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fessor U. Schwertmann, ! 4
itut fiir Bodenkunde, : i ABSTRACT: The distribution of Fe3*-kaolinite, Al-goethite and Al-hematite and their

contents of Fe and Al in bauxites and ferricretes are controlled by water activity, dissolved silica
. ; activity, temperature and particle size. The proposed model, based on ideal solid-solution
0 Freising-Weihenstephan, i . equilibria in the Fe,0;-A1,03-8i0,-H-0 system, takes into account water and silica activities.
Veral Republic of Germany ‘ By using the same considerations as those previously developed for the Fe,0;-AL,O4-H,0
system, the model calculates the amounts of coexisting phases, Al or Fe substitution ratios in
) | goethite, hematite or kaolinite, and the stability field distributions of the minerals under various
tificas, conditions. Thermodynamic equilibrium conditions and element distributions within the
: mineral constituents are shown to be dependent on the parameters cited above. The model yields
results compatible with natural observations on lateritic profiles.

hnische Universitit Mimchen,

Laterites include bauxites, ferricretes, mottle clays, lithomarges and saprolites, and are '

es, Spain ! formed in humid tropical weathering conditions. In most lateritic profiles, kaolinite,
lackenzie, United Kingdom ’ goethites, hematites and quartz are the dominant minerals (McFarlane, 1976, 1983 ; Nahon,
. Morandi, Italy 1976; Leprun, 1979; Muller et al., 1981) while gibbsite and boehmite are also present in
organ, United Kingdom : bauxites, latosols, oxisols and several kinds of ferrallitic soils (Loughnan & Bayliss, 1961;
Ld, Germany ‘ Valeton, 1972; Sieffermann, 1973).
o, France ) A considerable number of observations show that the amounts of aluminium (Al**)
i, France ‘ substituting "iron (Fe3*) in natural or synthetic goethites range between O and 33%.
ert, France Aluminous goethites are formed under humid climates or in water-saturated environments.
1. Storr, Germany , The Al/Fe ratio increases from wet to dry areas, i.e. from the bottom to the top of profiles, and
Vilson, United Kingdom from the lower to the higher parts of landscapes. The maximum substitution ratios are
‘ obtained when goethite is associated with gibbsite or boehmite (Schwertmann ez al., 1974;
hber and December. Annual ‘ Kimpf & Schwertmann, 1983; Didier et al., 1983; Cantinolle ez al., 1984; Tardy & Nahon,
fopean Clay Groups receive 1985; Muller & Bocquier, 1986).
‘ l In natural or synthetic hematites, the Al/Fe substitution ratio varies from 0 to 15%.
K R Aluminous hematite can form in the driest parts of landscapes and its Al content increases
J, offprints, advertising and from the bottom to the top of the weathering profiles (Bardossy, 1982; Kiampf &
nager, Mineralogical Society, Schwertmann, 1983; Didier et al., 1983; Tardy & Nahon, 1985).

Thermodynamic equilibria in the Fe,05-Al,03-H,0 system, involving minerals such as
goethite, hematite, gibbsite and boehmite were previously examined in detail by Didier et al.
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(1983), Didier er al. (1985), Tardy & Nahon (1985), Trolard (1986) and Trolard & Tardy
(1987). The variables which control the systems have been found to be essentially the grain
size, temperature and the water activity which is dependent on the climatic conditions.

However, in most natural systems, aluminous goethite and hematite are associated with
kaolinite which appears as the dominant mineral widely distributed in lateritic soils and
weathering mantles. Furthermore, natural kaolinites have been found to include some Fe3*
ions in their structures (Meads & Malden, 1975; Herbillon ez al., 1976 Mestdagh er al., 1980;
Cases er al., 1982; Bonnin e al., 1982; Cantinolle e al., 1984; Muller & Bocquier, 1986).

The purpose of this paper is to introduce kaolinite in the Fe,05-Al,05-H,0 system treated

; previously by Trolard & Tardy (1987) and to show the importance of the silica activity on the
degree of Al3* substitution in goethite or hematite. '

. Thethermodynamic mineral stability fields involving Fe3+-kaolinite, Al**+-goethite, Al>*-

“hematite, gibbsite, boehmite and quartz are described in the Fe,05-A1,03:Si0,-H,O system
as functions of water and dissolved silica activities, at 25°C and 1 bar total pressure. In our
model, ajuminous goethite, aluminous hematite and ferruginous kaolinite are considered as
ideal solid-solutions between the following end-members: FeOOH, goethite, and AIOOH,
diaspore; FeO,;, hematite, and AlO,;, corundum; AIlSiO,.s(OH),, kaolinite and
FeSiO,. 5(OH)v, ferrikaolinite. The formulae of the mmerals are written for one atom of Fe
and one atom of Al, in order to respect the homogeneity among the solid-solution equations.
The models based on the equilibria of these solid-solutions allow the calculation of the Fe and
Al contents 1n the mineral associations and their dxstrlbutlons in goethite, hematite and
kaolinite. “**

It will bé'shown that kaolinite may control the activity of Alions in natural solutions and
consequenﬁ? the amount of Al in associated aluminous goethites and hematites, whereas
goethite and hematite may control the act1v1ty of Fe in solution and consequently the amount
of Fe in kaolmltes

SOLUBILITY PRODUCTS OF IRON AND ALUMINIUM OXIDES,
HYDROXIDES, OXYHYDROXIDES AND KAOLINITE

The Gibbs free energies-and the solubility products of Fe and Al oxides, hydroxides and
oxyhydroxides have been taken from the literature (Robie & Walbaum, 1968 ; Naumov ef al.,
1971; Berner, 1969; Hem & Roberson, 1967; Hem et al., 1973; Hem & Lind, 1974; Parks,
1972; Ulbrich & Merino, 1974; Helgeson er al., 1978; Hemingway & Robie, 1977a,b;
. ‘Hemingway et al., 1978; Robie et al., 1978; Tardy, 1982 or Tardy & Nahon, 1985). The most
recent data are given in Table 1 (at 25°C and 1 bar total pressure).

