CORRELATION BETWEEN CATCH DATA FROM BOTTOM LONGLINES AND FISH CENSURES

 IN THE SW LaGOON OF NEW CALEDONIA
M. KULBICKI

Department of Oceanography ORSTOM BP. A5 Nouméa New Caledonia

ABSTRACT

On a total of 363 bottom longline sets in the SW lagoon of New Caledonia, 45 were surveyed using visual census. Abundance and biomass estimates were derived from these censuses. These estimates were highly correlated to catch per unit effort in numbers and weight. From these relationships were established contour maps of soft bottom fish abundance and biomass. The total biomass of longline catchable fish was estimated between 11800 and 25500 tons with an average of 17700 tons which represents 5.8 tons $/ \mathrm{km} 2$. It was also estimated that longline catchable fish re-presented 48% of the total fish biomass of soft bottoms. Comparisons with other soft bottom fisheries in the region are presented.

INTRODUCTION

The study of coralline fishes is often limited to strictly coralline zones. In most places of the Pacific region a large number of coralline species are found on a variety of habitats, in particular over "soft bottoms" which may represent a very large surface. For instance, nearly 80% of the S.W. lagoon of New Caledonia is covered by such soft bottoms.

These surfaces are very variable in nature, but they usually support some coralline formations that preclude the use of trawl nets. In most instances the only convenient methods of fishing are by traps or hook and line, either by handline or by longline. The latter method proved to be easier to standardize and comparison of catch with densities are straightforward when using visual censuses.

Underwater surveys of longlines or handlines has been undertaken by a number of authors(High, 1980; Grimes et al., 1982; Ralston et al., 1986; Richards \& Schnute, 1986). The two latter related CPUE to densities derived from visual censuses, indicating that in most instances they are proportional. However, no attempt was made to evaluate the biomass of a given area from the CPUE-visual densities relationships.

METHODS

1-VISUAL CENSUSES :

As the longline was set, two divers would take position at the start of the line and wait for the line to lie on the ground. Each diver recorded fish on one side of the line. Only species susceptible of biting on the line were counted. This species list was derived from 220 previous longline sets. Fish size was estimated by 5 cm classes, the accuracy of these visual evaluations being checked on the fish caught on the line. The perpendicular distance of the fish to the line was estimated in meters, fish being recorded at a maximum distance of 15 m . In case of several fish seen simultaneously at different distances the nearest and furthest distance were recorded. Fish already caught on the line were not taken into account.

2-BOTTOM LONGLINE :

Figure 1. Longline diagramm.
The gear in use is illustrated on figure 1. Each line was 280 m long and had 100 hooks. Circular hooks MUSTAD* 3997L ($n^{\circ} 7$ to 9) or MUSTAD* ($n^{\circ} 8$ or 9) were used instead of "straight" hooks, because of their higher yield (Gibson, 1979; ANON., 1982; ANON., 1984a, 1984b). According to Ralston (1982) a 30% difference in hook size does not induce marked difference in catch. The largest size difference in our experiment did not exceed 18%.

Hooks were baited with cut pieces of squid (Notodarious sloanii). Soaking time was one hour. Species, size and position on the line was recorded for each fish caught.

RESULTS

1-BOTTOM LONGLINE :

1.1-Sampling strategy :

A total of 363 sets were laid which amounts to 41600 hooks. Figure 2 indicates the position of these sets in the S.W. lagoon. There are two sets for every position except for the first 86 sets. The maximum distance between two setting positions does not exceed 3 nautical miles.

Figure 2. Position of the longline sets.

Forty five sets were surveyed. This represents 4977 hooks, or 12% of the total number of hooks. Due to poor visibility it was not possible to survey sets nearshore. Diving time being limited, only one set was surveyed below 30 m . The position of the surveyed sets are indicated on figure 2.

