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A mixture model was utmzed to extract soil bio- 
playsical properties from fine resolu$on soil spectra 
(400- 900 nm) measured outdoors with a portable 
spectroradiometer. The objective of this study was 
to fully cIiaracterize soil spectral signhtures in tIae 
visible and near-infrared in terms of underlying 

basis” cumes, key wavelength, and dimensional- 
ity. Through spectral decomposition and mixture 
modeling, the reflectance response of a wide, ge- 
netic range of soil materials were separated into 
four independent sources of spectral uariability 
(basis curves), which in linear combination were 
able to reconstitute tlae experimental data set. Step- 
wise spectral reconstruction was then utilized to 
isolate organic carbon and free iròn oxide “basis” 
curves. This enabled a good “global” measure of 
soil properties irrespective of soil type or bright- 
ness. W e  anticipate the EOS-MODIS and HIRIS 
sensors to provide tlae spectral data needed for 
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inversion of satellite &clta into soil surj6ace proper- 
ties.and processes. 

b 

INTRODUCTION 

Soils are a heterogenous, polyphasic combination I 

of solid mineral and organic constituents, liquid, 
and gas. A typical soil may consist of 50% pore 
space with spatially and temporally variant propor- 
tions of gas and liquid. The solid phase consists of 
a complicated genetic mixture of primary minerals 
in the sand and silt fractions, clay minerals, or- 
ganic polymers, and secondary mineral coatings. 
With the inclusion of rocks, litter, and various 
roughness conditions at the surface, one finds a 
complex reflectance response from soil surfaces 
with additional spatial and temporal variance pat- 
terns at all scales. 

The aim of remote sensing methodologies is to 
exploit these patterns of energy interactions for 
the purpose of extracting the most information 
about the biophysical character of soil surfaces. 
The aim of the soil scientist, in turn, is to extend 
these spatially measured, noninvasive techniques 
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below the surface so as to describe the soil as a 
dynamic, three-dimensional natural body with spa- 
tially variable properties. 

The noninvasive measurement of soil proper- 
ties is normally accomplished with measurements 
of solar reflected and emitted electromagnetic ra- 
diation from the soil surface. The spectral compo- 
sition and intensity of this energy are related to 
the biological and mineralogical properties of the 
soil surface and are interdependent with external 
solar/view angles and atmosphere. 

Soil Spectral Variance 

Both the intensity (brightness) and spectral com- 
position of reflected energy are useful in describ- 
ing the optical behavior of a soil. Brightness repre- 
sents the dominant or principal source of spectral 
variance among soils whereas spectral curve shape 
differences are secondary. Spectral variations are 
normally associated with specific absorption phe- 
nomena and are often quantified through the use 
of waveband ratios. The general shape of a spec- 
tral curve provides information on the size, geom- 
etry, and surface composition of the particles. In 
the visible portion of the spectrum, absorption 
features among soils are not generally sharp but 
instead are weak and broad. 

There are many laboratory experiments on soil 
reflectance patterns (Bowers and Hanks, 1965). 
Obukhov and Orlov (1964) presented three soil 
curve types in the spectral range from 400 nm to 
800 nm. These included monotonically rising 
curves, lqw reflecting, slightly concave curves, and 
sigmoidal curve forms which show absorption in 
the shorter wavelength range and high reflection 
in the yellow and red wavelengths. Condit (1972) 
visually classified 160 soil response curves into a 
similar set of three basic curve types. Stoner and 
Baumgardner (1981) presented five soil spectral 
shapes from a study involving 485 wetted soils 
over a larger portion of the spectrum (0.52-2.32 

In these studies, no attempts were made to 
quantitatively relate spectral shape to soil proper- 
ties. Furthermore, there were often problems in 
assigning soils to such discrete curve types. 
Courault et al. (1988) used the curve shape of soil 
spectra as a first approximation in assessing soil 
composition and physical characteristics. They an- 
alyzed 84 soil samples with a spectrophotometer 

pm). 

and identified six classes of curves in the visible 
(400-700 nm). As in the previous studies, organic 
carbon, iron oxides, and carbonates were the main 
soil constituents responsible for curve shape clas- 
sification schemes. Soils rich in organic carbon 
frequently have concave reflectance curves be- 
tween 0.5 ,um and 1.3 ,um whereas soils low in 
organic carbon show convex and/or sigmoidal 
curves. If iron and organic carbon are the main 
constituents responsible for soil spectral curve 
shapes, then it may be possible to discriminate 
soils in accordance with their curve form and 
assess their chemical makeup. 

