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Abstract. In the Spitsbergen region (78"N), field radiometer measurements were 
collected from training zones considered to be representative of different litholog- 
ical units and compared with the corresponding SPOT multispectral digital values. 
Correlations between field measurements and remotely-sensed data have been 
established, as well as the SPOT XS3 sensor's dependence on the solar zenith 
angle. On the basis of the relations between the field and satellite data, the 
boundaries between the different lithological units obtained from illuminated 
slopes can be extended into shaded zones. 

1. Introduction 
SPOT imagery has been tested in order to obtain geological data in arctic areas 

such as the Spitsbergen archipelago. The SPOT multispectral mode has three spectral 
bands (XS1, XS2 and XS3) in the visible and near-infrared wavelength ranges (0-50 to 
0.59, 0.61 to 0.68 and 0.79 to 0.89 pm respectively). 

i n  high latitudes (76"N to 80"N), the combination of Sun elevation and the 
mountainous morphology results in a large spread of shadow. 

The albedo recorded by satellites depends on the atmospheric conditions as well as 
on the surface properties. In the present work we consider only the surface 
characteristics in comparison with geological data. 

The spectral response of remotely-sensed data partly depends on the luminosity 
which is essentially a function of terrain slope, Sun azimuth and elevation angle 
(Holben and Justice 1980, 1981, Dave and Bernstein 1982, Kowalik and Marsh 1982), 
the presence of vegetation, colour and roughness of the ground all of which 
characterize the reflecting surface (Horwarh 1981, Spiridonov er Ùl .  1981, Escadafai 
and Pouget 1986). The colour and roughness factors of the ground response are 
strongly influenced by the vegetation cover, particularly when it is more than 30 per 
cent (Long et al. 1978, Graetz and Gentle 1982). It is important to point out that the 
Spitsbergen area is characterized by a lack of vegetation and the spectral response of 
the ground surface is therefore principally dependent upon the rock properties. 

Considerable modelling efforts have been directed towards a better understanding 
of the effects of vegetation on the reflectance values (Stoner and Baumgardner 1981, 
Colwell 1981). In addition. the brightness of the ground depends upon the shadow 
created by its roughness (Girard 1983): In arid zones, which are comparable to the 
Spitsbergen region in lacking vegetation, the spectral luminosities in general depend 
on the characteristics of the ground surface, roughness (stoniness and soil crusting) 
and colour which are directly linked to the soil texture (Pouget ef al. 1984). 

Field measurements, taking into account'the Sun elevation and azimuth, the slope 

- 

0143-1 161 yo 53.00 1990 Taylor & Francis Ltd 

O. R.S.T.O. M. FGiids Docunientaire 



2 54 N .  Lyhrris et al. 

angle. the roughness and the colour of the outcrops. have been made with a CIMEL 
portable radiometer calibrated with the SPOT satellite wavelength bands (CSI, CS3. 
CS3). The training zones were chosen on continuous slopes subjected tc! the same 
luminosity Hux angle and relations between values calculated from field measure- 
ments and remotely-sensed data were obtained. 

The results obtained on directly illuminated slopes have been extended to the 
shaded slopes. by using the method proposed by Mering and Parrot (1982). By this 
method geological boundaries can be recognized and from this it is possible to 
determine the structures affecting the rock units. 

2. Field data 
2.1. Stratiyruphy 

The investigated area is located on the southern edge of the Sassenfjorden fjord in 
central Spitsbergen (figure I) .  The rocks in this area are mainly Mesozoic to Cenozoic 
sediments of shallow marine to non-marine origin (figure 2). The lithologic units of 
Triassic and Jurassic age are I150m thick. I n  this study only the Triassic to Jurassic 
sediments have been analysed. 
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Figure 1. Geological map of the investigated area. 
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The oldest layers are the deposits of the Lower Triassic Vardebukta Formation, 
consisting mainly of siltstones and silty shales with interbedded sandstones (Tozer 
and Parker 1968). 

The Vardebukta Formation is overlain by the Kongïessfjellet Formation belong- 
ing to the upper part of the Lower Triassic. The base of the Kongressfjellet Formation 
is composed of dark grey shales and shaley siltstones. The upper part of this 
formation is represented by dark and dark grey finely laminated shales with some 
interbedded siltstones. The dating of the 270 m upper part gives a Middle Triassic age 
(Tozer and Parker 1968). 

The succeeding Kapp Toscana Formation is composed of dark grey shales and 
sandy shales of early Ladinian to Carnian age. Siltstones, sandy shales and sand- 
stones located in the upper part of the sequence, are of Rhetian age (e.g. Major and 
Nagy 1972). The totarthickness of the Kapp Toscana Formation is 250m. 