1.2-Species composition :

Table 1 indicates the species caught during all sets and those caught or seen on the surveyed longline sets. A total of 78 species were caught on all sets of which 31 were present on more than 10 sets (these are referred as "common" species). Thirty five species were taken on the surveyed set of which 26 were common species (80% of total common species).

1.3-Size and yields :

The average size of fish on all sets and surveyed sets are identical with the exception of three species-: Cephalopholis sonnerati and Gymnocranius robertsi which were larger on the selected sets and Echeneis naucrates which was smaller. The average yields are a little higher on the surveyed sets ($10.9 \mathrm{~kg} / 100$ hooks) than on all sets ($7.3 \mathrm{~kg} / 100$ hooks) because nearshore sets, which have lower yields, could not be surveyed due to poor visibility.

2-VISUAL CENSUSES :

2.1-Species composition :

A total of 42 species were seen along the longlines (table 1). Only two common species,
Saurida undosquamis and Nemipterus peroni were not recorded during these dives. Both of these species are mainly found nearshore in turbid waters. Most families are well represented in the visual censuses except sharks and trevallies. Identification of most species was accurate, only the Gymnocranius spp. and murray eels could not be identified at the species level. Only two of the species caught on the surveyed lines were not observed during the visual censuses.

2.2-Size :

The size of the fish underwater was estimated by eye. The divers performing the counts are well trained in this excercise and the error can be assumed to be of $10-20 \%$ depending on fish size and species (ANON., 1985; HarmelinVivien et al., 1985). Average weights were computed from lengthweight relationships.

The estimated size of fish observed by visual census was usually inferior to the fish size in the catch (table 1). This is due to the selectivity of the gear, the hooks being rather large. One should also take into account that the size of large fish tend to be underestimated by visual censuses (Harmelin-Vivien et al., 1985).

2.3-Distance to the line :

Most underwater censuses using transects do not take into account the distance of the fish to the transect line (Thresher \& Gunn, 1986). It is usually assumed that all fish within a given distance to the line (usually 5m) are detected (Harmelin-Vivien et al., 1985). If fish were distributed at random and not affected by either

Table 1. Species composition of catch and visual survey. nb: numbers w : weight (kg) : species caught on 10 sets or more.