In the following sections the terms in brackets designate the activity of the different species
considered (Table 2). By definition, the solubility products (log K,,) (Table 3) are deduced
from the Gibbs free energies (Table 1) from the following classical relationship:

RT Ln K, = —AG%

In laterites, goethite and hematite particles are very small, generally much smaller than
1 um, and are also much more soluble than the well crystallized corresponding mineral species
(Berner, 1969; Langmuir, 1971; Trolard, 1986; Trolard & Tardy, 1987). The solubility
products estimated by Tardy & Nahon (1985) and used later by Trolard (1986) and Trolard &
Tardy (1987) correspond to minerals with very small particle size and differ considerably
from those with large crystals listed in the literature. These solubility product values are in
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TaBLE 1. Gibbs free energies of formation of minerals and aqueous species
used (kJ/mol). The data selected are those of reference (4).

n @ &) @
Fel* — 460 ~460 —4-60 — 460
Fe,0, —745-40 —742:68 ~728:07 71111
FeOOH — —488-55 —483-47 —47431
AP+ —489-36 —489-40 —489:90 —489-90
AlLO, —156825  ~1582:23  —159737  —158041
AIOOH(Dia) ~913-78 ~922:00 ~921-30 ~91270
AIOOH(Boe) — ~91840 — -91615
AI(OH); —115548  —115489  —115398  —1154-14
ALSi,O5(OH),  —3789-08  —3799-36  —378964  —3789-37
H,0 ~237-19 —237-19 ~237-19 -23719

(1) Helgeson et al. (1978)

(2) Hemingway & Robie (1977a,b)
Robie er al. (1978)

(3) Tardy (1982)

(4) Tardy & Nahon (1983)
Trolard & Tardy (1987)

fact sufficiently adequate to allow the different mineral stability fields to reproduce the
succession of mineral associations commonly observed in nature.

MODELLING IN THE Fe,0;-AL,05-S10,-H,0 SYSTEM AT 25°C AND
I BAR TOTAL PRESSURE

The Fe,0;-Al,05-Si0,-H,0 models at 25°C and 1 bar total pressure are obtained from the
thermodynamic equilibria between minerals as functions of the water activity, the activity of
dissolved silica and the bulk composition of the system considered.

Kaolinite equilibrium reactions as functions of water and silica activities

In lateritic soils and ferricretes, kaolinite is frequently associated with aluminous goethite
and aluminous hematite. The kaolinite distribution in soils has been studied by Eswaran &
De Coninck (1971), Sieffermann (1973), Novikoff (1974), Wada et al. (1972), Parfitt &
McHardy (1974), Tardy (1982), and Tardy & Novikoff (1988), among others.

Itisclear that, in water-rock systems, the solubility of Al may be controlled by the kaolinite
phase (Fritz & Tardy, 1974; Sarazin et al., 1982). -

Gibbsite-kaolinite equilibria as function of water activity. The solubility products of kaolinite
and gibbsite, given in Table 2, are written as follows (Fritz & Tardy, 1974; Tardy & Novikoff,
1988):

For kaolinite:
AlSiO,.s(OH), + 3H* & AP + 8i0y g + 2:5H,0 with:

log[AI*)/[H*]® = 1/2log K,,Kaol — 10g[SiOssq] — 25 log[H,0] + log[AISIiO,.5(OH),] (1)




k TABLE 2. Solubility products of the pure minerals and end-members involved. The values used are given in the last column and are derived from the Gibbs free energics
) listed in ;Table, 1 N colun}n 4.
O A R R j_(‘ :’; 5*:‘.

Species Reaction Solubility product definition
{ . ‘ [Fe3+] '
‘ Goethite  FeO(OH)+ 3H* & Fe* -+ 2H,0 . log 35+ 2 log [H;0] — log [FeOOH] = log K,,Goc - +0-819
’ ' ' (A1) |
': Diaspore  AIO(OH)+ 3H* & A+ + 2H,0 log W+ 2 log [H,0] — log [AIOOH] = log K, Dia +8949
! . [Fe3+] 1
i Hematite FeO,.s+3H* s Fe3* 4+ 1-5H,0 log THT + 1-5 log [H,0] — log [FeO,.5] = —Z‘Iog K,Hem +1-692
I [A13+] IR
' ) Corundum  AlO,.s + 3H* 5 AP+ + 1-5H,0 log TP + 1-5 log [H,0] — log [AIO, 5] = -2—log K, Cor +19:266
. : [AR+] ” ) :
Boehmite AIOOH + 3H* & A+ 4 2H,0 log oD + 2 log [H,0] — log [AIOOH] = log K, Boc +8:345
S [A13+] .
Gibbsite AI(OH); + 3H* & A3+ +3H,0 log TF + 3 log [H,0] — log [AI(OH);] = log K, Gib +8-205
- . . [AB+] . . .
Kaolinite AlSi0,.5(OH), + 3H* 5 AP+ + Si0,(aq) + 2-5H,0  log TP +2'5 log [H,0] + log [Si0,(aq)] — log [AISiO,.4(OH),] = log K,,Kaol +7410
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+7-410

