Potasses d'Alsace Services Agronomiques Décembre 1967

CONTRIBUTION A LA CONNAISSANCE

DES PROBLEMES DE POTASSIUM

DANS LES PRINCIPAUX TYPES DE SOLS DE L'AIN

par A. Loué Ingénieur Agronome

Cette étude comporte tout d'abord l'examen des caractéristiques analytiques principales des deux grands types de sols du département de l'Ain (La Dombes et la Bresse), avec des développements particuliers sur la dynamique du potassium dans ces sols. Quelques exemples de sols de la vallée de l'Ain sont également traités. Cette première partie est surtout développée pour les sols de Dombes auxquels on s'est intéressé plus complètement.

Une seconde partie expose les résultats expérimentaux d'un essai d'engrais potassique, obtenus à Romans, sur un sol typique de la Dombes. Il n'y a pas de résultats similaires pour la Bresse de l'Ain, mais un essai factoriel $\mathbb{N} \times \mathbb{P} \times \mathbb{K}$ a été débuté en 1967 sur sol battant typique de la Bresse Chalonnaise, en Haute-Saône.

O.R.S.T.O.M. Fonds Documentaire No. 28330

Cote : 8

La Dombes est un plateau de faible altitude, peu ondulé, qui fut entièrement recouvert par le glacier des Alpes. Un limon fin, résultant de la décomposition et du lessivage de la boue glaciaire recouvre presque tout le pays. Au-dessous de ce limon se trouvent des couches étendues de boue glaciaire, imperméable, à la faveur desquelles l'homme a créé de nombreux étangs. Ces derniers sont en régression devant les cultures qui concernent surtout les céréales (blé, avoine), mais où le maïs occupe une place croissante et les surfaces en herbe représentent environ la moitié des superficies. L'exploitation moyenne de Dombes couvre 50 ha dont 25 en herbage, 12 en céréales, 12 en plantes sarclées.

La connaissance des sols de Dombes et plus particulièrement des problèmes de leur fumure potassique est ici basée d'une part sur des études de sols, d'autre part sur l'expérimentation au champ.

Etudes de sols :

Les trois premiers tableaux annexés rapportent les résultats analytiques complets, en y incluant les études d'extraction biologique du potassium, concernant vingt points de prélèvements récents dans la Dombes (nº 1 à 24). On disposait par ailleurs des analyses chimiques seules (N, P205, K20, pH) pour cinquante points de prélèvements effectués dans cette région de 1959 à 1965, indépendamment de toute idée de recherche mais qui constituent néanmoins un appoint analytique.

Expérimentation:

Les résultats de l'essai potasse de Romans sont détaillés par ailleurs dans le cadre de cette réunion. Signalons qu'un second essai débuté à Faramans, avec un dispositif factoriel $N \times P \times K$. Enfin, dans un passé récent, des essais de fertilisation globale (NPK) sont réalisés chaque année (exemple St André de Corcy).

Avant d'aborder les problèmes de potassium, il convient de décrire les principales caractéristiques de ces sols.

Analyse physique

Les sols de Dombes sont des limons fins du point de vue textural, c'est-à-dire des sols très riches en éléments fins non colloïdaux (correspondant à la somme des fractions allant de 0,05 à 0,002 mm et dénommées sable très fin et limon). Lorsque ce total est élevé, les sols présentent une battance élevée.

Pour les 20 points rapportés en annexe (sols) ce total oscille entre 53,1 % (point 7) et 76,0 % (point 24). Si l'on excepte le point 7, plus riche en éléments grossiers, on constate que les points sont très groupés entre 64 et 76 % (triangle des textures, en annexe).

Le pourcentage de sable grossier + sable fin (0,05 à 2 mm) présente une faible variation, qui, mis à part le point 7, s'inscrit entre 12,6 et 18,7 %.

L'argile est le constituant granulométrique le plus fluctuant, compris entre

6,3 % (point 24) et 17,8 % (point 18). Le sous-sol est toujours nettement plus argileux (15,7 à 18,5 %) pour les points 2, 4, 6, 8 contre 10,6 à 12,2 pour les sols correspondants (1, 3, 5, 7).

La teneur en matière organique est faible à moyenne 1,7 à 2,0 %) et dépend évidemment de l'ancienneté de la mise en culture.

Les sols de Dombes appartiennent donc dans leur très grande majorité, à une famille texturale bien déterminée : limons fins très battants, mais où le taux d'argile peut varier notablement et s'accroît nettement en sous-sol.

Analyse chimique

Azote total

Pour les sols de culture, la teneur en azote oscille entre 0,75 et 1,60 °/°°, avec une teneur moyenne de 1,05 °/°°. Sur les 50 échantillons analysés de 1959 à 1965, la moyenne était de 1.15 °/°°.

Acide phosphorique assimilable

La teneur varie pour les 20 sols rapportés de 0,07 à 0,33 °/°°, la moyenne étant de 0,20 °/°°. Les quatre sous—sols (2, 4, 6, 8) ont une teneur moyenne de 0,06 °/°° contre 0,17 °/°° pour les sols correspondants, ce qui dénote une forte fixation.

Sur les 50 échantillons, la moyenne était de 0,15 °/°°. On peut donc admettre que ces sols ont une teneur moyenne en P205, dénotant des fumures assez régulières.

Sur l'essai de Romans, très typique à cet égard, la teneur, qui en début d'essai était de 0,17 $^{\circ}/^{\circ\circ}$, se trouvait après six ans d'apports P120, montée à 0,28 $^{\circ}/^{\circ\circ}$.

Bases échangeables

La principale caractéristique de fertilité est la faiblesse générale en bases échangeables.

La chaux varie de 0,40 à 2,54 °/°° mais on peut considérer que les teneurs les plus élevées dénotent des chaulages antérieurs. La moyenne est de 1,36 °/°°. La teneur en magnésie oscille entre 0,06 et 0,29 °/°°, avec une moyenne de 0,13 °/°°. Il existe une forte corrélation positive entre CaO et MgO, qui apparaît dans le tableau suivant où les teneurs ont été groupées en classes:

Argile % 10,0 6,3 11,3 12,4 16.0	CaO 0/00	0,44	0,63	0,88	1,32	2,44
	MgO 0/00	0,06	0,08	0,09	0,15	0,22
	Argile %	10,0	6,3	11.3	12.4	16.0

Une liaison positive entre ces teneurs et le taux d'argile existe aussi, mais on peut également supposer que dans certains cas, les apports de chaux auraient été faits sous forme de chaux magnésienne.

La capacité d'échange pour les bases (T) fonction des taux d'argile (A) et de matière organique (MO), varie de 8,2 à 16,5 meq % (moyenne de 12,2 meq). La

liaison entre la capacité d'échange et le complexe absorbant, est ici la suivante, après groupement par classes :

T (meq %)	8,2	10,6	12,0	13,2	15,8
A %	6,3	11,0	11,5	15,3	15,3
MO %	1,70	1,85	2,03	2,07	2, <i>2</i> 3
nombre de points	1	6	6	4	3

Le nombre d'échantillons est très insuffisant pour permettre un essai de répartition de la capacité d'échange sur l'argile et la matière organique.

Les extrêmes, par exemple, (points 24 et 11), très voisins du point de vue matière organique (1,7 et 1,8 %) diffèrent par les taux d'argile (6,3 et 15,1 %) et la capacité d'échange (8,2 et 16,5 meq). La différence de T (8,3 meq) est imputable à la différence de taux d'argile (8,8 %) ou à la nature de celle-ci. Il semblerait que l'on soit en présence d'argile ayant une capacité d'échange de 50 à 80 meq pour 100 g, ceci sous toutes réserves.

La somme de bases échangeables (sodium non déterminé) varie pour K + Ca + Mg de 1,78 meq % (point 5) à 10,76 meq % (point 19) pour des capacités d'échange respectives de 10,0 meq % et 15,5 meq %. Il en résulte des taux de saturation en bases de 17,8 % et 69,4 %. Ces sols ont donc leur complexe absorbant faiblement saturé en moyenne (46,8 %) et on s'attendrait de ce fait à des pH plus bas que ceux indiqués (pH moyen de 6,5).

Le potassium

Potasse échangeable

La teneur en potasse échangeable constitue la donnée fondamentale dans le sujet présent.

Dans les tableaux annexés on trouvera trois lignes pour cette mesure, qui méritent d'être explicitées :

- 1) K20 échangeable °/°° (il s'agit bien sûr de l'extraction classique à l'acétate d'ammonium neutre, et la teneur est exprimée en oxyde pour mille de terre, comme il est d'usage en matière de fertilisation.
- 2) K échangeable (meq %): il s'agit simplement du résultat précédent exprimé en milliéquivalent de potassium pour cent de terre (1 meq K = 39 mg K, correspondant à 47 mg K20).
- 3) K échangeable (ppm): il s'agit ici d'une seconde détermination de potasse échangeable, par la même méthode que ci-dessus, mais effectuée par un second Laboratoire (Station d'Aspach) sur l'échantillon soumis à l'extraction biologique) et exprimé en K (et non en K20) et en ppm. Il est très aisé de passer de K en ppm à K20 en pour mille. (Par exemple, nº 1, 62 ppm K correspondent à 0,062 pour mille en K et à 0,074 en K20 °/°°. Il peut évidemment exister une petite divergence entre

les deux mesures puisqu'effectuées par des laboratoires différents.

La teneur en K20 échangeable varie de 0,03 à 0,20 °/°°, la moyenne des 20 sols étant de 0,097 °/°°.

Sur les 50 échantillons sus désignés, la moyenne générale était de 0,10 °/°°. Il existe donc une très grande concordance, bien que le nombre d'échantillons soit faible:

La distribution des 70 teneurs est la suivante :

- 20 échantillons ayant 0,04 0,05 0,06 °/°°
- 19 échantillons ayant 0.07 0.08 0.09 º/ºº
- 11 échantillons ayant 0,10 0,11 0,12 º/ºº
- 10 échantillons ayant 0,13 0,14 0,15 º/ºº
- 10 échantillons supérieurs à 0.15 º/ºº

Donc en fait 28 % des sols seraient très pauvres en potasse (0,06 °/°° au plus) et 56 % auraient moins de 0,10 °/°°.

Taux de saturation en potassium

Il figure à la dernière ligne des tableaux, pour la partie "laboratoire". C'est le quotient du potassium échangeable (exprimé en milliéquivalents) par la capacité d'échange : $100~{\rm K}$

Les études récentes sur la dynamique du potassium dans le sol prennent souvent ce rapport en considération. Selon Barbier "Pour une même concentration de la solution du sol en Ca, la concentration en K augmente en raison directe du degré de saturation du sol en K". Selon certains auteurs d'autre part, le potassium serait d'autant plus énergiquement retenu par le complexe absorbant qu'il représenterait une plus faible proportion de la garniture cationique de celui-ci.

Ce taux de saturation pour les 20 échantillons varie de 0,6 à 3,2 %, avec un taux moyen de 1,7 %. On admet qu'il est bon d'amener le sol à au moins 3 % de saturation en potassium. Or la capacité d'échange est en moyenne de 12,2 meq %. Un taux de saturation de 3 % représente 0,37 meq K % de sol (soit environ 0,17 °/°° en K20). On peut donc fixer vers 0,17 °/°° la teneur du sol en K20 échangeable qu'il conviendrait d'atteindre, dans ce type de sol, pour se placer ensuite en fumure d'entretien (14 % des sols étudiés se trouveraient ainsi à l'entretien).

Autres déterminations (recherches)

La considération de la teneur en K20 échangeable et du taux de saturation en potassium constitue, en l'état actuel des connaissances vulgarisées, l'essentiel en matière d'appréciation des possibilités d'un sol à fournir aux plantes le potassium nécessaire.