The overlying Janusfjellet Formation (Parker 1967), which is more than 500m 
thick and corresponds to the Jurassic and Lower Cretaceous sequence, is composed of 
dark marine shales with lighter coloured sandstones. Siltstone beds are present in the 
upper part of this formation. 

The lithological units described above are essentially horizontally bedded in the 
western Sassendalen area. Most of our training zones are located on the western slope 
of the Marmierfjellet, between the Sassendalen and Flowerdalen valleys (figure I ) .  

2.2 Field measureì,ients 
The training zones have been defined as representative of the different lithological 

units encountered. They are located on the satellite image in order to compare the 
field results and the satellite values. 

For each training zone, several measurements were made in order to consider the 
different parameters of the ground surface. Parameters such as albedo, information 
about the structure and the texture of the ground surface, orientation of the site and 
the inclination of the slope have been taken into account. The constituent elements of 
the outcrops, and their proportions, have been measured. The recorded CIMEL 
values correspond to the ratio between the vertical component of the incident flux and 
the vertically reflected flux, measured on a 1 mz surface. 

The training zones have been plotted on the corresponding satellite images. Each 
set of measures has been calibrated by comparison to a reference surface (baryte 
paper). Then the whole set of field measurements was restored on a homogeneous 
scale for the three SPOT bands. Thus, these calibrated values may be considered as 
results of measurements in comparable atmospheric conditions. 

The field measurements take into account the colour of the outcrops as well as the 
presence of pebbles on the ground surface. The radiometric sampling areas were 
chosen to be more-or-less perpendicular to the flux luminosity angle; therefore, the 
effect due to the presence of pebbles on the reflecting surface is not significant. Thus, 
one can assume that the colour is the predominant parameter. 

The different lithological layers consist of a mixture of shales, siltstones and 
sandstones. The stratigraphic levels differ from each other in the proportions of these 
three elements. As shown in figure 3, it is possible to discriminate the principal 
constituents of the stratigraphic column on the basis of the reflectance values in the 
three SPOT bands. 

Figure 3 shows that the three wavebands strongly discriminate shales from 
sandstones. It is possible to distinguish the different types of shales in the third band, 
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- Figure 3. Diagram of the CIMEL radiometer measurements for the different lithological 
units. 

CS3 (near-infrared). As for remotely-sensed data, the third waveband, CS3, is the best 
for discrimination. 

3. Remotely-sensed data 
The SPOT scene (path 157, row 141 on 27 August 1986 at 17.53.09 local time) was 

acquired when the maximum snow melting had occurred. At this time a significant 
area of outcrop is exposed, but unfortunately the- Sun elevation is extremely low 
(7.5"), resulting in the development of shadowed zones hiding most of the landscape. 
In addition, the reflected light is very weak and the values for the illuminated rock 
formations are between 1 1  and 14 on XSI, between 8 and 1 1  on XS2 and between 5 
and 14 on XS3. The corresponding reflectance values recorded on these three sensors 
were considerably decreased, especially in the XS3 band, because of the high moisture 
saturation on the surface of the lithological units due to the thawing action of frozen 
liquid within the rocks during the summer in Spitsbergen. On the other hand, as 
shown by Shine and Henderson-Sellers (19SS), the albedo is drastically reduced at  
high latitudes where snow fields are abundant. 

The remotely-sensed data encountered in the training zones located on illu- 
minated slopes show that XS3 is better for discrimination than XS1 and XS2. The 
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SPOT values for shale outcrops (figure 3) are between 5 and 1 1  on XS3, whereas on 
XSI they are approximately 1 1 .  and on XS2 between 8 and 9. The different types of 
shales (black. dark and grey) can be distinguished only by means of XS3. In contrast. 
the different types of sandstones can be distinguished on XSI and XS2 bands. I t  is 
generally assumed thai XSI and XS? cannot be correlated when vegetation is present. 
The correlation coefficients obtained for the outcrops on the satellite image. are 
XSljXSZ = 0.8455. XS I,’XS3 = 0.6920 and XS2iXS3 = 04207. 

The following correlation coefficients are higher if we take into account the 
whole scene including snow and clouds, where they are XSl/XS2 =0.9859, 
XS 1 /XS3 = 0.8869, and XSZlXS3 = 0-933 I .  