+ 2-5 log [H,0] + log [Si0,(aq)] — log [AISiO;.s(OH),] = log K, Kaol

log

AlSiO,.s(OH), + 3H* & A+ +8i0,(aq) + 2-5H,0

‘Kaolinite
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TABLE 3. Variations of the substitution ratios in the associations (Al-hematite + Fe3*-kaolinite) and
(Al-goethite + Fe3*-kaolinite) as functions of water and silica activities, at 25°C and 1 bar total pressure.

[Si01{aq)] 10-+s2 10-%50 1Q~+00 10-3-30

[H.0] Y, Z, X, Y, Z, X2 zZ, Y, Z; X, Y, Z,

1-0 (1) 0-1801 0-9992 0-0568 0-9971 0-0178 0-9905
09 ) 0-1899 0-9993 0-0599 0-9973 0-0188 0-9910
0-8 0-2109 0-9993 02014 0-9993 0-0636 0-9974 | 0-0046 0-9918
0-7 0-2361 0-9994{ 0-0533 02154 0-99940-0168 0-9978 0-0680 0-9976 | 0-0053 0-9928
0-6 0-2436 0-9995| 0:0622 0-2326 0-9994 | 0-0196 0-9981 0-0734 0-9978 | 0-0062 0-9939
0-5 2 0-0746 0-2549 0-9995 | 0-0236 0-9934 0-0074 0-9949
0-4 3 0-2849 0-9996 | 0-0295 0-9987 0-0093 0-9959
03 3 3 0-0393 0-9991 0-0124 0-9969
0-2 3) (3) 0-0590 0-9994 0-0186 0-9980
01 3 3 ()} 0-0373 0-9990

X, is the mole fraction of corundum in aluminous hematite, ¥, the mole fraction of diaspore in aluminous
goethite and Z, the mole fraction of kaolinite in ferruginous kaolinite. (1) (Al-goethite + gibbsite) stable;
(2) (Al-goethite + boehmite) stable; (3) (Al-hematite 4- boehmite) stable.

For gibbsite:
Al(OH); + 3H* = Al¥* 4+ 3H,0 with:

log [AP+)/[H*P = log K, Gib — 3 log [H,0] + log [Al(OH)s] 2

where the terms in brackets designate activities of species. When kaolinite and gibbsite are
considered as pure phases, their activities are equal to unity so that at equilibrium between
the two minerals, the following relationship is obtained:

log [Si0;,] = 1/2 log [H,0] + 1/2 log K,Kaol — log K, Gib . (3)

At a given water activity, log [A1>*]/[H*]? is a decreasing function of log [SiO;,q)] (Fig. 1).
When silica activity decreases, the equilibrium activity ratio [AI3*+])/[H*} increases. On.the
other hand, when silica activity increases, the [AI3*}/[H*]® activity ratio decreases. When
water activity decreases, these tendencies remain, but are shifted (Fig. 1) so that kaolinite
becomes more stable.

By combining the numerical data of the solubility products of kaolinite and gibbsite (Table
2), and equation (3),

According to Fritz & Tardy (1974), at saturation i.e. in the free and pure liquid water
((H,0]=1), log [SiO,(q] = —45.

In the unsaturated zone, i.e. when [H,0] <1 ((H,0]=0-5 for example), the activity of
aqueous silica becomes lower: log [Si0;(q] = —4-65. .

If water activity decreases, the defined equilibrium activity of silica also decreases and the
kaolinite stability field enlarges compared to that of gibbsite as has already been pointed out
by Sposito (1981), Didier et al. (1983) and Tardy & Nahon (1985). Furthermore, these
relationships may also explain why at the same level in a profile, kaolinite remains stable in
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. log [S
log [ Si0, ]
X The expression (6) !
F1G6. 1. Chemical equilibrium kaolinite-solution: variations of the [AI3*)/[H*] ion activity in log [Sioz(aq)] =
aqueous solution as function of dissolved silica activity for different water activities. At saturation ([H,(
log [SiOQ(aq)] = —4-§
the finely porous materials while gibbsite is stabilized at the edges of large pores (Tardy, increased. For exgrx
1982; Tardy & Novikof, 1988). polien Water activ
Boehmite-kaolinite equilibria as function of water activity. The solubility product equation of avours.l.the st;bl‘hza
boehmite (Table 2) is written as follows: : Stability fields in th
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log [AB+]/[H*} = log K,,Boe — 2 log [H,0] + log [AIOOH] G and dissolved silica
. 459 .
Boehmite is generally a pure phase, and so [AIOOH] = 1. < 10, 4 » kaolinite i
The limit of the gibbsite-boehmite formation is defined as follows: - kaolinite and bochm
of silica activities [10
log [H,0] = log K,,Gib — log K, Boe (5) . activities, the stabil
At 25°C and 1 bar total pressure, log [H,0] = —0-14 i.e. [H,0] =~ 0-724. If water activity is ' Increases.

