar grid {xmR, CY 
= 1, N }  and a ground network {xi", i = 1, n} ,  respec- 
tively. 

As a basic assumption, the different functions zR(x, 
o) and Z G ( X ,  o) obtained as w varies can be considered 
as independent realizations of random functions zR (x) 
and zG(x). Statistical criteria may then be applied to 
these random functions to obtain the so-called best 
linear unbiased estimator of the phenomenon at each 
point x and for all events W .  

A linear estimator of ground rainfall depth at a given 

point xo can be expressed by the following combination 
(the star denotes an estimated value): 

N n 

z 8 (XO) = c XazR (XaR) + 2 X'ZG (xi?. 
CY= 1 r = l  

( 1 ) 

If this estimator is required to be unbiased, its ex- 
pectation must equal that of the unknown true value 
of the ground rainfall depth at the ungaged point X O :  

Ezg(x0) = EZG(x0).  (2) 
Since the expectation is linear and zT; is given by 

(l), we obtain 
N Pl 

XaEzR(xaR) + 2 X'EZG(xF)=EzG(xO). (3) 
a= 1 1-1  

In (3), the weights X' and A" give an exact interpo- 
lation of the expectation of the ground rainfall depth 
from both the gage and radar measurement expecta- 
tions. This is questionable, however, since radar mea- 
surements may be subject to major systematic over or 
underestimation. So, if Ez&) is assumed to be differ- 
ent from EzR(x), (3) can be split up as follows: 

N 

2 XolEzR(xaR) = O 
CY= 1 

n 

C X'EZG(X,G) =EzG(xo). (4) 
1- I 

Here the weights X' are used to interpolate the ex- 
pectation of the ground rainfall depth using the gage 
measurement expectations, while the weights X" filter 
the radar measurement expectations. We assume here 
that the gage measurements are free of systematic error 
or, at least, that such errors are negligible. Note that 
the validity of this solution may be doubtful for very 
low network densities. 

If the estimator (1) is also required to be optimal, 
the weights must minimize the following mean square 
error: 

E[zRxo) - zc(xo)12 
=Ez~(xO)2+E~G(xO)2-22Ez~(xO) ZG(x0)  

= 2 XolXpEzR (XaR) ZR (xßR) f 2 2 X'X'EzG(xY) 
a ß  ' I  

x ZG ( X F )  + 2 2 2 X ' X o l E Z ~  ( X F )  * ZR (XaR) 
I o 1  

+ EZG (XO)~ - 2 2 X"EZR (XaR) ' ZG (Xo)  
o1 

- 2 2 X'.f!?zG(x~) * zG(x0). ( 5 )  
1 

The minimization of ( 5 )  (i.e., bringing its partial de- 
rivatives to zero) under the conditions expressed in (4) 
gives, through the application of Lagrangian tech- 
niques, the cokriging system where p~ and pG are La- 
grangian multipliers. 
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E Z R  (-GR> O 
1 0 -  EZG(Xi")  

Solution of the above system yields the desired 
weighting vector,[X", X i ]  provided that appropriate hy- 
potheses are used in determining the left-hand matrix 
and the right-hand vector. The classical hypothesis is 
the second order stationarity of the random function 
zR and ZG, i.e. the invariance of their two first moments 
for any geographical translation. These moments are 
therefore expressed as 

E z R ( x )  = mR and EZG(X) = mG 

c R ( k )  = E Z R ( X )  * ZR(X f k )  - 3 7 2 ~ ~  

c G ( k )  = Ez&) * z&+ k )  - m G 2  

C R G ( ~ ) = E Z R ( X ) . Z G ( X +  k ) - m R m G  (7)  
where CR and CG are covariance functions and CRG a 
cross-covariance function. 

In the next section, the statistical inference problems 
posed by such a model, are examined in more detail. 

Note that when system (6) is satisfied, the mean 
square error (5) is simplified to 

E[z%(xO) - zG(xOj12 

N 

= EzG2(xO) - XwEzR(x,R)  ' ZG(x0)  
a= 1 

n 

- C XiEz~ (x?) * ZG (XO)  - PG . (8) 
i= 1 

Thus, cokriging, like MOA, yields a good indication 
of the accuracy of the estimation in addition to the 
estimation itself. 

b. Statistical inference 
The above presentation of cokriging assumes that 

ZG and zR are second-order stationary random func- 
tions. The statistical inference of this model depends 
on the study context. 