species	${ }^{811}$ sets		survered. sats		${ }_{\text {no }}^{\text {transets }}$	
SERRMHDSS $\quad * \quad \therefore$ \%		0				
cephalocholsts mintatus	${ }_{38}{ }^{13}$	910 1000	$\therefore 3$: 1550	${ }^{18}$	400 1800
, . yrocelus. .	4	135	-		i	150
	4	60 80	2 1.	75 80	2	150
eopmestelus perolatus ${ }^{\text {a }}$	72	496	6	520	\%	450
\cdots cylndricus \cdots.	${ }^{4}$	$\begin{array}{r}10930 \\ \\ \hline 270\end{array}$		250	4	10003 250
	${ }_{4}^{29}$	${ }_{150}^{270}$	$\stackrel{8}{8}$	250	4	200 100
	31	2780	? 5	2820	33	${ }^{2100}$
, exculatus	145	1077 125	${ }^{26}$	1160 70 70	[95	600 80 80
merra	${ }^{2}$	125 1670	1	760	2	1800
$\therefore \quad \therefore \quad \begin{gathered}\text { alcrodan } \\ \text { rivilatus }\end{gathered}$	${ }_{8}^{20}$	$1 \begin{aligned} & 1673 \\ & 430\end{aligned}$	18		18	250
	3.	400		-	-	-
	7 3	720 4830	-	-	-	-
	24	2350	, 2,	900	28	1500
variola louti	15.	2780 500	2	2150	6	2000
pogonoperca punctate ${ }^{\text {a }}$,	12	500				
wijahios lutjanes adet:l	39	- 860	4	780	23	-900
boher	15	+.3270	-	-	2	3000
\ldots Pulvitheme	2	250 2.430	-	$\stackrel{-}{-}$		
- kasalra	,	- 100	1	100	64	150
- A A - sehac	. 3 -..	5970	-	-	$\dot{\square}$	0
...victa	20	400	$\therefore-$	5550	5	600 6700
symporious nematophorus mor lon virescens	¢ 13.	7940	\therefore	5550	33	3000
Lefirinios lethrimus chrysostoms	24°	1300	1	2200	2	400
	${ }_{85}$	9810	-	770	$\overline{7}$	900
$\therefore \therefore$ malsena,	${ }^{83}$	$\bigcirc 8250$	${ }_{48}^{22}$	2400	28	1800
rubr ioperculatus	98.	\square^{6350}	.18	. 620	${ }^{\text {B }}$	250
nematricomitus	11 .	* $110 \times$	- 1	${ }^{80}$	35	50
oymocranlus robertsi	39	2380	16	1880	23	900
	${ }_{28}^{117}$	${ }_{-150}^{1530}$	+ 46	${ }_{1}^{1000} 130$	${ }^{128}$	1000
ietur Inotdes 	28.	-1330				
nealnterus perant	70	220	${ }^{6}$	250		
HMEMLIDS' diegrimon pletum en the	1,66	3100	-19	: 3130	104	1700
 badionis perditio ptis号,	$208{ }^{\circ}$	1910	57.	${ }^{1870}$	81°	1550
	$\bigcirc 1$.	- 700	-1	-700	5	500
chellinus chlorovrus,	, 3	${ }_{5980}^{480}$	1	450	6	300 10000
Smoomilis						
sseride uncosoumis	84	150		-	-	
trgynules caronx sa.		1100	-	-	3	500
crronx sa. celetus	2	2425	-	-	-	
ceramaitces crivsoonris	7	$2270 \cdot$	-	-	-	
\because gymostel lus	2	2200 590	-	-	-	-
orthoorramis	22	590 7700	-	-	2	5000
enauryt	2	2430	-	-	-	
¢nathanodoin spec losus	3	5770	-	-		
serfota wur eovltteta	2	1450	-	-	-	
rivollama	2	500 200	-			
decapterus russell	2	230				
nuluids daruncreus pleurosplios	1	230	-	-	-	
[RIGCEFPSII ${ }^{\text {a }}$						
balistes fresatus	17	700	3	870	41	500
fuscus	14	2740	3	3670 1500	15	2800 1400
stellatus	19	1840	1	1500		
murary Eels gymothorax so.	15	150	1	130	6	500
\%evanicus	1	500	-		-	
xexthostoma	1	800	-	-	-	
flovimars!	1	300	-	-	-	
heirodowtidne gastroohysus sce leratus		2850	1	5000	1	1800
${ }_{\text {das }}^{\text {gastroohysess seleratus }}$	11	870	-	.	2	600
ECIETEIOS echenels nexcrates	110	950	17	710	15	400
rays dashyatis kuthll	2	2050	-		6	1500
SIIRRS						
splyrna lerini carchorimus neimopterus	5	$\stackrel{1240}{2140}$	-	-	-	-
seliyrtyunctos	7	3460	1	3000	-	-
pitumeus	$!$	15000 3500	-	-	-	$:$
IVmbatus alotmenatus	,	3300 4030	-	-	-	-
	?	10000	-	-	-	-
gateoceroo curvier!	1	1820	-	-	-	
stegostona varlua	1	20000		-		
total numoer of spectes	78		35		42	

line or divers one would expect a distribution pattern as indicates figure 3 (Burnham et al., 1980). Our data (figure 3) suggest that one can not assume such a random distribution. There is at first a "heaping" phenomenum which is fairly common to transect data (Burnham et al., 1980), certain distances being preferentially recorded. Grouping the data smooths such bias. Most fish tend to avoid either the line or the divers as indicates the depressed distribution at distance 0. This phenomenum varies with species and with size. Thus, small fish are seen at closer distances and large fish tend to be more shy and stay further away from the divers. Figure 4 indicates a number of different types of distance distributions. These illustrate the bias that would be introduced by using fixed width transect counts.