>0-724, the kaolinite-gibbsite equilibrium can be reached. On the other hand, if water
activity is <0-724, gibbsite is not stable and kaolinite-boehmite equilibrium has to be
considered. In permanently humid zones with high water activity, gibbsite is more stable

than boehmite, while in dry zones, at low water activity, boehmite is more stable than .From the sump. lifie
gibbsite (Tardy et al., 1988). mineral associations
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F1G. 2. Stability field distribution of gibbsite, boehmite and kaolinite as functions of water and silica

activities.

At equilibrium between boehmite and kaolinite, equations (1) and (4) must be verified
simultaneously, so that

log [SiO;¢q) = —1/2 log [H,0] + 1/2 log K,,Kaol — log K,Boe (6)

The expression (6) becomes numerically
log [SiO;(q)] = —4-64 — 1/2 log [H,0]

At saturation ([H,O]=1), the equilibrium between the two minerals is obtained when
10g [SiO;q) = —4-64. In the unsaturated zone the activity of silica at the equilibrium is
increased. For example, if [H,0]= 05, log [SiOypq] = —4-49.

When water activity decreases, the activity of silica defined at equilibrium increases, and
favours the stabilization of boehmite at the expense of kaolinite.

Stability fields in the Al,05-Si0,-H,O system as functions of the water and silica activities. In
the Al,0;5-Si0,-H,O system, the minerals considered are kaolinite, gibbsite and boehmite.

Fig. 2 illustrates the stability field distribution of these three minerals as functions of water
and dissolved silica activities. It can be seen that for all water activities, if silica activity is
<10-%57, kaolinite is not stable. In the interval of silica activities [10=437; 10-%5] gibbsite,
kaolinite and boehmite are successively stable at decreasing water activities. In the interval
of silica activities [10~%'3; 10~*0], only kaolinite or boehmite can be observed. For low water
activities, the stability field of kaolinite diminishes while the boehmite stability field
increases. -

Thermodyr)zamic stability range in the Fe,04-Al,04-Si05-H,0 system

From the simplified approach explained above, an analysis of the different possibilities of
mineral associations in the Fe,0;-Al.0;-Si0,-H,O system can be attempted. First, the
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equilibrium conditions of Al-goethite and Al-hematite, both associated with kaolinite, are
developed. In this section only pure kaolinite, free of Fe, is considered as controlling the
amounts of Al substituting Fe in goethite and hematite. Then, for different activities of silica,
stability diagrams are built up as functions of water activity and bulk composition of the
system.

Equilibrium conditions and stability field of the Al-goethite + kaolinite association. The
amounts of Al substituted in goethites is determined by the [AI3*]/[Fe3+] activity ratio in
aqueous solution. The [AI**] aluminium ion activity is controlled by the equilibrium with
kaolinite, as shown in equation (1).

The aluminous goethite (Fey, Aly,)OOH is considered as an ideal solid-solution of pure
goethite FeOOH, and diaspore AIOOH. Y, and Y,(Y; -+ Y, =1) are the mole fractions of
goethite and diaspore, respectively. ‘

The equilibrium with the solution is reached if the partial equilibria of each of the two end-
members are satisfied together. For the aluminous end-member:

log [AP)[H*]® = log K, Dia — 2 log [H,0O] + log Y, (7)
and for the ferruginous end-member:
log [Fe*+]/[H*]? = log K,,Goe — 2 log [H,0] +log Y, 3)

Consequently, by combining equations (1) and (7),
¥, = (K Kaol)!/2
° K,Dia [H,0)2 [SiOz(aq)]

©

Becausé i¥, is a mole fraction, the relationship (9) is valid only if ¥, < 1 which is obtained
when: _

o 1/2 log [H,0] + log [Si0;,4)] > 1/2 log K, Kaol — log K, Dia (10)

When the equation (10) is not valid, aluminous goethite is the only stable species and
kaolinite cannot form. Moreover, the bulk-composition of the system controls the
coexistence of the two minerals simultaneously. Al, and Fe, refer to the total amounts of Al
and Fe respectively, in the system. In the following calculations, shown in the different
figures, Fe, = 2, which corresponds to 1 mole of Fe,O5. Furthermore, # (> 0) and e (> 0) refer
to the number of aluminous goethite and kaolinite moles, respectively, and the mineral
assemblage (see Trolard & Tardy, 1987) is written as:

b (Fey; Aly,)OOH + e AlSiO,.s(OH),
Then Fe,=2=54Y¥, and A, =bY, +e
Because ¥, =1—Y,,

b=2/(1—7Y,) and e=Al —2Y,/(1—Y,) an
For Fe, = 2 moles, the minimum amount of Al required for kaolinite to appear (e = 0) is given
by:
2Y,

o= (12)
min 1 —_ Y2

Al

When the global Al content (Al,) of the system considered is lower than the minimal value
expressed in (12), only aluminous goethite is present and kaolinite cannot be formed.
Inversely, in a system with a fixed number of Fe moles (Fe, = 2 moles, for example) and a

variable amount
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variable amount of Al, the proportion of aluminous goethite and kaolinite are related by the
expressions (11). ’

Consequently, if equation (10) is valid, the composition of each equilibrium phase is fixed,
but the mole numbers of aluminous goethite and kaolinite change as a function of the bulk
composition, defined by the parameters Fe, and Al,.