In a multirealization context, the mean values of the 
functions zG and zR can be estimated, at least at mea- 
surement points. To satisfy mean stationarity condi- 
tions, centered functions may be used [ ~ G ( x )  = ZG(X)  
- EZG(X) and ~ R ( x )  = ZR(X)  - E z R ( x ) ] .  The estimator 
(1) can be written as 

N n 

u%(xO) = A0lyR(xaR) + c XiYG(xi")* 
a= 1 i- 1 

As YR and are zero mean functions, the unbiasedness 
condition is unnecessary. The cokriging system is re- 
duced to an MOA system [n + N first rows and columns 
of system (6) where z is replaced by y].  If the second 
order moments of yR and y~ are stationary, the follow- 

ing direct and cross-covariance 'functions can be de- 
fined: 

The MOA system can be determined and solved by 
fitting these fupctions with permissible analytic func- 
tions (see Christakos, 1984). As the obtained estimator 
is now a centered value yT;(xo), an estimate of the mean 
value EzG(xO) is required. 

In a single-realization context, specific to the co- 
kriging system, three points need to be considered: (i) 
the classical second-order stationarity model is not 
valid, but (ii) a local restriction of this model is ac- 
ceptable; (iii) more sophisticated models exist but are 
not used here. t 

i) For a single realization, the mean values of ZR 
and zG are unknown, even at measurement points, and 
these functions therefore cannot be centered to satisfy 
the constant mean value hypothesis. It.would also be 
unrealistic to assume a constant mean value for func- 
tions zR and ZG over a large area. Mean stationarity 
therefore cannot be assumed. 

ii) The restriction of second order stationarity to a 
limited area X is theoretically possible, provided that 
the (n + N )  measurement points used in the estimation 
(1) belong to X.  Accordingly the radar and gage means 
can be expressed by locally constant values: 

and 

when x€X .  

CR or G orRG(k )  = EyR or G ( X )  ' y R  or G ( x f  k). 

E z R  (x) = FZR ( X )  EZG (x) = m~ ( X )  

The unbiasedness conditions (4) are reduced to 
n N 

2 X i = 1  and cXa=O. (9) 
i= 1 CY= 1 

As the various weights X simply interpolate or filter 
these means, ~ R ( X )  and mG(X) may remain unknown 
in practice. If the second-order moments of zR and zG 
are locally stationary, the various direct and cross-co- 
variance functions of (7) exist and can be written as 

CR or G orRG(k )  = E Z R  or G ( X ) .  ZR or G ( x  f k )  
- m R  or G ( X )  ' mR or G ( X )  (10) 

when x and x + k belong to X.  The practical compu- 
tation of these functions in a single-realization context 
is based on the use of the ergodic principle. The ex- 
pectations E are replaced by a spatial average in the 
following manner: 

1 N(h) 

C R  or Gor R G ( k )  =- C [ Z R  or G ( X i )  - m R  or G ( x ) I  " i=l  

x [ZR or G@j) - m R  or G(&)] 
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where N(h) is the number of pairs of measurement 
points (xi ,  x j )  separated by a class of vectors h & Ah. 
Because estimation of the various local means is very 
risky, several authors have proposed a substitute for 
covariance functions in the form of variograms (Math- 
eron, 1965; also called structure functions by Gandin, 
1965): 

where the constant local mean values are filtered. When 
the cross-covariance function is symmetrical [ CRG(h) 
= cRG(--h) ]  the following general relation exists be- 
tween variograms and covariance functions: 

YR or G o r R G ( h )  = C R  or G o r R G ( 0 )  - C R  or G orRG(h). (1 1) 

Using relationships (9), (lo), and (1 l), it can read- 
ily be shown that the cokriging system can be 
solved by replacing the product expectations in (6) 
either with the corresponding CR or G or RG(IZ) or with 

iii) More sophisticated hypotheses can be made 
concerning the general or local behavior of EzR(x) and 
EzG(x). Polynomial expressions are often proposed to 
model these trend (or drift) functions (see Myers, 1982), 
and more complex unbiasedness constraints are ob- 
tained through (3) or (4). Equation (3) can also account 
for any physically based analytic relationships between 
these trends (radar range dependence of the relation 
between radar and gage measurements, for instance). 