On sait que la connaissance du potassium "total" du sol n'est pas très utilisable.

Les chimistes ont conçu d'autres méthodes d'extraction du potassium parmi lesquelles nous citerons :

1) L'extraction par les résines acides, basée sur le fait que l'échange entre une résine acide porteuse d'ions hydrogènes et le sol avec lequel elle est mélangée

serait voisin du mécanisme d'absorption des cations par les plantes. Les travaux sur cette méthode sont peu nombreux.

2) L'extraction par le tétraphenylborate de sodium, corps qui a la propriété de complexer le potassium et de provoquer dans un sol la désorption du potassium échangeable ainsi que la libération d'une certaine quantité de potassium des argiles. Cette méthode semble promise à plus d'avenir que la précédente et a déjà donné lieu à des études intéressantes.

Le problème est en fait celui-ci :

Les agronomes ont observé qu'il n'y a pas toujours une bonne concordance entre le potassium mesuré comme échangeable dans un sol et la réponse de celui-ci à la fumure potassique. Certains sols, classés pauvres répondent assez mal, d'autres classés à l'entretien. répondent assez bien.

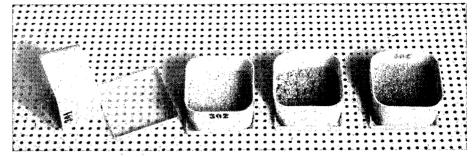
D'autre part il a été observé dans certains essais où les exportations de K2O étaient mesurées avec précision que l'on ne retrouvait pas toujours très bien dans le K2O échangeable final du sol, l'enrichissement ou l'appauvrissement déterminé par le bilan.

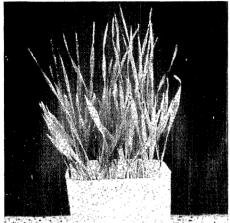
A propos des études poursuivies sur la Station d'Aspach, Garaudeaux a ainsi posé le problème :

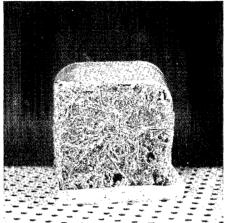
- "à quel rythme ce potassium échangeable peut-il être consommé par les plantes?
- Peut-il effectivement être assimilé en totalité ?
- Sur une période assez longue, est-il le seul qui soit assimilable par les plantes ?
- Dans la négative, peut-on définir un stock mobilisable complémentaire du précédent stock reconnu comme mobile ?"

Pour essayer d'obtenir une meilleure approche de ces problèmes, les agronomes ont eu recours à des méthodes dites d'extraction biologique, en cultures en pots et nous allons voir précisément le développement qui est donné à l'une de ces méthodes par Quemener, au laboratoire de la Station des Potasses à Aspach (Haut-Rhin).

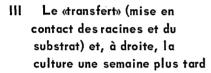
Extraction biologique du potassium par la méthode Stanford

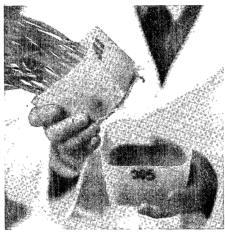

Imaginée par deux chercheurs américains (Stanford et de Ment), cette méthode était utilisée à la Station d'Aspach depuis 1961 pour des études sur la forme de P205 d'engrais composés et elle fut adaptée à l'extraction du potassium par Quemener qui la décrit ainsi :

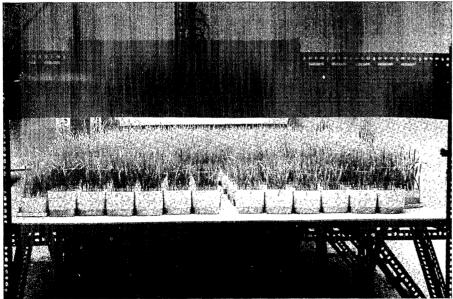

"Son principe est d'affamer une plante avant de la mettre en contact avec le substrat à étudier.


La plante est cultivée sur sable, dans un récipient sans fond, posé dans une soucoupe (voir illustration I). Elle est alimentée par une solution dépourvue de potassium.

Deux semaines après le semis, 10 jours après levée, la plante montre des signes de carence très nets. En outre, la base du pot est garnie d'un feutrage radiculaire abondant, le matelas de racines (illustration II). Celui-ci permet la manipulation de la culture sans risque de dépotage, et possède un pouvoir d'extraction accru pour l'élément manquant. On emboite alors la culture dans un récipient (identique, mais avec fond), renfermant le substrat à étudier. (illustration III). Les signes de carence disparaissent plus ou moins suivant la richesse du substrat. L'expérience a montré


Mise en place de la plante (orge) dans les récipients sans fonds





Il Culture carencée de deux semaines (à gauche) et son «matelas» de racines avant le transfert

IV Aspect de la chambre de culture avec éclairage artificiel

que l'analyse des parties végétales aériennes est suffisante et que la récupération des racines n'est pas nécessaire.

Dans la pratique, la plante (orge Rika, 30 graines par pot d'un dm2 de surface) est cultivée sans potassium pendant exactement 14 jours, dont 10 jours après levée.

Les pots contiennent 50 g du sol à étudier et 150 g de sable lavé à H Cl et rincé. Le contact racines/sol est toujours de 20 jours et il y a quatre répétitions pour chaque sol.

Pendant toute la durée de la culture, les pots sont éclairés 15 h par jour et sont placés à 40 cm de la nappe de tubes de 120 watt espacés de 10 cm les uns des autres, ce qui donne environ 10.000 lux sur les plantes, à leur sortie du sable. Les apports de solution sans K sont de 50 cm3 avant semis, 80 cm3 (en 4 fois) entre la levée et le transfert et 160 cm3 (en 8 fois) entre le transfert et la récolte.

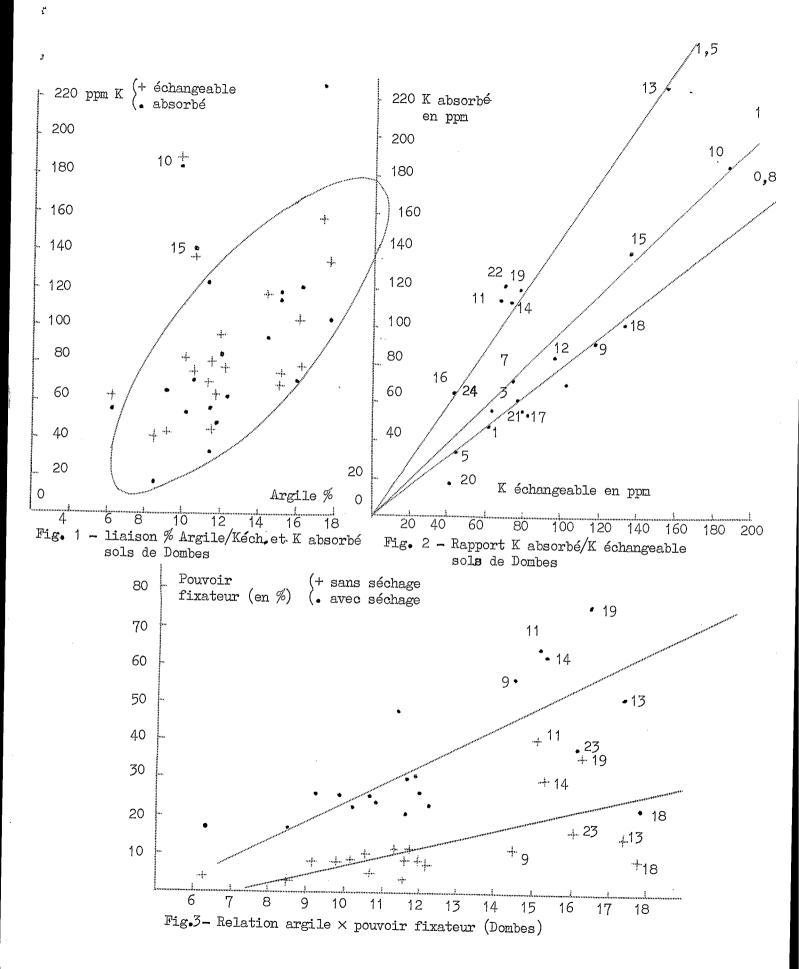
Après la récolte, limitée à la partie extérieure au sable, on détermine le potassium total présent dans cette partie. Le potassium absorbé à partir du sol est obtenu par différence avec un témoin transféré sur une semelle de sable pur. Les "semelles" de sable et terre sont récupérées après culture et on y détermine K échangeable."

La méthode Stanford donne donc lieu aux déterminations suivantes (exemple n° 1 des tableaux).

- 1) K échangeable avant culture = 62 ppm
- 2) K absorbé (analyse des plantes) = 49 ppm
- 3) Rapport K absorbé/K échangeable = 0,79
- 4) K échangeable après culture = 49 ppm
- 5) variation K échangeable en cours culture = 49-62 = 13 ppm
- 6) Potassium libéré = K absorbé + K fin de culture K début culture
 - = 49 ppm + 49 ppm 62 ppm = 36 ppm

Discussion

Pour les 20 sols, le potassium absorbé a varié de 18 à 228 ppm tandis que le potassium échangeable avant culture variait de 41 à 189 ppm, dans des limites un peu plus étroites.


Il existe évidemment une liaison positive entre K échangeable ou K absorbé et le taux d'argile, exprimée par la figure 1. Les sols les plus argileux du groupe sont les mieux dotés en K échangeable et présentent les plus fortes absorptions. Deux sols s'écartent nettement de la liaison (N° 10 et 15, sols enrichis).

Il existe aussi une forte corrélation positive entre K échangeable et K absorbé et le rapport K absorbé/K échangeable permet de distinguer les groupes de sols suivants (figure 2):

1) <u>Sols à rapport voisin de 1</u>, c'est-à-dire pour lesquels le K absorbé est voisin du K échangeable. Ils sont au nombre de cinq, et ont des teneurs en potassium très

Nº sols	24	7	12	15	10
Argile	6 , 3	10,6	12,0	10,7	9 , 9
K échangeable	63	75	96	137	189
K libéré	26	61	36	57	48

variables et un rapport moyen de 0,94. On peut, à l'intérieur du groupe, rechercher s'il y a eu mobilisation de réserves ou non, c'est-à-dire considérer l'importance du K libéré. On

constate alors que cette libération est très faible pour les n° 24 et 12 et plus importante pour les n° 7, 15, 10 dont les deux derniers sont des sols probablement enrichis en potasse. La libération moyenne de ce groupe est de 46 ppm et sa teneur moyenne en K échangeable est de 112 ppm.

Notons également que les sols de ce groupe sont faiblement argileux.

2) Sols à rapport inférieur à 1, c'est-à-dire pour lesquels K absorbé est assez nettement plus faible que K échangeable (rapport moyen de 0,71). Ils sont au nombre de neuf et présentent aussi des teneurs en potassium fort variables (41 à 133 ppm).

Nº sols	20	5	1	3	21	17	23	9	18
Argile	8 , 5	11,6	11,8	12,2	11,6	10,2	16,1	14 , 5	17 , 8
K échangeable	4 1	44	62	77	80	82	102	118	133
K libéré	0	36	36	41	38	7	11	25	9

Pour ces sols, le potassium semble donc plus fortement lié que pour le groupe précédent. La libération de potassium non échangeable initialement a toutes chances d'y être très limitée, et c'est en effet ce que l'on peut constater (0 à 41 ppm). La libération moyenne du groupe est de 23 ppm et sa teneur en K échangeable de 82 ppm).

La teneur en argile de ce groupe est très dispersée, allant du simple au double.