Equilibrium conditions and stability field of the Al-hematite + kaolinite association. The
amount of Al substituted in hematites is determined by the ratio [Al3*])/{Fe3*] in aqueous
solution. The Al ion activity [AlI3+] is controlled by the equilibrium with kaolinite.

The aluminous hematite (Fey, Alys) O,.5 is considered as an ideal solid solution of X,
moles of hematite FeO, 5 and X> moles of corundum AlO, 5. Again X, + X, = 1. As for the
previous equations for goethite, given above, the following relationships are satisfied
together:

log [AB+)/[H*P® = 1/2 log K,,Cor — 3/2 log [H,0] + log X> (i3)
for the aluminous end-member and:
log [Fe3*)/[H* = 1/2 log K Hem — 3/2 log [H,0] + log X, (14)
for the ferruginous one.
Hence: X Kaohi”
X:= (KS,,COE)ljg[Hzo][Siol(aq,] (1
The existence validity of this result is constrained by the condition, X, <1, i.e.
log [H,0] 4 log [SiO3(yq)) > 1/2 log K, Kaol ~ 1/2 log K,Cor (16)
A minimum Al content is required to allow the association of Al-hematite and kaolinite.
Al =2 > a7

Also, when one of the two conditions expressed in equations (16) or (17) is not valid, only
aluminous hematite is stable and kaolinite should not appear in the system.

The numbers (a) and (e) of aluminous hematite and kaolinite moles, respectively, in a
system in which there is a fixed mole number of Fe (Fe, =2 moles) and a variable mole
number of Al (Al) introduced, are the following:

a=2)(1—X,) and e=Al—2X,/(1—X,) (18)

In the coexisting limits of the (Al-hematite + kaolinite) association, the proportions of
each of these two phases are functions of the water activity and of the dissolved silica activity,
but independent of the Al content of the system.

Stability fields in the Fe,0+-Al,04-Si05-H, O system, when silica activity is <10~+37. When
the dissolved silica activity is < 10=*37, kaolinite does not form and the distribution of the
stability field in the Fe,0;-Al,0;-Si0,-H,O system is the same as that in which kaolinite
does not exist. In this peculiar case, the system is identical to the Fe,0;-Al,03-H,0 system,
detailed by Trolard & Tardy (1987). The major observations and results are recalled in Fig. 3.

When associated minerals are (Al-goethite 4 gibbsite) or (Al-goethite + Al-hematite), the
aluminous goethite and hematite compositions do not depend on the bulk composition of the
system but only on the water activity or temperature. The Al contents increase if water
activity decreases.
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FIG. 3. Stability field distribution in the Fe,05-Al,0;-810,-H,0 system as functions of water
activity and Al content, for silica activity <10-457. The values indicated on the tie lines correspond
to the mole fractions (%) of Al included in aluminous goethite or hematite.

When Al-goethite and boehmite are stable simultaneously, the Al-goethite composition . ; FIG. 4. Stabili
does not depend on the composition of the system nor on the water activity. It is remarkable ! tvity and Al co
that, in this case, the Al content of Al-goethite is fixed (for example (Aly..3sFeq.755)O0H, at i ‘
25°C). On the other hand, when only one mineral such as Al-goethite or Al-hematite is stable,

the Al content depends neither on the water activity nor on the temperature. Al-goethite or ! distribution of thd
Al-hematite composition depends only on the (A1,0,/(Al,0; + Fe,05)) ratio, i.e. on the bulk ‘ Fe,05-Al,0;-H,0
composition of the system. Similar results are obtained when kaolinite is present. The stability fiel

Stability of the Fe,03-A1,04-Si0,-H,0 system in the [10~+57; 10~+5] range of dissolved
silica. When the activity of dissolved silica varies between 10-4'57 and 1045, the stability ;
field distribution in the Fe,0,-A1,05-8i0,-H.O system is marked by a succession of possible :
equilibria of gibbsite, kaolinite and then boehmite as a function of the water activity.

Fig. 4, calculated for [SiO,] = 10452 shows that only aluminous goethite can be associated
with kaolinite in a small domain of water activity and Al content. Everywhere else, the
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F1G. 4. Stability field distribution in the Fe,0,-Al,05-Si0,-H,0 system as functions of water ac-
tivity and Al content, for silica activity = 10-%32, The tie lines have the same significance as in Fig. 3.

distribution of the stability fields is found to be identical to that obtained in the system
Fe,05-Al,0;3-H,0 (Trolard & Tardy, 1987). i
The stability field of the mineral association (Al-goethite + kaolinite) is limited by a water
activity in two cases. The first illustrates the stabilization of kaolinite at the expense of
gibbsite. At equilibrium between gibbsite and Al-goethite,
¥, = K,,Gib

?" K,Dial[H,0] (19)

By combining equations (9) and (19), the water activity required for the equilibrium can be

e e e e i - R : ‘o SRS N S R
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calculated:

K,Gib [SiO,,q]

[H,0]'2 = ,
(K Kaol)t?