In this study the simplest assumption of constant 
and distinct local means for radar and gage measure- 
ments is retained since (i) it appears reasonable on the 
basis of previous studies on the mean local behavior 
of rainfall fields using a daily time step (Creutin and 
Obled, 1982), and (ii) our dataset shows no clear evi- 
dence of local dependence between mean radar and 
gage measurements. 

e. Possible simplijîeation of the cokriging system for 

Although the above basic principles of cokriging 
theory are well known, very few full applications have 
been described in the literature. Only investigators 
working on poorly sampled phenomena (e.g. in soil 
sciences, Vauclin et al., 1983) or on clearly multivariate 
contexts (e.g. in forest sciences, Marbeau, 1978) have 
applied the complete system. Most frequently "poten- 
tial cokrigers" use simplified versions of cokriging (e.g. 
Matheron, 1979, in mining sciences; Chauvet et al., 
1976, in meteorology) to avoid difficulties related to 

- Y R o r G o r R G ( h ) .  

gpge-radar combination 

computational burden and structure function model- 
ling. 

Cokriging appears to be particularly relevant to the 
problem of radar-raingage rainfall measurement for 
three main reasons: (i) raingages provide good direct 
measurements of precipitation but the networks are 
sparse; (ii) spatial resolution of radar pictures is very 
high but the strong variability of the relationship be- 
tween rainfall intensity and reflectivity limits the reli- 
ability of this measurement; (iii) radar and raingage 
measurements are thought to be fairly well correlated 
in space and time. However the high density of radar 
data leads to too large a system even if the estimator 
given by (1) is considered over a geographically reduced 
neighborhood (e.g. for a 5 X 5 km radar grid combined 
with a one gage per 1000 km2 network, a neighborhood 
containing ten gages covers 400 radar pixels and the 
dimension of the resulting cokriging system is 4 10). 

A very major simplification, in terms of reducing 
system size, can be made when each gage may be con- 
nected to a radar pixel. Let us consider that the ground 
rainfall depth can be split into two orthogonal terms: 

z G ( x )  = z R ( x )  -k E(X) (12) 

where zR(x) represents the conditional expectation of 
ZG knowing the radar measurement zR and where ~ ( x )  
is a residual, assumed to be statistically independent 
off&). In practice, 2~ can be deduced from ZR through 
a linear regression relationship between zR and ZG over 
the gage network. The residuals are therefore available 
experimentally at gage locations xi": 

€(XiG) = z G ( x j G )  - ? R ( x F ) .  

The linear estimator (1) is modified in two ways: (i) 
the radar measurements ZR are replaced by . 2 ~  and (ii) 
the gage measurements are expressed as in (12). 
Grouping the term 2~ gives 

N I t  

zT ; (xo )  = 2 Aaf~(xaR)  + 2 X'E(XF) (13) 
a= 1 i= 1 

since each gage point xi" can be connected to a radar 
grid point x,". The replacement of zR by 2~ is fully 
justified when the regression relationship is linear. As 
the mean 2R value matches the mean ground rainfall 
depth [EzG(x) = E ~ R ( x )  = my so EE(x) = O ]  the un- 
biasedness constraint is given by 

N 
2 A"= 1. (14) 
a=l 

Finally the minimization of the mean square error 

E T z b ( x 0 )  - zG(xO>12 

N n 
= E[ 2 A a 2 ~  (XeR) + 2 A ' € ( X Y )  - ?R (Xo) - E ( X O ) ] ~  

a= 1 i= 1 
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yields, after simplifications due to orthogonality be- 
tween 2R and E :  

N 

2 ~ ß ~ 2 ~  <xaR) * ;R - E ~ R  (xuR) * ZG ( x O )  = O 
ß= 1 

for a = l  t o N  
n 

2 X'EE(X?) * C<X~') - Ee(xjG) * c(xO)  = O 
j =  1 

for i =  1 ton. 

The above system can in fact be split, under condition 
(14), into two independent subsystems. The first defines 
a simple kriging estimate of what can be considered as 
a "guessfield" 2R: 
p ( X a R ; ' 2 R ( x ß R )  

, The second defines a regression estimate for the residual 
E:  

[EE(x?) c(x~~)][X'] = [EE(x?) * E(xo)]. (16) 
The main simplifications arising from this breakdown 
are related to (i) the possibility of working on different 
neighborhoods in the two subsystems and thus of sig- 
nificantly reducing the size of the first system and (ii), 
the degeneration of the first system (1 5) when the es- 
timated point xo belongs to the radar network (xo 
= x,"), and thus the reduction of the cokriging system 
to a residual estimation through system ( 16) of size n. 
Equation ( 13) then becomes 

n 
ZT;(XO) = 2R(XO) - 2 XiE(X?), 

i= 1 
the associated estimation variance being 

n 

i= 1 

(18) 
3. Dataset used , 

In spite of the present development of the French 
weather radar network, only one radar site was avail- 
able with digitally processed records at the outset of 
this study. Located near Paris-RÓissy Airport, this radar 
system covers the central north part of France shown 
on the icon map in Fig. 1. 