The analysis of the curve shape in the visible 
portion of the spectrum also enables the extraction 
of soil color information which is often related 
to soil properties (Escadafal et al., 1988; 1989). 
Munsell hue and chroma differences manifest 
themselves as curve shape variance in the visible 
whereas brightness variations would be associated 
with Munsell color “value” (Munsell Color Co., 
1950). 

Spectral Mixture Modeling of Soil Surfaces 

Spectral decomposition methods and mixture 
modeling of soil surfaces provide an exploratory 
method to a) uncover complex interrelationships 
among spectral phenomena, b) discern indepen- 
dent patterns of soil spectral behavior, and c) mold 
findings into predictive models. The technique 
involves the decoupling of soil spectra into a set of 
simplified parameters, related to specific soil spec- 
tral features, that lend themselves to physical 
models. The ability to describe complex response 
functions by a small number of parameters facili- 
tates the search for relationships among the ob- 
served response variations and the causal variables 
of the experiment (Huete, 1986). In this way, ,one 
may find underlying factors and isolate subtle curve 
influences responsible for soil spectral differences 
and one may fully examine the potential for re- 
motely sensed data to characterize soil surface 
properties and condition. 

Two types of spectral mixture models, macro- 
scopic and intimate (Smith et al., 1985), are appli- 
cable to the study of soil spectra. In a macroscopic 
mixture, homogeneous patches of different soil 
types or moisture contents are present within a 
pixel and independently contribute toward .the 
measured response. An intimate mixture, by con- 
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trast, involves first and second order multiple scat- 
terings of radiant energy among the pixel compo- 
nents such as in soil particle coatings of secondary 
minerals and humic substances. Intimate mixtures 
are nonlinear combinations of component spectra 
whereas macroscopic mixtures involve additive, 
linear combinations of the subpixel constituents 
(Smith et al., 1985). The components of a mixture 
model are generally labeled as endmembers and 
may be “pure” or an aggregate of several compo- 
nents. 

Since iron oxides and humic substances tend 
to be ubiquitous in soil substrates, soils are rarely 
pure and it becomes difficult to define appropriate 
endmember or reference spectra from which one 
could describe either the response of an individual 
soil or the spectral characteristics of a global range 
of soil types. Thus far, soil spectra behavior has 
been analyzed in terms of specific biophysical 
properties or in terms of spectral classification 
schemes, which in turn are correlated with cli- 
matic and genetic environmental factors. 

THEORY 

The basis of the mixture model presented here is 
that soil responses are treated as mixtures of vari- 
ous soil spectral properties. Soil spectral response 
is equal to the weighted sum of unique reflecting 
soil features: 

n 

d i , k  = ‘ i , j C j 7 k ,  (1) 
j = l  

where di ,k  is rhe measured response of soil k in 
waveband i ,n is the number of unique spectral 
features in the soil population, ri,j is the response 
of feature j in waveband i, and c ~ , ~  is the loading 
or contribution of feature j in soil k. .In matrix 
notation, Eq. (1) is expressed as 

[Dl = [RIlCI,  (2) 
where D is the experimental data matrix, R is the 
response or eigenspectra matrix of independent 
“basis” spectral curves, and C is the eigenvector 
matrix consisting of the contributions or scalar 
multiples of each “basis” curve to the experimen- 
tal data. 

Principal components analysis is initially used 
to decompose the data matrix D into an abstract 
eigenspectra matrix RA and absdract eigenvector 

matrix CA such that [ Dl = [RIA[ CIA. Mathemati- 
cally, this is accomplished by solving the eigen- 
value problem: 

(3) 
where 2 is a symmetric covariance about the 
origin matrix with no data preprocessing (2, = 
DTD)  and A is a diagonal matrix of eigenvalues. 
The abstract eigenspectra matrix is then con- 
structed according to 

[ R I A =  [ D l [ c l ~ ,  (4) 
where C- l=  CT for orthonormal matrices. 

The eigenvalues, which are extracted in order 
of importance, are used to extract an intrinsic 
minimum number of basis curves which account 
for all curve shape differences in the experimental 
data (Simonds, 1963). Knowing the dimensionality 
of a soils data set also aids in determining the 
number of wavebands, their locations, and resolu- 
tions needed to fully characterize a soil and derive 
maximum soils information. 