In both cases, the ratio of XSI to XS3 shows the last degree of decorrelation. 
Therefore, we chose to use the bidimensional histogram XSl versus XS3. However, 
relatively high values corresponding to the snow fields are scattered on this bidimen- 
sional histogram and i t  is possible to distifiguish two different trends (figure 4). The 
first one lies in the 10 to 22 interval on.XSI and between 2 and 8 on XS3 and is related 
to ice fields and moisture, with low values in the near-infrared band. The second zone 
lies between 8 and 14 on XSI and between 5 and 14 on XS3. and this corresponds to 
rocky surfaces. Thresholding the histogram surface corresponding to the rock units 
perpendicular to the main bisectrix and the lithological units can readily be identified 
(figure 5).  In addition. analysis of the bidimensional histogram shows that the rock 
surfaces situated in shadow correspond to values between 8 and 10 on XSI, and 
between 5 and 8 on XS3 (figure 4). 

4. Correlations between remotely-sensed data and field measurements 
The collected CIMEL values are summarized in figure 3. Figures 6, 7 and 8 show 

the different trends of correlated CIMEL values versus SPOT values. The CIMEL 
values for each lithological unit are virtually linear (figures 6 .  7 and 8). This feature is 
due to the weak range of the corresponding SPOT values whose scale has been 
stretched in order to illustrate the correlation. but the clustering effect has been 
elimina t ed. 

The bidimensional histograms XSl CSI (figure 6) and XS3iCS3 (figure 8) show 
that, unlike the SPOT values, the CIMEL measurements discriminate between the 
different types of shales. On the other hand, yellow shales and sandstones which are 
discriminated between by the SPOT sensor, present the same CIMEL values. This 
difference seems to be due to the sampling. The yellow shales are often overlain by 
fragments of disrupted thin sandstone beds which are scattered on the ground 
surface. Measurements collected with the CIMEL radiometer on a 1 m’ surface seem 
to correspond to -a stoniness higher than that recorded by a SPOT pixel (400” 
surface). One SPOT pixel integrates the ensemble of the constituents (shales and 
fragments of sandstones). 

Nevertheless, the correlation for each type of rock is linear on the bidimensional 
histogram XS2 versus CS2 (figure 7). The histogram XS3 versus CS3 (figure 8) is 
similar to the XSl histogram except for the SPOT values for shales which are more 
stretched. 

4.1, Influence of ,lie topographic. eJfects 
The reflectance of the main lithological units is a function of the Sun elevation and 

azimuth (Rowan et d. 1977, Kowalik and Marsh 1982). The quantity oflight received 
(Esl) by a unit of ground surface depends on the Sun luminosity flux angle and is 
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Figure 6. Diagram of the CIMEL values versus SPOT digital numbers for the lithological 
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values. 
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'If we consider in a first approach, horizontal surfaces and a Sun elevation of about 
15' (mean value in August for the studied zone), the ground surface reflects only 25 
per cent of the Sun luminosity flux. As a matter of fact, the highest value encountered 
on flat snow fields is about 64 on the SPOT reflectance recalibrated scale (0-255) at 
this date. The dip and strike of the slope have to be taken into account for the 
computation of the reflectance in the training zones. 

The reflected flux (a) is computed as follows: 

a=cos #I sin (#I +@cos 1 . (1) 
where 4 =dip angle (horizontal reference), 0 = Sun elevation angle (horizontal 
reference) and i. = angle between solar azimuth and strike of the slope. 
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Figure 8. As figure 6 except for XS3 versus CS3. 



Diagrams for the evolution of the (I values were drawn for a 15- azimuth elevation 
angle. versus dip and strikes of the slope and different directions for the dip of the 
slope (figure 9). The value of the CIMEL degree (C,) transposed to the SPOT 
reflectance scale can be computed as follows: I 

CD=(256/ T)KCSU ( 2 )  

where T= reflectance value of the reference target, K =factor depending on the used 
calibration target material and Cs= the direct CIMEL measurement. 

The table shows a comparison between CD3 (values computed from CS3) and 
SPOT XS3 and a good correlation is observed even for the very low values registered I 
in the satellite scene. XSI and XS2 do not give such a good correlation, especially for 
the very low values. This result seems to be due to the diffuse illumination which is not 

1 
j 
! computed in the present work. However, the atmospheric effects in SPOT XSI are 

much more important than those from XS2 and XS3 bands (Singh and Clacknell 
1986). 

4.2. Extension of the geoloyiral feotures imo shady zones 

directly illuminated slopes and their spectral reflectance values in the Spitsbergen 

! 