a. Radar processed data 
The standard "Melodi Onera" radar used has the 

following characteristics: wavelength 10 cm, 2" beam 
at half power, 700 kW peak power, 2 ps pulse length 
and - 106 dBm minimum detectable signal. The video 
radar output is processed by the "Saphyr" system de- 

veloped by the French Meteorological Service. (Details 
can be found in Gilet et al., 1980.) Using a numerical 
integrator, a microcomputer and a magnetic tape re- 
corder, this system controls the pulse repetition fre- 
quency (250 Hz), converts the video signal into 256 
levels, averages 64 pulses at 256 bins extending 500 m 
radially and 2" in azimuth, and records a complete 
PPI every 5 min at elevation 0.7". In the case studied, 
the presence of permanent echoes due to the Paris ag- 
glomeration results in a minimum recorded range of 
52 km, a severe limitation for hydrologic applications. 

Subsequent to this on-site processing, a minicom- 
puter program was used to transform this basic data 
into daily rainfall depths over a rectangular grid. After 
range correction for decreased power density with range 
due to gas attenuation, an appropriate radar equation 
and the classical Marshall-Palmer relation (Z  = aR b, 
with a = 200 and b = 1.6) yielded a reflectivity equiv- 
alent rainfall rate for each bin. Next these elementary 
rates were cumulated in time and averaged in space to 
obtain a daily value for each 5 X 5 km mesh of the 
resulting grid. To avoid problems due to permanent 
echoes, the grid was reduced to the "cleanest" part of 
the radar area (see Fig. 1). Special care was taken to 
avoid anomalous propagation effects by visual exam- 
ination of each basic picture; doubtful pictures led to 
the elimination of the concerned day. 

From the available set of radar pictures, recorded 
between October 1980 and October 1982, 11 days were 
selected with full recording over 24 h starting from 
0600 (this UTC starting time constraint is due to the 
time at which ground measurements are taken). 

b. Raingage data 
The gage network corresponding to the radar grid 

counts, after critical selection, 98 stations measuring 
daily rainfall depths. This network has been split into 
two subnetworks: (i) a merging network of 29 stations 
used in the gage-radar combination and (ii) a test net- 
work of 69 stations providing independent information 
to test radar and gage-radar combination results. 

4. Practical aspects of the statistical inference 
A main step in gage and radar data processing 

through either complete or simplified cokriging is the 
statistical inference of the second order stationarity 
model. As demonstrated in section 2b, local application 
of this model to raw gage and radar measurements is 
an acceptable compromise in this context. First, this 
restriction permits a mathematical solution of the pro- 
posed merging systems within a reduced neighbor- 
hood-including for instance five gages. Second, over 
such areas the expected values of radar and gage mea- 
surements may reasonably be assumed to be constant. 
Of course, this must be considered a very crude ap- 
proximation of the merging problem since the system- 
atic errors inherent in the radar device should first be 
eliminated. However, the only way to correct such er- 
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FIG. 1. Radar and gage network locations. 
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rors statistically is to observe their long-term spatial 
organization, and this possibility is excluded in our 
experimental context. 

When second order stationarity is reduced to limited 
areas, the most appropriate tool for analysis of the sta- 
tistical structure of the studied functions is the vario- 
gram (see section 2b). The main statistical character- 
istics of each event are recalled in Table 1, and three 
aspects of the structure analysis for the 11 available 
rainfall fields are presented (a) gage and radar mea- 
surements are first considered separately, showing good 
agreement between the identified structures and leading 
to a distinction between convective and frontal mete- 
orological situations; (b) cross variograms are then used 
to characterize the cofluctuation of the two measure- 
ments in order to predict the effectiveness of their 
combination; (c) finally, the structure of the residuals 
t(x) between gage measurements and corresponding 
radar guess field values is modeled in order to perform 
the simplified cokriging procedure. 

Since the number of studied rainfall fields is too large 
to present each analysis separately, only a few selected 
variograms will be displayed (Figs. 2 and 3) as an il- 
lustration of the description of the various models fit- 
ted, given in Table 2. As shown in this table, two kinds 
of models were selected to represent direct and cross 
variograms of the radar and gage measurements: 

Range models were used for variograms presenting 
variation stabilization around a given value (referred 
to as the sill, theoretically equal to the field variance) 
for distances greater than the range (or decorrelation 
distance). Spherical, exponential or Gaussian expres- 
sions can be used to represent such variograms (e.g., 
for 8 October 1980 and 13 July 1982 events in Fig. 3). 