3) Sols à rapport supérieur à 1, c'est-à-dire pour lesquels K absorbé est nettement plus élevé que K échangeable (rapport moyen de 1,58).

Ils sont au nombre de six, et là encore, la teneur en potassium en est très variable (43 à 156 ppm). Pour ce groupe il y a nécessairement une libération plus ou moins importante. De fait, elle varie de 67 à 147 ppm. Le potassium libéré représente ici une quantité un peu supérieure au potassium échangeable initial (100 ppm libéré en moyenne contre 82 ppm pour la teneur moyenne en K échangeable du groupe).

Nº sols	16	11	22	14	19	13	
Argile	9 , 2	15,1	11,4	15 , 3	16 , 3	17,4	-
K óchangeable	43	68	70	73	79	156	
K libéré	67	105	111	84	87	147	

Notons aussi que sur les six sols de ce groupe, quatre figurent parmi les plus argileux de l'ensemble. Sur les deux exceptions le nº 16 est très pauvre en potassium et de ce fait il ne permet pas une importante absorption de potassium (66 ppm) malgré sa libération importante relativement au K échangeable initial.

Remarque sur les sous-sols

En considérant les n° 2, 4, 6, 8, on constate que ces sous-sols particulièrement pauvres en potassium, présentent également de très faibles libérations mais on note aussi que les absorptions ont été très faibles si bien que pour ces quatre sous-sols, le taux de K échangeable après culture est toujours légèrement supérieur

au taux initial. Il s'est donc reconstitué très vite. Les quatre sous-sols sont nettement plus argileux que les sols correspondants et on constate (voir ci-après) qu'ils présentent un pouvoir fixateur très supérieur.

Le pouvoir fixateur

Le pouvoir fixateur vis-à-vis de l'ion K est également déterminé à Aspach, selon la technique de Van-der-Marel qui consiste à introduire dans le sol une solution de K Cl et à mesurer le potassium échangeable avant et après cette addition. Deux variantes de cette méthode sont pratiquées à Aspach selon qu'après l'apport de K Cl, le sol est séché (une nuit à 70°) ou laissé à l'état humide. Le sol est ensuite soumis à la percolation, non par l'acétate d'ammonium comme pour la détermination du potassium échangeable, mais par l'acétate de magnésie.

On obtient de la sorte, le pouvoir fixateur à l'état humide et le pouvoir fixateur à l'état sec, exprimés en % de la quantité de potassium introduite (celleci est de 1°/°° en K2O, soit 3 tonnes K2O pour un hectare de 3000 tonnes de terre). Les résultats obtenus sont portés dans le bas des tableaux annexés.

Le pouvoir fixateur sans séchage varie pour l'ensemble des 20 sols de 3 % à 41 %. En fait 17 sols ont un très faible pouvoir fixateur compris entre 3 et 16 %, et 3 sols ont un pouvoir fixateur assez élevé (30 à 41 %). Ces trois sols (n° 14, 19, 11) figuraient également parmi les six sols à rapport Stanford supérieur à 1. Ils figurent aussi parmi les sols les plus argileux.

Il existe évidemment une liaison entre le taux d'argile et le pouvoir fixateur (figure 3) mais, sans séchage, la grande majorité de ces sols ont un très faible pouvoir fixateur et la liaison est assez moyenne.

Le pouvoir fixateur avec séchage varie ici de 16 % à 75 %. Il est donc très supérieur au précédent. La liaison positive avec les taux d'argile est bien meilleure, mis à part le n° 18. Ce dernier, le plus argileux du groupe a donc un faible pouvoir fixateur et également un faible rapport Stanford. Les autres sols plus argileux (n° 9, 11, 13, 14, 19, 23) ont bien ici un pouvoir fixateur nettement supérieur.

Synthèse des résultats

1°) Potassium échangeable

La teneur en potassium échangeable des sols de Dombes (analyses Aspach) varie ici de 41 à 189 ppm K (c'est-à-dire de 0,05 à 0,22 °/°° en K20) avec une teneur moyenne de 89 ppm K (0,106 °/°° K20).

En tenant compte de la capacité d'échange moyenne de ces sols pour les bases, (12,2 meq %) il semble que l'on puisse raisonnablement fixer vers 0,17 °/° (K20) la teneur à partir de laquelle, on pourrait considérer que le sol entre en fumure potassique d'entretien.

Rappelons que 28 % de ces sols sont très pauvres en potasse (moins de 0,07°/°°), que 56 % ont moins de 0,10 °/°° et que 14 % seulement sont à l'entretien (plus de 0,17 °/°° K20).

20) Extraction biologique du potassium

Ces études ont-elles apporté des éléments de réponse aux questions posées au_début ?

- Dans quelle mesure et à quel rythme le K échangeable est-il effectivement absorbé par les plantes ?
- Quelle quantité de potassium non appréhendé comme échangeable peut-être mobilisée éventuellement ?

Le potassium échangeable exprime assez bien, en moyenne, les possibilités de fourniture de potassium des sols de Dombes. La moyenne générale des 20 sols étudiés donne en effet un rapport K absorbé/K échangeable de 1.03.

	K échangeable moyen du groupe	Rapport moyen K abs/K échang.	K libéré
1) 9 sols 2) 5 sols 3) 6 sols	82 ppm 112 ppm 82 ppm	0,71 0,94 1,58	23 ppm 46 ppm 100 ppm
20 sols	89 ppm	1,03	52 ppm

Certes, cette moyenne n'a qu'une valeur indicative car basée sur 20 échantillons. Mais il faut bien préciser que les études d'extraction biologique ne sont pas
des analyses de routine et ne peuvent porter que sur un petit nombre d'échantillons.
On peut accorder un degré de sécurité suffisant à l'échantillonnage ici soumis à
cette méthode, car il a concerné des sols allant de très pauvres à enrichis, avec
des taux d'argile très diversifiés au sein d'une famille texturale homogène. Un
autre défaut de la moyenne est d'être influencée par les valeurs les plus élevées.
En effet, pour près de la moitié des sols étudiés, le potassium échangeable bien que
faible (82 ppm) a surestimé les possibilités de fourniture.
Pour le quart des sols au contraire, en plus du K échangeable, une certaine quantité
de potassium non échangeable a été"mobilisée".

Dans le tableau suivant, les 20 sols ont été classés dans l'ordre du potassium libéré décroissant et on y a fait figurer les autres données les plus importantes synthétisant les problèmes potassiques de ces sols.

Ио	Potas: libéro		<u>K absorbé</u> K échang.	Pouv fixa	oir teur	Argile %	Comportement vis à vis du potassium
13	147	156	1,46	15	52	17,4	Rapport K abs/K éch. >1 - Libération assez
22	111	70	1,74	12	49	11,4	nette - Pouvoir fixateur variable sans sé- chage, assez élevé avec séchage - sols plu-
11	105	68	1,68	41	65	15,1	tôt plus argileux
19	87	79	1,52	36	76	16,3	Rapport> 1 - Libération moyenne
14	84	73	1,56	30	63	15,3	Pouvoir fixateur marqué, sols assez argi- leux
16	67	43	1,53	8	26	9,2	Rapport> 1 - Libération moyenne - faible pouvoir fixateur - peu argileux
7	61	75	0,95	10	26	10,6	Rapport K abs/K éch. légèrement inférieur
.15	57	137	1,02	5	25	10,7	ou inférieur à 1.
10	48	189	0,98	8	26	9,9	Libération assez moyenne pour 7, 15, 10 faible pour les autres - faible mobilisa-
3	41	77	0,79	. 8	24	12,2	tion des réserves.
21	38	80	0,70	9	31	11,6	Pouvoir fixateur très faible sans séchage
12	36	96	0,87	9	27	12,0	assez moyen avec séchage sauf nº 9 (plus argileux)
1	36	62	0,79	12	31	11,8	Sols peu argileux, représentatifs de la
5	36	44	0,77	4	21	11,6	moyenne des Dombes.
24	26	63	0,90	4	17	6,3	
9	25	118	0,78	12	58	14,5	
23	11	102	0,69	16	39	16,1	Rapport K abs/K éch. <1
18	9	133	0,76	9	23	17,8	Libération presque inexistante.
17	7	, 82	0,66	9	23	10,2	Pouvoir fixateur très faible sans séchage
20	0	41	0,44	3	16	8 , 5	

⁻ Il n'y a pas de liaison entre le K échangeable initial et le rapport K abs/K éch. puisqu'on rencontre les teneurs en K éch. les plus variables dans chacun des trois sous-groupes du tableau.

K libéré = K éch. final + K abs. - K éch. initial Cette liaison est ici particulièrement bonne.

Finalement, on peut dire que les sols de Dombes, dans leur majorité, ne sont pas doués d'une dynamique du potassium notable, d'une libération importante de potassium non échangeable sous la forme échangeable ou disponible. Ces sols, pauvres

⁻ Il existe évidemment une liaison positive entre le K libéré et le rapport, qui découle en partie de la définition du K libéré.

à très pauvres en potassium échangeable, plutôt peu argileux ont aussi un pouvoir fixateur sans séchage très faible.

Cependant, certains sols, une minorité, le plus souvent les plus argileux de l'ensemble, sont, corrélativement des sols à pouvoir de fixation plus important sans séchage, et assez élevé avec séchage. Dans ces sols, la dynamique du potassium est incontestablement plus active. Ils présentent une libération de potassium plus ou moins importante et peuvent ainsi mettre à la disposition des plantes, des quantités de potassium supérieures au potassium échangeable.

II/ LE POTASSIUM DANS LES SOLS DE BRESSE

La Bresse est un plateau vallonné très diversifié où les cultures sont variées. Dans l'Ain elle compte environ 10.000 petites exploitations très disséminées, dont la surface moyenne est de 10 à 12 ha (3 ha de céréales, 1,4 ha de plantes sarclées, 5,5 ha de pâturages, 2 ha de bois).

Elle est caractérisée par l'importance de la culture du maïs, de l'élevage de la volaille et de la production laitière.

La Bresse présente des sols variés dont le caractère commun est d'être le plus souvent imperméables du fait de leur nature argileuse ou argilo-siliceuse. Elle est presque toute recouverte d'un manteau de limon argileux renfermant souvent des concrétions d'oxyde de fer. Les régions où dominent le limon ferrugineux sont souvent boisées.

Il existe en certains points des sols argilo-calcaires. (Les marnes de Bresse, argiles à granulations calcaires sont des dépôts lacustres qui ont constitué le substratum profond de la cuvette Bressane). Ils se trouvent assez représentés à l'Est (région de Cormoz par exemple).

Le problème de l'échantillonnage des sols de Bresse est beaucoup plus compliqué que celui des sols de Dombes et l'étude ici présentée n'a pas la prétention d'être exhaustive car elle est basée sur un <u>échantillonnage limité</u> à 20 points de prélèvements situés <u>dans la Bresse de l'Ain</u> (dont les caractéristiques analytiques sont rapportées en trois tableaux annexés, sous les n° 25 à 44). En particulier, cette étude ne comporte pas d'exemples des limons fins battants au sous-sol argileux imperméable, très fréquents en Saône et Loire, dans la Bresse Chalonnaise.

Analyse physique

Les 20 points représentatifs dans le triangle des textures sont, à l'inverse du groupement des sols de Dombes, très éparpillés et présentent la répartition suivante :

Deux sols sont faiblement argileux (11 à 16 %)

Huit sols sont assez argileux (24 à 35 %)

Dix sols sont très argileux (39 à 57 %) et tombent dans la dénomination "argile" ou "argile limoneuse".

La teneur en matière organique, mesurée par la perte au feu, est en général très élevée; l'échantillonnage ayant porté sur 17 sols de prairie pour lesquels la perte au feu varie de 5,9 à 14,2 % et sur trois sols de cultures, moins argileux (nº 38, 39, 42).