(20)
~ Instandard conditions of temperature and pressure (25°C, 1 bar) the numerical value of
water activity obtained when the silica activity is equal to 10~*52, is: [H,OJm; = 0-832.

The second constraint limiting the field of the association (Al-goethite -+ kaolinite)
underlines the destabilization of kaolinite and the stabilization of boehmite. At equilibrium
with boehmite (Trolard & Tardy, 1987), the mole fraction of diaspore in Al-goethite is
defined by: ‘

_ K Boe

21
K, Dia @n

By combining equations (9) and (21), in which ¥, defines the mole fraction of diaspore in Al-
goethite when aluminous goethite coexists with boehmite, the minimal water activity
required for the coexistence of the aluminous goethite and kaolinite can be calculated:

(K Kaol)!”?

[HZO]]/Z =
KspBOe [SIOZ(aq)]

(22)
The corrésponding numerical value is [H,0]=0-63 1 as a limit (Fig. 4).

A minimum Al content in the system gives the third limit of the expression of the mineral
associatiog (Al-goethite + kaolinite). For a given silica activity chosen in the interval
considered, this last constraint is a function of water activity and is defined by equation (11).
When the' Al-content is smaller than this value (equation (11)), only aluminous goethite is
stable. .. ‘ ‘

Stabilitii of the Fe10+-Al,05-Si0,-H,0 system in the [10-*5 ; 10-3°] range of silica activity.
Some examples are treated to describe the range of stability of minerals in the Fe,03-Al1,05-
Si0,-H,O system when silica activity changes between 10~#5 and 1030 (Figs. 5, 6 and 7).

When the silica activity increases, from Fig. 5 to 7, the mineral (Al-hematite + kaolinite)
and (Al-goethite + kaolinite) associations overlap progressively the (water activity — Al-
content) diagram. The convergence of these two stability fields occurs in a larger and larger
range of water activities and in a narrower and narrower scale of minimum Al contents of the
‘system. The field of (Al-hematite + boehmite) assemblage diminishes and disappears at
about [SiO,] = 10~+#5, The stability fields of the aluminous goethite, aluminous hematite and
of their combination, are strongly reduced.

For a given water activity, the substitution ratios of Fe by Al in aluminous goethite and
aluminous hematite, both associated with kaolinite, décrease if silica activity increases. For
[Si0,] =10-%5 and in conditions in which the silica content is potentially sufficient, a
progressive increase in the Al content in the system results in the following mineral evolution
for a water activity ~0-55: '

Al-hematite Al-goethite

Al-hematite —— + ~———— Al-goethite —— +
kaolinite : kaolinite
__________________________ -

increasing Al content
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FIG. 5. Stability field distribution in the Fe,05-A1,0,-810,-H,0 system, for silica activity = 10-%3.
The tie lines have the same significance as in Fig. 3.

Conclusion

In the (water activity — Al content) diagram, when the silica activity increases, first
gibbsite and then boehmite tend to disappear while kaolinite appears to be stable.
Consequently, substitution ratios in aluminous goethite and aluminous hematite decrease
drastically, and stability fields of the (Al-goethite + kaolinite) and (Al-hematite + kaolinite)
associations invade the whole space progressively. An increase of the silica activity should
favour the stabilization of the aluminous hematite and may reduce the fields in which -
aluminous goethite is present. The transition hematite-goethite is reached for higher water
activity, yielding also a larger stabilization of hematite but still respecting the limit
[H,0] = 0-883.
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STABILITY OF FE**-KAOLINITE IN THE FE,05-AL,0,-S10,-H,0 SYSTEM

Kaolinite, considered until now as a pure aluminous mineral, can, in fact, contain small
amounts of Fe substituting for Al. This was illustrated by using electron spin resonance
spectrometry (ESR) (Boesman & Schoemacker, 1961; Angel & Hall, 1973; Hall, 1980) and
Mossbauer spectrometry-(Malden & Meads, 1967; Janot ef al., 1973). By another method,
Herbillon ez al. (1976), and Mestdagh et al. (1980) have shown that an increase in the Fe
content is accompanied by a reduction in the crystallinity and an increase in the disorder of
kaolinite. Yvon er al. (1981) and Cases et al. (1982) have also shown that the disorder can be
explained by the intercalation of iron oxides and hydroxides in the interlayer positions.
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In lateritic profiles, there appears to be a slight substitution of Fe for Al in kaolinite, in
proportions always < 3% mole fraction of ferrikaolinite (Janot et a/., 1973; Rengasamy et al.,
1975; Herbillon et al., 1976; Fayolle, 1979; Mendelovici et al., 1979; Didier et al., 1983;
Cantinolle et al., 1984; Tardy & Nahon, 1985). Tardy (1982) has shown that Fe in kaolinite is,
in principle, a function of its solubility and of the ratio [Fe3+]/[A13*] in the aqueous solutions.

The degree of substitutions in goethite, hematite and kaolinite as well as the limits of their
associations are calculated as functions of water and silica activities. Then, before
presentation of the results, the solubility product of ferrikaolinite is estimated.

Equilibrium condition of the ideal solid solution. The ferruginous kaolinite is considered as an
ideal solid-solution between the two end-members: kaolinite (AISiO,.s(OH),) and
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ferrikaolinite (FeSiO,.5(OH),). It is written as: (Fez;Al;,)Si0,.5(OH), where Z, and Z,
designate the mole fractions of ferrikaolinite and kaolinite, respectively (Z, + Z. = 1).