1 
A close correlation is obtained in SPOT wavebands between rock units located on 

region where the scale of reflectance is very low. Measurements have been collected on 
all illuminated slopes in order to obtain similar conditions of analysis. The recorded 
measurements in shaded zones have been eliminated because of the extremely low 
scale of raw reflectance values on the SPOT data. 

Shaded zones are common in the Spitsbergen area. They correspond either to 
indirectly illuminated slopes, or to shadows cast due to the very low Sun elevation. 
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Lithological boundaries of niountainous regions recognized on sunlit slopes are more 
difficult to perceive on shaded slopes. because of the existence of high contrast 
between light and shadow. 

Numerical methods such as the gradient mask or the Sobel mask (Pratt 1978) try 
to take this problem into account. They accentuate contrasts between all the 
homogeneous areas of different reflectance levels. but they only give a network of 
various directions along which structural trends (e .g .  faults, bedding etc.) are filtered 
and are either accentuated or disappear. 

The method proposed by Mering and Parrot (1982) is a mask which emphasizes 
the geological boundaries. The values of the ratio between successive pixels having 
effect in two adjacent lithological boundaries are computed so that they are similar in 
illuminated and shaded zones. The proposed function which selects the values is as 
follows: (a) if I D (  K )  2 I D (  K + 1) 

:nt dips of the 

(3) i ( h )  if ID(K)<ID(K+ 1) 

J ‘ [ I D ( K ) ,  ID(K ])]=o 
fD(K) and ID(K f 1 )  correspond to the raw values of’two successive pixels K and 

K +  1 .  ,M, and M z  are positive constants. M,. generally equal to 30. allows the 
application of the logarithm function; M ,  equal to 500, improves the precision of the 
computation and places the result in the 0-155 field. 

The different lithological units were identified first on the lightened areas. Then, 
by using equation (3), it is possible to discriminate the boundaries of the successive 
lithological units on the basis of the difference in the reflectance values for two 
consecutive pixels. either on one column or on one line. Equation (3) also takes into 
account the low reflectance values of the areas blanketed by shadows. The difference 
of reflectance values in the shady zones were enhanced to the same level as that of the 
illuminated lithological counterpart. 

The use of this method makes i t  possible to delineate and determine the 
boundaries between the lithological units in areas covered by shadows utilizing 
parameters obtained from the lightened zones. Figure 10 illustrates the result of a 
thresholding of the images obtained by applying equation ( 3 )  to the XS3 SPOT band. 
On the processed document, the limits of the different rock units appear in the 
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Figure 10. Screen photography of the same SPOT image as in figure 5, processed using 
equation (3) (explanation in the text). The dotted lines correspond to the bedding. 

lightened area as well as in the shadyzones. In the raw image (figure S ) ,  the central 
portion of the prints represents the shady zone, while the upper left-hand and the 
lower right-hand corners represent the lightened areas. Figure 10 shows a set of 
parallel dotted lines, trending NW-SE and NE-SW which indicates the bedding 
traces of the sandstones, sandy shales and shales. 

5. Conclusions 
SPOT multispectral records for rock outcrops situated in high latitudes (78"N) 

can be used for geological investigations, although the digital numbers are extremely 
weak because of the low Sun elevation angle. Radiometric measurements on the three 
SPOT wavebands collected under similar light conditions discriminate between the 
different lithological sequences. Comparison between the field reflectance values and 
the SPOT records leads to a recognition of the spectral signatures of these sequences. 

Topographic effects as well as the Sun position have to be taken into account to 
establish the close correlation existing between XS3 values and field measurements. 

On the basis of the relations obtained for illuminated slopes. the boundaries of the 
different lithological units can be extended into shaded zones, in order to sketch out 
geological maps. 

Acknowledgments 
We thank Geoff Manby for helpful comments. Financial support for this research 

provided by the ATP Tklédttection project of CNRS as well as by the 



, processed using 
he  bedding. 

-e 5 ) ,  the central 
[ft-hand and the 

shows a set of 
.tes the bedding 

rs are extremely 
Lnts on the three - 
late between the 
ance values and i these sequences. 

~ into account to 
measurements. 
,oundaries of the 
ler to sketch out 

for this research 
;ell as by the 

I 
French-Norwegian Research Fondation. The fieldwork benefited from logistic sup- 
port by Elf Petroleum Company and the Norsk Polarinstitutt. 

U eferences 
COLWELL. J .  E.. 198 I .  Landsat feature and enhancement. can we separate vegetation from soil? 

Proceedings íoj’the 15rh Iniernarional Symposium on Remote Sensiny of Eni3ironment hold 
in Ocroher 1981, Vol. 2 (Ann Arbor, Michigan: Environmental Research Institute of 
Michigan). pp. 5YY-671. 