One method to find n is to reconstruct the 
data matrix, according to Eq. (l), following each 
eigenvalue extracted (Weiner et al., 1970). The 
stepwise, data reconstruction procedure begins 
with n = 1, that is, only the eigenvector and eigen- 
spectra, corresponding to the largest eigenvalue, 
are used: 

If the calculated data set agrees with the experi- 
mental data set to within experimental error, the 
number of unique reflecting components, n, is 1. 
If not, then the next most important eigenvector 
and eigenspectra are included in the computation: 

d i , k  = ‘i,lC1,k + ‘i ,ZC2,k‘ (6) 
This is continued until the regenerated data set is 
in agreement with the experimental data set. At 
each step of the data reproduction procedure, the 
residual standard deviation (RSD) is calculated to 
provide a measure of the deviation of the regener- 
ated data matrix from the experimental data matrix 
(Malinowski and Howery, 1980); 

1/2 

(7)  
RSD=[ c; = + ,A j 1 , 

r ( c  - n )  

where r and c represent the size of the data 
matrix with r > c .  

The “basis” response curves (eigenspectra) 
provide efficient representation of the experimen- 
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tal data, but there is no certainty that there will be 
a simple relationship between these curves and 
underlying causal, biophysical variables. Condit 
,(1972) applied eigenvector analysis to the study of 
soil spectra and found that the 160 sets of dry soil 
spectra curves could be reduced to four “basis” 
response curves plus a mean soil curve, which, in 
linear combination, could reproduce the entire 
family of soil response curves. More recently, Price 
(1990) studied the spectral variability (0.55-2.32 
pm) of over 500 soils and found that four “basis” 
vectors were sufficient to describe the entire set of 
soil spectra. However, neither Price (1990) nor 
Condit (1972) made an attempt to physically relate 
these basis curves to specific soil properties. 

In this paper, a family of soil response curves 
are decomposed into fundamental and unique, ba- 
sis cufves. A mixture model is then utilized for the 
extraction of soil biophysical properties based upon 
the amounts of each basis curve needed for recon- 
stitution of experimental soil spectra. In addition, 
the location and number of wavebands necessary 
for soil spectral characterization are investigated 
and the development of appropriate “endmem- 
bers” for global scale mixture modeling are con- 
sidered. 

METHODOLOGY 

Forty-six soils in air-dry, sieved condition ( < 2 
mm to remove gravels and rocks) were measured 
in 10 nm wavelength intervals from 400 nm to 900 
nm with a field portable spectroradiometer. Nadir 
view reflectance responses were measured from a 
height of 42 cm, outdoors on cloudless days at a 
nominal solar zenith angle of 40”. Reflectance fac- 
tors were obtained by ratioing the reflected re- 
sponse from a soil by that of a reference panel 
with reflectance adjusted for sun angle. 

The soils were collected from various biome 
types (temperate desert, semidesert grassland, oak 
woodland, pine forest, and tropical grassland) in 
the midwest, Sonoran desert, Basin and Range 
Plateau, and Hawaii, U.S.A. The soils varied from 
undeveloped (shallow) Entisols and rnceptisols to 
fully weathered (deep) Oxisols. Included in the set 
of experimental measurements were 10 soils from 
a climosequence along the Santa Catalina Moun- 
tains near Tucson, Arizona (Galioto, 1985). All 
soils along this sequence were formed from similar 

Table 1. Soils and Vegetation from a climosequence in the 
Santa Catalina Mountains (Whittaker et al., 1968) 

Elevation Classification 
(m) Vegetation (US. Soil Taxonomy) % O.C. 

900 desert scrub Lithic Haplargid 0.46 
1100 desert grassland Lithic Tomorthent 0.55 
1300 open oak woodland Lithic Ustorthent 1.33 
1700 pine-oak woodland Lithic Ustorthent 3.91 
2300 pine forests Typic Ustochrept 5.85 
2700 subalpine forest Typic Haploboroll 7.90 

0.35 I Santa Catalina Mountains 

O ’  I I I I I 
400 500 600 700 800 900 

WAVELENGTH, nm 

Figure 1. Spectral reflectance signatures for soils along the 
Santa Catalina climosequence. 

genetic material but vary in organic carbon con- 
tent in response to annual precipitation (27-85 cm 
at high elevations) and temperature differences 
(Table 1). A sample of the variation in spectral 
signatures along this transect is shown in Figure 1. 

