grude de la comerwnion inmbhemonyplqug me hiatson avec
 DE Pantoum maximum Jacq. dAFRICUE DE I'EST.

1. Introduetion.

Le but de cet alsal ast d"etudier la comptition intergénotypique dans une population natuxellement polywoxphe.

T* Gvolution d'una population depend en erande partse des valeurs adaptative, au sens large, des ditetrents phénotypes qui la composent. Le valeur adaytative d'un phenotype comprend ia valeur adaptative intisinseque de son genotype moditiee par les conditione d'environnement, celles-ci faisant interventr le milleu naturel sinsi que l'ensemble des autree phenotypes composant la population compte tenu de leure frequences.

On se propose de mettre on prssence deux a deux les diturents phónotypes composant la population ot aten etudiex le conportement au travers de plusLeura caractèreg quantítatifs représentants an mieux le vigueur.

Qel ne pounre nous domen que dea résultate trè partiels puisque a'une part nous ne pouvons reproduire les condithons olimatiques et ecologique du hilieu naturel et deutro part nous ne dieposons pas des proportione ass differents phenotypes de la population.

On peut stattendre copendent I frouver des ascoctatione partiou1ières avantagouses obtonir aea informations sur la part due a la compétition dans la valour adaptetatre.

Selon le modele aéteminisigo de soruez BRme at usamos (1968) quatre situations sont possibles entre daux genotypes X_{1}, X_{y}.

Solt b/i/j 12 valeur atun caractere du genotype X_{1} en preaence de 5
Hi 1a valeur du oaractère on parcelle pure
on pose $b_{1 / t}=b_{1} / j-H_{1}$
ou bien $b_{i / j}=b_{j / 1}=0$ entuation noutre ORSTOM Fonds Documentaire No 29666 ev 1 Cote : B

$$
\begin{aligned}
& b_{1 / 1}+b_{j / 1}<0 \text { our compensation } \\
& b_{1 / 4}+b_{j / 1}=0 \text { complementarita } \\
& b_{1 / j}+b_{j / 2}>0 \text { sur compensation }
\end{aligned}
$$

Pour btuaier un peu plus completenont 1a valeur adaptative, outre Les caracteres de vigueur, deux ruodee a'extension de la population sont a consiafrer d'una part l'extension per multiplication vegetative (marcottage) et d"autre part la reproduction par grainos on tenant compte de la faculte gempinative dea genotypes. Il faut évidemant fatre intervenix le vielliismoment des touffes qui peut etre different arun genotype a 1 tautra.
 Ien otonos avantages et dáserautag@a par la préance des autres: Copendant 2^{\prime} 'ftude des caracteree nombre a inflorascencea ot nombre de tallea par pied peut nouk gegortar quelques rensetgnenents.

II faudra copendant prendxe beaucoup de precautions pour conclure ratsonnablement on particulier les niches Gcologiquot rencontwes in situ ne sont pas les nêmes que cellee drun ohary a Aatopodown et il eft fort possible que les associations qui sy constituent soient aussi diftérentes.

2. Muspositut.

 Soy beans I. Sraluethon of effects and proposed ineld plot design Crop. SoL. $7,371-376$.

Considerone 2 genotypes 女 at x. Le comportemant de X vic-d-vis do la presence de 1 gera ftudte, Aans 9 parcelles differmentes ayant La conifguration euivante:

Les competifeurs sont de genotypee X ou Y dans les proportions suivantes:

$$
\begin{aligned}
& X-X-0-0|X-X-1-0| X-X-2-01 \\
& x-7-3-0 ; x-1-4-0 \mid x-x-0-1+
\end{aligned}
$$

Le prenior ohifurre xeprésente le nombre de competiteuxs de génotypes T, sux I'anneau intérieur, les autwes ©tant de genotype \bar{X}; le second le nombre de ompetiteups de génotypes Y sur 1 tanneau extem NLeur, les autres etant de génotype X.

In perwattant X et Y on obtient la asponition reciproque X est alore le teatear et X le competiteur.
 1a fo工 sur 1 anneau intérieuf et sus 1"anneau extfuieur on peut estiner les interactions entre les atux anneaux.

Dans une promikre Gtape nous now contenterond d'unode simple.
Chaque bloc est forme de sous-bloc* disponás alatoirement \& I'fintepleux du bloc. Chaque bloc comprend les combinalsons onthe 2 elones X et Y ot let realproques sot t te parcelles en tout. A 2 interteur den sou-blocs len parcelles sont tisposfen al6atoirament.

Distance ontre teateur et competiteur ($0,30 \mathrm{~m}$ et $0,43 \mathrm{~m}$)
Détati d"une parcelle aveo deux competiteurs f faille diatanee.

Détail a'une parcelle aveq quatra competiteura a plum granda diatance.

10 bloos de $21 \mathrm{~m} \times 5.4 \mathrm{~m}$ depaces ate 2 m
5 sour-blocs par bloo de $21 \mathrm{mx} 0,60 \mathrm{~m}$ espaces de $0,60 \mathrm{~m}$ 18 parcelles par sous-ivloc $0,60 \mathrm{~m} \times 0,60 \mathrm{~m}$ espaeds de $0,60 \mathrm{~m}$
81 pieds par olone par sousmbloc (pieds a $0,30 \mathrm{~m}$ sur $0,30 \mathrm{~m}$)
162 pleda per sous-bloc
810 plede par bloc
8.100 pieds dans 2 "essat

900 pieds mesurfes dans 2 *essed.
E'Lnstallation se fera partir de grainea, miaec a gexmer en boittea de pêtri puie repiquêes en pots.
3. hatertal.

