Tetrahedron Letters, Vol. 34, No. 27, pp. 4381-4384, 1993 Printed in Great Britain 0040-4039/93 \$6.00 + .00 Pergamon Press Ltd

A Novel Group of Polyhydroxycholanic Acid Derivatives from the Deep Water Starfish *Styracaster caroli*

Francesco De Riccardis, Luigi Minale* and Raffaele Riccio

Dipartimento di Chimica delle Sostanze Naturali, Università di Napoli "Federico II" Via Domenico Montesano 49, 80131 Napoli, Italy

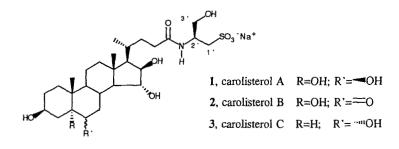
Maria Iorizzi

Università degli Studi del Molise, Facoltà di Agraria, Via Tiberio 21/A, 86100 Campobasso

X Cécile Debitus and Daniel Duhet

ORSTOM, Centre de Nouméa, B.P. A5, Nouméa, New Caledonia

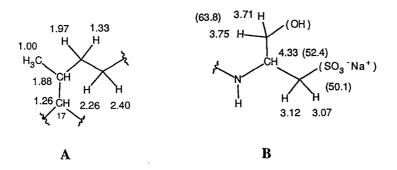
Claude Monniot


Museum Nationale d'Histoire Naturelle, 57, rue Cuvier, 75005 Paris, France.

Key Words: marine natural products; starfish; polyhydroxysteroids; polyhydroxycholanic acid; cysteinolic acid.

Abstract: Three novel polyhydroxysteroid constituents have been isolated from the starfish Styracaster caroli collected at a depth of 2000 m off New Caledonia. These, designated carolisterols A - C(1 - 3), are characterized by a polyhydroxycholanic acid moiety, in which the 24-carboxylic acid function is found as an amide derivative of D-cysteinolic acid.

Extensive studies of starfishes steroid constituents have yielded a large number of steroidal oligoglycosides accompanied by numerous polyhydroxysteroids in both sulphated and non sulphated form¹. More than eighty polyhydroxysteroids from starfishes have been reported so far¹. The large majority of them possess a 3β , 6 α (or β), 8, 15 α (or β), 16 β -pentahydroxycholestane nucleus, sometime with additional hydroxyl groups at one or more of positions 4 β , 5 α , 7 α (or β) and occasionally 14 α . A 26-hydroxyl function is usually present in the side chain, less commonly the side chain is hydroxylated at C-24. All hydroxyl groups are disposed on one side of the tetracyclic nucleus inducing an amphiphilic character in the molecules².


As a part of our continuing investigation of the New Caledonian marine species, we have examined the polar extracts of the starfish *Styracaster caroli* collected at a depth of 2000 m between the islands of Thio and Lifou and wish to report the isolation of three unique polyhydroxysteroids, carolisterols A - C (1 - 3).

4381

8 - AOUT 1994 0.R.S.T.O.M. Fonds Documentaire N° : 39.870 Cote : B Ex A Separation of the polar steroids from the aqueous and acetone extracts of *Styracaster caroli* (2 Kg fresh) was achieved by chromatography on a column of Sephadex LH-20, followed by droplet counter current chromatography and reversed phase HPLC to yield carolisterol A (1, 6.0 mg), B (2, 3.3 mg) and C (3, 2.7 mg).

The negative fast atom bombardment (FAB) mass spectrum of carolisterol A (1) exhibited a molecular anion peak at m/z 576 [M⁻], indicating the presence of at least one nitrogen atom in the molecular formula. The IR spectrum contained an absorbance at 1653 cm⁻¹, typical for an amide function, and absorbance at 1200 and 1044 cm⁻¹, consistent with the presence of a sulphonate salt³. The ¹H NMR spectrum of carolisterol A (1) showed signals at 4.04 m (H-3 α), 3.50 t (J= 2.5 Hz, H-6 α), 3.78 dd (J= 11.0, 2.5 Hz, H-15 β) and 4.10 dd (J= 9.0, 2.5 Hz, H-16 α), these latter two coupled to each other by 2.5 Hz, suggesting the presence of a 3 β ,5 α ,6 β ,15 α ,16 β -pentahydroxycholestane tetracyclic nucleus, already found in polyhydroxysteroids isolated from the starfish *Luidia maculata*⁴ and *Myxoderma platyacanthum*⁵. The spectrum also contained two methyl singlets for 18- and 19-CH₃ groups at 0.94 and 1.20 ppm and only one methyl doublet (1.00 d, J= 7 Hz). 2D-COSY experiments allowed the connectivities C-1 to C-4, C-6 to C-12 and C-6 to C-17 to be established within the steroidal tetracyclic framework, along with the partial structures (**A**, **B**) shown below.