0 Linear models were used when a range could not 
be identified (e.g., for 2 August 198 1 and 22 July 1982 
convective events in Fig. 3). 

TABLE 1. Mean and standard deviations of ground measurements 
(computed over 98 stations) and multiplicative correction factors 
(ratios of mean ground value to mean radar value). 

Standard 
Mean value of deviation 

the 98 gage of the 98 gage Multiplicative 
measurements measurements correction 

Date of event (mm) (mm1 factor 

7 Oct 1980 5.5 5.0 5.1 
8 Oct 1980 8.6 10.6 3.1 

10 Oct 1980 13.9 5.4 2.2 
14 Dec 1980 7.9 3.0 1.8 
15 Dec 1980 4.3 3.7 * 2.6 
2 Aug 1981 1.2 3.4 2.4 

23 Jun 1982 4.1 . 2.8 .2.5 

15 JuI 1982 3.2 2.8 2.6 
22 Jul 1982 0.9 2.9 2.4 
22 Oct 1982 22.5 6.9 2.8 

13 Jul 1982 9.4 10.4 2.0 
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Some fitted variograms present a discontinuity for 
short distances (a white noise effect) pointing out the 
existence of microregionalization for the studied phe- 
nomenon (e.g., in convective situations 2 August 198 1 
or 22 July 1982 events in Fig. 3, where the size of in- 
dividual showers relative to the gage density results in 
a white noise effect). 

An intuitive manual fitting of these theoretical mod- 
els to the experimental variograms was performed, 
paying special attention to the following points: 

0 Short distances. A white noise effect is assumed 
when a set of three or four significant [i.e., computed 
with N(h) > 201 experimental variogram values clearly 
do not converge to the origin. Special attention must 
be paid to this part of the variograms since it is the 
only part used when the estimation neighborhoods are 
reduced. In addition, the results obtained are very sen- 
sitive to the amplitude of the white noise effect which 
has a smoothing influence on the estimator. 

0 Large distances. The variogram becomes sensitive 
to the overall trend of the studied functions [i.e., the 
difference between local mean values M(&) - M(Xj) 
becomes predominant in the computation of (z(xi) 
- z(xj))’]. It is generally possible to detect a geograph- 
ical direction along which this trend is lower (the chosen 
direction is indicated in Table 2 by (1) for E.W. and 
(3) for N.S.). Notice that this large distance modeling 
does not have any influence on the results. 

a. Gage and radar measurement structure 
The ground measurement variograms have been 

computed over the 98 stations of the complete network 
for reasons of robustness. The dataset reflects results 
commonly observed for daily rainfall field structures: 
frontal meteorological situations (mainly in autumn, 
e.g., 8 October 1980) produce continuous rainfall 
structures (no white noise effect) with generally an 
identifiable range; convective situations (in summer) 
produce more choppy fields whose structure may be 
overlooked by the ground network even if its density 
is relatively high (one gage per 200 km2 for the complete 
network). 

The radar measurement variograms may be estab- 
lished using the whole 5 X 5 km2 grid. As illustrated 
in Fig. 4, where the variogram of the complete raw 
radar picture for the 8 October 1980 field is compared 
with the preprocessed one (ground clutters removed), 
the variogram is very responsive to anomalous values. 
This observation was used here to recognize ground 
clutters. Practically speaking, it is simply necessary to 
identify, in the short distance classes, the pair of points 
giving anomalous squared differences, and then to 
eliminate any points found in several of these outlying 
pairs. 

For consistency with ground variograms, the radar 
variograms presented in Table 2 are computed using 
the same set of 98 points. Considering the properties 
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FIG. 2. Radar and gage direct and cross variograms for four typical days. 

of the two measurement devices, a comparison of their 
corresponding variograms would be expected to show 
(i) good overall agreement since they basically measure 
to same phenomenon, and (ii) a longer range and a 
lower sill (i.e., variance) for radar measurements be- 
cause of the integrating effect of remote sensing. 