Analyse chimique

Azote total

Les teneurs sont du fait de l'échantillonnage, très élevées (1,75 à 6,75 °/°° pour les prairies et 1,15 à 1,70 °/°° pour les céréales).

Acide phosphorique assimilable

La teneur en P205 varie de 0,12 à 0,30 $^{\circ}$ / $^{\circ}$ 0, avec une moyenne de 0,21 $^{\circ}$ / $^{\circ}$ 0. Ces sols sont donc assez bien pourvus en P205.

Bases échangeables

On enregistre des variations considérables.

La chaux échangeable varie de 1,60 à 10,60 °/° avec une teneur moyenne de 5,15 °/° Certains sols ont des traces de calcaire (n° 35, 43) ou sont légèrement calcaires (n° 31, 38, 42, 44).

La magnésie échangeable varie de 0,10 à 0,44 °/°°, avec une teneur moyenne de 0,19 °/°°. Les trois sols riches en magnésie (n° 29, 30, 36) sont également riches en chaux échangeable ; ce sont aussi les trois sols les plus argileux de l'ensemble (triangle des textures).

La capacité d'échange pour les bases (T) est élevée, s'agissant de sols pour la plupart argileux et riches en matière organique. T varie de 12,5 meq à 48 meq %. Pour l'ensemble, la capacité d'échange croît très régulièrement avec le taux d'argile (voir tableau plus loin) à part deux exceptions (n° 32 et 33 sols argileux à plus faible capacité d'échange).

Les sols très argileux, à très forte capacité d'échange voient leur complexe absorbant pas tout à fait saturé par les cations échangeables, ce qui explique que l'on trouve des pH acides malgré des teneurs assez élevées en bases échangeables.

Les taux de saturation en bases, c'est-à-dire : 100 (K + Ca + Mg en meq)

en ne considérant que les cations déterminés ont été les suivants pour quelques numéros :

No	132	27	40	29	30	36	44
taux de satu- ration	32 , 3 %	58,6	66,3		76,0	82,4	109,3
Нq	5,9	6,5	6 , 9	6,6	7,3	7,0	8,2

Les 16 sols non calcaires ont un taux moyen de saturation en bases de 61,7 % (pour une capacité moyenne de 31,5 meq %) et un pH moyen de 6,7.

Les 4 sols calcaires ont un taux moyen de saturation de 100,4 % (T moyen 20.2 meg %) et un pH moyen de 8.4.

LE POTASSIUM

Potasse échangeable

La teneur en potasse échangeable est comprise entre 0,06 et 0,22 $^{\circ}/^{\circ\circ}$, avec une teneur moyenne de 0,11 $^{\circ}/^{\circ\circ}$.

3 sols ont de 0,06 à 0,08 °/° K20 et en moyenne 1,91 °/° Ca0, 0,11 °/° Mg0 10 sols ont de 0,09 à 0,11 °/° K20 " " 4,92 °/° Ca0 0,18 °/° Mg0 5 sols ont de 0,12 à 0,14 °/° K20 " " 6,65 °/° Ca0 0,21 °/° Mg0 2 sols ont 0,15 °/° et plus K20 " " 8,46 °/° Ca0 0,30 °/° Mg0

Il semble donc exister une liaison entre teneurs en potasse et en chaux et magnésie.

Le taux de saturation en potassium

Il est dans l'ensemble très faible, allant de 0,4 à 1,7 %. La réalisation d'un taux de saturation en K de 3 % exigerait pour la famille de sols étudiés (T = 12,5 à 48 meq %) une teneur en K échangeable allant de 0,37 à 1,44 meq % ou de 0,17 à 0,67 $^{\circ}$ en K20) c'est-à-dire exactement trois fois plus de potasse échangeable que ces sols n'en renferment !

Un tel but est évidemment hors de portée pratique, au moins pour certains de ces sols, dont nous verrons d'ailleurs que le pouvoir fixateur énergique pourrait rendre encore plus vain l'objectif précédent.

En présence de cette difficulté considérable, on voit l'intérêt qu'il y a de savoir si ces sols argileux, si mal dotés en potassium, au moins relativement à leur capacité d'échange, ne seraient pas dotés d'un certain pouvoir de libération qui simplifierait d'autant la tâche ingrate de l'enrichissement par la fertilisation.

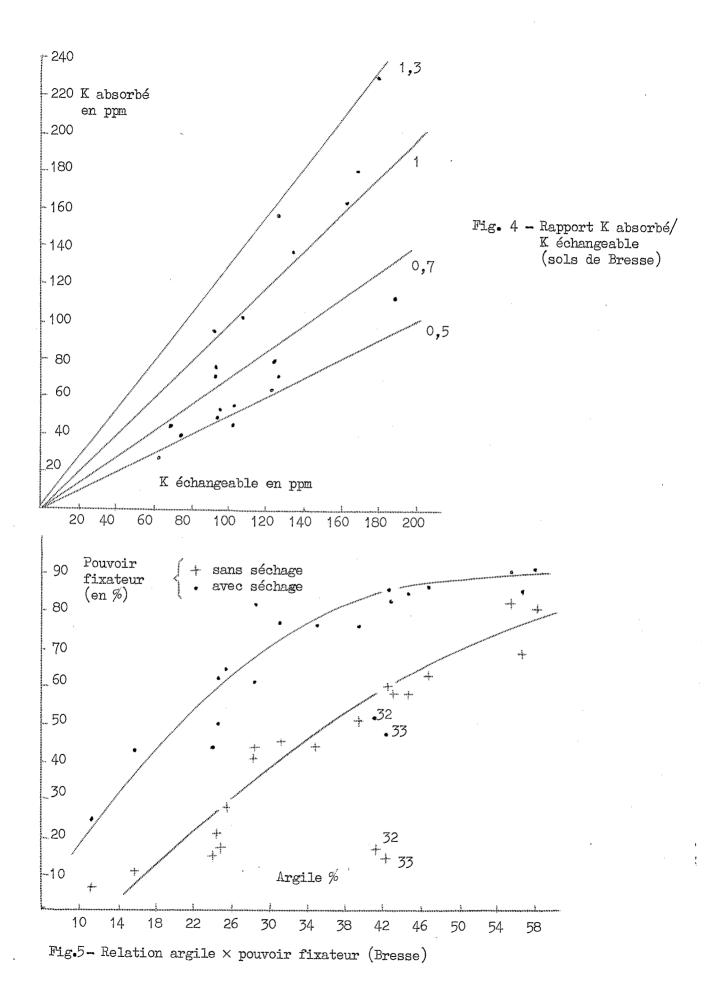
Extraction biologique du potassium

Pour les 20 sols étudiés, le potassium absorbé a varié de 29 à 232 ppm tandis que le potassium échangeable avant culture variait de 64 à 189 ppm, variations très comparables à celles notées pour les sols de Dombes.

Il n'y a pas ici, de liaison nette entre K échangeable ou K absorbé et le taux d'argile. Les sols les plus argileux du groupe présentent même de plus faibles absorptions.

Ainsi les 9 sols les plus argileux de la série, ayant plus de 40 % d'argile ont une teneur moyenne en K échangeable de 119 ppm et une absorption moyenne nettement inférieure (73 ppm). Et les 8 sols les moins argileux, ayant moins de 30 % d'argile ont une teneur moyenne en K échangeable de 120 ppm, pratiquement identique à la précédente, mais une absorption moyenne supérieure de 121 ppm.

L'examen du rapport K absorbé/K échangeable permet de distinguer les groupes de sols suivants (Fig. 4).


1) Sols à rapport nettement inférieur à 1, pour lesquels K absorbé est nettement plus faible que K échangeable.

Ils sont ici au nombre de 11, représentant ainsi la moitié des sols étudiés. Leur rapport est compris entre 0,45 et 0,66, avec une moyenne de 0,55, nettement faible.

Nº sols	25	37	36	26	28	27	41	30	33	32	29
Argile	28,4	11,2	55,5	42,9	31,2	44,8	46,6	58 , 4	42,1	41,4	56 , 7
K échangeable	64	69	76	95	95	102	104	1 <i>2</i> 3	124	126	189
K libéré	20	38	65	40	32	53	47	36	54	45	<i>7</i> 3

Ce groupe présente des teneurs en K échangeable très variables (64 à 189 ppm). Pour ces sols, le potassium semble fortement lié. La libération de potassium initialement non échangeable est comprise entre 20 et 73

ppm. Elle est donc faible pour six de ces sols (20 à 40 ppm) et plus nette pour les cinq autres.

La libération moyenne du groupe est de 46 ppm et sa teneur en K échangeable moyenne est de 106 ppm.

La teneur en argile est très élevée mis à part les nº 25, 37, 28, Sur les 9 sols

La teneur en argile est très élevée, mis à part les n° 25, 37, 28. Sur les 9 sols ayant plus de 40 % d'argile, 8 appartiennent à ce groupe (seul le n° 40 y échappe).

2) Sols à rapport assez voisin de 1

Ils sont au nombre de 7, présentant des teneurs en K échangeable très variables. Leur rapport est compris entre 0,76 et 1,06, avec une valeur moyenne de 0,94. On peut, à l'intérieur de ce groupe, rechercher s'il y a eu mobilisation des réserves ou non.

Nº sols	42	34	43	44	40	35	31	39	38
Argile	15 , 6	24 ,1	34 , 8	39,1	43,0	24,6	25,1	25,5	28,4
K échangeable	94	94	94	107	134	162	169	127	179
K libéré	62	79	81	104	118	131	160	159	232

On constate dans le tableau ci-dessus un parallélisme caractérisé entre le potassium libéré et le potassium échangeable. La libération est assez substantielle pour les quatre plus riches.

La libération moyenne du groupe est de 105 ppm et sa teneur en K échangeable moyenne est de 122 ppm.

Par différence avec le groupe précédent, il s'agit ici des sols les moins argileux du groupe, mis à part le n° 40.

3) Sols à rapport un peu supérieur à 1

Ce groupe est très peu représenté (n° 39 et 38) (voir le tableau précédent). Il s'agit d'ailleurs de deux des sols en culture, sols moins argileux, à libération importante.

Le pouvoir fixateur

La liaison entre le taux d'argile et le pouvoir fixateur est exprimée par la figure 5.

Le pouvoir fixateur sans séchage varie pour l'ensemble des 20 sols de 7 à 82 %. Huit sols seulement ont un pouvoir fixateur inférieur à 30 %. Le pouvoir fixateur des sols ayant plus de 40 % d'argile atteint 50 %.

Deux sols sont en discordance avec la liaison: ce sont les nº 32 et 33 issus d'une même pièce; ils ont un comportement très voisin et présentent également une capacité d'échange plutôt faible relativement aux taux d'argile. Il s'agit sans doute d'argiles différentes. Le pouvoir fixateur avec séchage varie de 25 à 91 %, très fortement lié au taux d'argile (mis à part les nº 32, 33). Les sols à pouvoir fixateur élevé ont tendance à présenter les faibles rapports K absorbé/K échangeable.

Synthèse des résultats

Les sols de Bresse étudiés, très argileux dans l'ensemble, recouvrent cependant une gamme assez large à cet égard (11 à 57 % d'argile) et pour la capacité d'échange (12,5 à 48 meq %). Ces sols présentent un éventail de teneurs en potassium de 0,06 à 0,22 $^{\circ}$.