The ¹³C NMR and DEPT spectra contained 27 signals, including one at 176.1 ppm consistent with an amide carbonyl. The complete ¹H and ¹³C NMR assignments are summarized in Table 1. HMBC experiments established the connection between the methylene protons at δ 2.26 and 2.40 (H₂-23) and the carbonyl carbon. Thus, the 3β , 5α , 6β , 15α , 16β -pentahydroxycholanic acid structure could be defined for the steroidal moiety 1. HETCORR experiments allowed us to correlate the carbon signals at δ_C 63.8 (CH₂), 52.4 (CH) and 50.1 (CH₂) with their associated proton signals at δ_H 3.71-3.75, 4.33 and 3.12-3.07, respectively (partial structure **B**). An inspection of the literature data suggested the presence of the cysteinolic acid residue linked to the steroidal moiety through an amide functionality. The ¹H and ¹³C NMR spectra reported for cysteinolic acid⁶ completely agree with our data. D-cysteinolic acid has recently been isolated from fishes and shellfishes⁶ and previously from algae⁷⁻⁹ and the starfish Asterina pectinifera¹⁰. We propose the D configuration by analogy.

Carolisterol B (2) is the 6-keto analog of carolisterol A (1). The negative FAB mass spectrum of 2 exhibited a molecular anion peak at m/z 574 [M⁻], two mass units shifted relative to 1. In addition to the amide band at 1655 cm⁻¹, the IR spectrum contained a strong band 1715 cm⁻¹ providing evidence for a ketone, as confirmed by ¹³C NMR ($\delta_C 216.0$ ppm). An examination of ¹H and ¹³C NMR spectra immediately indicated the presence of the same cysteinolic acid residue as in 1. The keto function was localized at C-6 by a ¹H-¹H COSY experiment (Table 1) which correlated the methylene protons α to the keto group, δ 2.33 and 3.01(H₂-7), to H-8 until H₂-23, and comparison of ¹³C NMR spectrum of 2 with that of 1 (Table 1).

The ¹H NMR spectrum of the minor carolisterol C (3) indicated the presence of the same cysteinolic acid residue as in 1 and 2. The negative FAB mass spectrum exhibited a molecular ion peak at m/z 560 [M⁻], corresponding to a tetrahydroxylated saturated cholanic acid linked to the cysteinolic residue. In agreement with a tetrahydroxysteroidal structure, the ¹H NMR contained four methine signals at δ 3.50 with the complexity normally observed for a 3 β -hydroxyl group, at δ 3.36, in the form of a double triplet (J = 4.0 and 10.5 Hz) characteristic of a 6 α -hydroxy group, and at 3.76 dd (J= 11.0, 2.5 Hz) - 4.10 dd (J= 9.0, 2.5 Hz) coupled to each other, already seen in the spectra of 1 and 2 and assigned to the presence of 15 α , 16 β -dihydroxy functions. On this basis we suggest structure **3** for the minor carolisterol C (**3**).

4383	3
------	---

$\frac{1}{1} \qquad 2 \qquad 3$								
			1	1	Z		3	
С	¹³ Cδ	mult ^b	¹ Hδ ^c	¹³ Cδ	¹ Hδ		l _{Hδ}	
1	33.4	CH ₂	α 1.62 m	31.3	-		-	
		_	β 1.38 m		-		-	
2	31.5	CH ₂	α 1.80 m	31.0	-		-	
	(0.2	CU	β 1.53 m 4.04 m	67.9	3.93		3.50 m	
3	68.2	CH	4.04 m α 1.60 m	36.6	5.95	111	5.50 111	
4	41.3	CH ₂		50.0	-			
_	76 4	С	β 2.10 t (13.0)	81.0	-			
5	76.4		α 3.50 t (2.5)	216.0	_			
6	76.2	CH	a 5.50 t (2.5)	210.0	_		β 3.36 dt (10.5, 4.0)	
7	35.0	CH ₂	α 1.90 m	43.1	a 3 01	t (13.5)		
	55.0	CH ₂	β 1.90 m	+J.1		dd (13.5, 5.4)	_	
8	31.0	СН	2.05 m	38.0	p 2.55	uu (1010, 011)	-	
9	46.4	CH	1.47 m	45.7	_		-	
10	39.2	C	-	43.4	_		-	
10	21.8	CH ₂	α 1.42 m	22.2	-		-	
11	21.0	Chi	β 1.42 m		_		-	
12	41.7	CH ₂	α 1.25 m	41.5	-		-	
		0112	β 2.00 m		-		-	
13	44.5	С	-	44.7	-		-	
14	60.6	CH	1.03 m	60.9	-		-	
15	84.2	CH	β 3.78 dd (11.0, 2.5)	83.8	β 3.74	dd	β 3.76 dd	
16	82.9	CH	α 4.10 dd (9.0, 2.5)	82.7	α 4.10	dd	α 4.10 dd	
17	60.1	CH	1.26 m	60.2	-		- • •	
18	14.8	CH3	0.94 s	14.8	0.90		0.91 s	
19 '	17.3	CH ₃	1.20 s	14.3	0.83	S ·	0.89 s	
20	30.8	CH	1.82 m	30.9	-		-	
21	18.2	CH ₃	1.00 d (7)	18.3	1.00	d (7)	0.99 d (7)	
22	32.3	CH_2	1.97-1.23 m	32.3	-	· ·		
23	33.8	CH ₂	2.40-2.26 m	33.9	2.38-2.2	28 m	2.36-2.27m	
24	176.1	С	-	176.2	- ,		-	
1'	52.4	CH ₂	3.12 dd(14.0, 6.0)	52.5	3.13		3.13 dd	
		-	3.07 dd (14.0, 7.0)		3.08		3.07 dd	
2'	50.1	CH	4.33 m	50.3	4.32		4.33 m	
3'	63.8	CH ₂	3.75 dd (11.0, 5.5)	63.9	3.75		3.75 dd	
			3.71 dd (11.0, 5.5)		3.71	dd	3.71 dd	