When equilibrium is reached between the aqueous solution and the solid-solution, two
partial equilibrium conditions must be respected, simultaneously:

log [Fe3*])[H*] = 1/2 log K,Fe-Kaol — log [SiQ,,q] — 5/2 log [H,Ol +log Z,  (23)
log [AR+]/[H*P = 1/2 log K, ,Kaol —log [SiOa,q)] — 5/2 log [H,0) +log Z,  (24)

These constraints modify the case developed in the preceding paragraphs.

Equilibrium conditions of the Al-goethite + Fe**-kaolinite association. In the Fe,05-Al,05-
Si0,-H.O system, a given chemical composition allows the association of aluminous goethite
and ferruginous kaolinite as follows:

b(Fey; Aly,)OOH + f(Fez; Alz2)Si0,.5(OH),

The equilibrium conditions which fix the existence of these minerals are obtained by
combination of the expressions (8) and (23) for the ferruginous end-member, and expressions
(7) and (24) for the aluminous one. Since ¥, + Y, = Z, + Z, =1, the relationships between
the mole fractions of the mineral association are obtained as follows:

. (K, Kaol)!?2
* K,,Dia [H,0) 2 [Si0,4,q)]

T

Y,=2Z (25)

2 % K, Dia {(KFe-Kaol)2 — K, Goe [$i0,,q] . [H,0]'12}
=

2
K Dia (K Fe-Kaol)!? — K ,Goe (K,Kaol)!/? (26)

At equilibrium, tﬁe coexistence of both minerals implies that the total contents of iron
(Fe)), aluminium (Al])) and silica (Si,) verify the following equations:

Fe,=bY, +Si.Z, ©7)
Al =bY, +Si,Z, (28)
with the condition ’ Al > S8i,Z, (29)

Thus the variables of the system are the water activity, the dissolved silica activity and the
bulk silica content.

Equilibrium conditions of the Al-hematite + Fe3+-kaolinite association. The association of
aluminous hematite and ferruginous kaolinite in the Fe,05-Al,04-Si0,-H,O system is
expressed by the following formula:

a(Fex; Aly2)O.s + f(Fez, Alz2)Si0,.5(OH),
X, and X, define the mole fractions of hematite and corundum, respectively, in the ideal
solid-solution describing the aluminous hematite.

At equilibrium, two conditions must be satisfied simultaneously, and are obtained by the
combination of the expressions (14) and (23) for the ferruginous end-member and (13) and
(24) for the aluminous one. The solution of the system thus defined, leads to the following
. results:

(K, Kaol)i#2
2= L . 30
X2 = 22 g Con' 2 TH,01. 1510 20 GO
7 - (K.,Cor)!*{(K Fe-Kaol)/? — (K,,Hem)! 2. [Si0s¢,q)]. [H,01} G1)

2~ (K, Fe-Kaol)' 2. (K,Cor)'* — (K, Hem)!? (K Kaol)!/?
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As in the preceding case, these relationships are only valid if X, and Z, are positive and
< 1. When the aluminous hematite coexists with the ferruginous kaolinite, the Fe, Al and
silica contents are constrained by the equations:

Fe, = aX, +Si.Z, (32)
Al = aX, + Si.Z, (33)

in which Fe, is again the total Fe content, Al the total Al content and Si, the total silica
content.

This system, constituted by the expressions (32) and (33) is solvable, i.e. a and Si, are
positive numbers, when the condition defined by the equation (31) between the Al and silica
contents is satisfied. The variables of the system which remain to be defined are the water
activity, the dissolved silica activity and the silica content.

Estimation of the ferrikaolinite solubility product at 25°C and 1 bar total pressure. In order to
estimate the solubility product of ferrikaolinite at the standard conditions of pressure and
temperature, the following empirical procedure was used. First of all, it is assumed that in
lithomarges, fine saprolites and water-saturated zones ((H,O] = 1), kaolinites associated with
goethite contain ~ 1 mole ¥ Fe3+-kaolinite (Herbillon et @/., 1976; Didier et al., 1985 ; Muller
& Bocquier, 1986). Furthermore, in the conditions prevailing in water-saturated zones of
laterite profiles, dissolved silica concentration is ~20 mg/kg H,O, commonly found in most
of the natural waters emerging from lateritic landscapes (Tardy, 1969, 1971). The
corresponding silica activity is: [Si0,] = 10-3+77

The solubility product of ferrikaolinite deduced from equations (25) and (26) is expressed
as:

Z,.K,Goe (K Kao)® K, Dia K,;,Goe [SiOyqq].[H,O1
K,Dia (Z,— 1) K,Dia (Z,—1)

(K Fe-Kaol)!/? = (34)
where Z, designates the mole fraction of kaolinite in solid-solution describing the ferrugmous
kaolinite.

The numerical results obtained in our peculiar case are:

Z,=10-990000 and 1/2 log K, Fe-Kaol = —0-6654,

i.e., a solubility product of the ferrikaolinite at 25°C and 1 bar total pressure equal to — 1-331,
which is somewhat higher than the —3-660 value estimated by Tardy (1982) on a different
basis.