In practice, when radar and gage variograms are 
compared side by side (see selected examples in Fig. 
3), the expected likeness between fitted models can be 
observed for most winter days (8 October 1980) and 
some summer days for which the convective situations 
have a sufficient spatial extent (1 3 July 1982). When 
the rainfall field results from very localized showers 
(other summer days such as 2 August 1981 or 22 July 
1982 mapped below) the spatial resolution of radar. 
gives, as expected, a more accurate structure identifi- 
cation, especially for short distances (e.g., in Fig. 3, 

direct and cross variograms of the 2 August 198 1 fields 
show a range-type radar variogram while the gage var- 
iogram is almost a pure white noise effect). Comparing 
the range and sill values of the radar and gage vario- 
grams when they are existing, the spatial integrating 
effect of radar measurements can be seen. 

b. Cross structure analysis 
The cross variograms of gage and radar measure- 

ments have been calculated over the 98 measurement 
points where both gage and radar data are available. 
This is required for the mathematical expression of the 
cross variogram given in section 2b. 

The results lead to the following comments: 

0 For four days (7 and 8 October 1980, 15 December 
1980, and 13 July 1982) the direct and cross-variogram 
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FIG. 3. Variograms of the residuals (open squares) and cross variograms between residuals and 
radar measurements (plusses) for four typical days. 

models are almost homothetic. Consider the orthog- 
onal decomposition of the function ZG(X)  [already pro- 
posed in (1 2)]: 

As a < V G ,  the variograms satisfy the following 
condition: 

YRG(h) < VYR(h) ' YG(h)* I 
ZG(X) = azR(X) + b + E(X), (20) 

where E(X)  is a random function statistically indepen- 
dent of zR(x). In this case, it can easily be proven that 
Y R G ( ~ )  and yR(h)  are homothetic: 

Furthermore 
YRG(h)  = a'YR(h)* 

YG(h)  = a2yR(h> frdh) (21) 
where yc(h) is the variogram of the function E .  If (as in 
our case), YG, yR and YRG are homothetic, (21) may 
be written as 

denoting --ye as 

where e is a positive constant or zero. 

YG(h) = (a2 f ehR(h), 

YXh) = eYR (h) (22) 

Equality is obtained when the function e is a constant 
value, i.e., when ZG and zR are linearly related. 

The inequality is significant, for these four days, in- 
dicating strong spatial discrepancies between radar and 
raingage measurements. 

0 for three other winter days (10 October 1980, 14 
December 1980, and 22 October 1982) the cross-var- 
iograms are equal to zero, indicating the statistical in- 
dependence of ZR and ZG fluctuations. 

0 the four remaining convective days (2 August 
1981, 23 June 1982, 15 and 22 July 1982) are very 
dificult to model. The strong white noise effects on 
the gage variograms indicate that the gage density is 
too low for this meteorological situation. 
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TABLE 2. Description of the variogram models fitted for the 11 available days. 

111 

Direct variogram of 
Date of the Cross variogram of Direct variogram 

event gages radar gages vs radar of residuals 

7 Oct 1980 S* 1800 S 80 S 150 S 1600 
50 60 60 80 
O O O O 

80 1 O0 80 .90  
O O O O 

8 Oct 1980 S8000 , S 380 s 1000 S 7000 

10 Oct 1980 

14 Dec 1980 

15 Dec 1980 

2 Aug 1981 

23June 1982 

13 July 1982 

15 July 1982 

22 July 1982 

22 Oct 1982 

S(1) 1200 
60 
O 

80 
O 

Lt 12 
O 

L 3  
900 

S( 1) 500 

L 6  
300 

s 11 O00 
50 
O 

L 2.4 
600 

L 2.5 
450 

L 50 
O 

S(3) 1200 
1 O0 
O 

S(3) 300 
I50 
O 

L 1.8 
O 

S 400 
70 
100 

S(1) 50 
100 
o .  

S 3500 
70 
500 

S 70 
60 
10 

L 0.45 
20 

S 1250 
100 
O 

W+ o 

wo 
L 2.5 

O 

L 3  
O 

L I  
30 

S 2800 
50 
O 

s 100 
50 
20 

L 0.65 
30 

W(3) 0 

S 3200 
100 
O 

S 650 
100 
O 

L 10 
O 

w 1100 

W 500 

s 10000 
50 
O 

W 600 

W 500 

L 60 
O 

* S, with range: sill, range, white noise effect. 

* L, linear: slope, white noise effect. 
W, pure white noise effect. 

c. Residuals struclure 
Table 2 offers variogram models for the residuals 

E(x). Figure 3 displays these variograms for four typical 
days. As for cross variograms, the three sets of days 
may be examined separately: 

When the direct and cross variograms are homo- 
thetic the variogram of E(X)  should be written as in 
(22). The fitted models satisfy this relation. In addition, 
the sill of these variograms is systematically lower than 
the sill of the gage variograms. This means that the 
error variance of the residuals will be lower than for 
the gages. For these days simplified cokriging should 
give better results than the interpolation using gages 
alone. 