To further illustrate the spectral variance in 
the soils population, the five most unique spectral 
curves and their characteristics are shown in Fig- 
ure 2 and Table 2. In the mixture decomposition 
process these are named “key” soils because they 
account for nearly all of the variance encountered 
in this study and all other soil signatures may be 
approximated by some linear combination of these 
five soils. 

The three spectral curve forms described by 
Obukhov and Orlov (1964) and Condit (1972) are 
readily apparent; the convex curve form (Karro), 
resembling a minimally altered, calcareous soil, 
the concave curve form [Santa Catalina (S.C.) 2300 
m] representative of organic rich soils, and the 
sigmoidal curve forms which are affected by free 
iron oxide coatings on soil particle surfaces. The 
position of the inflection point and plateau, how- 
ever, vary over the three sigmoidal curve forms. 
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Figure 2. (a) Spectral reflectance signatures of the five “key” 
soils and (b) the first derivative spectra for the three iron- 
affected, sigmoidal curve forms. 

Table 2. Characteristics of  the Five Key Soils in This Study 

Soil Series Soil Classijìcation Soil Color 
Nicholson Typic Fragiudalf 

Molokai Typic Torrox 
(yellowish brown) 

(clayey, kaolinite, 
isohyperthermic) 

Karro Ustollic Calciorthid 
(fine-loamy, 
carbonatic, thermic) 

Coconino red fine sand 
(not classified) 

Santa Catalina Typic Ustochrept 
(loamy skeletal) 

10 YR 5/4 

2.5 YR 3/4 
(fine-silty, mixed, mesic) 

(dark reddish brown) 

10 YR 7/3 
(light gray) 

5 YR 5/5 

7.5 YR 3/2 
(yellowish-red) 

(dark brown) 

The first derivative spectra highlights these dif- 
ferent inflection points (Fig. 2b) with the peaks 
shifting toward longer wavelengths with respec- 
tive soil hues (Table 2) of yellow (Nicholson, 
lOYR), yellow-red (Coconino, 5YR), and red 
(Molokai, 2.5YR). 

Table 3. Decomposition of Soil Reflectance Data Set 

No. 

1 
2 
3 
4 
5 
6 
7 
8 

Eigenvalue 
119.6260 

0.5753 
0.1788 
0.0252 
0.0045 
0.0008 
0.0002 
0.0001 

Key Band Condit (1972) 
hm)  Real Emor (nm) 

0.0187 
0.0098 
0.0038 
0.0017 
0.0008 
0.0005 
0.0004 
0.0004 

~~ 

410 400 
900 920 
610 640 
540 540 
780 740 
480 
450 
570 

RESULTS 

Mixture Decomposition 

The results of the decomposition procedure (46 
soils X 50 bands) are summarized in Table 3. The 
eigenvalues are the orthogonal variances of the 
data matrix ranked in order of magnitude. The 
dimensionality of the data set is not easy to deter- 
mine; however, by using the real error criteria, the 
dimensionality may be estimated to be 4 or 5 
depending on the acceptable level of experimental 
error. With four “basis” curves, the population of 
soil spectra signatures may be regenerated to 
within ,0.17% reflectance and, with the inclusion 
of the fifth basis curve, the soil spectral signatures 
could be regenerated to within ,0.08% re- 
flectance. 

The entire soil experimental data set could 
thus be represented as mixtures of four or five 
basis curves (eigenspectra). Similarly, we may also 
state that four or five “key” bands are needed to 
completely characterize and reconstruct a soils 
spectrum. The “key” bands, in order of impor- 
tance, are shown in Table 3 along with those 
reported by Condit (1972). Both sets appear simi- 
lar and, since soil spectral features tend to be 
coarse, there is some flexibility in the exact posi- 
tioning and spectral resolution over these five 
bands. 

Eigenspectra (Basis) Curves 

Figure 3 shows the resulting five, unique “basis” 
curves (eigenspectra). In contrast to the five “key” 
soil signatures (Fig. 2a), these curves are totally 
uncorrelated with one another. Furthermore, all 
measured soil curves can be reconstituted from 
linear combinations of these curves. Ideally, each 
eigenspectrum represents a unique soil spectral 
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Figure 3. The first five eigenspectra (basis) curves following 
decomposition of the soil experimental data set. 

property and the amount of each curve needed to 
reconstitute a soil signature is a measure of the 
significance of that property in the soil sample. 