In summary, in the above cited condition (i.e. [H.Ol=1, [Si0,]=10"3477 and
1/2 log K, Fe-Kaol = —0-6654) a Fe3*-kaolinite ideal solid-solution

(Feg.01Alp.99)Si0,.5(OH),

can be in equilibrium with goethite as is géﬁerally observed in nature.
Some numerical tests will now be developed.

Results. The numerical results computed at 25°C and 1 bar total pressure are obtained from
the theoretical expressions developed in the preceding paragraphs. Table 3 lists the values of
the substitution ratios in the aluminous goethite, aluminous hematite or ferruginous kaolinite
as functions of water and silica activities compatible with the limits of the mineral stability
fields described above. A

For a silica activity <10~+37, the ferruginous kaolinite is not stable. For higher silica
activities, the ferruginous kaolinite can be stable and coexist as a function of the water
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activity with aluminous goethite or aluminous hematite. For a fixed water activity, the
substitution ratios of Al by Fe in ferruginous kaolinite increase when the silica activity
increases. They should be higher when ferruginous kaolinite is associated with aluminous
goethite than with aluminous hematite. For a fixed silica activity, the ferruginous kaolinite
substitution ratio decreases when the water activity decreases.

In the mineral associations, the substitution ratios in aluminous goethite and hematite are
not significantly affected by the fact that kaolinite becomes ferruginous. Consequently, the
diagrams proposed in the modelling of the Fe,0;-Al1,04-810,-H,0 system in the preceding
section are still valid if Fe-kaolinite is considered instead of pure kaolinite.

CONCLUSIONS

Diagrams describing the conditions of formation of aluminous goethite, aluminous hematite,
ferruginous kaolinite, gibbsite and boehmite, in laterites, bauxites and ferricretes, have been
presented. They have been established by using a thermodynamic model based on equilibria
among three ideal solid-solutions: (Al Fe, )O,.; for aluminous hematite, (Al Fe,, JOOH
for aluminous goethite and (Fe Al ,.)Si0,.5(OH), for ferruginous kaolinite. From these
diagrams and the data used to established them, several observations can be made.

The four major factors which directly control the system are water activity, dissolved silica
act1v1ty, temperature and the chemical composition of the system. Another indirect variable
is the partlcle size of goethite and hematite associated with kaolinite. The selected solubility
data for goethlte hematite, diaspore and corundum are compatible with fine-grained, poorly-
crystalllzed minerals.

Natunal solid-solutions are most probably non-ideal. However, the type of solid-solution
(ideal-or regular, for example) chosen in the model does not drastically affect the mineral
positiort-in the stability field diagram. Therefore an ideal solution which is potentially
extended continuously from one end-member to the other, can be affected by the emergence
of other stability fields which partially overlap the equilibrium zones of the solid-solutions.
This is the emergence of the stability of gibbsite and kaolinite which limits the Al content in
goethite.

The composition limits of natural aluminous goethite (< 30% mole fraction of diaspore),
aluminous hematite (<15% mole fraction of corundum) and ferruginous kaolinite (< 3%
mole fraction of ferri-kaolinite), corresponding to those calculated, suggest that the solubility
products (Table 2) used to construct the diagrams are appropriate to describe the stability
field distributions of the different minerals in different ranges of water activities, dissolved
silica activities and bulk compositions of the systems. This is the case for goethite which
appears limited in composition at ~25% of AIOOH when boehmite starts to form at
[H,O] = 0-631. Consequently the fact that in natural conditions, the Al-substitution ratios of
goethite are limited to ~30% does not prove that the solid-solution is not potentially
continuous, and for this reason cannot be chosen as ideal or even regular.

The stability field of kaolinite in the presence of gibbsite or boehmite appears also to be
dependent on (i) activity of water and (ii) activity of silica (Fig. 2). At 25°C and 1 bar total
pressure, if the silica activity is lower than 10~+57, kaolinite is not stable whatever the water
activity. In the dissolved silica activity interval [10~#57; 10~439] gibbsite, then kaolinite and
finally boehmite can be stable, successively, when the water activity decreases. In the interval
[10=+%: 10~*°] only kaolinite and boehmite may exist. For decreasing water activity, the
stability field of boehmite progressively overlaps that of kaolinite.
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The presence of kaolinite instead of gibbsite or boehmite in soils or weathering profiles
should induce changes in the Al-contents of the associated aluminous goethite or hematite.
The Al-content of aluminous goethite at equilibrium with kaolinite decreases when water
activity or silica activity increases. This may explain why, in general, goethites are poorer in
Al in lowland and hydromorphic soils than in uitisols or oxisols located at the top of the
profiles, or in soils higher in the landscape where the aqueous solutions located in porous
structures are depleted in silica.

The Fe content of kaolinite is shown to be dependent on the water activity and on dissolved
silica activity. An increase of water activity at a fixed silica activity, or an increase of silica
activity at a fixed water activity should induce an increase in the Al substitution ratio by Fe
in the ferruginous kaolinite. However, the dominant factor which probably controls the Fe
content in ferruginous kaolinite is its solubility related to its crystallinity which generally
decreases from the bottom to the top of profiles: the lower the crystallinity, the higher the
solubility and consequently the higher the Fe content in ferruginous kaolinite.
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