La subdivision en trois groupes, en fonction du rapport K absorbé/K échangeable, se résume ainsi :

	K échangeable	K libéré	<u>K abs.</u> K éch.	Argile
11 sols 7 sols 2 sols	106 ppm 122 ppm 153 ppm	46 ppm 105 ppm 195 ppm	0,55 0,94 1,27	41,7 % 29,5 % 26,9 %
moyennes	116 ppm	81 ppm	0,76	35,9 %

Compte tenu de la critique formulée pour les Dombes, sur la valeur de la moyenne, on peut dire cependant que le sol moyen a une teneur en potasse échangeable (détermination Laboratoire d'Aspach) de 116 ppm (soit 0,14 °/°° en K20), qu'il présente une libération de potassium, faible à moyenne (81 ppm ou 0,09 °/°° K20) et un pouvoir fixateur élevé. Les plantes rencontrent de la difficulté pour y prélever le potassium dit échangeable.

Le tableau suivant où les 20 sols ont été classés dans l'ordre des capacités d'échange décroissantes, donne une meilleure image d'ensemble de la dynamique du potassium dans ces sols.

L	T. ~	OCODET CITE						
Мо	Capacité échange meq %	Argile %	Potas libéré	sium échang.	<u>K abs.</u> K éch.	Pouvoi fixate humide	ur	Comportement vis à vis du potassium
30 36 29 41 27	48,0 48,0 47,5 40,5 40,0	58,4 55,5 56,7 46,6 44,8	36 65 73 47 53	1 <i>2</i> 3 76 189 104 102	0,52 0,51 0,60 0,53 0,45	80 82 68 63 58	91 90 85 87 85	Sols très argileux à capacité d'échange très élevée. Très faible rapport K abs/K éch Le potassium est fortement lié. Faible libération - Très fort pouvoir fixateur.
40 26 43 28 32 44 25 33	37,0 35,0 32,5 30,5 30,0 27,0 26,0 25,0	43,0 42,9 34,8 31,2 41,4 39,1 28,4 42,1	118 40 81 32 45 104 20 54	134 95 94 95 126 107 64	1,02 0,55 0,80 0,54 0,56 0,96 0,45 0,64	58 58 44 45 17 51 44	83 86 76 77 52 76 82 48	Sols argileux ayant le plus souventun faible rapport K abs/ K éch. très faible libération sauf n° 40, 43, 44 très forte fixation sauf les n° 32 et 33
38 31 39 35 34	20,0 18,5 18,0 18,0 16,0	28,4 25,1 25,5 24,6 24,1	232 160 159 131 79	179 169 127 162 94	1,30 1,06 1,24 1,00 1,00	41 17 28 21 15	61 63 64 50 44	Sols moyennement argileux 24 à 28 % à moyenne CE (16 à 20 meq%) doués d'une libération importante - rapport K abs/K éch. = 1 ou > 1 - pouvoir fixateur relativement modéré.
42 37	15,0 12,5	15,6 11,2	62 38	94 69	0,76 0,66	11 7	43 25	Sols peu argileux, pauvres en K éch. à faible rapport K ab/K éch à faible pouvoir fixateur

- Les deux premières colonnes montrent qu'à quelques interversions près, il y a une très forte liaison positive entre taux d'argile et capacité d'échange.
- Il n'y a pas de liaison nette entre les deux caractères précédents et la teneur en K échangeable.
- Les sols les plus argileux, à forte capacité d'échange, à fort pouvoir fixateur ont les plus faibles rapports K ${\it mbs/K}$ éch.

Les 11 sols de ce groupe se retrouvent presque tous dans la moitié supérieure du tableau. Ils ne sont doués que d'une faible libération de potassium non échangeable.

III / ALLUVIONS FLUVIALES DE L'AIN

Il ne s'agit ici que de formuler quelques observations puisque trois points de prélèvements seulement sont rapportés.

Analyse physique

Le squelette du sol représenté par des graviers et gallets ronds est important (0 à 40 cm).

Aussi la texture est-elle beaucoup plus grossière que dans la Dombes ou la Bresse :

argile: 16 à 23 %

Limon + sable très fin : 34 à 56 %

Sable grossier + sable fin : 20 à 47 %

La teneur en matière organique (perte au feu) est élevée (sols bruns humifères).

Analyse chimique

La teneur en azote total est particulièrement élevée pour le sol et très notable encore en sous-sol.

Les teneurs en acide phosphorique assimilable sont très élevées pour les sols (moyenne 0,36 °/°°) et particulièrement basses pour les sous-sols (moyenne 0,09 °/°°). Les teneurs en chaux échangeable sont très satisfaisantes (2,16 à 3,66 °/°°) et il en est de même pour la magnésie.

La capacité d'échange est moyenne et le complexe absorbant est saturé à plus de 80 % pour les n° 45, 47, à 61 % pour le n° 49.

Les pH sont très groupés vers 7,4 pour le sol.

Le potassium

La teneur en K20 est moyenne $(0,18 \, ^{\circ})^{\circ \circ}$ à satisfaisante $(0,41 \, ^{\circ})^{\circ \circ}$ pour le sol, plus faible en sous-sol $(0,12 \, ^{\circ})^{\circ \circ}$ en moyenne). Le taux de saturation en potassium est satisfaisant.

Les rapports K absorbé/K échangeable sont dans l'ensemble voisins de 1, aussi bien pour le sol que pour le sous-sol (rapport élevé pour le n° 47). Le potassium échangeable exprime donc bien la quantité de potassium disponible pour les plantes. La libération, moyenne pour les deux sols à éléments grossiers, est par contre élevée pour le n° 47. La libération en gous sel est feible

pour le nº 47. La libération en sous-sol est faible.

Le pouvoir fixateur des trois sols est très faible sans séchage; il est élevé avec séchage pour les n° 45, 46, 47, 48 et faible pour les n° 49 et 50.

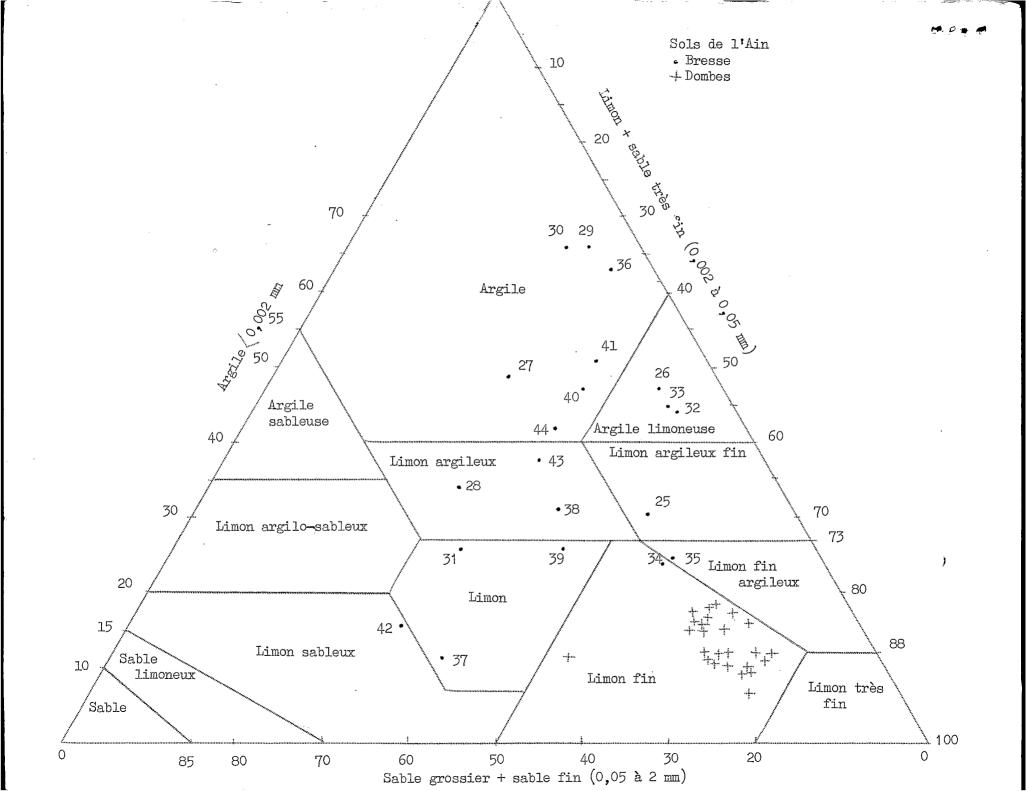
On se trouve donc en présence de sols nettement plus riches en potasse que les précédents, tant en valeur absolue, qu'en valeur relative, par rapport à la capacité d'échange. Les plantes semblent y puiser facilement des quantités voisines de celles du K échangeable. Mais la libération de potassium y semble assez variable.

Etude des sols de l'Ain (sols sur alluvions glaciaires des Dombes)

Commune Meximieux Meximieux (Pérouges)										
Nom de l'agriculteur	Soff		Coin		Soffray		(Pérouges) Soffray			
Nom de la pièce	Les Li	•	i .	urches	Chatenay		Les Liattes			
Date de prélèvement	nov.		nov. 1966		nov. 1966		nov. 1966			
Culture 1967	Col		Maīs		Blé		Prairie n			
Profondeur	sol	s/sol	sol s/sol		sol s/sol		sol s/sol			
Nº Laboratoire	68.125	68.132	68.135à 68.142		68.143 à	68.150	68.123 à 68.124			
Eléments grossiers (sup. à 2mm)	2,4	2,2	1,9	1,8	1,6	3,2	3,4	1,2		
Analyse physique terre fine (%)										
Sable grossier (2 à 0,2 mm) Sable fin (0,2 à 0,05 mm) Sable très fin (0,05 à 0,02 mm)	4,9 14,2 43,0	4,7 13,0 41,0	3,9 14,8 41,7	2,6 12,0 38,6	2,6 10,0 46,0	1,8 11,7 41,1	11,8 22,2 32,5	3,9 13,5 42,7		
Limon (0,02 à 0,002 mm) Argile (inf. à 0,002 mm) Perte au feu	23,0 11,8 3,1	24,0 15,7 1,6	25,8 12,2 1,6	27,8 18,5 0,5	28,0 11,6 1,8	27,6 17,0 0,8	20,6 10,6 2,3	23,0 15,9 1,0		
рН	6,7	6,6	7,0	6 , 2	6,6	6,4	7,9	7,7		
Analyse chimique		•		·	·			·		
N total °/°°	1,35	0,70	1,00	0,55	1,01	0,52	2 , 30	0,50		
P205 assimilable °/°°	0,12	0,04	0,21	0,05	0,08	0,05	0,26	0,09		
K20 échangeable º/ºº	0,07	0,03	0,06	0,04	0,03	0,03	0,06	0,05		
CaO échangeable º/ºº	1,20	0,80	0,88	0,64	0,40	0,40	1,04	0,88		
MgO échangeable º/ºº	0,09	0,07	0,07	0,06	0,06	0,06	0,06	0,08		
K échangeable (meq %)	0,15	0,064	0,13	0,09	0,064	0,064	0,13	0,11		
Capacité échange (meq %) T	12,0	11,0	11,0	12,0	10.0	10,5	11,0	11,0		
Taux de saturation en K 100 K/I		0,6	1,2	0,7	0,6	0,6	1,2	1,0		
Analyse Stanford Station d'Aspa	<u>h</u>									
N° Aspach	8759	8760	8761	8762	8763	8764	8757	8758		
N° essai Aspach	67-02	67-02	67-02	67-02	67-02	67-02	67-02	67-02		
K échangeable (ppm)	62	27	77	42	44	25	75	51		
K absorbé (ppm)	49	16	61	40	34	23	71	34		
K absorbé/K échangeable	0,79	0,59	0,79	0,95	0,77	0,92	0,95	0,67		
K échangeable après culture	49	32	57	44	46	39	65	55		
Variation K éch: en coursculture	-13	+ 5	- 20	+ 2	+ 2	+ 14	- 10	+ 4		
K libéré K rétrogradé	36 -	21	41	42	36	37 -	61	3 8		
Pouvoir fixateur Station d'Aspa	l ch					:	 -	•		
Sans séchage %	12	19	. 8	15	4	15	10	20		
Avec séchage %	31	53	24	47	21	43	26	50		
Nº de l'étude	1	2	3	· 4	5	6	7	· 8		