2.4-Density estimates :

Knowing the distance distribution of species i to the line, it is possible, using FOURRIER series (Burnham et al., 1978), to calculate $\mathrm{f}(\hat{0}) \mathrm{i}$, which is the estimate of the probability density function at distance zero. This estimate is needed for the calculation of the density Di of species i along the longline, using the following equation :
$\hat{D} i=n i{ }^{*} f(\hat{o}) i / 2 L$
where ni : number of fish of species i seen along the line

$$
\mathrm{L}: \text { length of the line }
$$

The $f(\hat{o})$ estimates were calculated from the pooled data of all 45 surveys. When there was insufficient data for a given species, the f(\hat{o}) estimate of its family or the overall $f(\hat{o})$ estimate was attributed. These estimates are indicated on table 2.

Figure 3. Theoretical and observed distribution of the distancec of the fish to the loggline.

Figure 4. Observed distance distribution for Serranids, Lethrinids, Diagrama pictum and Bodianus perditio.

The total density along a longline is given by the summ of the Di :
$\hat{D}=\sum_{i=1}^{k} \hat{D} i$
where k : number of species seen along the line. Knowing the variance of $f(\hat{O})$ it is possible to calculate the variance of $\mathrm{D} i$. The total variance for \hat{D} was estimated as the weighted summ of the variances of the $\hat{\mathrm{D}} \mathrm{i}$:

$$
\begin{equation*}
\operatorname{var}(\hat{D})=\left(\sum_{i=1}^{k} n i * \operatorname{var}(\hat{D} i)\right) /\left(\sum_{i=1}^{k} n i\right) \tag{3}
\end{equation*}
$$

This estimate is biased because the variances of the $\hat{D} i$ are not independent. This will result in a conservative value of var (D).

The biomass density estimate for species i along a longline is calculated from :

$$
\widehat{B} i=\hat{D}_{i}=\hat{w} i
$$

where $\hat{w} i$: average weight of species i along the line.

Table 2. Probability density function estimates at distance 0 for species observed along longline sets.

spectes	$f(0)$	$\operatorname{var}(\mathrm{f}$ $\left.\times 10^{-3}\right)$ $\times 10$
ALL SERRANIDS	0.1403	0.6043
cephalopholls spp.	0.1284	0.8121
eninephelus aerolatus	0.2840	1.756
fasclatus	0.1678	0.1594
maculatus	0.1944	0.2551
plectropomus leopardus	0.1493	0.4515
all lutjanids	0.1740	1.451
Lethrinus spp.	0.2995	3.898
GYMnocranius Spp.	0.3663	2.855
diagramma pictum	0.1403	0.1041
all labrids	0.2551	0.9146
ALL TRIGGERFISH	0.1781	0.6043
ALL OTHER FISH	0.2249	0.1727

The value of wi is evaluated from the visual length estimate. The variance of $\widehat{B} i$ was estimated from :

$$
\begin{equation*}
\operatorname{var}(\hat{B} \hat{i})=\hat{w}_{i} \cdot \operatorname{var}\left(\hat{D}_{i}\right) \tag{5}
\end{equation*}
$$

and for \hat{B} we have :

$$
\left.\operatorname{var}(\hat{B})=\int_{i=1}^{k} n i=\operatorname{var}(\hat{B} i)\right) /\left(\sum_{i=1}^{k} n i\right)
$$

2.5-Correlation between density estimates and CPUE

Figure 5. Relationship between density estimates and CPUE in numbers.
(1) : normal regression (2) : regression throughorigin. line $A \& B$ indicate the 95% confidence

Density estimates and CPUE by numbers were best correlated after a log-log transformation (figure 5). From previous work (Kulbicki et al., 1987) it was demonstrated that depth and distance to the coast were the riost important factors affecting CPUE. These variables were added to the previous model, but their contribution being of respectively 3% and 1% of the fit, they were not kept. In order to make predictions on densities from catch data it was necessary to have a model that went through the origin.