The first eigenspectrum curve (Rl) is slightly 
sigmoidal and represents the best fit or “mean” 
soil curve for the soils population. This curve 
characterizes the most dominant soil spectral 
property, namely its brightness. The amount of 
this curve needed to approximate a particular soil 
signature is a measure of that brightness and is 
quantified in the loadings matrix (Cl). The entire 
soil spectral population can be reconstituted to 
within +1.87% reflectance (Table 3) by multiply- 
ing the first eigenspectrum and first eigenvector 

The second eigenspectrum (FU, Fig. 3) has a 
strong absorption region at 540 nm and a slight 
(broad) absorption at around 820 nm, both of 
which resemble the spectral behavior of iron ox- 
ides (Hunt et al., 1971; Kosmas et al., 1984). The 
addition of this “iron oxide” curve with the first, 
mean soil curve regenerates all soil spectral signa- 
tures to within f0.98% reflectance [Eq. (611. In a 
color sense soils become redder with the addition 
of this curve to the “mean” soil signature (Rl) 
since green and blue responses are being sub- 
tracted relative to the red and near-infrared. 

The third eigenspectrum curve (R3, Fig. 3) 
has a concave shape resembling the organic domi- 
nated soil curves of Stoner and Baumgardner 
(1981) and Condit (1972). This signature may thus 
be needed to model the influence of decomposed 
organic constituents on soil spectral behavior and 
the inclusion of the curve with the first two eigen- 

[Eq. (511. 

spectra curves regenerates the soils population to 
within f 0.38% reflectance. 

Eigenspectrum 4 is similar to the absorptance 
spectrum of goethite, a yellow, “reduced” form of 
iron oxide with absorption regions at approxi- 
mately 460 nm and 560 nm (Hunt et al., 1971; 
Kosmas, 1984). The spectral feature in the 520-600 
nm region has the effect of adding or subtracting 
green” to a soil’s signature enabling discrimina- << 

Figure 4. Stepwise regeneration of the soils along the Santa 
Catalina climosequence for (a) n = 1, 6) n = 2, and (c) n = 3. 
(Lines with symbols represent regenerated spectra; lines 
without symbols are experimental spectra.) 
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tion between the red and yellow forms of free iron 
oxides in soils. With the above four “basis” curves 
in a mixture model, the soil population of spectral 
signatures can be reconstituted to within 20.17% 
reflectance. 

Eigenspectrum 5 has peaks at 550, minima at 
600 nm, and a broad peak at 770 nm. It is not clear 
what the fifth eigenspectrum curve represents or if 
it is necessary for soil spectra regeneration. In the 
next section, soil signatures are regenerated and 
compared with the experimental data to further 
assess the dimensionality of the data set. 

Figure 5. Stepwise regeneration of three iron-affected, key 
soils; (a) n = 1; (b) n = 2; (c) n = 3; (d) n = 4; (e)  n = 5. 
(Lines and symbols as in Fig. 4.) 
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Data Regeneration 

Figure 4 shows the stepwise regeneration of the 
Santa Catalina climosequence using one, two, and 
three component mixture models. The spectral 
signature of the desert soil (S.C. 900 m) is recon- 
stituted fairly well with only the first eigenspec- 
trum (Fig. 4a) but the organic enriched soils, at 
2300 m and 2700 m elevation, are poorly repro- 
duced. Inclusion of the second eigenspectrum (red 
iron oxide “basis” curve) did little to improve soil 
spectral regeneration (Fig. 4b); however, by adding 
the third eigenspectrum organic “basis” curve, the 
organic enriched soils of the climosequence were 
reproduced nearly entirely (Fig. 4c). This gives 
support to the third eigenspectrum representing 
an isolated organic “basis” curve. 

The same data reconstruction procedure is il- 
lustrated for the iron-affected “key” soils in Figure 
5. All three soils are poorly described by the first 
(brightness) eigenspectrum (Fig. 5a) and the 
Nicholson and Coconino soils are indis tinguish- 
able. Inclusion of the second eigenspectrum (red 
iron oxide curve) had little effect on the Nicholson 
(yellow soil) but significantly improved the regen- 
eration of the reddish Coconino and Molokai soils 
(Fig. 5b). The Nicholson and Coconino are now 
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Figure 6. First derivative spectra for the three iron-affected 
soils following stepwise regeneration at (a) n = 3 and 
(b) n = 4. 

discriminable and the iron-rich Molokai is regen- 
erated fairly well. 