Etude des sols de l'Ain (sols sur alluvions glaciaires des Dombes)

Commune		Mon	tluel			Mont	luel	
Nom de l'agriculteur			orèche		Lassus	Georges		lan
Nom de la pièce	vieille	Padock		Pré	La	Cossieux		Grande
,	prairie			Berthet			nette	Terre
Date de prélèvement	}~	fin nove				nov. 66		1966
,	1			za colza		blé	maīs	maïs
Profondeur	sol	sol	sol	sol	sol	sol	sol	sol
Nº Laboratoire	68738	68737	68740	68739	69020		68813	68814
Eléments grossiers (sup. à 2mm)	0,6	0,6	1,8	0,9	0,8	2,0	1,1	0,4
Analyse physique terre fine (%)								
Sable grossier (2 à 0,2 mm) Sable fin (0,2 à 0,05 mm) Sable très fin (0,05 à 0,02 mm) Limon (0,02 à 0,002 mm) Argile (inf. à 0,002 mm) Perte au feu	2,3 10,7 43,8 25,3 14,5 3,4	2,6 12,6 51,9 21,9 9,9 2,1	4,0 14,2 45,4 19,5 15,1 1,8	2,2 13,0 50,9 19,6 12,0 2,3	2,9 13,7 44,0 20,0 17,4 2,0	2,7 14,7 46,1 20,3 15,3 0,9	1,7 16,9 52,3 16,3 10,7 2,1	1,0 14,7 53,9 19,7 9,2 1,5
рН	5,7	7,3	7,2	6,4	6,5	7,1	6,4	6,9
Analyse chimique								
N total °/°°	1,95	0,90	0,95	1,10	1,45	0,80	1,10	0,75
P205 assimilable °/°°	0,07	0,32	0,21	0,13	0,24	0,32	0,23	0,31
K20 échangeable °/°° Ca0 échangeable °/°° Mg0 échangeable °/°°	0,13 1,52 0,17	0,20 1,60 0,12	0,09 2,46 0,20	0,13 1,52 0,16	0,18 2,32 0,21	0,09 2,54 0,22	0,14 1,20 0,14	0,06 1,28 0,12
K échangeable (meq %) Capacité échange (meq %) T Taux de saturation en K 100 K/T	0,28 15,5 1,8	0,43 13,5 3,2	0,20 16,5 1,2	0,28 11,5 2,4	0,40 13,0 3,1	0,20 12,5 1,6	0,31 11,0 2,8	0,14 10,0 1,4
Analyse Stanford Station d'Aspach				·	1			
N° Aspach N° essai Aspach	8408 66 – 12	8414 66 –1 2	8411 66 – 12	84 1 3 66 –1 2	8404 66 – 12	8405 66 – 12	8409 66-	8415 -1 2
K échangeable (ppm) K absorbé (ppm) K absorbé/K échangeable K échangeable après culture Variation K éch. en cours culture	118 92 0,78 51 - 67	189 186 0,98 51 - 138	68 114 1,68 59 - 9	96 84 0,87 48 - 48	156 228 1,46 75 -81	73 113 1,56 44 - 29	137 140 1,02 54 - 83	43 66 1,53 44 + 1
K libéré K rétrogradé	25 -	48 -	105 -	36 -	147	84	57 -	67 -
Pouvoir fixateur Station d'Aspach					,			
Sans séchage % Avec séchage %	12 58	8 26	41 65	9 2 7	15 52	30 63	5 25	8 26
Nº de l'étude	9	10	11	12	13	14	15	16