The intercept not being significantly different from $0(\alpha=0.05)$ (figure 5) such a model was conceivable (equation 6) :

$$
\begin{equation*}
\log (\hat{D}+1)=A \log (C P U E+1) \tag{6}
\end{equation*}
$$

This regression through the origin resulted in a drop in the correlation coefficient from $r=$ 0.881 to $r=0.844$. From this relationship it was possible to estimate densities from the CPUE data for each 363 sets. The resulting densities were contoured on a map (figure 6a). In order to have a confidence interval on these density estimates two other values of \hat{D} were used :

$$
\begin{aligned}
& \hat{D} \min =\widehat{D}-t(\alpha=0.05, n-2) \cdot s \hat{D} \\
& \hat{D} \max =\hat{D}+t(\alpha=0.05, n-2) \cdot s \hat{D}
\end{aligned}
$$

where $\hat{s} \hat{D}$: standard error of \hat{D} n : number of species used to calculate \hat{D}.

This allowed to calculate a minimum and a maximum regression between density and CPUE by numbers (Table 2). These relationships permitted the contouring of minimum and maximum deasity maps (figure 6b \& 6c). These results are more conservative than if one had used the minimum and maximum values of A (equation 6):

$$
\begin{aligned}
& A \min =A-t(=0.05, n-2) \\
& A \max =A-t(=0 ; 05, n-2) * s A
\end{aligned}
$$

Figures 6 a, b, c. Maps indicating the density of catchable bottom longline fish in the SW lagoon of New Caledonia.

2.6-Correlations between biomass density estimates and CPUE

Biomass density estimates and CPUE by weight were best correlated after a log-log transformation. Figure 7 and table 2 indicate a high correlation between these two variables. Using these relationships it was possible to draw the maps illustrated by figures 8a, 8b and 8c. An evaluation of the standing stock (table 3) was then calculted as follow from figure 12a:

$$
S=\Sigma \widehat{B} i
$$

where \hat{B}_{i} : mean value of the biomass density for the strata i
ai : surface of strata i (km2)
Similar calculations from figures 8b and 8c resulted in a minimum and maximum value of the standing stock (table 3). These values are only indicative, since we have sofar no method to estimate the type I error (α) level for S, but they are likely to be conservative.

Figure 7. Relationship between biomass density estimates and CPUE by weight (1) normal regression (2) regression through the origin - . lines A \& B indicate the $95 . \%$ confidence interval for (1).
DISCUSSION

To our knowledge this is the first work correlating catch data from bottom longlines to visual census data in tropical waters. One of the advantages of the present method is that censusing and fishing were conducted at the same time and the same place, which was not the case with two other similar surveys (Ralston et al., 1986; Richards \& Schnute, 1986). Preliminary analysis of our catch data (Kulbicki et al., 1987) indicates that there is little variation in CPUE with time of day.

Table 3. Relationships between average, minimum and maximum estimates of density or biomass and CPUE in numbers or weight.

1st variable (\%)	2 xd varioble (x)	equation	H	0	b	r
density	c.p.u.e In numbers	$\operatorname{Los} \mathrm{Y}=\cos \mathrm{Cos}+\mathrm{b}$	45	0.88	1.54	0.881
density	c.p.o.e in nenters	Logr - alogk	45	1.94	-	0.844
alnimua densty	c.p.u.e in mumbers	Logy - atcos x	45	1.75	-	0.867
maxima density	c.o.u.e in noebers	Logy m Malogx	45	2.07	\checkmark	0.765
blomass density	c.p.u.e In meloht	Logy - $\operatorname{Los} \mathrm{L} x+\mathrm{b}$	45	1.04	1.37	0.864
dionass density	c.p.u.e In xelpht	Logr = oloox	45	1.78	-	0.817
atimum diomass a.	c.p.u.e in metyht	Loor C etogx	45	1.61	-	0.851
axiam blosess 0 .	c.o.u.e in welont	Loor - atogx	45	1.69	-	0.745

Our bottom longline is characterized by the large number of species caught. Each species has a particular behaviour towards the line and the divers. Richards and Schnute (1986) have presented a number of possible relationships between CPUE from handlining and visual census depending on species and densities. Most often the number

Figure $8 \mathrm{a}, \mathrm{b}, \mathrm{c}$. Maps indicating the biomass density distribution of catchable bottom longline fish in the SW lagoon.