0 When the cross variograms are equal to zero, the 
variograms of E(X) show a higher variability than for 

the gages. No improvement should be expected from 
simplified cokriging over gage interpolation. 

a When the gage density is too low, the variograms 
of ~ ( x )  exhibit a pure white noise effect. In other words, 
the gage inforination should give no improvement over 
the radar measurements. 

Finally, to test the validity of the hypothesis of or- 
thogonality between the radar signal and the residuals, 
their experimental cross variograms were plotted. As 
shown in Fig. 4, orthogonality can be assumed since 
the cross structure functions present a clear white noise 
effect (e.g., 2 August 198 1) or a very low variability. 

5. Test results 

The simplified cokriging method was applied to the 
described dataset. To judge the quality of the results 



112 J O U R N A L  O F  A T M O S P H E R I C  

400- 

200 

A N D  O C E A N I C  T E C H N O L O G Y  VOLUME 5 

/ O  - 
U 

/O’ - OH0 - 
O’ 

O’ 
, I  I I I I I I I I I i l a n  

O’ 

FIG. 4. Response of the radar data variogram to the presence of 
ground clutters. The computation of the variogram with squares in- 
cludes ground clutters, while they are excluded from the computation 
of the variogram with circles. 

obtained, a validation process was defined and a com- 
parison was made with the results of either the radar 
alone or the interpolation of the merging network 
alone. 

a. Validation process 

When defining a validation process, two choices 
must be made. The first concerns the reference value, 
which should be as close as possible to the true value 
of the phenomenon. The second choice concerns the 
likeness indicator, measuring the distance between the 
reference value and the estimate provided by the val- 
idated device or method. 

Different reference values have been chosen in the 
other studies already mentioned. Most authors consider 
the ground measurement as the standard value (Wilson 
and Brandes, 1979), possibly taking into account the 
effect of gage inaccuracy through practical comparison 
of mean areal rainfall amounts computed with various 
gage densities (e.g., Woodley et al., 1975; Hildebrand 
et al., 1979). Other authors make the strong assumption 
of good qualitative identification of rainfall patterns 
by radar and use a “radar-derived” value for the actual 
rainfall (e.g. Harrold et al., 1974). 

To avoid the drawback of this last approach, which 
includes radar data in the standard, and to take into 
account the effect of gage inaccuracy, the reference val- 
ues considered in this study are computed by integra- 
tion over radar pixels (5 X 5 km) containing one test 
raingage (i.e., the gage is not used for merging purposes) 
by means of an optimal interpolation technique (here 
kriging-the simple reduction of cokriging to a single 

random function) relying on the test network. This 
procedure satisfies two objectives: 

(i) Integration of the point measurements of ground 
rainfall over the sampling area of radar measurements 
leads to more comparable values. The chosen targets 
remain sufficiently small and .scattered in space to val- 
idate the radar perception of the spatial variations of 
the rainfall fields. 

(ii) The reference values are independent of the 
ground measurements used for merging since the 
merging and test networks are distinct. 

Concerning the second choice, two different sets can 
be distinguished among the range of available likeness 
indicators: 

1) Indicators reflecting both the mean adequacy and 
the cofluctuation of the compared values. Among these 
indicators, we have selected in the following compar- 
ison the percent mean absolute error: 

t= 1 

and the distribution of the so-called factors of differ- 
ence: 

max[zT(t, d)/zE(t, d), Z G ( ~ Y  d)/Z$(t, 4 1  
as proposed by Woodley et al., 1975, where zT(t, d )  
represents the reference and zT;(t, d )  the estimated 
value for target t and day d. The first indicator provides 
a general quality index, and the second visually displays 
the evolution of the reconstitution quality in more de- 
tail. 