Demians Demians Bochard Virsist Locari La sier Sarve haut	Commune	Mexim	nieux	Mont	tluel	Montluel	St. Ar	dré de	Corev
Date de prélèvement	l ·	E .					l .		•
Date de prélèvement Nov. 1966 Nov. 1									
Date de prélèvement 1966 1974 1966 1974 1966 1974 1967 1966 1974 1967 1976	_			sier	Serve		_		_
Culture 1967 Profondeur Sol s	,			t e					
Sol								-	I
Nº Laboratoire 68755 68736 68741 68742 68485 68815 68816 64341 Eldments grossiers (sup. à 2mm) 2,6 4,0 0,3 0,7 3,5 0,8 0,3 1,8 Analyse physique terre fine (%) Sable grossier (2 à 0,2 mm) 4,7 3,8 2,0 1,1 2,6 4,5 1,2 1,0 Sable tràs fin (0,2 à 0,02 mm) 11,1 10,3 14,1 15,0 14,2 12,9 9,1 15,0 Sable tràs fin (0,05 à 0,02 mm) 44,9 36,7 47,6 53,5 48,0 51,9 44,9 55,5 Argile (inf. à 0,002 mm) 10,2 17,8 16,3 8,5 11,6 11,4 16,1 6,5 Perte au feu 2,5 2,0 1,5 1,9 1,8 1,5 2,2 1,7 PH 5,7 6,6 6,8 5,7 6,6 6,3 6,1 6,4 Analyse ohimique N total 0/00 1,20 0,15 0,20 0,28 0,10 0,13 0,08 0,23 0,33 K20 échangeable 0/00 0,15 0,20 0,28 0,10 0,13 0,08 0,23 0,33 K20 échangeable 0/00 0,16 0,11 0,04 0,06 0,08 0,11 0,05 Ca0 échangeable 0/00 0,38 1,52 2,54 0,48 0,88 1,04 1,28 0,65 Mg0 échangeable 0/00 0,10 0,10 0,29 0,06 0,09 0,20 0,19 0,08 K échangeable (meq %) T 12,0 13,0 15,5 12,0 10,5 12,0 13,5 8,2 Taux de saturation en K 100 K/T 1,7 2,6 1,5 0,7 1,2 1,5 1,8 1,5 Analyse Stanford Station d'Aspach N Aspach N Aspach N Expand (ppm) 54 101 120 18 56 122 70 57 K absorbé (ppm) 54 101 120 18 56 122 70 57 K absorbé (ppm) 54 101 120 18 56 122 70 57 K absorbé (ppm) 54 101 120 18 56 122 70 57 K absorbé (ppm) 54 101 120 18 56 122 70 57 K absorbé (ppm) 54 101 120 18 56 122 70 57 K absorbé (ppm) 54 101 120 18 56 122 70 57 K absorbé (ppm) 54 101 120 18 56 122 70 57 K absorbé (pm) 54 101 120 18 56 122 70 57 K absorbé (pm) 54 101 120 18 56 122 70 57 K absorbé (pm) 54 101 120 18 56 122 70 57 Fouvoir fixateur Station d'Aspach 17 17		, -		_	-	S	_		i .
Eléments grossiers (sup. à 2mm)	§	1		•)			1
Analyse physique terre fine (%) Sable grossier (2 à 0,2 mm) 4,7 3,8 2,0 1,1 2,6 4,5 1,2 1,0 Sable fin (0,2 à 0,05 mm) 14,1 10,5 14,1 15,0 14,2 2,9 9,1 15,0 5,5 5,5 5,6 6,0 5,9 44,9 55,5 5,5 5,5 5,5 5,5 5,5 5,9 44,9 55,5 5,5 5,5 5,5 5,5 5,5 5,9 44,9 55,5 5,									
Sable grossier (2 à 0,2 mm) Sable fin (0,2 à 0,05 mm) Sable très fin (0,2 à 0,05 mm) 11,1 1 10,3 14,1 15,0 14,2 12,9 9,1 15,0 Sable très fin (0,05 à 0,02 mm) 14,1 1 10,3 14,1 15,0 14,2 12,9 9,1 15,0 Sable très fin (0,05 à 0,02 mm) 26,6 29,4 18,5 20,0 21,8 17,8 26,5 22,5 Argile (inf. à 0,002 mm) 10,2 17,8 16,3 8,5 11,6 11,4 16,1 6,3 Ferte au feu 2,5 2,0 1,5 1,9 1,8 1,5 2,2 1,7 PH 5,7 6,6 6,8 5,7 6,6 6,3 6,1 6,4 Analyse chimique N total 0/00 N total 0/00 0,15 0,20 0,28 0,10 0,15 0,00 0,95 1,60 0,90 P205 assimilable 0/00 0,15 0,20 0,28 0,10 0,15 0,00 0,25 0,33 K20 échangeable 0/00 0,08 1,52 2,54 0,48 0,88 1,04 1,28 0,63 Mg0 échangeable 0/00 0,10 0,10 0,29 0,06 0,09 0,20 0,19 0,08 K échangeable 0/00 0,10 0,10 0,29 0,06 0,09 0,20 0,19 0,08 K échangeable (mm q %) 0,20 0,24 0,09 0,34 0,24 0,09 0,20 0,19 0,08 K échangeable (mm q %) T 12,0 13,0 15,5 12,0 10,5 12,0 13,5 8,2 Taux de saturation en K 100 K/T 1,7 2,6 1,5 0,7 1,2 1,5 1,8 1,3 Analyse Stanford Station d'Aspach N° essai Aspach N° essai Aspach Se sasinford Station d'Aspach K échangeable (pm) S 4 101 120 18 56 70 122 70 57 K absorbé/K échangeable O,66 0,76 1,52 0,44 0,70 1,74 0,69 0,90 K échangeable après culture Variation K éch. en cours culture Variation K éch		2,6	4,0	0,3	0,7	3, 5	0,8	0,3	1,8
Sable fin (0,2 à 0,05 mm) Sable très fin (0,05 à 0,02 mm) Sable très fin (0,05 à 0,02 mm) Linom (0,02 à 0,002 mm) Argile (inf. à 0,002 mm) Argile (inf. à 0,002 mm) Solie très fin (0,05 à 0,02 mm) Argile (inf. à 0,002 mm) Argile (inf. à 0,002 mm) Argile (inf. à 0,002 mm) Solie très fin (0,02 à 0,002 mm) Argile (inf. à 0,002 mm) Argile (inf. à 0,002 mm) Argile (inf. à 0,002 mm) Solie très fin (0,05 à 0,02 mm) Solie très fin (0,05 à 0,02 mm) Argile (inf. à 0,002 mm) Argile (inf. à 0,002 mm) Solie très fin (0,05 à 0,02 mm) Argile (inf. à 0,002 mm) Argile (inf. à 1,002									
Sable très fin (0,05 à 0,02 mm)									
Limon (0,02 à 0,002 mm) 26,6 29,4 18,5 20,0 21,8 17,8 26,5 22,5 22,5 27,5									
Argile (inf. à 0,002 mm)						•			
Perte au feu 2,5 2,0 1,5 1,9 1,8 1,5 2,2 1,7 pH 5,7 6,6 6,8 5,7 6,6 6,6 6,3 6,1 6,4 Analyse chimique N total °/°° 1,20 1,05 0,80 0,90 1,00 0,95 1,60 0,90 P205 assimilable °/°° 0,09 0,15 0,20 0,28 0,10 0,13 0,08 0,23 0,33 K20 échangeable °/°° 0,09 0,16 0,11 0,04 0,06 0,08 0,11 0,05 CaO échangeable °/°° 0,88 1,52 2,54 0,48 0,88 1,04 1,28 0,63 MgO échangeable °/°° 0,10 0,10 0,29 0,06 0,09 0,20 0,19 0,08 MgO échangeable em meq %) 0,20 0,34 0,24 0,09 0,13 0,18 0,24 0,11 Capacité échange (meq %) T T Taux de saturation en K 100 K/T 1,7 2,6 1,5 12,0 10,5 12,0 13,5 8,2 Taux de saturation en K 100 K/T 1,7 2,6 1,5 0,7 1,2 1,5 1,8 1,3 Analyse Stanford Station d'Aspach N° essai Aspach 66-12 66-12 66-12 66-12 66-12 K échangeable (ppm) 82 133 79 41 80 70 102 63 K absorbé (ppm) 82 133 79 41 80 70 102 63 K absorbé (ppm) 54 101 120 18 56 122 70 57 K absorbé K échangeable après culture 47 92 33 -18 -18 -11 -59 -31 K Libéré 7 9 87 0 38 111 11 26 K rétrogradé 7 9 87 0 38 111 11 26 K rétrogradé 9 9 9 36 3 9 12 16 4 Avec séchage % 9 9 36 3 9 12 16 4 Avec séchage % 9 9 9 36 36 3 9 12 16 4 Avec séchage % 9 9 9 36 36 3 9 12 16 4 Avec séchage % 9 9 9 36 36 3 9 12 16 4 Avec séchage %			•						
## 5,7 6,6 6,8 5,7 6,6 6,3 6,1 6,4 6,4 6,4 6,4 6,5 6,1 6,4 6,4 6,4 6,5 6,5 6,1 6,4 6,4 6,5 6,5 6,1 6,4 6,4 6,5 6,5 6,1 6,4 6,5 6,5 6,1 6,4 6,5 6,5 6,5 6,1 6,4 6,5 6,5 6,5 6,5 6,5 6,5 6,5 6,5 6,5 6,5		, ,							
Analyse chimique 1,20 1,05 0,80 0,90 1,00 0,95 1,60 0,90 P205 assimilable °/°° 0,15 0,20 0,28 0,10 0,15 0,08 0,23 0,33 K20 échangeable °/°° 0,09 0,16 0,11 0,04 0,06 0,08 0,11 0,05 Ca0 échangeable °/°° 0,88 1,52 2,54 0,48 0,88 1,04 1,28 0,65 Mg0 échangeable (en meq %) 0,10 0,10 0,29 0,06 0,09 0,20 0,19 0,08 K échangeable (en meq %) 0,20 0,34 0,24 0,09 0,13 0,18 0,24 0,11 Capacité échange (meq %) 12,0 13,0 15,5 12,0 13,5 8,2 Taux de saturation en K 100 K/T 1,7 2,6 1,5 0,7 1,2 1,5 1,8 1,3 Analyse Stanford Station d'Aspach 8407 8410 8406 8412 8733 8416 8417 <td></td> <td></td> <td>•</td> <td>1</td> <td></td> <td>i '</td> <td>1</td> <td></td> <td>i .</td>			•	1		i '	1		i .
N total °/°° 1,20 1,05 0,80 0,90 1,00 0,95 1,60 0,90 P205 assimilable °/°° 0,15 0,20 0,28 0,10 0,13 0,08 0,23 0,33 K20 échangeable °/°° 0,09 0,16 0,11 0,04 0,06 0,08 0,11 0,05 Ca0 échangeable °/°° 0,88 1,52 2,54 0,48 0,88 1,04 1,28 0,65 Mg0 échangeable (en meq %) K échangeable (en meq %) Capacité échange (meq %) T Taux de saturation en K 100 K/T 1,7 2,6 1,5 12,0 10,5 12,0 13,5 8,2 Taux de saturation en K 100 K/T N° Aspach N° Aspach N° Aspach N° essai Aspach K échangeable (ppm) K échangeable (ppm) K échangeable (ppm) 82 133 79 41 80 70 102 63 K absorbé (ppm) K échangeable après culture Variation K éch. en cours culture Variation K éch. en cours culture Variation K éch. en cours culture Pouvoir fixateur Station d'Aspach Sans séchage % 9 9 9 36 3 9 12 16 4 Avec séchage % 9 9 9 36 3 9 12 16 4 Avec séchage % 9 9 9 36 3 9 12 16 4 Avec séchage % 9 9 9 36 3 9 12 16 4 Avec séchage %	_),,	0,0	0,0	291	0,0	,,,	0,1	0,4
P205 assimilable °/°°		1.20	1.05	0.80	0.90	1.00	0.95	1.60	0.90
R20 \(\frac{\text{changeable o'}{\circ 0} \) \(\frac{\text{col} \text{changeable o'}{\text{col} \text{col}		1	•		,	1	1	•	, · .
CaO échangeable 0/00			•	1	•	1	1	•	1
MgO échangeable °/°° 0,10 0,10 0,29 0,06 0,09 0,20 0,19 0,08 K échangeable (en meq %) 0,20 0,34 0,24 0,09 0,13 0,18 0,24 0,11 Capacité échange (meq %) T 12,0 13,0 15,5 12,0 10,5 12,0 13,5 8,2 Taux de saturation en K 100 K/T 1,7 2,6 1,5 0,7 1,2 1,5 1,8 1,3 Analyse Stanford Station d'Aspach 8410 8406 8412 8733 8416 8417 8367 N° essai Aspach 8407 8410 8406 8412 8733 8416 8417 8367 K échangeable (ppm) 82 135 79 41 80 70 102 66-12 K absorbé (ppm) 82 135 79 41 80 70 102 63 K absorbé (ppm) 84 101 120 18 56 122 70 57 K ábasorbé (ppm) 54 101 120 18 56 122 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
K échangeable (en meq %) Capacité échange (meq %) T Taux de saturation en K 100 K/T N° Aspach N° Aspach Séchangeable (ppm) K échangeable (ppm) K échangeable (ppm) K échangeable (ppm) K échangeable (ppm) K échangeable (ppm) K absorbé/K échangeable Variation K éch. en cours culture Variation K éch. en cours culture Pouvoir fixateur Station d'Aspach Sans séchage % Sans séch									
Capacité échange (meq %) T Taux de saturation en K 100 K/T Taux de saturation en K 100 K/T Analyse Stanford Station d'Aspach N° Aspach N° essai Aspach K échangeable (ppm) K absorbé (ppm) K absorbé/K échangeable Variation K éch. en cours culture Variation K éch. en cours culture Pouvoir fixateur Station d'Aspach Sams séchage % Sams séchage % Pouvoir fixateur Station d'Aspach Sams séchage %	K échangeahle (en meg %)	0.20	0.34	0.24	0.00	0.13	0.18	0.24	0.11
Analyse Stanford Station d'Aspach 8407 8410 8406 8412 8733 8416 8417 8367 N° Aspach 8407 8410 8406 8412 8733 8416 8417 8367 N° essai Aspach 66-12 66-12 66-12 67-02 66-12 66-12 66-12 K échangeable (ppm) 82 133 79 41 80 70 102 63 K absorbé/K échangeable 0,66 0,76 1,52 0,44 0,70 1,74 0,69 0,90 K échangeable après culture 35 41 46 23 62 59 43 32 Variation K éch. en cours culture 47 92 33 18 18 11 -59 -31 K libéré 7 9 87 0 38 111 11 26 Fritzateur Station d'Aspach - - - - - - - - - - - - - - - - - - - <			•		•	1 '		•	, .
Analyse Stanford Station d'Aspach N° Aspach N° essai Aspach Séchangeable (ppm) Stabsorbé (ppm) Sechangeable									
N° Aspach 8407 8410 8406 8412 8733 8416 8417 8367 N° essai Aspach 66-12 62 59 43 32 </td <td>Analyse Stanford Station d'Aspach</td> <td> </td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>- Company of the contract of t</td> <td></td>	Analyse Stanford Station d'Aspach	 						- Company of the contract of t	
N° essai Aspach 66-12 65 70 57 70 18 56 122 70 57 57 64 62 59 43 32 32 73 18 -18 -11 -59 -31 11 11 26 26 20 20 -20 -20 <td></td> <td>0407</td> <td>0440</td> <td>0406</td> <td>0440</td> <td>0777</td> <td>0/16</td> <td>0/17</td> <td>07.67</td>		0407	0440	0406	0440	0777	0/16	0/17	07.67
K échangeable (ppm) 82 133 79 41 80 70 102 63 K absorbé (ppm) 54 101 120 18 56 122 70 57 K absorbé/K échangeable 0,66 0,76 1,52 0,44 0,70 1,74 0,69 0,90 K échangeable après culture 35 41 46 23 62 59 43 32 Variation K éch. en cours culture 47 -92 -33 -18 -18 -11 -59 -31 K libéré 7 9 87 0 38 111 11 26 K rétrogradé - <				•					
K absorbé (ppm) 54 101 120 18 56 122 70 57 K absorbé/K échangeable 0,66 0,76 1,52 0,44 0,70 1,74 0,69 0,90 K échangeable après culture 35 41 46 23 62 59 43 32 Variation K éch. en cours culture 47 -92 -33 -18 -18 -11 -59 -31 K libéré 7 9 87 0 38 111 11 26 K rétrogradé -	K échangeable (nnm)	82	133	79	A.1	1	70	102	63
K absorbé/K échangeable 0,66 0,76 1,52 0,44 0,70 1,74 0,69 0,90 K échangeable après culture 35 41 46 23 62 59 43 32 Variation K éch. en cours culture 47 -92 -33 -18 -18 -11 -59 -31 K libéré 7 9 87 0 38 111 11 26 K rétrogradé - </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
K échangeable après culture 35 41 46 23 62 59 43 32 Variation K éch. en cours culture 47 -92 -33 -18 -18 -11 -59 -31 K libéré 7 9 87 0 38 111 11 26 K rétrogradé - 3 9		0,66		1			•		
K libéré 7 9 87 0 38 111 11 26 K rétrogradé -		35							
K rétrogradé - <t< td=""><td>Variation K éch. en cours culture</td><td>- 47</td><td>- 92</td><td>- 33</td><td>- 18</td><td>- 18</td><td>- 11</td><td>- 59</td><td>- 31</td></t<>	Variation K éch. en cours culture	- 47	- 92	- 33	- 18	- 18	- 11	- 59	- 31
K rétrogradé - <t< td=""><td>K libéré</td><td>7</td><td>9</td><td>87</td><td>0</td><td>38</td><td>111</td><td>11</td><td>26</td></t<>	K libéré	7	9	87	0	38	111	11	26
Sans séchage % 9 9 36 3 9 12 16 4 Avec séchage % 23 23 76 16 31 49 39 17	K rétrogradé	_	***	-	****	_	-	-	_
Avec séchage % 23 23 76 16 31 49 39 17	Pouvoir fixateur Station d'Aspach								
Avec séchage % 23 23 76 16 31 49 39 17	Sans séchage %	9	9	36	3	9	12	16	4
Nº de l'étude 17 18 19 20 21 22 23 24	,			1			1		
	N° de l'étude	17	18	19	20	21	22	23	24