Ies clones utilleés sont ectats dans masai de descniption
 factoxte11e des comrespondances sur des caracteres moxyhologiques quallt tatifis".

天 166 - K 169. 2 clones trồs difitrents zecoltêe au mêne endroit, pousemt en propowions equivalentes.
\% 130 - K 131-2 133 . 3 olonee de 1a popuLation polynorphe II (1engeru स2).

3 phenotypes aitefentes.
K $100-114{ }^{2} 2$ phenotypes toujours ditedrents wecoltos dans dos populationa aistinctec mats relabivemant pon Glougneas (33 miles).

Le polynoxphisme des populations apomictiques pourrait stexpli-
 pay we seflection ae phenotypes qui peuvent at afdor a me maintenir. Dans les populations mononorphes seula sont restees Ies phénotypes Les pius adaptés, lee autres ont ateparis on ont recule leur aire d!extension vens duatnes wegiont.

Four I'enaemble das clones une analyge de vantance sux les paroelles on pur pour las disferenth darcctexes.

Pour chaque couple de clones (ordonad) un daleul de la negreesion sux 2 a nombre de oompetiteura; max 2, anneau interieux puis aux

Porx onaque clone X_{i} et pown chaque annean une analise on eosat Tactompat pout stro fate on cometarent les $n-1$ clones $X_{1} X_{2}$... $x_{1-1} x_{i+1} \ldots X_{n}$ come des trut tonants lee aifferenta niveaux de oes trix tements ftant le nombre a compett teuxs.
 paxaison deo dirferentes noditications dues 3 La coupetition des
 pouvant Gre fat wee pour chuque canectere.

Cech neprisente un volume de colou assez lmportant. def prio-

5. Gargotèrae Étuaiés.

Besenthexlament des caracteses quantltatua

- Wo de tallea.
- Date d egparition de la prenLere intloresconce.
- Wb alinflomescenoes.
- Tesuxas classiques sur $20 \% 5$ premiexess Intioxescences.
- Polds arats de la plante.

6. Pxolorgement.

 cetrouvor Evontuellenent Hes hyorioea formes maturelioment dans 24 population.

BHBLTOGRAPHLE

The role of intergenotypie interaotions in plant breading. 12th Intern. Oongr. Genet. Exoc. $3: 201-222$.

AHLRD R Wh* ADALS, J. - 1969 -
 XIT. Interenotypie conpettion aqu poputation stuoture in baxiay knd what.
The ambricen Maturalist Vol. $103 n^{\circ}$ 934: 621-646*

The setination and nse of noloctive values in preasoting poyulation change.

Population studies in predoninantiy self pollinatea species. 1. Analysin of quantitative genetic ohangea in a butihybrid popalation of banley. Erolution 16 : 90-101.

The genetios of Inbroeding poputations.
Ady: Genet. 14 55-125.

Populabions suotes in pradonnanthy ati poll inetad spectes.
 parduelera 1 n Ina bean poguatinone.
Trolution 17 : 470-400.

Brequency depencent selectaon.
Hexed故 19. pant. 2 . 201-206.

HARDING, J*, MELARD, R.7. - $1969-$
Population studies in predominantly aclf polifnetad species. XII. Interactions batweon Zooi affectint fitneas In a population of Phaseolu lunatura*
Genetwos U. 5. A. (1969) 61, no 3, 721-736.

Populations studies in predornantiy aclf polilnated ppectere
IX. soquenay depandent aelection in Phaseolus Iunatus.

Proc. Mati. Acad. Sei. U. 3 , 56: 99-104.

Lopulations ptudies 2n predoringnty self pollinated speetes. VI. Genotic variability betwen and within natuxel populam
 II Oalifomia Genetios, 51 , 49-62.

Popuiations atudes in prodominontyy dels pozitnated specteg.

tion of berley.
Proc. 拱t. Acad. Sel. 46 . 1371-1377.

Stunamtion of nodels in rozveng maxed nolfing and randon matng * Stachantic vaxation in outcrosntag and seleotion parometerw.
Howod ty 23. 414-432.

NARESTE T $-1969-$
Whe affect of halative frequency of apectes In Compotition Evolution $19,350-254$

The efect of retctive frequency in spectea in competition
e seappraieal.
Evolution 21 : 638-641.

Inter genotypio compatithon in Soy beans
I. सvaluation of affecte and proposed fiela glot aestgn. Orog. Ses. 7 - 371-376.

Inter genotypic conpetition in plant populations.
I. Teed back systers with stable oquilibxia in populationa of autogamone homozygous Lines.
©xops. Sci. 8 : 61-66.

Toter senatypie competitan in plant popuLations.
II. Maintenence of allelic polynoxphist wh wxatoncy depondeat seloction ata mixsa selfing and zandot mathg Genetica, 0.3.A. (1969), 61, n 4* 675-891.

Tha number of bnancea polymoxphim that cen be maintenea th a natural papulation.

Rogutation atudies in pactontnathy self polLheted ppectee.

faxtburea of competing yure Linea:
HexedLby volune 19, Part. $2-$ ay 1964.