The addition of the third eigenspectrum 
(organic basis curve) further improves the mod- 
eled spectra (Fig. ,512); however, the fourth eigen- 
spectrum (yellow iron oxide basis curve) provides 
for nearly complete data reconstitution, especially 
in the case of the yellow-colored Nicholson soil 
(Fig. 5d). The importance of the fourth basis curve 
in modeling iron-affected soils is demonstrated by 
plotting the first derivative spectra for the regen- 
erated spectra at n = 3 and n = 4 (Fig. 6). Wifh a 
three-component model the primary curve peaks 
are not discriminable, but upon inclusion of the 
fourth curve, the three iron-affected, yellowish to 
red colored soils separate out. 

Figure 5e shows a small degree of data model- 
ing improvement resulting from the inclusion of 
the fifth eigenspectrum curve. In analyzing Fig- 
ures 4 and 5, it would appear that a four-compo- 
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(b) 
Figure' 7. Relationship between % soil organic carbon and 
(a) C1 loadings and (b) C3 loadings. 

nent mixture model is sufficient to adequately 
describe the soil spectral information content (46 
soils) encountered in this study, that is, the model 
improvement resulting from the fifth basis curve is 
small relative to anticipated or encountered exper- 
imental error. 

Soil Biophysical Properties 

To a certain extent, the spectral decomposition 
process has isolated various soil spectral features 
relevant to the assessment of soil properties. The 
loadings (C3)  of the organic basis curve (R3) 
needed for regeneration of a soil spectral signature 
is related to the soil's organic carbon content. The 
R3 eigenspectrum has a concave curve shape and 
is independent of the usual measure of soil organic 
carbon, the brightness curve (Rl). Thus, we now 
have two independent measures of a soil's organic 
carbon status (Figs. 7a and 7b) with the C3 load- 
ings producing a slightly improved correlation 
( r  = 0.71) over the C1 loadings ( r  = 0.57). The C3 
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loadings also respond to slight changes in organic 
carbon over the Santa Catalina (S.C.) 1, 2, and 3 
sequence (900,1100, and 1300 m elevation), where 
the C1 loadings appear insensitive. 

In contrast to the Cl-brightness loadings, 
however, the C3 loadings would not be affected by 
soil moisture, roughness, shading, or other bright- 
ness-related influences. This is because brightness 
(RI) is a measure of the amplitude of a soil 
spectral signature while the third eigenspectrum 
(R3) is a measure of the concavity of the signature. 
Since the numerous factors which alter the bright- 
ness of soils do not affect the soils’ concavity, the 
C3 loadings would be a more reliable measure of 
soil organic carbon. As with the brightness mea- 
sure, the C3-organic carbon relationships breaks 
down beyond 2% organic carbon where most soil 
particle surfaces become fully coated with humic 
material. The corresponding organic carbon corre- 
lations for all soils are: for C1, r = 0.42 and for C3, 
r = 0.64. The textural attributes of a soil also mod- 
ify such relationships and contribute to the scatter 
in the plots. 

Figure Sa is a C3-C4 plot showing the load- 
ings or amounts of the third (organic carbon) and 
fourth (iron) “basis” curves present in all 46 soil 
signatures. As the C3 loadings increase, particu- 
larly over the Santa Catalina climosequence from 
low to high elevations (1-6), organic humus coat- 
ings mask the iron and other mineral spectral 
features and C4 loadings converge toward zero. 
With convergence, soil chromas (Fig. 8b) drop to 
low values (gray colors) due to the darkening 
effect of humus. At low C3 loadings, the influence 
of organic carbon is reduced and iron-related spec- 
tral features and colors stand out. The C4 axis 
separates red and yellow hues (Fig. 8c) in accor- 
dance with the type of iron oxide (oxidized or 
reduced) and soil chromas become higher with 
lower C3 loadings. 