Table 4. Data used to estimate standing stocks from biomass density maps.

Diousss 230		diomess censtry (thame							Tors
anma	$\begin{aligned} & \text { ares }\left(\mathrm{xa}^{2}\right) \\ & \operatorname{tans} \end{aligned}$	$\begin{gathered} 1042 \\ 521 \end{gathered}$	87 175		-435	1887	${ }_{142}^{72}$	-	3180 71800
averase	ares tons	785 393	$\begin{aligned} & 751 \\ & 8582 \end{aligned}$	- 5580	$\begin{aligned} & 489 \\ & 3 \times 99 \end{aligned}$	$\underset{4585}{358}$	2400	-	$\begin{gathered} 3180 \\ 17750 \end{gathered}$
maximan	ares tros	${ }_{36}^{696}$	${ }_{6}^{665}$	$\underset{\substack{468 \\ 2192}}{ }$	412 3480	271 3516	331	${ }_{3}^{195}$	$\underset{35180}{3400}$

of fish counted for a single species along a line was too small to warrant the calculation of its density. This problem is frequently encountered when studying carnivorous fish in tropical waters using visual censuses. By pooling all species one smoothes out some large interspecific differences. As an illustration figures $9 a$ and 9 b indicate the CPUE - Density relationship for two important species : Lethrinus nebulosus and Bodianus perditio: There is no pattern for the first species, whereas there is nearly a linear relationship for the second Lethrinus nebulosus is a rather shy species; difficult to see and often found in schools.

Figure 9a, b. Relationship between estimated density and CPUE in numbers for Lethrinus nebulosus and Bodianus perditio.

(nb/100 hooks)

Figure 10. Relationship between estimated density and. CPUE. by numbersifor 7 families or genera.

Bodianus perditio'is conspicuous, normally not a shy fish except in heavily fished areas and usually found solitary or in small groups. Figure 10 indicates the relationship between the density estimated from visual census and CPUE for the major families, Thus, at similar densities, Wrasses are more vulnerable to the longline than Haemulidaé or Lut Janidae. Lethrinus' spp. "stand" aside, being either very sensitive to this gear or largely underestimated by visual censuses.

Figure 11. Main bottom type in the SW lagoon of New Caledonia.

Table 5. Biomass density estimates from several trawl fisheries in the region.

zones	estimated densitles	authors
NM AUSTRALIAN SHELF	$2.1-3.1^{*}$	Salnstury (1987)
SAHAR SEA (PHILIPPIHES)	2.36	villoso \& Hermosa (1982)
SOUTH CHIMA SEA	$1.0-5.0$	AOyama (1973)
BENGLADESH	$2.9-7.9$.	Lambouff. (1987)

- Exploitable fisn

The contribution of the soft bottom fish biomass to the total fish biomass of the SW lagoon is likely to be very large, Coral reefs cover less than 200 km 2 in that zone. Therefore; even if these reefs supported 200 tons $/ \mathrm{km} 2$ they would have a standing stock of 40000 tons which is of the same magnitude than the, soft bot toms: This indicates that in future research, more attention should be devoted to non trawlable soft bottom fish in tropical fisheries.

REFERENCES

Alcala, A.C. 1981. Fish yields of coral reef of Sulimon Island, central Philippines. Nat. Res. Counc. Philip. Bull. 36(1) : 1-7.
Anonymous. 1982. Further fishing trials with bottom set longlines in Sri Lanka. FAO-BOBP H.P. 16 : 25 pp .