Commune	For	ssiat		Foissiat		Berey	ziet:
Nom de l'Agriculteur		nard		Renoud			rin
Nom de la pièce	Avar	ière	Queue	Favier	Pré du	Verget	Au
-	Sud	Nord	Loup		Pont		champ
Date de prélèvement	Déc.	1966	Décemb	re 1966		Déc.	
Culture 1967	Prairie	Prairie	Prairie	Prairie	Prairie		Prairie
Profondeur	15 cm	15 cm	sol	18 cm	sol	sol	sol
Nº Laboratoire	68.991	68.992	68.996	68,997	68.998	68,986	68.987
Eléments grossiers (sup. à 2 mm)	0	0	0	0	0	0	0,9
Analyse physique terre fine (%)							
Sable grossier (2 à 0,2 mm) Sable fin (0,2 à 0,05 mm) Sable très fin (0,05 à 0,02 mm) Limon (0,02 à 0,002 mm) Argile (inf. à 0,002 mm) Perte au feu Calcaire total	8,7 7,8 19,7 29,0 28,4 6,4	3,1 4,0 9,4 31,6 42,9 9,0	14,4 6,7 7,8 16,2 44,8 10,1	24,0 9,3 10,2 17,0 31,2 8,3	2,9 2,3 3,9 20,0 56,7 14,2	1,9 5,3 5,4 16,5 58,4 12,5	9,7 27,9 14,9 15,9 25,1 - 6,5
Нд	6,2	6,1	6 , 5	6,2	6 , 6	7,3	8 , 5
Analyse chimique							
N total º/ºº	3 , 35	4,75	5 , 35	4,20	6 , 75	6 , 50	1,75
P205 assimilable °/°°	0,25	0,26	0,23	0,19	0,27	0,26	0,14
K20 échangeable °/°° Ca0 échangeable °/°° Mg0 échangeable °/°°	0,07 2,94 0,13	0,10 3,90 0,15	0,12 6,16 0,24	0,13 5,94 0,15	0,22 10,48 0,35	0,13 9,52 0,44	0,14 5,00 0,13
K échangeable (meq $\%$) Capacité échange (meq $\%$) = T Taux de saturation en K = 100 K/T	0,16 26,0 0,6	0,22 35,0 0,6	0,26 40,0 0,7	0,29 30,5 0,9	0,49 47,5 1,0	0,29 48,0 0,6	0,31 18,5 1,7
Analyse Stanford Station d'Aspach							
N° Aspach N° essai Aspach	8770 67 – 02	8771 67 – 02	8772 67 - 02	8773 67 – 02	8774 67 – 02	8765 67 – 02	8766 67 – 02
K échangeable (ppm) K absorbé (ppm) K absorbé/K échangeable K échangeable après culture Variation K éch. en cours culture	64 29 0,45 55 - 9	95 52 0,55 83 12	102 46 0,45 109 + 7	95 51 0,54 76 19	189 113 0,60 149 - 40	123 64 0,52 95 28	169 180 1,06 149 – 20
K libéré K rétrogradé	20 .	40 	53 -	32 -	73 -	36 -	160 -
Pouvoir fixateur Station d'Aspach							
Sans séchage % Avec séchage %	44 82	58 86	58 85	45 77	68 85	80 91	17 63
Nº de l'étude	25	26	27	28	29	30	31

-					,		
Commune		Cormo		!		yat	
Nom de l'Agriculteur Nom de la pièce	Log Pillog	Favie Les Pilles		Lever du	Fe: Grand	rrin	
Mom de ra brece	nes tilles	nes illies	Robin	soleil	Pré		
Date de prélèvement		Décembre		DOTOTT	décembre 1966		
Culture 1967	Prairie n	Prairie n	Prairie t	Prairie t	Prairie		
Profondeur	15 cm	15 cm	15 cm	15 cm	15 cm	15 cm	
Nº Laboratoire	69.006	69.007	69.008	69.009	69.001	69.002	
Eléments grossiers (sup. à 2 mm)	0	0	0,8	1,3	0	0	
Analyse physique terre fine (%)							
Sable grossier (2 à 0,2 mm)	1,8	2,6	4,3	6,4	1,6	16,0	
Sable fin (0,2 à 0,05 mm)	4,5	4,9	13,2	10,3	2,8	32, 8	
Sable très fin (0,05 à 0,02 mm)	12,3	10,2	19,0	24,1	4,8	20,2	
Limon (0,02 à 0,002 mm) Argile (inf. à 0,002 mm)	33,1 41,4	35 , 1	37,0	32 , 2	23,0	17,3	
Perte au feu	6,9	42 , 1 5 , 1	24,1 2,4	24,6 2,4	55,5 12,3	. 11,2 2,5	
Calcaire total		. J, i	<i>-</i>	f tr.	12,5	<i></i> , ∪	
рН	5 , 9	6,0	6 , 9	8,0	7,0	6 , 7	
Analyse chimique							
N total º/ºº	4,20	3,40	1,60	1,70	5,95	1,40	
P205 assimilable °/°°	0,30	0,19	0,18	0,26	0,28	0,13	
K20 échangeable º/ºº	0,10	0,10	0,07	0,11	0,09	0,06	
CaO échangeable º/ºº	2,46	2,62	1,60	2,62	10,60	1,20	
MgO échangeable º/ºº	0,14	0,13	0,10	0,13	0,31	0,11	
K échangeable (en meq %)	0,22	0,22	0,16	0,24	0,20	0,13	
Capacité échange (meq $\%$) = T	30,0	25,0	16,0	18,0	48,0	12,5	
Taux de saturation en K : 100 K/T	0,7	0,9	1,0	1,3	0,4	1,0	
Analyse Stanford Station d'Aspach	, '						
Nº Aspach	8777	8778	8779	8780	8775	8776	
Nº essai Aspach	67-02	67-02	67-02	67-02	67 - 02	67 – 02	
K échangeable (ppm)	126	124	94	162	76	69	
K absorbé (ppm)		79	94	162	39	46	
K absorbé/K échangeable		0,64	1,00	1,00	0,51	0,66	
K échangeable après culture	100	99	7 9	131	102	61	
Variation K éch. en cours culture	- 26	- 25	- 15	- 31	+ 26	- 8	
K libéré	45	54	79	131	65	. 38	
K rétrogradé	-	-	-		-		
Pouvoir fixateur Station d'Aspach		,					
Sans séchage % Avec séchage %	17 52	14 · 48	15 44	21 50	82 90	7 25	
Nº de l'étude	32	3 3	34		· 36	37	
M. Ge T. Starte) <u></u>	J)	J4 	35	70	١١	

Commune		Monta				Montrevel Charnay	
Nom de l'Agriculteur Nom de la pièce	Bouvard	Paug Lière	ge. Pré de la	maison	Paget	Fontaine	T. Etano
Nom de la piece	Nord	Sud	1	2	14600	T OTTOGETTE	T 1100010
Date de prélèvement		Décembre	∍ 1966		Déc	cembre 196	66
Culture 1967	blé	orge	Prairie	Prairie	orge	_	prairie
Profondeur	20 cm	20 cm	15 cm	15 cm	sol	sol	sol
Nº Laboratoire	69.010	69.011	69.012	69.013	68,988	68,989	68.990
Eléments grossiers (sup. à 2 mm)	0,5	0,5	0	0	2,1	0	0
Analyse physique terre fine (%)							
Sable grossier (2 à 0,2 mm)	9,5	12,2	6 , 7	3 , 3	28,3	14,8	7,9
Sable fin (0,2 à 0,05 mm)	17,0	16,2	8 , 3	8,0	21,1	9 , 2	4 , 9
Sable très fin (0,05 à 0,02 mm) Limon (0,02 à 0,002 mm)	17,1 22,0	19,9 24,1	10,5 23,1	10,5 22,8	18,2 13,5	11,7 21,0	9,6 24,0
Argile (inf. à 0,002 mm)	28,4	25,5	43,0	46,6	15,6	34,8	39,1
Perte au feu	-	2,1	8,4	8,8	_	8,5	7,0
Calcaire total	6,0			-	3,3	f tr.	7,5
pH	8,5	7 , 3	6,9	6,4	8,4	7,7	8,2
Analyse chimique							
N total º/ºº	1,70	1,55	4,55	5,05	1,15	4,45	4,60
P205 assimilable °/°°	0,12	0,18	0,23	0,22	0,12	0,29	0,13
K20 échangeable º/ºº	0,14	0,10	0,15	0,11	0,10	0,11	0,11
CaO échangeable °/°°	4,60	2,32	6,44	6,68	4,04	6,08	7,92
MgO échangeable º/ºº	0,11	0,14	0,24	0,24	0,12	0,19	0,20
K échangeable (en meq %)	0,31	0,22	0,33	0,24	0,22	0,24	0,24
Capacité échange (meq %) = T	20,0	18,0		40,5	15,0		27,0
Taux de saturation en K : 100 K/T	1,6	1,2	0,9	0,6	1,5	0,7	0,9
Analyse Stanford Station d'Aspach							
N° Aspach	8781	8782	8783	8784	8767	8768	8769
Nº essai Aspach	67 – 02	67-02	67-02	67-02	67-02	67 - 02	67 - 02
K échangeable (ppm)	179	127	134	104	94	94	107
K absorbé (ppm)	232	157	137	55	71	75	103
K absorbé/K échangeable	1,30	1,24	1,02 115	0 , 53 96	0,76 85	0,80 100	0,96 108
K échangeable après culture Variation K éch. en cours culture	179	』129 + 2	- 1 9	- 8	- 9	+ 6	+ 1
·		•					
K libéré K rétrogradé	232	· 159	118	47 -	62	81 -	104
Pouvoir fixateur Station d'Aspach		_		-			
		20		C++		A A	EA
Sans séchage %	41 61	28 64	58 83	63 87	11 43	44 76	51 76
Avec séchage %	01	04	رن	01	1 47	10	
Nº de l'étude	38	39	` 40	41	42	43	44

	ı					
Commune		imieux	Mexin		Mexim	
Nom de l'Agriculteur Nom de la pièce	1	aray	Juenet		Bernin Rapan	
Date de prélèvement		à chaux • 1966	St Georges nov. 1966		nov. 1966	
Culture 1967	colza		i e	maïs		
Profondeur	sol s/sol		sol	,		s/sol
Nº Laboratoire	68.455	à 68.462	68.556 à	ı 68.563	68.447 à	68.454
Eléments grossiers (sup. à 2 mm)	28,8	28,8	1,9	0,3	36,9	41,6
Analyse physique terre fine (%)						
Sable grossier (2 à 0,2 mm) Sable fin (0,2 à 0,05 mm) Sable très fin (0,05 à 0,02 mm) Limon (0,02 à 0,002 mm) Argile (inf. à 0,002 mm) Perte au feu	13,5 18,5 19,5 22,0 23,0 3,5	13,4 17,3 20,2 22,7 25,0 1,4	6,8 13,3 26,1 30,0 21,2 2,6	3,7 8,9 23,1 32,0 31,1 1,2	27,9 18,9 15,9 17,9 16,2 3,2	30,4 17,6 14,8 17,3 17,8 2,1
рН	7,4	7 , 6	7 , 5	7,6	7,2	7,4
Analyse chimique						
N total º/ºº	2,05	1,10	1,60	1,10	2,10	1,45
P205 assimilable °/°°	0,43	0,09	0,29	0,03	0,37	0,15
K2O échangeable °/°° CaO échangeable °/°° MgO échangeable °/°°	0,41 3,66 0,21	0,16 3,66 0,21	0,20 3,50 0,21	0,09 4,04 0,21	0,18 2,16 0,14	0,1 2 3,10 0,16
K échangeable (en meq %) Capacité échange (meq %) = T Taux de saturation en K = 100 K/T	0,86 17,8 4,8	0,34 16,6 2,0	0,42 16,8 2,5	0,20 20,2 1,0	0,38 14,3 2,7	0 ,26 12,1 2,3
Analyse Stanford Station d'Aspach						
N° Aspach N° essai Aspach	8418 66	8419 5 – 12	8420 66-	8421 -12	8422 66	84 <i>2</i> 3 - 12
K échangeable (ppm) K absorbé (ppm) K absorbé/K échangeable K échangeable après culture Variation K éch. en cours culture	345 350 1,01 112 - 233	107 106 0,99 59 - 48	165 253 1,53 118 - 47	65 69 1,06 48 - 17	175 178 1,02 69 -106	91 74 0,81 39 - 52
K libéré K rétrogradé	117 -	58 -	206 -	52 -	72 -	22 -
Pouvoir fixateur Station d'Aspach						
Sans séchage % Avec séchage %	15 7 9	21 68	14 70	39 80	6 28	13 31
Nº de l'étude	45	46	47	48	49	50