In conclusion, high resolution spectra in the 
region fi-om 400 nm to 900 nm does provide 
important information about a soil’s organic carbon 
and iron contents. An organic “basis” curve as 
well as red and yellow curve forms of,iron oxides 
are extractable across a broad range (global) of soil 
types formed under a variety of genetic materials. 
This provides a means for analyzing soil properties 
based on high resolution spectral curve shapes, 
irrespective of the “brightness” or intensity of the 
signature. 
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Figure 8. Relationship between C3 and C4 loadings for 
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DISCUSSION 

In this study, spectral decomposition and mixture 
modeling were utilized to determine independent, 
global patterns of soil spectral behavior and isolate 
subtle curve shape influences. Four characteristic 
basis curves, independent of each other, were 
determined essential for spectral reconstruction of 
the entire family of soil spectral signatures. Spec- 
tra1 isolation of these unique basis” curves not 
only aided in the assessment of the dimensionality 
of soil spectra, but also provided for an analysis of 
the “physical” importance of each basis curve 
toward soil spectral behavior. This enabled weak 
and broad absorption features in soil spectral sig- 
natures to be isolated from the dominant bright- 
ness component as each basis curve became vital 
in understanding and modeling soil spectral be- 
havior. 

For example, without the organic basis curve, 
one cannot reconstitute most soil spectral signa- 
tures, particularly those with appreciable amounts 
of organic carbon ( N 0.5%). Since the majority of 
soils on this planet possess some amount of or- 
ganic carbon, this third basis curve is vital toward 
spectral characterization of the global soils popula- 
tion. Thus, soil organic carbon could be assessed 
and differentiated from soil color and brightness 
variations caused by moisture, roughness, and illu- 
mination conditions. 

Similarly, the red and yellow forms of free iron 
oxide “basis” curves were essential in describing 
the “global” population of soil spectra. If one were 
in an arid region with well-aerated soils (red iron 
oxides), the fourth basis curve or even the third 
organic basis curve may not be necessary to de- 
scribe regional soil conditions. However, in global 
studies one needs to extrapolate results across 
biome types and all unique soil spectral features 
must be accounted for. The basis curves derived 
from this experimental data matrix may also be 
used to create new spectral signatures from soils 
not included in the original soil data set. If new 
data cannot be fitted by the established basis 
curves, then the new data is from a different 
population of response variability. 

As seen in this study, there ar6 two possible 
classes of endmembers which may be utilized in 
soil mixture models, namely, a) discrete soil types 
(key soils) with unique curve forms and b) pure 
signatures of unique soil spectral properties. Fig- 

“ 

ure 2 is an example of key soils which could serve 
as endmembers in a mixture model scheme. In a 
global sense and as concluded by Stoner and 
Baumgardner (1981), only a discrete number of 
soil curve forms exist and hence are truly separa- 
ble. However, each unique soil curve form repre- 
sents some mixture of soil properties (iron, organ- 
ics, etc.). It may also be unrealistic to model soil 
spectral response curves in this manner since there 
may exist a continuum of response curves between 
any two unique soil curve types, such as in the 
climosequence (Fig. 1). In transition zones involv- 
ing more than one soil type, various soil associa- 
tions may be encountered within a pixel producing 
a range of composite soil signatures. Two soil 
types within a pixel may not be separable unless 
they possessed unique spectral curve forms. 

On the other hand, it may be easier to isolate 
soil spectral properties such as organic carbon and 
iron oxides across the various soil curve types. In 
this case, the eigenspectra or “basis” response 
curves (Fig. 3), which are independent of soil 
curve type or key soils, are used as endmembers to 
model soil biophysical properties. The loadings 
thus represent a measure of soil properties relative 
to the abstract eigenspectra signature. The trans- 
formation of the abstract to a “real” solution with 
physical significance can be accomplished through 
rotation of the eigenspectra to line up, in a least 
squares sense, with the spectral signatures of ref- 
erence of pure materials that are already physi- 
cally and chemically characterized. Ideally, pure 
humus, hematite (red iron oxide), and goethite 
(yellow iron oxide) spectral signatures would pro- 
vide the means for deriving the “real” mixtures 
solution. The loadings would then measure the 
corresponding soil properties relative to the refer- 
ence signature rather than the abstract eigenspec- 
tra signature. 

It is hoped that high resolution sensors such as 
HIRIS (Goetz and Herring, 1989) would allow for 
a complete global soils characterization with a 
thorough dimensionality analysis, extraction of key 
“basis” curves, and definition of endmembers. 
Once the number and necessary wavelength re- 
gions are known for soil differentiation and spec- 
tral property extraction, it is hoped that coarser 
resolution spectra, such as may be obtained by 
MODIS-N and -T (Salomonson et al., 1989), would 
be sufficient for continual assessment of soils and 
vegetation within biome types. 
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