Table 1. 1H and 13C NMR data for carolisterols A - C (1 - 3) $^{\rm a}$

۲.) سم

^a All spectra are recorded in MeOH-d₄ at 500 MHz; ^b Determined by DEPT and HETCORR experiments; ^c Assignments based on 2D-COSY results.

ŕ.

In view of the anti-HIV activity recently reported for polar sulphated sterols ^{11,12}, the major carolisterol A (1) was tested in the NCI's primary anti-HIV screen and showed no protection against the cytopathic effects of HIV-1.

The proposed structures for carolisterols are a striking new addition to the large number of polyhydroxysteroids which have been isolated from marine sources. No bile acid-type sterols have been isolated from marine sources other than those from fish bile, the unusual 20-epicholanic acid derivatives from the sea pen *Ptilosarcus gurneyi*¹³ and two "normal" cholanic acid derivatives from the nudibranch *Aldisia sanguinea cooperi*¹⁴, but never found as polyhydroxylated derivatives.

Acknowledgements. This contribution is part of the project SMIB (Substances Marines d'Intéret Biologique), ORSTOM-CNRS, Nouméa, New Caledonia. Chemical work was supported by "Ministero dell'Università e della Ricerca Scientifica", MURST, ROME, and CNR (contribution 92.00456.CT03). We thank Dr. Jhon H. Cardellina II, Tawnya Mekee, James McMahon and Michael Boyd of NIH- Bethesda, USA for anti-HIV tests. Mass spectra were provided by the "Servizio di Spettrometria di massa" of the CNR and the University of Naples. The assistance of the staff is gratefully acknowledged.

References

- 1. Minale L., Riccio R. and Zollo F., Progress in the Chemistry of Organic Natural Products, eds. W. Herz, H. Grisebach, G. W. Kirby and Ch. Tamm.; Wien, New York Springer **1993**, *62*, 75.
- 2. Mattia C.A., Mazzarella L., Puliti R., Riccio R. and Minale L., Acta Crystallographica 1988, C44, 2170.
- 3. Nakanishi K. and Solomon P.H., Infrared Absorbtion Spectroscopy, 2nd ed.; Helden-Day, Inc. Okland, 1977.
- 4. Minale L., Pizza C., Riccio R., Squillace Greco O., Zollo F., Pusset J. and Menou J. L., J. Nat. Prod. 1984, 47, 784.
- 5. Finamore E., Minale L., Riccio R., Rinaldo G. and Zollo F. J. Org. Chem. 1991, 56, 1146.
- 6. Satake M., Mikajiri A., Makuta M., Fujita T., Murakami M., Yamaguchi K. and Konosu S., *Comp. Biochem. Physiol.* **1988**, 90B, 151.
- 7. Wiekberg B., Acta Chem Scand 1957, 11, 506.
- 8. Ito K., Bull. Jap. Soc. Scient. Fish. 1963, 29, 771.
- 9. Takagi M., Oishi K. and Okumura A., Bull. Jap. Soc. Scient. Fish. 1967, 33, 669.
- 10. Yoneda T. and Yoshimura K., Bull. Jap. Soc. Scient. Fish. 1965, 31, 1045.
- 11. Sun H.H., Cross S.S., Gunasekera M. and Kohen F.E., Tetrahedron 1991, 48, 5467.
- 12. McKee T.C., Cardellina II J.H., Tischler M., Snader K.M. and Boyd M. R., Tetrahedron Lett. 1993, 34, 389.
- 13. Vanderah D.J. and Djerassi C., Tetrahedron Lett. 1977, 683.
- 14. Ayer S.W. and Andersen R.J., Tetrahedron Lett. 1982, 23, 1039.

(Received in UK 12 May 1993)