DAVE, J .  V., and BERNSTEIN, R., 1982. Effect of terrain orientation and solar position on 
satellite-level luminance observations. Remote Sensing of Enuironnienr. 12, 331-348. 

ESCADAFAL, R., and POIJGET, M., 1986. Luminance spectrale et caractères de la surface des sols 
en région aride méditerranéenne (Sud tunisien). ITC Journal, 1, 19-23. 

GIRARD, M. C., !983, Télédétection de la silrface du sol. Colloque I N R A .  32, 177-193. 
GRAETZ, R. D., and GENTLE, M. R., 1982, The relationships between reflectance characteristics 

in the Landsat wavebands and the composition and structure of  an Australian semi-arid 
shrub rangeland. Photogratnnietric Engineering and Reniore Sensing, 48, 172 1-1730. 

HOLBEN, B. N., and JUSTICE, C. O., 1980, The topographic effect on spectral response from 
Nadir-pointing sensors. Photogrammetric Engineering and Remote Sensing, 46, 

HOLBEN, B, N. and JUSTICE, C. O., 1981, An examination of spectral band ratioing to reduce 
the topographic effect on remotely sensed data. International Journal of Remote Sensing, 

HORWATH. E. H., 1981, Spectral properties of Arizona soils and rangelands and their 
relationship to Landsat digital data. PhD Dissertation, University of Arizona, U.S.A. 

KOWALIK, W. S., and MARSH, S. E., 1982, A relation between Landsat digital numbers, surface 
reflectance and the cosine of the solar zenith angle. Remote Sensing of Environment. 12, 
39-55. 

LONG, G., DEBIJSSCHE, CI., LACAZE, B., LE FLOCH. E.. and PONTANIER, R., 1978. Contribution a 
l’analyse écologique des zones arides de Tunisie avec l’aide des données de la Télédétec- 
tion spatiale. Expérience Arzotu, Final report (1975-1978) CEPE. Louis Emberger, 
INRA-Tunisie, ORSTOM, CNES, Montpellier, France. 

MAJOR, H., and NAGY, J., 1972, Geology of the Adventalen map area, No. 138 (Oslo: Norsk 
Polarinstitutt Skrifter). 

MERING, C., and PARROT, 1. F., 1982, Mise en evidence par analyse numérique des structures 
géologiques en zone montagneuse indépendamment des contrastes ombre-lumière. 
Cahiers ORSTOM, Série Géologique, 12, 3-22. 

PARKER, J. R., 1967, The Jurassic and Cretaceous sequence in Spitsbergen. Geological 
Magazine, 104,487-405. 

POUGET, M., LORTIC, B., SouIss~, A., ESCADAFAL. R., and MTIMET, A., 1984. Contribution of 
Landsat data to mapping of land resources in arid regions. Proceedings of the 18th 
Inlernational Symposium of Remote Sensing of Encironment held in Paris in October 
1984, Vol. 3 (Ann Arbor, Michigan: Environmental Research Institute of Michigan), 

1191-1 199. 

2, 115-133. 

’ 

pp. 1717-1728. 
PRKIT, W. K., 1978, Digital Image Processing (New York: Wiley & Sons). 
ROWAN, L. C. ,  GOETZ, A. F., and ASHLEY, R. P., 1977, Discrimination of hydrothermally 

altered and unaltered rocks in visible and near infrared multispectral images. Geo- 
physics, 42, 522-535. 

S H I ~ T ,  K. P., and HENDERSON-SELLERS, A., 1985, The influence of satellite spectral sensor 
response on the analysis of satellite imagery a t  high latitudes. International Journal of 
Remote Sensing. 6,  29-34. 

SINGH, S. M., and CRACKNELL, A. P., 1986, The estimation of atmospheric effects for SPOT 
using AVHRR channel-I data. International Journal of Remote Sensing, 7, 361-377. 

SPIRIDINOV, H., KUNCHEVA,’ R., and MISHEVA, E., 1981. Results and conclusions from soil an$ 
vegetation reflection coefficient measurements. Adcanc2.s ìn Space Research. 1, 11  1-1 14. 

STONER, E. R., and BAUMGARDWR, M. F., 1981, Characteristic variations in reflectance of  
surface soils. Soil Science Society of America Journal, 45, 1161-1 165. 

TOZER, E. T., and PARKER, J. R., 1968, Notes on the Triasic biostratigraphy of Svalbard. 
Geological Magazine, 105,526-542. 