Anonymous. 1984 . Ancient circle hooks rediscovered Aust. Flsh. June 1984: 34-35.
Anonymous. 1984b. Why do circle hooks work so well ? Aust. Fish. Oct. $1984: 34-36$.
Anonymous. 1985. Workshop on coral trout assessment techniques. Great Barrier Reef Marine Park Authority. Workshop Series no 3 : 85 pp.

Aoyama, T. 1973. The demersal fish stocks and fisheries of the South China Sea. FAO/UNDP SCS/DEV/73/3:80 pp.
Burnham, K.P., Anderson D.R. \& Laake, J.L. 1980. Estimation of density from line transect sampling of biological population. Wildlife Monographs 72.202 pp.
Gibson, D. 1979. What hook should I use ? Catch'79 6(5) : 3-5.
Grimes, C.B., Able, K.W. \& Turners, S.C. 1982. Direct observation from a submersible vessel of commercial longlines for tilefish. Trans. Am. Fish. Soc. 111 : 94-98.
Harmelin-Vivien, M.L., Harmelin J.G., Chauvet, C_{0}, Duval, C., Galzin, R., Lejeune, P., Barnabe, G., Blanc, F., Chevalier, R., Duclerc, J. \& Lasserre, G. 1985. Evaluation visuelle des peuplements et populations de poissons : méthodes et problèmes. Rev. Ecol. (Terre Vie) 40 : 467-539.
High, W. 1980. Bait loss from halibut longline gear observed from a submersible. Mar. Fish. Rev. $42(2): 26-29$.
Kulbicki, M., Mou-Tham, G., Bargibant, G., Menou, J.L. \& Tirard, P. 1987. Résultats préliminaires des pêches expérimentales à la palangre dans le lagon sud-ouest de Nouvelle Calédonie. Rapports Scientifiques et Techniques ORSTOM Nouméa Océanographie 49 : 104 pp .

Lamboeuf, M. 1987. Bangladesh demersal fish resources of the continental shelf. FAO/UNDP FI:DP/BGD/80/025 : 75 pp .
Ralston, S. 1982. Influence of hook size in the Hawaiian deep-sea handline fishery. Can. J. Fish. Aquat. Sci. 39: 1297-1305 pp.
Ralston, S., Gooding, R.M. \& Ludwig, G.M. 1986. An ecological survey and comparaison of bottom fish resource assessments (submersible versus handline fishing) at Johnston Atoll. Fish. Bull. 84(1): 141-155.
Richards, L.J. \& Schnute J.T. 1986. An experimental and statistical approach to the question: is CPUE an index of abundance ? Can. J. Fish. Aquat. Sci. 43: 1214-1227.
Richer de Forges, B., Bargibant, G., Menou, J.L. \& Garrigues, C. 1987. Le lagon de la Nouvelle Calédonie. Observations préalables à la cartographie bionomique des fonds. Rapports Scientifiques et Techniques ORSTOM Nouméa Océanographie 45: 110 pp .

Sainsbury, K.S. 1987. Assessment and management of the demersal fishery on the continental shelf of northwestern Australia. In: Tropical snappers and groupers. Biology and Fisheries management Polovina, J.J. \& Ralston, S. (ed.) Westview Press, Boulder \& London, pp. 465-503.
Stevenson, D.K. \& Marshali, N. 1974. Generalization on the fisheries potential of coral reefs and adjacent shallow water environments. Proc. 2nd Intern. Coral Reef Symp.1: 147-156.
Thresher, R.E. \& Gunn, J.S.- 1986. Comparative analysis of visual census techniques for highly mobile reef-associated piscivores (Carangidae). Env. Biol. Fish. 17(2): 93-116.
Villoso, E.P. \& Hermosa, G.V.E1982. Demersal.trawl fish resources of Samar. Sea and Carigara Bay Philippines. Fish. Res. J. Philip. 7(2): 57-78.