2) Indicators sensitive only to the cofluctuation of 
the compared values, such as the correlation coefficient 
between reference and estimated values. This coeffi- 
cient remains unchanged when a linear transformation 
is performed over a given set of values (for instance 
when calibrating radar measurements using a constant 
multiplicative factor). It has therefore been used day 
by day in the following comparison to evaluate the 
cofluctuation of two signals in space alone. Note that 
this day to day correlation does not take into account 
the time cofluctuation, which can be very strong if the 
mean characteristics of the various days considered dif- 
fer significantly. It is therefore obvious that a day by 
day correlation is more selective in determining what 
should be the main quality of radar measurements, 
i.e., a good appreciation of the spatial variability. 

b. Comparison of the various results obtained 

Two sets of results were obtained for two merging 
gage network densities. Twenty-nine gages were used 
in the first (i.e., a density of one gage per 700 km2) and 
ten gages in the second (i.e. one gage for 2000 km2). 
Each set is composed of (i) raw radar measurements, 
only preprocessed to eliminate ground clutters, (ii) 
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TABLE 3. Global percent mean-square error and correlation coef- 
ficients between reference and estimated rainfall values for the three 
compared methods. 

Percent mean ‘Correlation 
absolute error coefficient* 

Measurement 
method 10 gages 29 gages 10 gages 29 gages 

- 

~ 

Raw radar 64.6 64.6 .6 1 .6 1 
Gage interpolation 27.3 19.8 .50 .I6 
Simplified 

cokriging 25.2 22.2 .63 .I6 

* To avoid time-cofluctuation effects, reference and estimated val- 
ues have been centered day by day. 

rainfall depth estimates of the merging gages using 
kriging, and (iii) results of the gage-radar combination 
through simplified cokriging. 

A general comparison of the results obtained for each 
method is given in Table 3, based on the percent mean 
absolute errors and the correlation coefficient calcu- 
lated over all the available data, and in Fig. 5 which 
displays the corresponding distributions of the factors 
of difference. 

In examining each basic device separately, gages ap- 
pear to offer a better overall performance than radar 
for both network densities. This observation must be 
considered in the light of two points: (i) the daily time 
step is long enough to favor gage performance and (ii) 
the distance from the radar site is a major handicap 
for radar performance here. In addition, when the effect 
of systematic errors is removed (e.g., by correlation 
coefficient computation after day by day centering) the 

percent of cases 100, i 

01 I I I I I I I ,  r I 
I 2 factor of difference 

I13 

performance of radar results falls between those of the 
two network densities. 

The combination of these devices through simplified 
cokriging improves the overall results of each separate 
device. This improvement, however, is very slight, es- 
pecially for a dense ground network. 

A day by day display of the results of each method 
is offered in Fig. 6.  The squares of the correlation coef- 
ficients (i.e., the explained variance) between reference 
and estimated values over the 69 test targets throw a 
different light on the results, pointing out the spatial 
agreement of the compared values. 

For convective meteorological situations (summer 
days), radar shows more steady performance than the 
ground network. The merging process rarely improves 
the radar measurements, especially for the low density 
network. 

During frontal situations (fall and winter days), radar 
results are systematically worse than gage interpolation 
results. The merging process works effectively when 
the ten-gage network is considered, proving its capa- 
bility to combine the complementary possibilities of 
the two devices. 

Based on this correlation criterion, the calibration 
method using a spatially constant multiplicative factor 
does not improve raw radar performance. Simplified 
cokriging, therefore, appears to upgrade the results of 
this simplest calibration method systematically. 

6. Conclusion 

The methodology presented herein is obviously only 
a preliminary approach to the problem of raingage- 

percent of cases 
100 I 

01 I I I I I I 1 1 . 1  

I 2 factor of difference 

.--. raw radar - gage interpolation A simplified cokriging 

FIG. 5. Distributions of the so-called factors of differences for the two merging network densities. (a) 29 and (b) 10 gages. 
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network densities. (a) 29 and (b) 10 gages. 
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radar merging. Further efforts will have to be made to 
take into account, more explicitly, the errors inherent 
in the two devices combined. Several possibilities are 
available in the proposed model to deal with such cor- 
rections. For instance, (i) the linear relation giving &(x) 
by regression can be replaced by a more complex re- 
lation, or (ii) more sophisticated assumptions can 
be made concerning the mean behavior of the resid- 
uals e ( ~ ) .  

In its present form, the simplified cokriging method 
already offers promising properties: 

(i) The proposed simplification drastically reduces 
the size of the system, making it tractable in an oper- 
ational context. 

(ii) The obtained estimator satisfies the classical 
mean-square-error minimization criterion provided 
that certain relatively weak assumptions can be made. 
In spite of an unfavorable dataset, the results obtained 
are satisfying in comparison with conventional radar 
calibration using gages. Further applications of this 
method (in progress) using a more appropriate dataset 
(dense network of recording raingages near the radar 
site) are necessary to confirm these initial results. 
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